Home            Research Statement             Google Scholar                      

Articles in Journal or Book chapter:

  1. Z. Aminzare and V. Srivastava. Phase Reduction and Synchronization of Coupled Noisy Oscillators. arXiv:3638491, 2021. [PDF]

  2. J. Park and Z. Aminzare. A mathematical description of bacterial chemotaxis in response to two stimuli. arXiv:2006.00688, 2020. [PDF]

  3. Z. Aminzare and P. Holmes. Heterogeneous inputs to central pattern generators can shape insect gaits. SIAM J. on Applied Dynamical Systems, 18(2), 1037-1059, 2019. [PDF]

  4. E. N. Davison, Z. Aminzare, B. Dey, and N. Ehrich Leonard. Mixed mode oscillations and phase locking in coupled FitzHugh-Nagumo model neurons. Chaos: An Interdisciplinary Journal of Nonlinear Science, 29(3): 033105, 2019. [PDF]

  5. Z. Aminzare, B. Dey, E. N. Davison, and N. Ehrich Leonard. Cluster synchronization of diffusively coupled nonlinear systems: A contraction based approach. J. of Nonlinear Science, 1-23, 2018. [PDF] [Poster]

  6. Z. Aminzare, V. Srivastava, and P. Holmes. Gait transitions in a phase oscillator model of insect central pattern generators. SIAM J. on Applied Dynamical Systems, 17(1): 626-671, 2018. [PDF] [Poster]

  7. F. Menolascina, R. Rusconi, V. I. Fernandez, S. P. Smriga, Z. Aminzare, E. D. Sontag, and R. Stocker. Logarithmic sensing in Bacillus subtilis aerotaxis. Nature Systems biology and Applications, 3:16036-, 2017. [PDF]

  8. Z. Aminzare and E.D. Sontag. Some remarks on spatial uniformity of solutions of reaction-diffusion PDEs. 2015. Nonlinear Analysis: Theory, Methods & Applications, 147:125-144, 2016. [PDF]

  9. J. L. Gevertz, Z. Aminzare, Kerri-Ann Norton, J. Pérez-Velázquez, A. Volkening, K. A. Rejniak. Emergence of Anti-Cancer Drug Resistance: Exploring the Importance of the Microenvironmental Niche via a Spatial Model.
  10. In A. Radunskaya and T. Jackson, editors, Applications of Dynamical Systems in Biology and Medicine, IMA Volumes in Mathematics and its Applications, 158:1- 34, Springer-Verlag, 2015. [PDF]

  11. Z. Aminzare and E.D. Sontag. Synchronization of diffusively-connected nonlinear systems: results based on contractions with respect to general norms. IEEE Transactions on Network Science and Engineering, 1(2):91-106, 2014. [PDF]

  12. Z. Aminzare, Y. Shafi, M. Arcak, E.D. Sontag. Remarks on weighted L² norm contractions of reaction-diffusion systems. In V. Kulkarni, K. Raman, and G.-B. Stan, editors, System Theoretic Approaches to Systems and Synthetic Biology, 73-110. Springer-Verlag, 2014. [PDF]

  13. Z. Aminzare and E.D. Sontag. Logarithmic Lipschitz norms and diffusion-induced instability. Nonlinear Analysis: Theory, Methods & Applications, 83:31-49, 2013. [PDF]

Conference Papers:

  1. Z. Aminzare, P. Holmes, and V. Srivastava. On Phase Reduction and Time Period of Noisy Oscillators. In Proc. IEEE Conf. Decision and Control, Nice, France, Dec. 2019, pages 4717-4722, 2019. [PDF]

  2. Z. Aminzare and E. D. Sontag. Contraction methods for nonlinear systems: A brief introduction and some open problems. In Proc. IEEE Conf. Decision and Control, Los Angeles, Dec. 2014, pages 3835-3847, 2014. [PDF]

  3. Z. Aminzare and E. D. Sontag. Remarks on diffusive-link synchronization using non-Hilbert logarithmic norms. In Proc. IEEE Conf. Decision and Control, Los Angeles pages 6086-6091, 2014. [PDF]

  4. Y. Shafi, Z. Aminzare, M. Arcak, E.D. Sontag. Spatial uniformity in diffusively-coupled systems using weighted $L^2$ norm contractions In Proc. American Control Conference 2013. pages 5639-5644. [PDF]

Internal Reports:

  • Z. Aminzare and E. D. Sontag. Remarks on a population-level model of chemotaxis: advection-diffusion approximation and simulations. Technical report, arXiv:1302.2605, 2013. [PDF]