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Summary

Insects use various gaits. Fast running insects employ tripod gaits with 3
legs up in swing and 3 down in stance. Slower insects use tetrapod gaits
with 2 legs in swing and 4 in stance. Fruit flies use both gaits with a
transition from tetrapod to tripod at intermediate speeds. We study the
effect of stepping frequency on transitions between these gaits in an
ion-channel bursting neuron model in which each cell represents a
hemi-segmental thoracic circuit of the central pattern generator (CPG).
Employing phase reduction and dynamical systems methods, we show
the existence and stability of tetrapod, tripod and transition gaits.

CPG bursting neuron model

The system of equations for a single bursting neuron model is [1]:

Cv̇ = −{ICa + IK + IKS + IL} + Iext

ṁ =
ε

τm(v)
[m∞(v)−m]

ẇ =
δ

τw(v)
[w∞(v)− w ]

ṡ =
1
τs

[s∞(v)(1− s)− s] (synapse)

The currents take the forms

ICa(v) = ḡCan∞(v)(v − ECa)

IK (v ,m) = ḡK m (v − EK )

IKS(v ,w) = ḡKCaw (v − EK )

IL(v) = ḡL(v − EL)

Iext = constant

The time scales take the forms

τm(v) = sech(kK (v − vK ))

τw(v) = sech(kC(v − vC))

τs = constant

The steady state gating variables are

m∞(v) =
1

1 + e−2kK (v−vK )

w∞(v) =
1

1 + e−2kC(v−vC)

n∞(v) =
1

1 + e−2kCa(v−vCa)

s∞(v) =
a

1 + e−2ks(v−Epre
s )

Effect of Iext & δ on frequency of limit cycle

T = period of a cycle= swing+stance, frequency = 1/T

As Iext or δ increases, the frequency increases. So both Iext and δ can be
considered as speed parameters (ξ).

Weakly interconnected neurons

For a network of six mutually inhibiting units, assume [3]:
I Inhibitory coupling via negative postsynaptic currents.
I Contralateral symmetry (3 contralateral (c1, c2, c3) and 4

ipsilateral (c4, c5, c6, c7) coupling strengths).
I Nearest neighbor connections with identical coupling

functions.
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Synapses

The synapse variable s enters the postsynaptic cell:

Cv̇ = −{ICa + IK + IKS + IL} + Iext + Isyn

where Isyn = Isyn(v , s) = −ḡsyn s(t)
(
v − Epost

s

)
, ḡsyn : synaptic strength

Gait transition

The following figures show gait transitions from tetrapod to tripod as ξ increases in the
network of 6-coupled bursting neurons represented by 24 ODEs. Each bar represents the
swing phase of one leg. Note the transitional gaits with partial overlap of swing phases in
the middle row. In these simulations, c1 = c2 = c3, and c5 = c4 + c7 = c6.

Forward left Tetrapod

Goal: To justify the observed gait transitions mathematically. To this end, we first reduce the
24 ODEs to 6 phase equations:

Phase equations for six weakly coupled neurons

Phase reduction theory yields a single equation for each
bursting neuron. The coupling function is computed by
convolving the phase response curve (PRC) with the
synaptic current (Isyn).

φ̇1 = ω0 + c1H(φ4 − φ1, ξ) + c5H(φ2 − φ1, ξ)

φ̇2 = ω0 + c2H(φ5 − φ2, ξ) + c4H(φ1 − φ2, ξ) + c7H(φ3 − φ2, ξ)

φ̇3 = ω0 + c3H(φ6 − φ3, ξ) + c6H(φ2 − φ3, ξ)

φ̇4 = ω0 + c1H(φ1 − φ4, ξ) + c5H(φ5 − φ4, ξ)

φ̇5 = ω0 + c2H(φ2 − φ5, ξ) + c4H(φ4 − φ5, ξ) + c7H(φ6 − φ5, ξ)

φ̇6 = ω0 + c3H(φ3 − φ6, ξ) + c6H(φ5 − φ6, ξ)

I There exists a unique η = η(ξ), 0 ≤ η ≤ 1/6, such that

H(2/3− η, ξ) = H(1/3 + η, ξ).

I We assume constant contralateral symmetry between the left and right legs:

φi+3 − φi = 2/3− η.
I Phase difference of front-middle and hind-middle gives two equations on a torus:

θ̇1 = (c1 − c2)H(2/3− η, ξ) + c5H(−θ1, ξ)− c4H(θ1, ξ)− c7H(θ2, ξ)

θ̇2 = (c3 − c2)H(2/3− η, ξ) + c6H(−θ2, ξ)− c4H(θ1, ξ)− c7H(θ2, ξ)
(1)

I Assumption: (1/3 + η,2/3− η),0 ≤ η ≤ 1/6 is a fixed point of Equation (1).
(η = 0 ∼ tetrapod and η = 1/6 ∼ tripod)
This assumption gives the following relations among ci ’s:

c1 + c5 = c2 + c4 + c7 = c3 + c6 (balance equation)

I Special case (motivated by data): c1 = c2 = c3.
Letting α := c4

c4+c7
(0 < α < 1), and making a change of time scale, Equation (1) becomes

θ̇1 = H(−θ1, δ)− αH(θ1, δ)− (1− α)H(θ2, δ)

θ̇2 = H(−θ2, δ)− αH(θ1, δ)− (1− α)H(θ2, δ)
(2)

Phase planes of Equation (2) & bifurcation diagram

We show that when ξ increases, a gait transition from tetrapod to tripod occurs.

(Left) Small ξ, 2 stable tetrapod (corresponding to back-to-front and front-to-back
waves of stance movements), 1 stable “slow” tripod (green dots), 1 unstable tripod
(corresponding to point (0.5,0.5)), 1 unstable node (corresponding to point (0,0))
(red dots), and 5 saddle points (orange dots) are observed.
(Middle) As ξ increases, a degenerate bifurcation and a saddle node bifurcation
occur. Through these bifurcations, two tetrapod, one slow tripod, one unstable
tripod, and three saddle points disappear and one stable tripod bifurcates.
(Right) Large ξ, 1 stable tripod, 1 unstable node, and 2 saddle points are observed.

Gaits deduced from fruit fly data fitting

ω̂ c1 c2 c3 c4 c5 c6 c7

slow 9.92 0.3614 0.1478 0.1780 0.1837 0.2509 0.3409 0.1495
medium 12.48 0.2225 0.6255 0.4715 0.1436 0.3895 0.7921 0.2964

fast 15.52 0.0580 0.8608 0.6726 0.0470 0.4294 1.1498 0.8500

tetrapod gait transition tripod gait

Conclusion

We conclude that when ξ < ξ∗ (some bifurcation value for the speed parameter),
there exists at least one stable tetrapod gait and when ξ > ξ∗, there exists a unique
stable tripod gait.
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