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Abstract Practically, all chemotherapeutic agents lead to drug resistance. Clinically,
it is a challenge to determine whether resistance arises prior to, or as a result of,
cancer therapy. Further, a number of different intracellular and microenvironmental
factors have been correlated with the emergence of drug resistance. With the goal
of better understanding drug resistance and its connection with the tumor microen-
vironment, we have developed a hybrid discrete-continuous mathematical model.
In this model, cancer cells described through a particle-spring approach respond to
dynamically changing oxygen and DNA damaging drug concentrations described
through partial differential equations. We thoroughly explored the behavior of our
self-calibrated model under the following common conditions: a fixed layout of the
vasculature, an identical initial configuration of cancer cells, the same mechanism
of drug action, and one mechanism of cellular response to the drug. We considered
one set of simulations in which drug resistance existed prior to the start of treatment,
and another set in which drug resistance is acquired in response to treatment. This
allows us to compare how both kinds of resistance influence the spatial and tempo-
ral dynamics of the developing tumor, and its clonal diversity. We show that both
pre-existing and acquired resistance can give rise to three biologically distinct pa-
rameter regimes: successful tumor eradication, reduced effectiveness of drug during
the course of treatment (resistance), and complete treatment failure. When a drug
resistant tumor population forms from cells that acquire resistance, we find that the
spatial component of our model (the microenvironment) has a significant impact on
the transient and long-term tumor behavior. On the other hand, when a resistant tu-
mor population forms from pre-existing resistant cells, the microenvironment only
has a minimal transient impact on treatment response. Finally, we present evidence
that the microenvironmental niches of low drug/sufficient oxygen and low drug/low
oxygen play an important role in tumor cell survival and tumor expansion. This may
play role in designing new therapeutic agents or new drug combination schedules.

Key words: tumor therapy, tumor environment, hybrid model, individual cell-
based model.
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1 Introduction

The effectiveness of practically all chemotherapeutic compounds that are used in
the clinical treatment of solid tumors reduces during the course of therapy [1–4].
This phenomenon, termed drug resistance, can arise due to a number of different in-
tracellular and microenvironmental causes. Drug resistance is not cancer-specific; it
is a common cause of treatment failure in HIV infection [5], and of antibiotic failure
in bacterial communities [6]. It is often impossible to determine whether the drug
resistant cells existed prior to the start of treatment, or if they arose as a result of
anti-cancer therapy. Pre-existing (primary) drug resistance occurs when the tumor
contains a subpopulation of drug resistant cells at the initiation of treatment, and
these cells become selected for during the course of therapy. Acquired resistance
involves the adaptation of a tumor cell subpopulation so that the cells gradually
develop drug resistance due to drug exposure and other factors, such as microenvi-
ronmental or metabolic conditions [7, 8].

Mechanisms of drug resistance are being studied in cell culture [9, 10]. Drug re-
sistant cell lines are produced by incubating cells with a particular drug, collecting
the surviving cell subpopulation, and repeating this process through several pas-
sages until the remaining subpopulation of cells no longer responds to the treat-
ment. While this is an effective way to generate a resistant cell population, this in
vitro process does not reveal whether the surviving cells become less responsive
to chemotherapeutic treatment with each cell passage (acquired drug resistance),
or if a small population of resistant cells was present from the beginning and sim-
ply overgrew the other cells during the course of the experiment (pre-existing drug
resistance).

Many different mechanisms can be adopted by cancer cells to resist treatment
[2–4, 11–13]. These can broadly be divided into intrinsic (intracellular) causes and
extrinsic (microenvironmental) causes. As an example of intrinsic resistance, a can-
cer cell arrested in a quiescent state will not respond to the killing effects of an
anti-mitotic drug. Other intrinsic causes of drug resistance include enhanced DNA
repair mechanisms, increased tolerance to DNA damage, high levels of drug trans-
porters that eliminate drug from the cell, over-expression of drug target receptor, or
accumulation of cancer stem cells. Among the extrinsic causes of drug resistance are
factors that synergistically limit cancer cell exposure to drug. These include irregu-
lar tumor vasculature that causes chaotic drug delivery and interstitial fluid pressure
that hinders drug transport. Metabolic gradients inside tissue, such as regions of hy-
poxia or acidity, can also influence cell sensitivity to a drug [7, 10, 14–16]. While
these factors could be pre-existing, exposure to drug has also been found to affect
these different factors [1, 7, 17].

To narrow down the focus of this paper, we only consider a chemotherapeu-
tic agent that chemically reacts with and damages cell DNA. Among these are
drugs routinely used in the clinic, including alkylating agents (cisplatin, mepha-
lan), antimetabolites (5-fluorouracil, gemcitabine), anthracyclines (doxorubicin) or
topoisomerase poisons (etoposide). DNA integrity is essential for a cell to prop-
erly function, and when increased levels of DNA damage are detected at cell-cycle



4 Gevertz, Aminzare, Norton, Pérez-Velázquez, Volkening, Rejniak

checkpoints, the cell can be arrested in its cell-cycle to give time for DNA repair.
However, in cancer cells the mechanisms of DNA damage sensing can be loosened,
and some cells are capable of ignoring cell-cycle checkpoints. We consider cancer
cells with one or more of these features to be resistant to DNA damaging drugs.
These resistant cells can result in the increased proliferation and replication of the
damaged DNA. Cancer cells can also develop resistance through increased DNA
repair capabilities and increased DNA damage tolerance [12, 13, 18, 19]. Clinically,
it is generally not possible to determine which of these mechanisms result in resis-
tance to DNA damaging drugs, though all of these mechanisms have been observed
experimentally.

Our goal is to simulate how resistance to DNA damaging drugs (administered
continuously by intravenous injection) can emerge in individual cells and in a grow-
ing population of tumor cells. We were interested in comparing tumor dynamics
in two cases: when a small subpopulation of tumor cells is already resistant to the
drug (pre-existing resistance) and when the cells can become resistant upon expo-
sure to the drug (acquired resistance). Theoretical analysis of the temporal compo-
nents of the model, along with numerical simulations of the full spatial model have
been performed. These analyses revealed multiple biologically-distinct parameter
regimes for both pre-existing and acquired resistance. In either case, we found a pa-
rameter regime for which the effectiveness of drug is reduced during the course of
treatment (drug resistance). Focusing on the case of pre-existing resistant cells, we
quantified how their location in tissue space influences therapeutic response. When
drug resistance emerges in response to treatment, we explored which clonal popu-
lations survived treatment and how this depended on their location in tissue space.
Moreover, we present evidence that two different microenvironmental niches, low
drug/low oxygen and low drug/sufficient oxygen, have different transient and long-
term impacts on cancer cell survival.

2 Mathematical Model

We have developed a hybrid discrete-continuous model of a two-dimensional tissue
slice in which a tumor grows, interacts with the microenvironment and is treated
with a DNA damaging drug. The pivotal role of the microenvironment in drug ef-
ficacy and resistance is strongly suggested through the observation that drugs with
potent in vitro activity are often significantly less effective in the clinic. We incor-
porate the microenvironment by considering a small patch of tissue with imposed
positions of non-evolving blood vessels that serve as a source of both nutrients and
drug. We track the features and behaviors of individual cells; this includes their
clonal evolution and their interactions with other cells and the surrounding microen-
vironment. For simplicity, we do not include any stromal cells or other extracellular
components. The hybrid discrete-continuous model, described in more detail be-
low, combines an agent-based technique (a particle-spring model) to represent the
individual tumor cells and continuous partial differential equations to describe the
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Fig. 1 Computational model assumptions and selected simulation results. (a) Visualization of
model components at the initial stage (left), and during simulation (right): the gradient of drug
(greyscale in background) is regulated by influx from the vasculature (red circles) and by cellular
uptake; the clonal origin of each individual cell is indicated by a different symbol/color combina-
tion; hypoxic cells are surrounded by white circles. (b) Final (after 25,000 iterations) configuration
of tumor and its clonal heterogeneity in a case of no treatment. (c-d) Evolution of a tumor un-
der treatment, but with no resistance for two distinct initial configurations of 65 cells (Section
3.1). Both tumors will be eradicated by treatment (not shown). (e) Evolution of a tumor when
pre-existing resistant cells give rise to a resistant tumor (reduced effectiveness of drug during the
course of treatment; see Section 3.3). (f) Evolution of a tumor when cells that acquire resistance
result in the formation of a resistant tumor (Section 3.4). (g) Evolution of tumor clones influenced
by the microenvironmental niche in the case of acquired resistance (Section 3.5).
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kinetics of both oxygen and drug. The cellular and microenvironmental compo-
nents of our model are shown graphically in FIG.1a. A comparison of our model
with other hybrid models of tumor resistance to drugs is given in the Discussion in
Section 4. In all equations below we will use the following notation: x = (x,y) will
define locations of continuous variables, such as drug and oxygen concentrations,
while (X ,Y ) will denote locations of discrete objects, that is cells and vessels.

2.1 Reaction-diffusion equation for oxygen kinetics.

The change in oxygen concentration ξ at location x = (x,y) in the tumor tissue
depends on oxygen supply from the vasculature Vj at a constant rate Sξ , its diffusion
with diffusion coefficient Dξ , and cellular uptake by the nearby tumor cells Ck at
rate ρξ . It is governed by the following equation:

∂ξ (x, t)
∂ t

= Dξ ∆ξ (x, t)︸ ︷︷ ︸
di f f usion

−min

(
ξ (x, t),ρξ ∑

k
χCk (x, t)

)
︸ ︷︷ ︸

uptake by the cells

+Sξ ∑
j

χV j (x, t)︸ ︷︷ ︸
supply

, (1)

where k indexes over the number of cancer cells with positions C(X ,Y )
k , and j indexes

over the number of vessels with positions V (X ,Y )
j . χ is the characteristic function

defining the cell and vessel neighborhood, whose definition depends on a fixed cell
radius RC and a fixed vessel radius RV :

χCk (x, t) =

{
1 if

∣∣∣∣∣∣x−C(X ,Y )
k (t)

∣∣∣∣∣∣< RC

0 otherwise,
χV j (x, t) =

{
1 if

∣∣∣∣∣∣x−V (X ,Y )
j

∣∣∣∣∣∣< RV

0 otherwise.

Sink-like boundary conditions (∂ξ (x, t)/∂n =−ϖξ (x, t)) are imposed along all
domain boundaries x ∈ ∂Ω , where n is the inward pointing normal. The initial
oxygen concentration ξ (x, t0) in the whole model domain Ω is shown in the Ap-
pendix in FIG.9a. The method for determining the initial oxygen distribution, oxy-
gen boundary conditions, and oxygen uptake rates are also described in the Ap-
pendix.

2.2 Reaction-diffusion equation for drug kinetics.

The change in drug concentration γ in the tumor tissue depends on its supply from
the vasculature Vj, its diffusion with diffusion coefficient Dγ , decay with decay rate
dγ , and cellular uptake by the tumor cells Ck at rate ργ . It is governed by the follow-
ing equation:
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∂γ(x, t)
∂ t

= Dγ ∆γ(x, t)︸ ︷︷ ︸
di f f usion

−dγ γ(x, t)︸ ︷︷ ︸
decay

−min

(
γ(x, t),ργ ∑

k
χCk (x, t)

)
︸ ︷︷ ︸

uptake by the cells

+Sγ (t)∑
j

χV j (x, t)︸ ︷︷ ︸
supply

, (2)

where Sγ(t) is a time-dependent supply function from each vessel. In this paper we
assume that the drug supply is continuous, thus we use a constant Sγ . In principle,
however, this approach allows us to model different time dependent drug administra-
tion schedules. The neighborhood function χ is defined above, and the drug bound-
ary conditions are defined in the same way as for oxygen. The initial conditions
are defined as follows: γ(x, t0) = 0 for x ∈ Ω \

⋃
Vk, and γ(x, t0) = Sγ at all V (X ,Y )

k .
Together, these equations state that t0 represents the start of treatment at which time
drug is only found at the sites of blood vessels. The method for determining drug
boundary conditions and drug uptake rates are described in the Appendix.

2.3 Agent-based model for tumor cell dynamics.

Each cell in our model is treated as a separate entity characterized by several individ-
ually regulated properties that define cell position C(X ,Y ), current cell age Cage, cell
maturation age Cmat , the level of sensed oxygen Cξ , the level of accumulated drug
Cγ , the time of cell exposure to high drug concentration Cexp, the level of accumu-
lated DNA damage Cdam, the level of damage that the individual cell can withstand,
but upon crossing it, the cell will die (a “death threshold”) Cdeath, and two variables
used to identify cell heritage–the unique index of the host cell (IDc), and the unique
index of its mother cell (IDm), that we denote by C(IDc,IDm). The state of the k-th
cell at time t, Ck(t), will be denoted as follows:

Ck(t) =
{

C(X ,Y )
k (t),Cage

k (t),Cmat
k ,Cξ

k (t),C
γ

k (t),C
exp
k (t),Cdam

k (t),Cdeath
k (t),C(IDc,IDm)

k

}
.

The rules for updating each cell property are described below and summarized in a
flowchart of cell response to microenvironmental conditions shown in FIG. 2. Note
that cells are updated in a random order at each iteration to avoid any configurational
biases.

Each cell can inspect its local neighborhood and sense extracellular concentra-
tions of both oxygen ξ and drug γ . The quantity of oxygen taken up and used by the
k-th cell (Cξ

k ), and the amount of drug taken up by the cell (Cγ

k ) are determined as
follows:

Cξ

k (t+∆ t)= ∑
x

ξ (x, t)︸ ︷︷ ︸
sensed & used

and Cγ

k (t+∆ t)=Cγ

k (t)+

max

0,∑
x

min
(
γ(x, t),ργ

)︸ ︷︷ ︸
uptake

−dγCγ

k (t)︸ ︷︷ ︸
decay


∆ t,

where
{

x :
∣∣∣∣∣∣x−C(X ,Y )

k

∣∣∣∣∣∣ < RC

}
is a local cell neighborhood. The level of sensed

oxygen will regulate cell proliferative capabilities, and cells will become quies-
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Fig. 2 Flowchart of cell behavior in response to microenvironmental factors. Based on signals
sensed from the microenvironment (first column) each cell can respond to oxygen levels (second
column) by potentially proliferating or becoming hypoxic, and to drug levels (third column) by
either surviving, adapting, or dying. Upon cell division (rightmost column), some cell properties
are inherited, while others are sampled from the environment.

cent in a hypoxic environment (the level of sensed oxygen falls below a predefined
threshold T hrhypo).

The duration of cell exposure to the drug and its concentration will determine cell
DNA damage. In the case of acquired resistance, the duration of drug exposure also
determines the cell death threshold. While these mechanisms are assumed here, their
effects are consistent with experimentally hypothesized mechanisms of resistance,
including the accumulation of mutations of drug targets or inactivation of the drug
[2]. The drug-induced DNA damage is assumed to depend on the current increase
in drug consumed by the cell (drug uptake minus drug decay) and on DNA repair
(proportional to the current damage with the rate p):

Cdam
k (t +∆ t) =Cdam

k (t)+
[

max
(

0,∑
x

min(γ(x, t),ργ )−dγCγ

k (t)
)]

∆ t − p Cdam
k (t). (3)

If this accumulated damage exceeds the tolerated damage level (the death threshold
Cdeath

k , determined by self-calibration in the Appendix), this cell dies.
The damage level tolerated by the cells is defined differently depending on

whether we deal with pre-existing or acquired cell resistance. In the case of pre-
existing drug resistance, Cdeath

k is fixed for all cellular clones, however, it is set up
to be relatively higher for the resistant clones. For simplicity, we assume that it is a
multiplier of the value for sensitive clones. Thus Cdeath

k =T hrdeath for sensitive cells
and Cdeath

k =T hrmulti×T hrdeath for resistant cells. In the case of acquired cell resis-
tance, the Cdeath

k may increase in each cell independently (with the increase step
∆death) if the prolonged drug exposure criterion is met:

Cdeath
k (t +∆ t) =

{
Cdeath

k (t)+∆death if Cexp
k (t)> texp

Cdeath
k (t) otherwise
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where texp is the prolonged drug exposure threshold that determines whether a cell’s
death threshold increases. Note that Cexp

k is defined by introducing cell short-term
memory to count how long the cell has been exposed to a high drug concentration
γexp:

Cexp
k (t +∆ t) =

{
Cexp

k (t)+∆ t if Cγ

k (t)> γexp
0 otherwise.

Cell current age is updated as follows: Cage
k (t +∆ t)=Cage

k (t)+∆ t. We assume that
when the cell reaches its maturation age, Cmat

k , it is ready to divide unless it is sur-
rounded by other cells (the overcrowding condition), in which case cell proliferation
is suppressed until space becomes available. Upon division of the k-th cell, Ck(t),
two daughter cells are created instantaneously (Ck1(t) and Ck2(t)). One daughter cell
takes the coordinates of the mother cell, whereas the second daughter cell is placed
randomly near the mother cell; that is:

C(X ,Y )
k1 (t) =C(X ,Y )

k (t) and C(X ,Y )
k2 (t) =C(X ,Y )

k (t)+RC (cos(θ),sin(θ)) ,

where θ is a random angle. The current age of each daughter cell is initialized
to zero, Cage

k1 (t)=Cage
k2 (t)=0, however the cell maturation age is inherited from its

mother cell with a small noise term: Cmat
k1 ,Cmat

k2 =Cmat
k ±ω , with ω ∈ [0,Cmat

k /20].
Moreover, both daughter cells inherit from their mother the level of DNA damage
Cdam

k1 (t)=Cdam
k2 (t)=Cdam

k (t), the death threshold Cdeath
k1 (t)=Cdeath

k2 (t)=Cdeath
k (t), and

the drug exposure time Cexp
k1 (t)=Cexp

k2 (t)=Cexp
k (t). However, the level of accumulated

drug is divided equally between the two daughter cells Cγ

k1(t)=Cγ

k2(t)=0.5×Cγ

k (t),

and the levels of sensed oxygen Cξ

k1(t) and Cξ

k2(t) are determined independently
for each cell based on oxygen contents in the cell vicinity. Furthermore, the unique
index of each daughter cell consists of the newly assigned index and the inherited
mother index, i.e., C(IDc,IDm)

k1 =(k1,C
IDc
k ) and C(IDc,IDm)

k2 =(k2,C
IDc
k ). This is summa-

rized in the “cell inheritance” column of FIG. 2. Initial properties of the k-th tumor
cells are: Ck(t0) = {(Xk,Yk),0,Mk,∑x ξ (x, t0),0,0,0,Tk,(k,0)}, where Mk is drawn
from a uniform distribution [0.5×A ge,1.5×A ge], and A ge is the average mat-
uration age. Tk=T hrdeath for all cells in the acquired resistance case, and for all
sensitive cells in the pre-existing resistance case. Tk=T hrmulti×T hrdeath for all re-
sistance cells in the pre-existing resistance case. This means that all cells start at
their pre-defined position (Xk,Yk), at age zero with whatever amount of oxygen they
sense from the local microenvironment. There is no drug in any of the cells initially,
and cells have been exposed to the drug for no time. Further, cells have not accumu-
lated any damage and all cells have a pre-defined death threshold. Each initial cell
has an unknown mother, thus its unique index is (k,0), and the first component is
passed along to its daughters as a mother cell index.
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2.4 Equations of cell mechanics.

The equations of cell mechanics are based on the previously published model by
Meineke et al. [20], in which cells are represented by the coordinates of its nucleus
C(X ,Y )(t) and a fixed cell radius RC. Thus, each cell is assumed to have a default
volume that is maintained during its lifetime, and the neighboring cells push each
other away by exerting repulsive forces if they come into contact (i.e., if the distance
between the cells is less than the cell diameter 2RC). Therefore, the change in cell
position depends on interactions with other cells in the neighborhood. Two repulsive
(linear, Hookean) forces fi, j and− fi, j will be applied to cells C(X ,Y )

i (t) and C(X ,Y )
j (t),

respectively, to move these two cells apart and preserve cell volume exclusivity. To
simplify notation in the equations below, we let Xi=C(X ,Y )

i (t). Then,

fi, j =

{
F (2RC−‖Xi−X j‖)

Xi−X j
‖Xi−X j‖ if ‖Xi−X j‖< 2RC

0 otherwise,

where F is the constant spring stiffness, and the spring resting length is equal to cell
diameter. If the cell Xi is in a neighborhood of more than one cell (say, X j1 , . . . ,X jM ),
the total force Fi acting on Xi is the sum of all repulsive forces fi, j1 , . . . , fi, jM coming
from the springs between all neighboring cells connected to Xi:

Fi = F (2RC−‖Xi−X j1‖)
Xi−X j1
‖Xi−X j1‖︸ ︷︷ ︸

fi, j1

+ . . .+F (2RC−‖Xi−X jM‖)
Xi−X jM
‖Xi−X jM‖︸ ︷︷ ︸

fi, jM

.

Cell dynamics are governed by the Newtonian equations of motion where the
connecting springs are overdamped (system returns to equilibrium without oscilla-
tions). Damping force is related linearly to velocity with a damping coefficient ν ,
and thus the force and cell relocation equations are given by:

Fi =−ν
dXi

dt
and Xi(t +∆ t) = Xi(t)−

1
ν

∆ tFi.

When a dividing cell gives rise to two daughter cells, the repulsive forces be-
tween daughter cells are activated since they are placed at the distance smaller than
cell diameter. Further, this may also result in daughter cell placement near other
tumor cells. Therefore multiple repulsive forces will be applied until the cells are
pushed away and the whole tumor cluster reaches an equilibrium configuration. The
introduction of repulsive cell-cell interactions also allows for monitoring the num-
ber of neighboring cells, which determines whether the cells are overcrowded. This,
in turn, influences subsequent tumor growth. It is of note that some cells get pushed
out of the domain after the cluster reaches an equilibrium configuration. Only cells
that remain inside the domain are considered in our analysis. All model parameters
that define cell mechanics are summarized in Table 1.
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Table 1 Physical and computational parameters of cell mechanics.

cellular parameters: numerical parameters:
Cell radius RC=5 µm Domain size [−75,75]× [−75,75] µm
Spring stiffness F=1 mg/s2 Mesh width hb=2µm
Mass viscosity ν=15 mg/s Time step ∆ t=0.5min
Overcrowding Neighbors=14 cells
Maturation age A ge=360min ± noise∈[0,A ge/20]

2.5 Numerical implementation of model equations

A finite difference scheme is used to approximate the solution of the partial differ-
ential equations for oxygen and drug. Space is discretized into a square grid, with
spacing between grid points of hb. Time is also discretized with a time step ∆ t. The
numerical values of these parameters are given in Table 1. The solution to the partial
differential equation is then approximated using a forward-difference approximation
(in time) on a square grid (centered in space), using sink-like boundary conditions
as detailed in Section 2.1. At each time step, the initial conditions for approximat-
ing γ(x, t +∆ t) and ξ (x, t +∆ t) are the values of γ(x, t) and ξ (x, t), respectively.
We prescribed the initial values, γ(x, t0) and ξ (x, t0), as detailed above and in Table
2, whereas the values of γ and ξ at all t > 0 are determined by finite difference
approximation.

Cell-drug and cell-oxygen interactions are also modeled at the same discretized
time points for which we numerically approximate the solution to the partial dif-
ferential equation. In particular, at each discrete time point, any discrete grid point
within a fixed distance RC from the center of a cancer cell can uptake drug for that
cancer cell at a uptake rate ργ , provided this amount of drug is available. If there
is not enough drug at the site to take up ργ units, all the drug available at the site
is taken up by the grid point for the associated cell. Finally, we also assume that
drug found inside the cell decays at the same rate as it does in the environment. In
a similar way oxygen is taken from the environment at the rate ρξ and immediately
used by the cells. All non-dimensionalized parameter values used in our model are
summarized in Table 2 (see Appendix for parameter self-calibration).

Table 2 Non-dimensionalized parameters of oxygen and drug kinetics based on calibration pre-
sented in Appendix.

metabolite kinetics (normalized values): drug resistance (normalized values):
oxygen: drug: pre-existing: acquired:

Supply rate Sξ =1 Sγ =1 Death thresh. incr. ∆death=0 ∆death varies
Diffusion coeff. Dξ =0.5 Dγ =0.5 Death thresh. mult. T hrmulti=5 T hrmulti=1
Decay rate none dγ =1×10−4 Drug exp. level N/A γexp=0.01
Bndry outflux rate ϖ=0.45 ϖ=0.45 Drug exp. time N/A texp=5∆ t
Cellular uptake ρξ =5Sξ×10−5 ργ =Sγ×10−4 DNA repair p varies p=1.5×10−4

Threshold value T hrhypo=0.05 T hrdeath=0.5
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3 Results

An analysis of our calibrated model is undertaken here. To facilitate comparisons
between simulations so that only the impact of resistance type (none, pre-existing,
acquired) is assessed, all simulations (with one noted exception) use the same initial
condition for the configuration of 65 tumor cells (each individually represented by
a unique shape/color combination) and blood vessels, shown in FIG.1a, left. Fur-
ther, all simulations are run using a fixed seed for the random number generator. We
first explain tumor dynamics upon treatment with a continuously-administered DNA
damaging drug when neither mode of resistance is incorporated. Following this, we
make some analytical predictions on tumor behavior, under the simplifying assump-
tion that long-term behavior is not influenced by the spatial features of the model. In
the case of pre-existing resistance, the theoretical analysis is supported by numerical
simulations. In the case of acquired resistance, numerical simulations are also con-
ducted, although the connection to the theoretical analysis is less straightforward.
We conclude by studying the impact that spatial location and microenvironmental
niche have on tumor response to treatment.

3.1 Analysis of treatment outcome with no tumor resistance.

Here, we consider the case when no form of anti-cancer drug resistance can develop.
This means that all cells initially have the same tolerance to drug damage (param-
eter T hrmulti is set to 1), and this tolerance will not increase during the course of
treatment (parameter ∆death set to 0). The model has been calibrated (see Appendix)
so that in this case the drug is successful and all tumor cells will be eliminated in
a relatively short time (after several cell cycles). Moreover, the drug should erad-
icate the tumor regardless of initial cell configuration. Thus here we discuss two
cases that differ only by the initial locations of tumor cells. The first case, shown
in FIG.1c(i), is comprised of a dispersed cluster of cells initially located at varying
distances from the vasculature. The second case is shown in FIG.1d(i) and contains
cells located within the low drug niche (see Section 3.5), relatively far from all ves-
sels. All other model parameters are identical in both cases, including the death
threshold (T hrdeath=0.5) and DNA repair rate (p=1.5×10−4), as listed in Table 2.

In both cases the qualitative behavior of the whole cell population is similar, as
can be seen by comparing cell evolution curves in FIG.3a and FIG.3c. Initially, the
cells do not encounter enough drug to die off, thus allowing them to increase the
cell population by 4-5 fold (FIG.3a(ii) and FIG.3c(ii)) and overtake a large por-
tion of the domain. The corresponding cell configurations are shown in FIG.1c(ii)
and FIG.1d(ii), respectively. During this time the majority of cells steadily accu-
mulate DNA damage (FIG.3b,d) and subsequently die when the damage level ex-
ceeds the death threshold (FIG.3a(iii) and FIG.3c(iii)). The exception to this is a
small cell cluster located in the low drug niche (FIG.1c(iii) and FIG.1d(iii)). These
small subpopulations are able to briefly recover and temporarily increase tumor size
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Fig. 3 No-resistance case. Comparison of cell evolution curves (a,c) and cell damage curves (b,d)
for two distinct initial conditions shown in FIG.1c(i) and FIG.1d(i). The numbers in (a) and (c)
correspond to color panels in FIG.1c and FIG.1d, respectively. The curves in (b) and (d) show an
average damage level of all cells with the standard deviation represented by vertical lines, and an
average death threshold of all cancer cells, which here is constant.

(FIG.3a(iv), FIG.1c(iv) and FIG.3c(iv), FIG.1d(iv)), although both tumors eventu-
ally die out. Tumor eradication in both cases took place within several cell cycles,
although the tumor initiated within the low drug niche survived slightly longer than
the dispersed configuration: 9 cell cycles versus 11 cell cycles, with an average cell
cycle counting 720 iterations. The main difference between these two cases is in
the number of persistent clones (one in FIG.1c(iv) and several in FIG.1d(iv)), which
suggests that certain cell clones may be selected by microenvironmental conditions
and thus survive longer. This may have implications for the development of tumor
resistance since subpopulations that confer a certain advantage within the tissue may
give rise to distinct resistance capabilities or indeed to a resistant phenotype.

3.2 Theoretical analysis of the parameter space with resistance.

In this section, we theoretically analyze the damage incurred in cancer cells during
treatment. We are interested in predicting the parameter regimes for which the dam-
age accumulated by cancer cells Cdam exceeds their death threshold Cdeath, as this
is the situation that results in cancer cell death.

To facilitate our analysis, we first assume that each cell incurs the same amount
of DNA damage. In other words, at any fixed time t, all cells will have the same level
of DNA damage. In the equations below, we let x(t) =Cdam

k (t) be the notation used
to represent this spatially-constant damage level. Further, let η(t)> 0 represent the
new amount of damage incurred in each cell at time t, and define 0 ≤ p ≤ 1 to be
the constant fraction of DNA damage repaired. Therefore, for any small h, and any
t > 0 we have:

x(t) = x(t−h)+
∫ t

t−h
η(s) ds−

∫ t

t−h
px(s) ds.

Using the Fundamental Theorem of Calculus in the limit as h→ 0, this statement
reduces to

ẋ = η(t)− px(t). (4)
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Assuming no damage at t=0, i.e., x(0)=0, the following describes the explicit solu-
tion of Equation (4)

x(t) =

(∫ t

0
η(s)epsds

)
e−pt . (5)

In what follows, we further assume that η(t) = η is constant, so that the amount
of new damage induced by the drug in each cell is constant. This is not necessarily
the case in our spatial model, since the damage incurred by a cancer cell depends on
the amount of drug that reaches the cancer cell, and that depends on the location of
the cell in tissue space, and potentially on how long the drug has been administered.
However, since the drug influx from the vessels is also constant, the amount of
damage in each time point is bounded from above. We call this value η .

For p 6= 0, Equation (5) becomes:

x(t) =
η

p

(
1− e−pt) . (6)

For p = 0, meaning there is no DNA damage repair, Equation (5) becomes:

x(t) = η t. (7)

3.2.1 Pre-existing case

In the pre-existing case, we start with two clones with a death threshold that is larger
than the rest of the cells. We call this threshold β1=T hrmulti×T hrdeath. Since these
clones can tolerate more DNA damage than the others, they are called resistant.
The rest of the clones are called sensitive and their death threshold is β2=T hrdeath.
Moreover, ∆death = 0 since no drug resistance can be acquired during the course
of treatment. Therefore, Cdeath(t) = β1 for resistant clones, and Cdeath(t) = β2 for
sensitive clones, with β2 < β1. In the following proposition we provide conditions
for cancer cell eradication (x(t) > Cdeath(t)) and for cancer cell survival (x(t) <
Cdeath(t)).

Proposition 1.

1. For 0 ≤ p <
η

β1
, both resistant and sensitive clones die, i.e., there exists T > 0

such that for any t > T , x(t)> β1 > β2.

2. For
η

β1
< p <

η

β2
, resistant clones survive but sensitive clones die, i.e., there

exists T > 0 such that x(t)> β2 for any t > T but x(t)< β1 for any t.

3. For p >
η

β2
, all clones survive, i.e., x(t)< β2 < β1 for any t.

Proof. For i = 1,2, let Fi(t) := x(t)−βi. We consider the following two cases:
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• p = 0. In this case, using Equation (7), x(t) = ηt. Hence, when t > β1
η

, ηt =
x(t)> β1 > β2.

• p > 0. In this case, using Equation (6),

Fi(t) =
η

p
− η

p
e−pt −βi.

Note that F(0) =−β < 0 and F ′(t) = ηe−pt > 0. Therefore, if lim
t→∞

Fi(t) =
η

p
−

βi > 0, it follows by Intermediate Value Theorem that Fi has a unique positive
root T and, furthermore, Fi(t) > 0 for t > T . If on the other hand lim

t→∞
Fi(t) =

η

p
−βi < 0, then Fi(t)< 0 for all t ≥ 0.

1. For p <
η

β1
<

η

β2
, we have:

lim
t→∞

Fi(t) =
η

p
−βi > 0, for i = 1,2.

Therefore, there exists T > 0 such that x(t)> β1 > β2 for all t > T .

2. For
η

β1
< p <

η

β2
, we have:

lim
t→∞

F2(t) =
η

p
−β2 > 0, lim

t→∞
F1(t) =

η

p
−β1 < 0.

Therefore, there exists T > 0 such that for t > T , x(t)> β2, but for all t ≥ 0,
x(t)< β1.

3. For p >
η

β2
, we have:

lim
t→∞

Fi(t) =
η

p
−βi < 0, for i = 1,2.

Therefore, x(t)< β2 < β1, for all t ≥ 0.

When 0 ≤ p ≤ η

β
, our analysis predicts tumor eradication by a continuously-

administered DNA damaging drug. Simulations of our model for the calibrated pa-
rameter values reveal that η ≤ ηmax = 3×10−4. Since we have assumed a constant
value of η for all cells for all time, we will use η = 3×10−4 to make numerical pre-
dictions from our theoretical results. Further, we have fixed β1 = 2.5 which means
that part 1 of Proposition 1 predicts that if p < 1.2×10−4, complete tumor eradica-
tion is expected as long as treatment is administered for a sufficiently long period of
time.

When η

β1
< p < η

β2
, which numerically corresponds to DNA damage repair in

the range (1.2× 10−4,6× 10−4), part 2 of Proposition 1 predicts that all sensitive
clones should be eradicated, although resistant clones should persist. Finally, when
p > 6×10−4, all clones are predicted to survive the treatment protocol. In Section
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3.3, we will demonstrate that these theoretical predictions are consistent with our
numerical simulations of the full spatial model, when considering the long-term
dynamics. The theoretical analysis does not reveal information about the transient
dynamics of the model.

3.2.2 Acquired case

We also performed a theoretical analysis of the damage level and death threshold in
the case of acquired resistance. Just as with the pre-existing analysis, we assumed
that all cancer cells incur constant levels of damage for all time points during treat-
ment (η=3×10−4). However, damage incurred by a cell actually depends on the
amount of drug the cell receives, and this depends on the location of the cell in tis-
sue space. While this neglect of the spatial component gave informative predictions
in the case of pre-existing resistance, the predictions end up being less informative in
the case of acquired resistance. For this reason, the theoretical analysis of acquired
resistance will be presented in Section 3.5.2, where we discuss the importance of
spatial location and microenvironmental niche on tumor survival.

3.3 Simulations in the case of pre-existing resistance.

In the case of pre-existing resistance, a subpopulation of tumor cells that are resis-
tant to the DNA damaging drug are present at the initiation of treatment. As detailed
in Section 3.2, pre-existing resistance is simulated through the T hrmulti parameter.
While sensitive clones have a death threshold T hrdeath=0.5, the threshold of resis-
tant cells is increased by a multiple of T hrmulti > 1. We randomly choose two cells
(approximately 3% of the initial tumor population) to have pre-existing resistance.
Since the location and proximity of a resistant cell to a blood vessel could have a
major impact on whether the cell will live or die, here we only consider the two
resistant cells to be at an intermediate distance from the vessels. In Section 3.5.1,
we will explore the impact of the location of the resistant cells.

In the pre-existing resistance simulations, we vary p, the constant fraction of
DNA damage repaired. Although T hrmulti is the more obvious pre-existing resis-
tance parameter, it is the relationship between p and T hrmulti that determines tu-
mor response to the DNA damaging drug. The time scales in the model are easier
to control (and this facilitates comparison between different cases) when we fix
T hrmulti and allow p to vary. For all pre-existing analysis and simulations, we fix
T hrmulti = 5.
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Fig. 4 Pre-existing resistance case. A comparison of tumor evolution curves (a-c) and tumor dam-
age curves (d-f) in three distinct cases: tumor eradication when p = 0 (a,d), tumor resistance when
p = 1.5× 10−4 (b,e), and treatment failure when p = 10−2 (c,f). The curves in (d-f) show an av-
erage damage level and an average death threshold level of all cells with the standard deviation
represented by vertical lines.

3.3.1 Successful treatment

Consistent with our theoretical analysis, continuous administration of a DNA dam-
aging drug results in eventual tumor eradication when 0≤ p≤1.2×10−4. The case
of p=0 is shown in FIG. 4a,d. Within this parameter regime, tumor behavior is quali-
tatively similar to the case of no drug resistance (FIG.3a,b). Both simulations exhibit
a transient period for which cancer cells accumulate, but do not yet respond to, the
drug. During this time period, a clonally heterogeneous tumor begins to grow in
tissue space while, simultaneously, the average cellular DNA damage level is in-
creasing. Since the average death threshold in the cancer cell population is low (the
majority of cells starts with a small death threshold), the sensitive cells start dy-
ing and the tumor population shrinks in size (FIG.4a,d). This leads to selection of
the resistant cancer cells, as demonstrated by the rapid increase in the average death
threshold in FIG.4d. This tumor, eventually composed entirely of resistant cells (sat-
uration in the average death threshold), undergoes a significant period of regrowth
before the entire population experiences a rapid increase in DNA damage levels and
is eradicated by the drug. Therefore the model reveals that a DNA damaging drug
can eliminate a tumor with a subpopulation of resistant cells that existed prior to the
onset of treatment.

3.3.2 Emergence of a drug resistant tumor

Our theoretical analysis predicts that when 1.2× 10−4 < p < 6× 10−4, resistant
cells will survive treatment while sensitive cells will be eradicated. The dynamics
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of this process, however, can only be revealed through numerical simulations. We
find that in this parameter regime, the effectiveness of the DNA damaging drug is
reduced during the course of treatment (FIG.4b where p = 1.5×10−4). This is what
we consider to be a drug resistant tumor, and what is often observed clinically when
treating patients with a chemotherapeutic agent.

In this parameter regime, the early tumor dynamics are comparable to the suc-
cessful treatment case: after an initial period of time during which cancer cells build
up drug levels, there is a transient period of tumor shrinkage (FIG.4b). FIG.1e(ii)
reveals that only three clones are selected for during this period of time: the two
resistant clones (red and blue), and the one sensitive clone located in a low-drug
niche (yellow). These surviving clones begin to repopulate tissue space. Unlike in
the successful treatment case, the drug cannot eliminate the resistant cells, though it
can eliminate the sensitive cell in the low drug niche. This is seen in FIG.4e where
the average death threshold of the surviving cells has stabilized at a value of 2.5,
whereas the average damage level is actually decreasing from a maximum value of
approximately 1.25. Therefore the damage levels cannot surpass the death threshold
of the cells, and at the end of the simulation period, we are left with a resistant tumor
composed entirely of resistant cells.

3.3.3 Complete treatment failure

Consistent with theoretical predictions, when p > 6×10−4, all clones survive treat-
ment with a DNA damaging drug. Simulations further reveal that the tumor grows
monotonically in this parameter regime, meaning the drug fails to exhibit any anti-
tumor activity (FIG.4c where p = 10−2). Treatment failure occurs because the level
of DNA damage repair is so large it prevents the damage level of each cancer cell,
whether resistant or sensitive, from exceeding its death threshold (FIG.4f). In this
parameter regime, a clonally diverse tumor overtakes space, comparable to what is
observed when the tumor grows with no treatment (FIG.1b).

3.4 Computational analysis of the parameter space in the case of
acquired resistance.

In the case of acquired resistance, a subpopulation of tumor cells evolve a resistant
phenotype due to selective pressures imposed by the drug, microenvironment, or
other factors. In other words, no drug resistant cells are found in the tumor when
treatment is initiated.

As detailed in Section 2, acquired resistance is simulated in an individual cell in
response to prolonged drug exposure. If a cell meets the prolonged drug-exposure
criterion, then its death threshold Cdeath

k gets incremented by ∆death. A cell whose
death threshold gets increased in this way can tolerate greater levels of DNA dam-
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age, as cell death is triggered when the damage level of a cell Cdam
k exceeds its death

threshold.
We computationally analyzed the model fixing all parameters as detailed in Ta-

ble 2. This includes fixing the DNA repair constant (the parameter varied in the
pre-existing resistance case) to p = 1.5×10−4. This p was chosen because it gave
rise to a drug resistant tumor in the case of pre-existing resistance. In order to isolate
the impact of acquired drug resistance, the only parameter that was varied here is
∆death. Computational analysis of the model reveals four distinct parameter regimes,
depending on the value of ∆death: 1) successful treatment; 2) almost successful treat-
ment; 3) eventual emergence of a drug resistance tumor; 4) complete treatment fail-
ure.

Fig. 5 Acquired resistance case. A comparison of tumor evolution curves (a-d) and tumor damage
curves (e-h) in four cases: tumor eradication when ∆death=10−5 (a,e), almost successful treatment
when ∆death=3.5×10−5 (b,f), tumor resistance when ∆death=5.9×10−5 (c,g), and treatment failure
when ∆death=10−4 (d,h). The curves in (e-h) show an average damage level and an average death
threshold with the standard deviation represented by vertical lines.

3.4.1 Successful treatment

As in the case of pre-existing resistance, there is a parameter regime for which treat-
ment is successful in spite of any resistance acquired to the DNA damaging drug.
Simulations reveal that the tumor eradication parameter regime is: 0 ≤ ∆death <
3×10−5. The case of ∆death = 10−5 is illustrated in FIG.5a,e. Within this parameter
regime, the tumor is not monotonically decreasing in size, as observed in the no
resistance case and in the successful treatment of a tumor with pre-existing resistant
cells case (FIG.3a). There is a transient period of time (approximately five cell cy-
cles in length) during which the cancer cells accumulate drug but do not respond to
the drug.
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Once drug levels have caused enough DNA damage, a transient period of tumor
shrinkage occurs. The cancer cells that are eliminated during this period are the ones
with adequate access to the drug. This period of tumor shrinkage is always followed
by a period of regrowth, during which cells in the low-drug microenvironmental
niche temporarily repopulate tissue space. However, this period of drug-induced
resistance is transient, and the tumor is eventually eradicated by the DNA damaging
drug.

Therefore, the model reveals that a cancer can be successfully eliminated by
a DNA damaging drug that induces resistance after prolonged exposure. In other
words, just because the cells have the ability to acquire resistance to the drug, this
does not mean a drug resistant tumor will develop.

3.4.2 Almost successful treatment

Simulations also revealed a parameter regime that was not found in the pre-
existing resistance case. When ∆death satisfies 3× 10−5 ≤ ∆death < 4× 10−5, the
drug shrinks the tumor to a very small number of cancer cells (FIG.5b where
∆death = 3.5× 10−5). The reason the tumor is not fully eradicated by treatment is
because the surviving cells are all stuck in hypoxic microenvironmental niches (not
shown). Evidence that the few cancer cells found in the hypoxic niche will survive
treatment is seen in FIG.5f. The average death threshold of the surviving cells is in-
creasing (cells are continuing to acquire resistance) while the average damage level
is decreasing (cells are repairing more damage than they are accumulating).

Other than the persistence of a small number of hypoxic cancer cells, the dynam-
ics observed in this parameter regime are qualitatively the same as the successful
treatment parameter regime. Further, since the vasculature is not evolving in our
model and since the cells are not actively motile, there is no mechanism for the sur-
viving hypoxic cells to re-enter the cell cycle and trigger tumor expansion. There-
fore, this is another parameter regime for which cells have the ability to acquire
resistance to a DNA damaging drug, but a drug resistant tumor does not develop.

3.4.3 Emergence of a drug resistant tumor

Computational analysis revealed that for 4× 10−5 ≤ ∆death < 7× 10−5, the effec-
tiveness of the DNA damaging drug is reduced over time. Just as in the pre-existing
case, this is what we consider a drug resistant tumor.

The precise trajectory of the tumor, and its clonal composition, depends sen-
sitively on the selected value of ∆death within this parameter range. For instance,
when ∆death = 4.5×10−5, there are two transient periods of tumor shrinkage before
a clonally homogeneous tumor overtakes tissue space (FIG.1g). The one surviving
tumor clone is initially located in low-drug niche in tissue space, and eventually
emerges from these lower-drug regions to overtake space. This will be discussed
further in Section 3.5.2.



Emergence of anti-cancer drug resistance 21

On the other hand, when ∆death = 5.9×10−5, there is only one transient period
of tumor shrinkage (FIG.5c) preceding the formation of a drug resistant tumor. The
spatial dynamics and clonal history of the tumor are interesting to track in this case.
The growth curve in FIG.5c shows a local maximum around 4000 iterations. At
this point a clonally heterogeneous tumor has practically overtaken tissue space
(FIG.1f(i)). However, FIG.5g shows that around this local maximum, the average
damage level of the cancer cells catches up to the average death threshold, and this
leads to a period of time during which the drug effectively reduces the tumor size.
At the local minimum, some clonal diversity has been lost. Most cells are found in
either hypoxic or low-drug niches, although there are some cells found in normoxic
zones where drug is readily accessible (FIG.1f(ii)).

After the tumor escapes its local minimum, the average death level of the surviv-
ing cancer cells diverges from the average damage level, and a more clonally hetero-
geneous tumor overtakes tissue space (FIG.1f(iii)). It is interesting to compare this to
the case of pre-existing resistance. The number of clones that survive in pre-existing
drug resistant tumors is precisely the number of resistant clones present in the tu-
mor before any treatment. In the acquired case, the number of clones in the resistant
tumor sensitively depends on the value of ∆death within the drug resistant parameter
range. We observed that when ∆death = 4.5×10−5 only one clone survives, which is
less clonally diverse than our pre-existing resistance case. ∆death = 5.9×10−5 cor-
responds to nine different clones surviving treatment, which is more clonally diverse
than the pre-existing case (FIG.1e(iii)).

3.4.4 Complete treatment failure

Computational analysis reveals that when ∆death ≥ 7× 10−5, the DNA damaging
drug fails to cause any reduction in the number of cancer cells. Treatment fail-
ure occurs because the drug induces resistance in the cancer cells quicker than
it damages the DNA. In this parameter regime, a clonally diverse tumor over-
takes tissue space, and the tumor never shrinks in response to treatment (FIG.5d,h
where ∆death = 10−4). The clonal composition of the tumor after 25,000 iterations
of growth is comparable to the composition of a tumor grown with no treatment
(FIG.1b).

3.5 Impact of spatial location and microenvironmental niches on
tumor survival.

Microenvironmental conditions such as the position of vasculature can influence tu-
mor growth and heterogeneity. Cells require oxygen to survive and replicate, but
proximity to blood vessels also means higher exposure to drug. Regions of the tis-
sue landscape where blood vessels are far enough away to minimize drug exposure
while still close enough to maintain adequate oxygen levels will facilitate tumor
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growth. This can already be seen in the non-resistant tumor cases (Section 3.1).
While both discussed tumors died out, it took longer to eradicate the tumor initiated
near the microenvironmental niche of low drug concentration. Moreover, this niche
also gave rise to a subpopulation of cells able to recover from drug insult, although
only temporarily.

Our tissue landscape contains a cluster of three blood vessels and an additional
solitary blood vessel near the boundary of the tissue space (FIG.6a). This leads
to a low-drug/normoxic niche near the center of the tissue sample, and a low-
drug/hypoxic region at much of the boundary of the region.

Fig. 6 Evolution of acquired resistance as an effect of microenvironmental niches of low drug and
hypoxia. (a) Tissue landscape with two microenvironmetal niches: a low-drug/hypoxic (H & low
D) and low-drug/normoxic (low D). The grey-scale contours indicate drug distribution. The black
circles indicate four vessels. (b) A cell population evolution curve with numbers corresponding to
color panels in FIG.1g. (c) An average damage level and an average death threshold of all cells
with the standard deviation represented by vertical lines.

3.5.1 Pre-existing resistance: impact of cell location

As discussed in Section 3.3, the initial condition for our pre-existing resistance sim-
ulations was a large population of sensitive cells with a subpopulation of two resis-
tant cells (approximately 3% of the population). To study how the microenvironment
influences the survival and heterogeneity of tumors under this condition, we varied
which two cells were chosen to be resistant. In particular, we tested three different
configurations: 1) resistant cells chosen to be the two cells closest to blood vessels;
2) resistant cells chosen at an intermediate distance from the blood vessels; and 3)
resistant cells chosen to be the two cells furthest from the vessels.

Consistent with our theoretical analysis of pre-existing resistance in Section 3.2,
we found that long-term tumor behavior was controlled by the relationship between
the value of p (the fraction of damage repaired) and the pre-exiting resistance pa-
rameter T hrmulti. It was only minimally influenced in the short term by the position-
ing of the two resistant cells in space. Our simulations showed that the same three
parameter regimes discussed in Section 3.3 led to tumor eradication, a transient pe-
riod of tumor shrinkage followed by treatment failure, and monotonic tumor growth
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respectively, regardless of the proximity of the two resistant cells to the vasculature
(FIG.7).

We conclude that in the case of pre-existing resistance, just the presence of the re-
sistant cells combined with the DNA repair parameter value drives the overall tumor
dynamics. The position of resistant cells, on the other hand, only serves to adjust the
time scale of tumor growth or death. This suggests that pre-existing resistance is a
stronger promoter of tumor growth than is a preferential microenvironment.

Fig. 7 Evolution of tumor size for different choices of resistant cell location and values of DNA
damage repair p. For each plot shown, the x-axis is the number of iterations (in units of 103) and
the y-axis is the number of cells.

3.5.2 Acquired resistance: impact of microenvironmental niche

To illustrate the important role of the spatial component of the model in the case
of acquired resistance, we first turn to a theoretical analysis that neglects the spatial
component. Consider α = ∆death 6= 0, which corresponds to cells having a death
threshold of approximately Cdeath(t) = αt +β , where β = T hrdeath = 0.5 is fixed.
As in Section 3.2, let η > 0 represent the new amount of damage incurred in each
cell at time t (assumed to be constant), and let p be the constant fraction of damage
repaired. In the following proposition we provide a condition that guarantees that if
we ignore the spatial component of the model, the cancer should be eradicated by
treatment (that is, x(t) =Cdam

k (t)>Cdeath(t)).

Proposition 2. If α < η and 0 < p <
η

β
, then there exists α∗ < α , T1(α

∗) and

T2(α
∗) such that for all T1(α

∗)< t < T2(α
∗), x(t)> αt +β . (All cells die.)

Proof. Let F(t) := x(t)−αt−β . Using Equation (6),
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F(t) =
η

p
−β −αt− η

p
e−pt .

Note that F(0) =−β < 0 and F ′(t) = ηe−pt −α . Since α < η ,

F ′(t) =

≥ 0 t ≤ t∗

0 t = t∗

≤ 0 t ≥ t∗

where t∗ = − 1
p

ln
α

η
. Therefore, the graph of F is one of the three graphs shown

in Fig. 8, depending on the size of α . Note that if for some α < η , F(t∗)> 0, then
there exists an interval (T1,T2), such that for t ∈ (T1,T2), F(t)> 0, i.e., x(t)>αt+β .
Therefore, we will look for those α’s, α < η , such that F(t∗)> 0.

Fig. 8 All possible graphs for function F , depending on the value of α.

Let F(t∗) = G(α) =:
η

p
−β − α

p

(
1− ln

α

η

)
. Observe that:

• lim
α→0+

G(α) =
η

p
−β =

{
> 0 p < η/β

< 0 p > η/β
.

• lim
α→η−

G(α) =−β < 0.

• on (0,η), G′(α) =
1
p

ln
α

η
< 0.

Therefore, if p <
η

β
, by Intermediate Value Theorem, there exists 0 < α∗ < η such

that G(α∗) = 0, and G(α) > 0 for α < α∗, and G(α) < 0 for α > α∗. Hence, if

p <
η

β
, and α < α∗, then F(t∗) > 0, and there exist T1, T2, depending on α∗, such

that for T1 < t < T2, F(t) = x(t)−αt−β > 0.

Proposition 2 says that if p< η

0.5 < 6×10−4 and if α <η < 3×10−4 (both upper
bounds fixed using parameters in our model), all cancer cells should be eradicated
by the DNA damaging drug. In our numerical simulations, we consider p = 1.5×
10−4, so p satisfies this constraint. Further, the maximum value of α we consider is
10−4, which also satisfies the constraint imposed by this proposition. Therefore the
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proposition implies that for all the simulations presented in Section 3.4, treatment
should successfully eradicate all tumor cells. Yet, this is only consistent with two of
the four numerical simulations presented. The other two cases correspond to a drug
resistant tumor and complete treatment failure.

This discrepancy can be explained by the one assumption made during the the-
oretical analysis: we assumed that all cancer cells incur constant levels of damage
at each time point during treatment (η). However, the damage incurred by a cell is
actually a function of both space and time. So, if we consider the statement from the
proposition that p < η/0.5 guarantees tumor eradication, and if we insert the fact
that we use p = 1.5× 10−4 in our simulations, this implies that η > 7.5× 10−5 is
needed to guarantee the tumor eradication.

However, cells located at sufficient distances from the vasculature accumulate
less drug than cells closer to the vasculature, and therefore incur less damage. For
these cells, the condition η > 7.5×10−5 is not necessarily met, as η will be small
when drug levels are low. This phenomenon can result in the theoretical prediction
(which ignores the spatial component) failing to match up with the numerical simu-
lations (which include the spatial component). Thus, space is clearly playing a very
important role in treatment response when resistance to a DNA damaging drug is
acquired during the course of treatment.

To further understand the importance of the microenvironmental niche in the case
of acquired resistance, we tracked the clonal evolution of the tumor. We found that
the microenvironmental niche plays a bigger role in determining the growth and het-
erogeneity of the tumor when ∆death is not high. When ∆death is sufficiently small,
the microenvironmental niche influences which cells survive the longest, though all
cells will eventually die. Cells originally located near the low-drug/normoxic niche
initially accumulate damage at a much slower rate than their neighbors while still
increasing their death threshold. The rest of the less favorably placed population
die out first as damage exceeds the death threshold, but the benefit of the low-
drug/normoxic niche enables the few remaining cells to survive longer and even
experience a second short period of growth before damage overwhelms them (Sec-
tion 3.4.1).

For mid-range values of ∆death, we observed the case of almost successful treat-
ment discussed in Section 3.4.2. This behavior is driven by the microenvironmental
niche. Cells initially placed near the low-drug/normoxic niche are selected for, and
the increase in ∆death lends them the time needed to reproduce enough to move
the tumor mass toward the hypoxic region. The result is a colony of a few surviving
hypoxic cells descended from the parent cells initially placed in the low drug niches.

When ∆death is at a higher value, the microenvironmental niche also determines
which cells survive. In this case, however, the surviving cells actually result in treat-
ment failure. The tumor that eventually takes over tissue space lacks clonal diversity.
The selective powers of the microenvironmental niche are highlighted in FIG.1g.
The first period of selection occurs after a clonally heterogeneous tumor starts to
overtake tissue space. Essentially all cells, with the exception of those in low-drug
niches, accumulate high enough damage levels to be killed by the drug (FIG.1g(iii)).
The tumor temporarily repopulates some of space from these low-drug regions, but
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again experiences a period of die-off when cells enter higher-drug regions. The cells
that survive this selection process are mostly found in a low-drug/hypoxic niche, and
it is these cells that eventually result in a clonally homogeneous tumor repopulating
tissue space (FIG.1g(v,vi)).

For large values of ∆death, however, the role of the microenvironmental niche is
reduced. The cancer cells develop resistance to the drug very quickly for sufficiently
large ∆death. As few clones die out, this results in a monotonically growing tumor
(FIG.5d) composed of clones from all over the tissue landscape, similar to what is
observed in the case of no treatment (FIG.1b).

In conclusion, the microenvironmental niche plays different roles for different
values of ∆death, the rate at which cells build up tolerance to the DNA damaging
drug. When it is small, the microenvironment selects which cells will survive the
longest before ultimately dying. As ∆death increases to mid-range values, cells lo-
cated near the low-drug/normoxic niche are able to develop resistance and propa-
gate, eventually leading to the formation of a resistant tumor. For large values of
∆death, location becomes less important and cell survival is guaranteed by the in-
crease of the death threshold alone.

4 Discussion.

In this paper we addressed the emergence of a resistant tumor when a DNA damag-
ing drug is continuously administered by an intravenous injection. We have devel-
oped a spatial agent-based model that can examine tumor response to the drug in a
heterogeneous microenvironment. This environment is comprised of non-uniformly
spaced vasculature that results in an irregular gradient of oxygen and drug. We
specifically focused on the difference between pre-existing and acquired drug re-
sistance. By using identical initial microenvironmental conditions we were able to
compare the dynamics and clonal evolution of the developing tumor in these two
cases. We have also conducted a theoretical analysis of the temporal components of
the model for both types of resistance.

The model produced several interesting results. In both cases considered, the
pre-existing or acquired drug resistance is initiated independently in individual cells
(cellular level). However, during the course of treatment three types of population
behaviors (tissue level) are observed: 1) tumor eradication; 2) emergence of a drug
resistant tumor; and 3) a non-responsive tumor. In order to observe these three pa-
rameter regimes in the case of pre-existing resistance, DNA damage repair must
be included in the model (p > 0). Varying the pre-existing resistance parameter
(T hrmulti) without including DNA damage repair can only give rise to the case of
tumor eradication (Proposition 1.1). On the other hand, in the case of acquired re-
sistance all three parameter regimes are achievable without the inclusion of DNA
damage repair. Final tumor behavior in this case depends on the speed with which
the cells build tolerance to DNA damage (∆death).
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In particular, in the cases with pre-existing resistance, both the theoretical anal-
ysis and the agent-based simulations produced the same conclusions: a) with a low
DNA damage repair term, both the resistant and sensitive clones died; b) with a
medium DNA damage repair term, resistant clones survived but sensitive clones
died; and c) for high levels of the DNA damage repair term, all clones survived re-
gardless of their phenotype. The reason for this correlation between computational
simulations and theoretical analysis is that in the pre-existing resistance case, the
spatial component has no significant effect on the long-term outcome. Similarly, in
the acquired resistance case: a) with a slow increase in the cell death threshold, all
of the cells eventually died out; b) with an intermediate increase in the death thresh-
old, some of the clones die but the tumor eventually develops resistance to the drug;
and c) with a high increase in the cell death threshold, all clones are able to survive
resulting in treatment failure.

In the cases where a drug resistant tumor forms (FIG.1g,h), some common spatial
dynamics are observed. The cells located near vasculature are first affected by the
drug and often die. The least affected are the cells that occupy low drug/normoxia
niches, and these cells are often able to repopulate the tumor. Final clonal configura-
tions can vary from mono-clonal (acquired case) to bi-clonal (pre-existing case), to
multi-clonal (acquired case). However, in the case of acquired resistance, we have
also observed a case when only a small number of cells remained quiescent in the
hypoxic areas for a prolonged time. These cells have not accumulated enough dam-
age to die, and since they are located in the area of both low drug and oxygen,
they have time for DNA repair. Thus, the existence of microenvironmental niches
of either low drug or low oxygen concentrations are the driving forces in both tran-
sient and long-term tumor cell survival. Further, in the case of acquired resistance,
the spatial location of certain clones makes them more fit than the other cells and
allows them to overtake the available space. In conclusion, when the cell has a pre-
existing resistance the genetic fitness advantage seems to be more important than
any spatial fitness advantage, whereas the spatial position of tumor clones plays a
more important role when drug resistance is acquired.

When studying the case of acquired resistance we assumed that all cells react to
drug exposure in the same way and are thus all equally capable of acquiring resis-
tance. This choice allowed us to focus on how microenvironmental differences se-
lect which cells acquire resistance, but our model could also be extended to take into
account intrinsic cellular differences. In particular, it is possible that acquired drug
resistance occurs when only a single cell, rather than the whole population, pos-
sesses the ability to acquire resistance. Investigating the interaction of cellular and
microenvironmental differences is an interesting problem, especially because our
simulations show that varying how strongly cells respond to drug exposure (∆death)
can lead to clonally heterogeneous or homogenous tumors. Since we framed ac-
quired resistance broadly as a reaction of cells to increased and prolonged exposure
to drug, it is possible to use this general framework to account for a variety of the
mechanisms of acquired resistance. For example, resistance may be due to increased
drug efflux pumps or a simple lack of any drug dosage effect. Both of these mecha-
nisms could be studied with our model by changing how we think about the damage
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level and death threshold. The damage level is related to how much drug the cell
has encountered, and the death threshold at its most general level describes how the
cell reacts to damage. Thus, it is possible that the cell reacts to damage less (and
hence has a higher death threshold) because of enhanced drug efflux pumps or a
less effective drug.

Our model can also be extended to address other important aspects of tumor re-
sistance. In this paper, we limited our investigation to a continuously administered
drug. In the future we will investigate different drug scheduling schemes including
typical clinical protocols, as well as metronomic and adaptive schedules. Beyond the
drug schedule, we can expand the model from considering DNA damaging drugs to
considering other drugs with different killing mechanisms, including anti-mitotic
drugs or drugs activated in specific microenvironmental conditions (low oxygen or
high acidosis). This allow us to further extend our model to study drug combina-
tions. This is especially important, because in clinical practice, when the tumor
cells become resistant to a given drug, the treatment is often changed to another
therapeutic agent. However, it has been observed that resistance to one drug is ac-
companied by resistance to other drugs whose structures and mechanisms of action
may be completely different (multiple drug resistance). Thus, this poses interesting
questions for future research. If the hypothesis of a pre-existing population of re-
sistant cells is true, what mechanisms enable those cells to resist the drug action of
the often multiple chemotherapeutic treatments that may be given to a patient se-
quentially or in parallel? If the hypothesis of gradual emergence of drug resistance
is true, what factors contribute to the development of acquired drug resistance? The
mathematical framework developed here has the potential to address multiple as-
pects of drug resistance in solid tumors and test methods for increasing efficacy of
drug combinations.

Our model belongs to a category of spatial hybrid discrete-continuous models
of anti-cancer drug resistance. While mathematical modeling of tumor growth and
therapy (mathematical oncology) dates back now over half a century [21], the mod-
eling of anti-cancer drug resistance have gained its momentum in the last couple
of years [22–25]. However, most of the mathematical models to date addressed
the problem of drug resistance on a level of the whole cell population using a
variety of mathematical approaches: stochastic models [26], evolutionary dynam-
ics [27–30], game theory [31], Lamarckian induction [32], compartmental pharma-
cokinetic models [33], or continuous PDE models [34,35]. Very few models of drug
resistance have, like ours, considered the significant role of spatial tumor structure
and/or interactions between cells and their microenvironment. Silva and Gatenby
used an agent-based model of cells equipped with internal metabolic machinery
to investigate cell-cell and cell-microenvironment interactions during chemother-
apy, and strategies to prolong survival in the case of pre-existing resistance [36].
This work showed that administration of the chemotherapy with the goal of sta-
bilization of tumor size instead of eradication would yield better results than use
of maximum tolerated doses, thus preventing or at least delaying tumor relapse.
The authors demonstrated that fast growing sensitive cells can serve as a shield
keeping the resistant cells trapped inside the tumor. Lorz et al used a continuous
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model of anti-cancer therapy resistance under the assumption that resistance is in-
duced by adaptation to drug environmental pressures [37]. This has been modeled
using a concept of the expression level of a resistance gene influencing tumor cells
birth/death rates, effects of chemotherapies and mutations. The same group has also
considered how the spatial structure plays a role in resistance development under
combined therapy protocols. By including spatial structure into the model, the au-
thors were able to suggest that adaptation to local conditions (microenvironment)
is directly linked to resistance development [38]. Lavi et al used another continu-
ous model of multi-drug resistance with a variable cell resistance level that takes
the form of a structure population model. This allowed the authors to explore how
cells evolve (and may be selected for) under stress imposed by cytotoxic drugs [39].
The same group has also investigated how trait selection may give rise to different
types of resistance and what implications this may have for tumor heterogeneity (at
the level of mutations) [40]. A recent work of Powathil et al, that uses the Cellu-
lar Potts framework has been employed to investigate how the cell-cycle dynamics
and oxygen concentration changes influence the development of resistance [41].
The authors suggested that cell-cycle-mediated drug resistance emerges because the
chemotherapeutic treatment gives rise to a dominant, slow-cycling subpopulation of
tumor cells, causing the drug failing to target all cancer cells.

Our model differs significantly from the models discussed above. We not only
consider and compare two types of resistance, but also identify two microenviron-
mental niches that have an impact on emergence of resistant cells. While other hy-
brid models use similar approach to model tumor cell interactions with oxygen and
drugs, they treat tumor microenvironment as a homogeneous medium [36]. In con-
trast, our model incorporates a more realistic configuration of tumor vasculature
that produces gradients of metabolites that are of irregular shapes and can change
dynamically in time. Thus we can directly observe the emergence of microenviron-
mental niches (FIG.1g(iii),(iv)) that protect cells from killing by drugs, and enable
some of them to develop resistance. We also investigated the interplay between tu-
mor clonal development within the spatially and temporally variable distributions
of both drug and oxygen, that has not been addressed by any of the previous hy-
brid models of drug resistance. The presented model is quite general and the self-
calibration methods have been used for it parameterization (see the Appendix).

Our model reproduces a broad range of tumor behaviors observed in clinical
practice. However, our chosen parameters have not been tuned to represent a par-
ticular drug and a particular tumor type. Therefore the model constitutes a good
starting point for more precise calibration to both tumor morphology and drug phar-
macokinetic properties. In particular, in the future we plan to use more realistic
tumor tissue morphologies based on patients’ histology samples. This will include
both more realistic vasculature that may vary between tumors of different origins,
various stromal components such as stromal cells (fibroblasts or adipocytes) and
immune cells (macrophages, T cells, lymphocytes), extracellular matrix fibril struc-
ture, and various distributions of metabolites (oxygen, glucose, acids, MMPs). In
particular, the role of the tumor microenvironment in the development of drug re-
sistance is becoming a key consideration in the development of novel chemothera-
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peutic agents. The interactions between tumor cells and their surrounding physical
environment can influence cell signaling, survival, proliferative capacities and cell
sensitivity to drugs. Thus extracellular factors including tumor hypoxia and acid-
ity, as well as tumor cell density and the extracellular matrix composition that limit
drug penetration, should be investigated in a quantitative way via combination of
laboratory experimentation and mathematical modeling.

Supporting Material.

Supporting material contains of five simulation movies (Fig1c movie.mov, . . .,
Fig1g movie.mov) that correspond to snapshots presented in Fig. 1c-g.
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Appendix

Before testing various mechanism of tumor resistance, our model has been cali-
brated to 1) achieve a stable gradient of oxygen when no cancer cells are present,
as would be the case in healthy tissue; 2) generate a tumor cluster that completely
fills the available space when no drug is applied as would take place in non-treated
tumors; this will result in another stable gradient of oxygen with hypoxic areas lo-
cated far from the vasculature; and 3) completely eliminate the tumor when the
cells do not acquire resistance. These three self-calibration steps are discussed in
this section.

First, the influence of oxygen and drug are normalized so that Sξ =Sγ =1. Then we
determine the oxygen diffusion coefficient Dξ and oxygen boundary conditions that
lead to a (numerically) stable gradient of oxygen when no cancer cells are present;
that is with no cellular uptake. Several boundary conditions were considered, how-
ever, the best results in terms of irregular gradient stabilization and the extent of
hypoxic areas were achieved for the sink-like conditions with ϖ=0.45 (see Section
2.1). The resulting stable oxygen gradient is shown in Fig. 9a and the relative 2-norm
error between two oxygen concentrations generated in two consecutive time steps
is shown in Fig. 9c. The obtained oxygen gradient served as an initial condition for
the reaction-diffusion equation for oxygen.

Next, a tumor cell oxygen uptake rate pξ and a hypoxia threshold T hrhypo were
selected to allow for tumor growth with a small subpopulation of hypoxic cells, and
for generation of a (numerically) stable gradient of oxygen when the tumor reaches
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Fig. 9 Oxygen distribution and its stabilization error curves. (a,b) Numerically stable gradients of
oxygen in a domain with no cancer cells (a), and in a domain where non-treated cancer cells uptake
oxygen (b). The grey-scale contours indicate oxygen distribution levels. (c,d) Relative 2-norm error
of oxygen changes ‖η(x, t +∆ t)−η(x, t)‖2 calculated for 25000 iterations showing its numerical
stability for cases (a) and (b), respectively.

its stable configuration. This population of tumor cells, including the hypoxic cell
fraction and tumor clonal composition, serves as a control case (with no treatment)
shown in Fig. 1b. For the stable tumor population the (numerically) stable oxygen
gradient is shown in Fig. 9b, and the relative 2-norm error of the oxygen changes
over 25,000 iterations is shown in Fig. 9d.

Finally, the drug diffusion coefficient Dγ , drug uptake rate pγ , and death thresh-
old T hrdeath were determined so that the cluster of tumor cells with no resistance is
eradicated. This ensures that for the chosen drug parameters, the drug is effective
when there are no resistant tumor cells. This case is discussed in Section 3.1. All
parameters determined by the procedure described here are listed in Table 2.
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