## Probability and Statistics for Engineering and Physical Sciences (STAT:2020, Bognar)

### Homework

H1 (Due 1/26): 2.22, 2.28, 2.30, 2.34, 2.38, 2.40, 2.42, 2.47, h1.pdf

H2 (Due 2/2): 2.56, 2.69, 2.89, 2.92, 2.93(a), h2.pdf

H3 (Due 2/9): 2.76, 2.80, 2.95, 2.99, 2.120, 2.124

H4 (Due 2/16): 3.1, 3.2, 3.8, 3.12, 3.13, h4.pdf

H5 (Due 2/23): 4.2, 4.4, 4.7, 4.34, 4.35**, 5.8, 5.12, 5.15, 5.26(a)
** = Find variance using (a) the definition $Var(X)=E[(X-\mu)^2]$, and (b) the computational formula $Var(X)=E(X^2)-[E(X)]^2$

H6 (Due 3/1): 5.30, 5.32, 5.38, 5.49, 5.50, 5.54, 5.92

H7 (Due 3/8): 5.56**, 5.58**, 5.63, 3.6, 3.14, 3.18, 3.36, 4.14, 4.50
** = Assume Poisson assumptions hold

H8 (Due 3/22): 6.1(b), 6.55, 6.66, 6.6, 6.7, 6.8, 6.12, 6.14

H9 (Due 3/29): 4.57, 4.58, hw.lc.pdf

H10 (Due 4/5): hw.prop.error.pdf, 8.23, 8.24, 8.25, 8.26

H11 (Due 4/12): 1.14(a,b), 1.18(a,b), 9.2($\sigma=40$), 9.3($\sigma=0.0015$),

H12 (Due 4/19): 9.4(a only)($s=6.9$), 9.6, 9.10($s=7.8$), 9.12($s=15$), hw-z-test.pdf

H13 (Due 4/26): hw.t.test.pdf,
10.34 (Answer the following only: (a) Test $H_0: \mu_1-\mu_2=8$ vs $H_a:\mu_1-\mu_2<8$ at the $\alpha=0.05$ significance level using a 3-step test, (b) approximate the $p-$value for the test.)
10.36 (Answer the following only: (a) Test $H_0: \mu_1=\mu_2$ vs $H_a:\mu_1 \ne \mu_2$ at the $\alpha=0.05$ significance level using a 3-step test, (b) approximate the $p-$value for the test, (c) find a 95% CI for $\mu_1-\mu_2$.)

H14 (Due 5/3):
9.54 (Answer the following only: (a) Find a 95% Wald CI for $p$, (b) find a 95% Agresti-Coull CI for $p$),
10.58 (Answer the following only: (a) Test $H_0:p=0.60$ vs $H_a:p \ne 0.60$ at the $\alpha=0.05$ significance level using a 3-step score test, (b) find the $p-$value for the test, (c) find a 95% Wald CI for $p$, (d) find a 95% Agresti-Coull CI for $p$),
10.86, 9.72,
10.68 (Test $H_0:\sigma^2=36$ vs $H_a:\sigma^2 < 36$ at the $\alpha=0.05$ significance level; find a 95% one-sided upper-bound CI for $\sigma^2$ as well),
10.69 (Answer the following only: find a two-sided 95% CI for $\sigma^2$)

### Probability Distribution Applets

Discrete Distributions
Continuous Distributions
Statistical Inference

Statistics Tutorial Lab

Syllabus

Negative Binomial & Pascal's Triangle

Statistical Tables (Z, t, and chi-square tables)

Propagation of Error Example

Old Faithful Dataset

R Project Homepage

### Teaching Assistants

Kirtikanth Kalapatapu (MS candidate, Data Science), email
Office: 350 SH (Desk 8), Office Hours: 2:00-3:30 Th

A11: 11:00-11:50 Tuesday (3 SH)
A12: 11:00-11:50 Thursday (3 SH)

Tianrun Wang (PhD candidate, Statistics), email
Office: 350 SH, Office Hours: 2:50-4:50 Tu, 10:30-11:20 F

A13: 2:00-2:50 Tuesday (71 SH)
A14: 2:00-2:50 Thursday (71 SH)
A15: 5:00-5:50 Tuesday (75 SH)
A16: 5:00-5:50 Thursday (75 SH)

### Contact Information

E-Mail: matthew-bognar@uiowa.edu
Office: 358 SH
Office Hours: 9:30-11:00 W, 1:30-3:00 Th