H1 (Due 2/5):
2.1.26, 2.2.4, 2.2.6, 2.2.8, 2.2.12,
2.3.4, 2.3.8, 2.3.17,
2.4.2**,
2.4.8
** = Venn diagrams are helpful on this problem
H2 (Due 2/12):
2.5.2, 2.5.6, 2.5.10(a,c), 2.7.2, 2.7.4, 2.7.11, 2.7.12, 2.6.2, 2.6.3
Note: The topics from lecture are slightly out of order from the textbook, hence the unusual ordering of the HW problems
H3 (Due 2/19): 2.8.2, 2.8.8, 2.8.9, 3.1.10, 3.1.15, 3.1.17, 3.2.2, 3.3.2, 3.3.6, 3.4.4
H4 (Due 2/26):
3.5.5!, 3.5.6!, 3.5.8*!, 3.5.14!, 3.6.4, 3.6.5, 3.6.8, 3.7.4, 3.7.6
* = Use Matt's super sweet phone app or web app (see below) to answer the question
! = Do these problems before the exam -- this material is relevant for the exam
H5 (Due 3/5):
3.8.2, 3.8.8**, 4.1.4, 4.2.4, 4.2.5, 4.2.8, 4.3.2, 4.3.7, 4.4.1
** = Hint for (d): Let $X=$ # views in t minutes,
then $X \sim Pois(\lambda=1.5t)$. Now, find $t$ such that $0.001 = P(X=0)$.
H6 (Due 3/12): 4.7.4, 4.7.8, 4.7.14, 4.5.6, 4.5.7, 4.5.11, 4.5.14
H7 (Due 3/19): 5.6.4, 5.6.6, 5.6.8, hw-lc-norm.pdf, hw-prop-error.pdf (questions 1 and 2 only)
H8 (Due 3/26):
hw-prop-error.pdf (questions 3 and 4 only),
6.1.8*, 6.2.8**
* = skip dot diagram; instead, compute 5-number summary, find interquartile range, and make boxplot
** = construct a histogram too --- let the first bin be [59,61).
H9 (Due 4/2):
7.2.3, 7.2.4**, 7.2.5, 7.2.6, 7.2.7, 7.2.8
** = Answer the following questions only.
(a) Find the approximate distribution of $\bar{X}$ (be sure to state all parameters). Assume $n=12$ is large enough for CLT.
(b) Approximate $P(0.4 \le \bar{X} \le 0.7)$.
H10 (Due 4/9):
8.1.4**, 8.1.6**, 8.1.12**, 8.2.3, 8.2.6, 8.2.7, 8.2.8 (skip test for normality), 8.2.12
** = Do these problems before the exam -- this material is relevant for the exam
H11 (Due 4/16):
hw-z-test.pdf,
hw-t-test.pdf (question 1 only),
9.3.9 (a,e) (hint: $n=25$, $\bar{x}=98.264$, $s=0.4821$)
H12 (Due 4/23): 9.2.7 (a,b only; use $\alpha=0.05$ not $\alpha=0.5$), 9.2.8 (a,b,e), hw-t-test.pdf (question 2 only), 9.3.8 (a,e) (hint: $n=20$, $\bar{x}=26.04$, $s=4.78$), 10.2.4 (a,b), 10.2.8 (Use $\alpha=0.10$ -- note that $\sigma=0.10$ is a typo in the textbook)
Final Exam: Tuesday, May 11, 12:30-2:30 PM (online)
Statistical Tables (Z, t, and chi-square tables)
CLT.die.fair.pdf, CLT.die.loaded.pdf
Fei Wu (PhD candidate, Statistics),
email
266 SH, Virtual Office Hours: 9:20-10:50 Th virtual
A12: 7:30-8:20 Th, virtual
A14: 11:00-11:50 Th, virtual
Shiao Liu (PhD candidate, Statistics),
email
348 SH, Virtual Office Hours: 11:30-12:30 MWF virtual
A11: 7:30-8:20 Tu, virtual
A13: 11:00-11:50 Tu, virtual
A15: 2:00-2:50 Tu, virtual
A16: 2:00-2:50 Th, virtual
Philip Foti (MS candidate, Actuarial Science),
email
350 SH, Office Hours: 12:00-1:30 TuTh
-- Email Phil if you wish to do office hours virtually
-- Virtual discussion links are for emergency use only; email Phil for the Zoom passcode
B21: 5:00-5:50 Tu, S107 PBB, virtual
B22: 5:00-5:50 Th, S107 PBB, virtual
B23: 6:30-7:20 Tu, S107 PBB, virtual
B24: 6:30-7:20 Th, S107 PBB, virtual
E-Mail:
matthew-bognar@uiowa.edu
Virtual Office Hours: 11:00-12:30 W, 1:30-3:00 Th
virtual