H1 (Due 9/6): 2.22, 2.28, 2.30, 2.34, 2.38, 2.40, 2.42, 2.47, h1.pdf
H2 (Due 9/13): 2.56, 2.69, 2.89, 2.92, 2.93(a), h2.pdf
H3 (Due 9/20): 2.76, 2.80, 2.95, 2.99, 2.120, 2.124
H4 (Due 9/27): 3.1, 3.2, 3.8, 3.12, h4.2020.pdf
H5 (Due 10/4):
4.2, 4.4, 4.7, 4.34, 4.35**,
5.8, 5.12, 5.15, 5.26(a)
** = Find variance using (a) the definition $Var(X)=E[(X-\mu)^2]$, and
(b) the computational formula $Var(X)=E(X^2)-[E(X)]^2$
H6 (Due 10/11):
5.30, 5.32, 5.38, 5.49, 5.50, 5.54, 5.56**, 5.58**, 5.63, 5.92
** = Assume Poisson assumptions hold
H7 (Due 10/18):
3.14, 3.18, 3.36, 4.14, 4.50, 6.1(a), 6.55, 6.66
** This HW is due the day of exam --- all of these topics are on exam.
H8 (Due 10/25):
In textbook: 6.6, 6.7, 6.8, 6.12, 6.14, 4.57, 4.58
In hw.lc.pdf: 1, 2 (a thru d)
H9 (Due 11/1):
In hw.lc.pdf: 2 (e thru g), 3, 4
In hw.prop.error.pdf: 1, 2
H10 (Due 11/8):
In textbook: 8.23, 8.24, 8.25, 8.26
In hw.prop.error.pdf: 3, 4
In h10.2020.pdf: All problems
H11 (Due 11/15):
In textbook:
1.14(a,b), 1.18(a,b), 9.2($\sigma=40$), 9.3($\sigma=0.0015$),
9.4(a only)($s=6.9$), 9.6, 9.10($s=7.8$), 9.12($s=15$),
H12 (Due 11/22):
In hw-z-test.pdf: All problems
In hw.t.test.pdf: All problems
H🙂 (Due 11/28):
Eat yum-yums
H13 (Due 12/6):
In textbook:
10.34 (Answer the following only: (a) Test $H_0: \mu_1-\mu_2=8$ vs $H_a:\mu_1-\mu_2<8$ at the $\alpha=0.05$ significance level using a 3-step test, (b) approximate the $p-$value for the test.),
10.36 (Answer the following only: (a) Test $H_0: \mu_1=\mu_2$ vs $H_a:\mu_1 \ne \mu_2$ at the $\alpha=0.05$ significance level using a 3-step test, (b) approximate the $p-$value for the test, (c) find a 95% CI for $\mu_1-\mu_2$.)
In hw.2mu.pdf: All problems
Do your SPOT survey: ICON --> Student Tools --> SPOT
H14 (Due 12/13):
In textbook:
9.54 (Answer the following only: (a) Find a 95% Wald CI for $p$, (b) find a 95% Agresti-Coull CI for $p$),
10.58 (Answer the following only: (a) Test $H_0:p=0.60$ vs $H_a:p \ne 0.60$ at the $\alpha=0.05$ significance level using a 3-step score test, (b) find the $p-$value for the test, (c) find a 95% Wald CI for $p$, (d) find a 95% Agresti-Coull CI for $p$),
10.86, 9.72,
10.68 (Answer the following only: Test $H_0:\sigma^2=36$ vs $H_a:\sigma^2 < 36$ at the
$\alpha=0.05$ significance level; find a 95% one-sided upper-bound CI for $\sigma^2$ as well)
In hw.anova.pdf: Do NOT turn-in --- this material is on the exam, however. Answers: hw.anova.key.pdf
Do your SPOT survey: ICON --> Student Tools --> SPOT
Exam 1: e1.summary.2020.f24.txt
Exam 2: e2.summary.2020.f24.txt
Exam 3: e3.summary.2020.f24.txt
Final Exam: e4.summary.2020.f24.txt
Negative Binomial & Pascal's Triangle
Statistical Tables (Z, t, and chi-square tables)
CLT.die.fair.pdf, CLT.die.loaded.pdf
Anh Nguyen (PhD candidate, Statistics),
email
Office: 267 SH, Office Hours: 3:30-5:00 Wednesday, 9:30-11:00 Thursday
A11: 7:30-8:20 Tuesday (31 SH)
A12: 7:30-8:20 Thursday (31 SH)
A13: 8:30-9:20 Tuesday (31 SH)
A14: 8:30-9:20 Thursday (31 SH)
Katie Fox (MS candidate, Actuarial Science),
email
Office: 223 SH, Office Hours: 10:25-10:55 TuTh, 12:20-1:20 TuTh
A15: 9:30-10:20 Tuesday (51 SH)
A16: 9:30-10:20 Thursday (51 SH)
A17: 11:00-11:50 Tuesday (60 SH)
A18: 11:00-11:50 Thursday (60 SH)
E-Mail:
matthew-bognar@uiowa.edu
Office: 358 SH
Office Hours: 10:30-Noon W, 1:30-3:00 Th