## Probability and Statistics for Engineering and Physical Sciences (STAT:2020, Bognar)

### Homework

H1 (Due 2/5): 2.1.26, 2.2.4, 2.2.6, 2.2.8, 2.2.12, 2.3.4, 2.3.8, 2.3.17, 2.4.2**, 2.4.8
** = Venn diagrams are helpful on this problem

H2 (Due 2/12): 2.5.2, 2.5.6, 2.5.10(a,c), 2.7.2, 2.7.4, 2.7.11, 2.7.12, 2.6.2, 2.6.3
Note: The topics from lecture are slightly out of order from the textbook, hence the unusual ordering of the HW problems

H3 (Due 2/19): 2.8.2, 2.8.8, 2.8.9, 3.1.10, 3.1.15, 3.1.17, 3.2.2, 3.3.2, 3.3.6, 3.4.4

H4 (Due 2/26): 3.5.5!, 3.5.6!, 3.5.8*!, 3.5.14!, 3.6.4, 3.6.5, 3.6.8, 3.7.4, 3.7.6
* = Use Matt's super sweet phone app or web app (see below) to answer the question
! = Do these problems before the exam -- this material is relevant for the exam

H5 (Due 3/5): 3.8.2, 3.8.8**, 4.1.4, 4.2.4, 4.2.5, 4.2.8, 4.3.2, 4.3.7, 4.4.1
** = Hint for (d): Let $X=$ # views in t minutes, then $X \sim Pois(\lambda=1.5t)$. Now, find $t$ such that $0.001 = P(X=0)$.

H6 (Due 3/12): 4.7.4, 4.7.8, 4.7.14, 4.5.6, 4.5.7, 4.5.11, 4.5.14

H7 (Due 3/19): 5.6.4, 5.6.6, 5.6.8, hw-lc-norm.pdf, hw-prop-error.pdf (questions 1 and 2 only)

H8 (Due 3/26): hw-prop-error.pdf (questions 3 and 4 only), 6.1.8*, 6.2.8**
* = skip dot diagram; instead, compute 5-number summary, find interquartile range, and make boxplot
** = construct a histogram too --- let the first bin be [59,61).

H9 (Due 4/2): 7.2.3, 7.2.4**, 7.2.5, 7.2.6, 7.2.7, 7.2.8
** = Answer the following questions only.
(a) Find the approximate distribution of $\bar{X}$ (be sure to state all parameters). Assume $n=12$ is large enough for CLT.
(b) Approximate $P(0.4 \le \bar{X} \le 0.7)$.

H10 (Due 4/9): 8.1.4**, 8.1.6**, 8.1.12**, 8.2.3, 8.2.6, 8.2.7, 8.2.8 (skip test for normality), 8.2.12
** = Do these problems before the exam -- this material is relevant for the exam

H11 (Due 4/16): hw-z-test.pdf, hw-t-test.pdf (question 1 only),
9.3.9 (a,e) (hint: $n=25$, $\bar{x}=98.264$, $s=0.4821$)

### Probability Distribution Applets

Discrete Distributions
Continuous Distributions
Statistical Inference

Propagation of Error Example

Old Faithful Dataset

Syllabus

Statistics Tutorial Lab

R Project Homepage

### Teaching Assistants

Fei Wu (PhD candidate, Statistics), email
266 SH, Virtual Office Hours: 9:20-10:50 Th virtual

A12: 7:30-8:20 Th, virtual
A14: 11:00-11:50 Th, virtual

Shiao Liu (PhD candidate, Statistics), email
348 SH, Virtual Office Hours: 11:30-12:30 MWF virtual

A11: 7:30-8:20 Tu, virtual
A13: 11:00-11:50 Tu, virtual
A15: 2:00-2:50 Tu, virtual
A16: 2:00-2:50 Th, virtual

Philip Foti (MS candidate, Actuarial Science), email
350 SH, Office Hours: 12:00-1:30 TuTh

-- Email Phil if you wish to do office hours virtually
-- Virtual discussion links are for emergency use only; email Phil for the Zoom passcode
B21: 5:00-5:50 Tu, S107 PBB, virtual
B22: 5:00-5:50 Th, S107 PBB, virtual
B23: 6:30-7:20 Tu, S107 PBB, virtual
B24: 6:30-7:20 Th, S107 PBB, virtual

### Contact Information

E-Mail: matthew-bognar@uiowa.edu
Virtual Office Hours: 11:00-12:30 W, 1:30-3:00 Th virtual