Statistical Inference for $\mu_1-\mu_2$

$n_1=$ $\bar{x}_1=$
$n_2=$ $\bar{x}_2=$

CI for $\mu_1 - \mu_2$:


Significance level: $\alpha =$

Show equations  

This applet computes performs inference for a population mean $\mu$.


  1. $X_{1i} \stackrel{iid}{\sim} N(\mu_1,\sigma_1^2)$ for $i=1,\ldots,n_1$
  2. $X_{2i} \stackrel{iid}{\sim} N(\mu_2,\sigma_2^2)$ for $i=1,\ldots,n_2$
  3. Samples are independent


To perform a hypothesis test for $\mu_1-\mu_2$, enter $H_0$ and $H_a$. Specify the null and alternative hypotheses with the drop-down boxes. The critical value, rejection region, test statistic, and $p-$value are computed and graphed. Different significance levels can be chosen with the drop-down box.