1. If $p:(a, b) \rightarrow R$, $q:(a, b) \rightarrow R$, and $g:(a, b) \rightarrow R$ are continuous and $a < t_0 < b$, then there exists a unique function $y = \phi(t)$, $\phi:(a, b) \rightarrow R$ that satisfies the initial value problem $y'' + p(t) y' + q(t)y = g(t)$, $y(t_0) = y_0$, $y'(t_0) = y_1$.
A) True
2. $D(f) = f'$ is a linear function.
A) True
3. The differential operator $D$ is a linear operator
A) True