1. If $p:(a, b) \rightarrow R$, $q:(a, b) \rightarrow R$, and $g:(a, b) \rightarrow R$ are continuous and $a < t_0 < b$, then there exists a unique function $y = \phi(t)$,   $\phi:(a, b) \rightarrow R$ that satisfies the initial value problem $y'' + p(t) y' + q(t)y = g(t)$,   $y(t_0) = y_0$,    $y'(t_0) = y_1$.

               A) True                         B) False

2. $D(f) = f'$ is a linear function.

               A) True                         B) False

3. The differential operator $D$ is a linear operator

               A) True                         B) False

Answers