IMAP2 SUMMER JUNE 2008 INSTITUTE Fairfield, IA
TRIGONOMETRY & FOURIER SERIES
NOTES

WS 06-17-08
SUMMARY: We will discuss applications of trigonometric functions (one real variable, real value output) and appearing in wave analysis (such as the analysis of sound waves and the sonic attributes of frequencies, amplitudes and phases of fundamental tones and higher harmonics. Particularly interesting might be questions of convergence of Fourier series to discontinuous and/or piecewise smooth functions such as square waves, saw-tooth, etc.
THEME: TRIG FUNCTIONS MODEL ALL PERIODIC PHENOMENA
Presentation Outline/Lesson Plan

1. “Big idea” in math-big/complex pieces/problems into several little small/simpler/ pieces/problems
2. Periodic functions and modeling phenomena (sound, mechanics, fluids..)-higher harmonics and trig function frequency, amplitude, phase
3. Trig function explorations (CPMPTools), summing higher harmonics and tone quality (timbre), examples, Falstad graphics
4. Fourier series (trig polys and infinite sums) as representing "all" periodic phenomena (e.g. p.w. smooth)
5. Connections with HS math in Fourier series convergence questions-derivation of Dirichlet kernel
6. Dirichlet's contributions-history -precision in fcn defn, convergence
1. “Big idea” in math (and other applications) problem-solving–break up complex objects into ‘smaller’ or ‘more manageable’ pieces which are ‘simpler’ to understand


Some examples in pure math contexts:

· Prime # decomp of any natural # (smaller pieces = prime #s in decomp)

· Lowest form of fractions? (smaller pieces = #s appearing in lowest form)

· Polygon area computed by cutting it up into disjoint triangular regions and adding areas of the regions

· Congruences/rigid motions/isometries of the plane (more generally Rn)  must be rotations, translations, reflections or glide reflections all of which can in turn be expressed as a product of 1, 2 or 3 (n+1) reflections across lines (hyperplanes) (smaller pieces = rotation, translation, reflection or glide reflection or just reflections) 

· Polynomial functions (esp. linear, quadratic) of 1 variable as simple approximations for general real-valued functions of a real variable.
ASK FOR OTHER EXAMPLES
2. Periodic functions and applications: 

· Sound waves (musical instruments, electronic synthesized sound, vibrating strings)-show Image:Waveforms.svg
· Play sine, standard wave forms, w/ NCH tone generator, sound files, S&J, show Zelscope images (use 440.0 Hz (A), V/Div vertical div .2), additional sound files. See Appendix A1 for additional information and terminology for sound waves.
· Light, electricity (square waves, on-off circuits)

· Liquid wave movements (rivers, etc.)

· Mechanics (vibrating strings, undamped forced spring systems such as springs, pendula, etc.)

· Cyclical events-(predator/prey interactions, weather/seasonal events, tracking data such as # hours daylight, etc.) 

· Use of basic trig fcns to ‘build up’ ‘all’ periodic fcns/phenomena-Fourier thm for p.w. smooth periodic fcns. 

ASK FOR OTHER EXAMPLES

3. Trig fcn exploration with worksheets and technology
Teachers work on Two-Three-FourierTerms-061708-22.pdf  HO for two Fourier examples.

1. Explore y1 =  sin(x), y2 =  sin(3x)/3, y3 = sin (5x)/5, (zoom in, trig) sums, more terms? M'ca HO.

Summing trig fcns-higher harmonics, examples from sound files

2. Explore y1 =  cos(x), y2 = (1/3^2) cos(3x), y3 = (1/5^2) cos(5x), (zoom in, trig) sums, more terms?

Summing trig fcns-higher harmonics, examples from sound files


http://www.wmich.edu/cpmp/CPMP-Tools/    (choose Download)

Show example lesson plans

Exploring Families of Functions: http://www.auburn.edu/%7Ecoxkell/cpmp%20investigation.htm
Worksheet: http://www.auburn.edu/%7Ecoxkell/worksheet.htm
WS file IMAPP-CPMPTools-files

IMAPP-Fourier-Sine-Series-5-Terms-ExplorationCPMPTools-06-15-08.txt
3. Show Falstad Fourier demo.

http://www.falstad.com/fourier/
Other examples from musical instruments (sound files)

4. Mathematical questions/analysis

Wiki reference: http://en.wikipedia.org/wiki/Fourier_series

Fourier Theorem: Idea: 'virtually' all periodic phenomena/functions can be represented as sums of 
trigonometric functions. These sums are called Fourier Series.

More precisely: Suppose f[x] is a function (with enough 'smoothness') defined on the interval [ -( , ( ], and periodic 
with period 2 ( on the real line R.


Then there are uniquely determined real numbers a0, a1, a2,…and b1, b2, b3, … such that 


f[ x ] = a0 + (a1 *sin [ x ] + b1 cos [ x ] ) +  + (a2 *sin [ 2 x ] + b2 cos [ 2 x ] ) +  (a3 *sin [3 x ] + b3 cos [3 x ] ) +…


f[ x ] = a0 + 
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(this is a Fourier Series)
EXAMPLES GIVEN IN THE MSWORD DOC 

FourierSeriesFormulasStandardWaves-06-16-08.docx

"Enough smoothness" can be taken to mean: 

f[x] is a function defined and continuous on the interval [ -( , ( ]

 except possibly at a finite # of points p1, p2,…, pk ([ -( , ( ], 

and with left and right-hand limits at these points, and f has a continuous derivative f ' [x] on the interval [ -( , ( ] 

except possibly at a finite # of points q1, q2,…, qm ([ -( , ( ] (which could be different from the p1, p2,…, pk ([ -( , ( ]) 

and f'[x] has left and right-hand limits at these points q1, q2,…, qm .

The standard waves forms the square wave, triangle wave, sawtooth wave are all piecewise smooth. 

All smooth periodic functions and periodic functions which are smooth except for periodically occurring 'corners' are piecewise smooth. Most musically produced sounds have piecewise smooth wave forms and so can be represented by Fourier series. At the discontinuity points p1, p2,…, pk , the Fourier series converges to the average of the left and right-hand limits of the function, (1/2) { f [pi+ ] + f [pi-] }.
Infinite sums really mean limits (i.e. does the sum 'converge'). So existence of the limit must be proved. Below is some detail about conditions under which the convergence of a Fourier series does converge.

From wiki on Fourier series convergence: http://en.wikipedia.org/wiki/Classic_harmonic_analysis
Convergence at a given point.

There are many known sufficient conditions for the Fourier series of a function to converge at a given point x, for example if the function is differentiable at x. Even a jump discontinuity does not pose a problem: if the function has left and right derivatives at x, then the Fourier series will converge to the average of the left and right limits (but see Gibbs phenomenon). It is also known that for any function of any Hölder class and any 
function of bounded variation the Fourier series converges everywhere. See also Dini test.
However, the Fourier series of a continuous function need not converge pointwise. Perhaps the easiest proof uses the non-boundedness of Dirichlet's kernel and the Banach-Steinhaus uniform boundedness principle. As typical for existence arguments invoking the Baire category theorem, this proof is nonconstructive. It shows that that the family of continuous functions whose Fourier series converges at a given x is of first Baire category, in the Banach space of continuous functions on the circle. So in some sense pointwise convergence is atypical, and for most continuous functions the Fourier series does not converge.
The problem whether the Fourier series of any continuous function converges almost everywhere was posed by Nikolai Lusin in the 1920s and remained open until finally resolved positively in 1966 by Lennart Carleson. Indeed, Carleson showed that the Fourier expansion of any function in L2 converges almost everywhere. Later on Richard Hunt generalized this to Lp for any p > 1. Despite a number of attempts at simplifying 
the proof, it is still one of the most difficult results in analysis.


Contrariwise, Andrey Kolmogorov, in his very first paper published when he was 21, constructed an example of a function in L1 whose Fourier series diverges almost everywhere (later improved to divergence everywhere).

See also Convergence of Fourier series  http://www.sosmath.com/fourier/fourier3/fourier31.html
Two trigonometry ideas from high school math which are crucial in the proof of the Fourier Theorem are:

1. 
i. sin [ a + b ] - sin [ a - b ] = 2 cos[a]* sin [ b ] 


ii. cos [ a + b ] - cos [ a - b ] = -2 sin [ a ] *sin[b]


iii. cos [ a + b ] + cos [ a - b ] = 2 cos[a]* cos[ b ]

These identities are used in proving that the functions { sin [ n x ],  cos [ n x ] }(n=1 form an orthonormal basis for 
continuous functions for the space of (say) p.w. continuous periodic functions on [ -( , ( ] using integration for the 
inner product. 

2. Dirichlet 'kernel' or identity (introduced by G. J. Dirichlet in 1829 and still in use today)

(*) (1/2) + cos [ x ]+ cos [ 2 x ]+ cos [ 3 x ]+…+ cos [ n x ] = 
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Proof #1 of (*):  Multiply LSH of (*) by sin[ x/2] , then use identity 1.i. above. The sum telescopes leaving only 
sin[(n+1/2+x]!)

Proof #2 of (*): An alternative proof uses the complex exponential:
 eix = cos[x] + i sin [x], and the resulting expression for sin[x] via complex exponentials

sin[x] = 
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1 + r + r2 +r3+..+rn = 
[image: image4.wmf]r

-

+

1

r

-

1

1

n

, with r = eix  
See http://en.wikipedia.org/wiki/Dirichlet_kernel  for the complete (short) derivation of (*) in this method.

(*) is crucial in eliminating a sum of cos and sin terms in an integral expression for f[x].

5. Additional interesting topics related to Fourier series

Gibbs phenomenon. Good graphics with square wave at this wiki site:

http://en.wikipedia.org/wiki/Gibbs_phenomenon
What are the coefficients and parameters in the Fourier expression? (amplitude, frequency, phase of each harmonic)

A good history reference for information on the Fourier Series is 
A History of Mathematics: An Introduction (2nd Edition) (Paperback) by Victor J. Katz, Addison-Wesley: 1998.
See pages 720-726 for background and how questions about the Fourier series caused people to work in developing 
precise definitions of functions, continuity, convergence and eventually real numbers in general (pages 726-737).
History-how did anyone think of using trig fcns like this? Fourier-heat eqn/wave eqn, pde-> separation of variables 

History: Fourier series are defined as infinite sums of fncs and questions of whether such a sum made sense (i.e. 
converged) and if so what properties the resulting sum had, were apparently not rigorously considered until G. J. 
Dirichlet (1805-1859) in 1829 in a seminal paper on the subject.  Dirichlet's ideas are still in active use today. The 
considerations of the 
infinite series of functions  led to reexamination of defns of fcn and rigor about numbers and 
calculus in 19th century.

Fcn defn was made somewhat more precise in Dirichlet's 1837 memoir in which he wrote:

"“If to any x there corresponds a single

finite y, namely in such a way that, when x continuously runs through the interval

from a to b, y = f(x) likewise varies little by little, then y is called a continuous

... function of x. Yet it is not necessary that y in this whole interval depend on

x according to the same law; one need not even think of a dependence expressible

in terms of mathematical operations” ([D.1], p. 135)."

Previously notions of functions were defined (e.g. by Euler) as  “analytical expressions”. He also defined a

notion of function “as to comprise all manners by which one magnitude

may be determined by another one”.  

APPENDIX A1 INFORMATION ABOUT SOUND WAVES

WHAT IS SOUND?

Notes on sound waves displayed on an oscilloscope From [BS] page 8:

"Sound waves are changes in air pressure (force per unit area) occurring at frequencies in the audible range (20 Hz to 
20 kHz). The normal variation in air pressure associated with a musical instrument played quietly is about .002 Pa. 

[**WS notes: Pascals = newtons per square meter

Newtons = units of force [= push or pull], in the metric system, weight = gravitational force = mass times gravity, 100 
pounds = 445 Newtons


ASK: WHAT IS THE CONVERSION OF PASCALS TO POUNDS PER SQUARE INCH?**]
The smallest variation that can be heard is about .00002 Pa, whereas the pressure variation that produces pain in the 

ear is about 20 Pa. Normal atmospheric pressure is about 100,000 (105) Pa or about 15 lbs/sq in. The maximum 
change in atmospheric pressure due to changes in weather is a few percent of this average  value (e.g. 2% = 2000 Pa). 
Notice that the variation in pressure of a sound wave is a tiny fraction of the ambient pressure."

[**WS Note on Pascals. The units called Pascals mean pounds per square inch. Everything that is in contact with air is 
subject to air pressure. Changes in this pressure lead to vibrations 
in the eardrum, which we hear-peoples' brains 
translate into sound. 

Amplitude corresponds to loudness of a sound wave, frequency corresponds to pitch or note-bigger amplitude means a 
louder sound and higher frequency means higher pitch.**]



From [BS] Page 9:

"Wave shapes will often be displayed using an oscilloscope. An oscilloscope or "scope" is a device for displaying an 
electronic signal, that is, translating it into visible form on the screen. The signal from a microphone of any other 
electronic signal is traced onto the oscilloscope screen by a beam of electrons produced by the scope. [The input 
signal] traces out the 
graph of the signal voltage as a function of time…This electrical signal, or voltage, which is 
proportional to the pressure of the air in the sound wave, can be displayed, using an oscilloscope, as voltage 
versus time."

Notes on sound quality (timbre), from [BS] page 102:

"A very general correlation can be made between harmonic structure as observed in the Fourier spectrum and sound 
quality or timbre. A simple sinusoidal wave (one harmonic, the fundamental) sounds pure or plain. On the other 
hand, as large-amplitude harmonics are added, the tone becomes richer, as in the sawtooth, or even raspy, as in the 
extreme case of the pulse train. Sounds between these extremes of harmonic content sound relatively more simple or 
rich. Square waves and other waves that have large-amplitude odd harmonics and little or no even harmonics 
produce a  hollow or woody sound, like that of a clarinet. The triangular wave, containing only odd harmonics 
but 
with very small amplitudes, lies somewhere between the sine wave and the square wave, with the pure tone 
simplicity and a slight woodiness of sound. The pitch of any periodic wave is determined by its fundamental 
frequency."

TERMINOLOGY FOR WAVES:

AMPLITUDE Maximum displacement of wave form (vertically up or down from a '0' point) AMPLITUDE 

 (call this A) 

Units can be length (e.g. mm, cm, inches) for displacements in spring-mass assemblies or pressure units (usually 
pascals) for sound waves in air or volts for electric signals. 

CYCLE or PERIOD Minimal time to repetition of (one 'full') wave form PERIOD a.k.a. CYCLE (call this T)

FREQUENCY  Number of periods per second or cycles per second is called FREQUENCY 

(call this f, then f = 1 / T  ) 

Frequency units are called Hertz (Hz). 1 Hz means one cycle per second. 

For a sound frequency of 1000-Hz (1000 cycles per second) has period 1/1000 = .001 seconds or one one-thousandth 
of a second (one millisecond, 1 ms)

APPENDIX A2 INFORMATION ON DEVICES FOR SOUND WAVE ANALYSIS

An electronic device called a bandpass filter can be used to extract Fourier components from a given sound/wave artifact. http://www-ee.eng.hawaii.edu/~sasaki/Undergrad/WaveCalc/ZeLi/fourier.html
Zelscope: A virtual oscilloscope at url http://www.zelscope.com/
This is a piece of software which costs around twenty dollars ($20). There is a 14-day free trial period.

You have to configure your computer so you can input sound in some way. Many computers have a microphone input or built in mic that can be used for this purpose. In your computer you can check this by examining ControlPanel/Sound and look for microphone settings or input. Be sure to hit "Play" (the arrow button under the word "File" on the menu bar) to make the oscilloscope register the signal!
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Zelscope is a Windows software that converts your PC into a dual-trace storage oscilloscope and spectrum analyzer. It uses your computer's sound card as analog-to-digital converter, presenting a real-time waveform or spectrum of the signal - which can be music, speech, or output from an electronic circuit. Zelscope features the interface of a traditional oscilloscope, with conventional gain, offset, timebase, and trigger controls. As a real-time spectrum analyzer, Zelscope can display the amplitude and phase components of the spectrum.
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