The SMT-LIB Initiative

Cesare Tinelli, The University of lowa
David Cok, GrammaTech

SAT/SMT Solver Summer School
Boston, MA - June 2011

L
THE UNIVERSITY
OF lOWA GRAMMATECH

Talk Roadmap

Introduction and overview of SMT-LIB

Brief history
The SMT-LIB 2 language and library

1.

2.

3.

4. Resources and tools
5. Demos

6.

Future directions

SAT/SMT Solver Summer School Boston, 2011

What 1s SMT-LIB

" |nternational initiative

" Aimed at facilitating R&D in SMT

= Backed by research groups worldwide
" People involved

= 3 coordinators

= 90+ contributors

" many more users

SAT/SMT Solver Summer School Boston, 2011

The SMT-LIB Initiative

" Concrete goals

1. Provide standard rigorous descriptions of
packground theories used in SMT systems

2. Develop and promote common |/O
anguages for SMT solvers

3. Collect and make available an extensive
benchmarks library

SAT/SMT Solver Summer School Boston, 2011

The SMT-LIB Initiative

m Sister Initiatives

= SMT-COMP, annual solver competition

= SMT-EXEC, public solver execution service

" Funding
= NSF, SRC, Intel, MSR, Ulowa

SAT/SMT Solver Summer School Boston, 2011

Credits

= Founders

= S. Ranise, C. Tinelli

= Current/past coordinators
= C. Barrett, S. Ranise, A. Stump, C. Tinelli

= Major contributors

= D. Cok, C. Conway, M. Deters, L. de Moura,
A. Oliveras

SAT/SMT Solver Summer School Boston, 2011

Credits

» Other contributors™

P. Andrews, A. Armando, D. Babic, S. Berezin, A. Biere, N. Bjorner, M. P.
Bonacina, S. Boehme, A. Cimatti, C. Conway, D. Deharbe, B. Dutertre, K.
Etessami, P. Fontaine, A. Franzen, V. Ganesh, A. Goel, A. Griggio, J. Grundy, J.
Harrison, J. Hoenicke, P. Janicic, P. Jackson, J. Kiniry, D. Kroening, S. Krstic, S.
Lahiri, J. Lv, J. Matthews, P. Matos, M. Moskal, J. Meseguer, G. Nelson, I.
Niemela, R. Nieuwenhuis, F. Pfenning, P. Ruemmer, H. Ruess, J. Saxe, R.
Sebastiani, S. Seshia, N. Shankar, E. Singerman, F. Somenzi, O. Strichman, G.
Sutcliffe, M. Vardi, A. Voronkov, J. Waldmann, T. Weber, G. Weissenbacher, C.
Wintersteiger, M. Bofill, A. Bradley, B. Brady, G. Brown, R. Brummayer, R.
Bruttomesso, R. Bryant, R. Butler, C. Castellini, M. Decoster, S. Disch, L. Erkok, J.-
C. Filliatre, B. Fischer, M. Ganai, Y. Ge, P. Godefroid, G.-M. Greuel, S. Gulwani, T.
Hansen, K. Heljanko, A. Henning, I. Jager, T. Janhunen, D. Jovanovic, H. Kim, T.
King, W. Kunz, S. Kupferschmid, R. Leino, R. Limaye, F. Maris, C. Marche, D.
Molnar, P. Manolios, K. Ogata, L. Pike, L. Platania, F. Pigorsch, S. Qaader, Z.
Rakamaric, E. Rodriguez-Carbonell, J. Rushby, M. Schidlowsky, C. Scholl, H.
Sheini, J. Shin, S. Srivastava, M. Sorea, V. Sorge, D. Stoffel, N. Tamura, M. Veley,
R. Venkatesan, A. Wallenburg, M. Wedler, O. Wienand, H. Zankl

(*) Apologies for any omissions
SAT/SMT Solver Summer School Boston, 2011

A Brief History of SMT-LIB

SAT/SMT Solver Summer School Boston, 2011

SMT Beginnings (late 90s)

= Substrate

= Early work on decision procedures

= Catalyst:

= Spectacular advances in SAT

= New ideas:

" eagger encodings of SMT problems into SAT [Bryant,
Velev, Strichman, Lahiri, Seisha,..., -'02]

" Jazy encodings into SAT + decision procedures
[Armando et al.'00, Audemard et al.'02, Ruess & de
Moura'02, Barrett et al.'02]

SAT/SMT Solver Summer School Boston, 2011

SMT State of the Art in 2002

" Several SMT solvers
" based on different variants of FOL
" working with different theories
" dealing with different classes of formulas

" having different interfaces and input formats

SAT/SMT Solver Summer School Boston, 2011

SMT State of the Art in 2002

" Many different solvers
" Solver's theory often unclear

= Arduous to assess the relative merits of
techniques or solvers

" Difficult even to evaluate a single solver

" Each solver good on its own benchmarks

SAT/SMT Solver Summer School Boston, 2011

FroCoS’02: a Call for Arms

Excitement about the promise of SMT
Frustration about lack of standard benchmarks

Chair A. Armando calls for the creation of a
common benchmark library

S. Ranise and C. Tinelli agree to lead the
Initiative

Several participants promise assistance and
contributions

SAT/SMT Solver Summer School Boston, 2011

FroCoS’02 Aftermath

" R & T soon realize that a common library
would first need to fix a standard:

1. underlying logic,
2. catalog of rigorously defined theories,

3. specification of relevant fragments of these
theories,

4. concrete syntax for benchmarks

" This becomes the blueprint for SMT-LIB

SAT/SMT Solver Summer School Boston, 2011

The SMT-LIB Standard

Three main components:

1. Theory declarations, semi-formal specifications

of theories of interest (e.g., integers, reals, arrays,
bit vectors, ...)

2. Logic declarations, semi-formal specifications of

fragments of (combinations of) theories (e.g.,
linear real arithmetic, integer difference constraints, ...)

3. Benchmarks, formulas to be checked for
satisfiability (Version 1), or scripts (Version 2)

SAT/SMT Solver Summer School Boston, 2011

The SMT-LIB Repository

Three main components:

1. Catalog of theory declarations

2. Catalog of logic declarations

3. Library of benchmarks

External components:

1. Utility tools (parsers, checkers, converters, ...)

2. Additional resources

SAT/SMT Solver Summer School Boston, 2011

SMT-LIB Today

= 95 000+ benchmarks in online database
= 20+ logics in online catalog

= SMT-LIB format (V. 1.2) adopted by all major
SMT solvers (12+)

" major new version (V. 2.0) of format and
library released in 2010

= SMT-COMP’10-11 run with Version 2.0

SAT/SMT Solver Summer School Boston, 2011

The SMT-LIB 2 Language

SAT/SMT Solver Summer School Boston, 2011

The SMT-LIB 2 Language

= Textual, command-based I/O format for SMT
solvers

" Intended mostly for machine processing
= Easy to generate automatically
= Fasy to parse

" Human-readable, but with minimal syntactic sugar

= Specifically designed for on-line integration of
SMT solvers into other tools

SAT/SMT Solver Summer School Boston, 2011

The SMT-LIB 2 Language

" Typical usage:

" Asserting a series of logical statements, in the
context of a given logic

" Checking their satisfiability in the logic

" Exploring resulting models (if sat) or proofs (if unsat)

" |ogical statements expressed in a sorted (typed)
first-order predicate language

SAT/SMT Solver Summer School Boston, 2011

Language Highlights

= Concrete syntax
= Sublanguage of Common Lisp S-expressions
" Few syntactic categories

= Versatile underlying logic
= Many-sorted FOL with (pseudo-)parametric sorts
" Function symbol overloading

" Command language

= Allows sophisticated interaction with solvers
= Stack-based, assert-and-query execution model
= Benchmarks are command scripts

SAT/SMT Solver Summer School Boston, 2011

Concrete Syntax

" Proper subset of Common Lisp S-expressions

(literal) ::= <{numeral) | {decimal) | {hexadecimal)
(binary) | {string)

(s_expry == (literal) | {symbol) | ({s_expr)*)

= Some reserved words

exists forall 1let par as !

NUMERAL DECIMAL STRING

SAT/SMT Solver Summer School Boston, 2011

Concrete Syntax

= | jterals
0 12 832 numerals
0.1 123.0 6.01 decimals
#x0 #XFFOA #xdad hexadecimals
#b0 #b1l1l #b010101 binaries
miun " abef " (A \ (A Hi\ mn Strings
= Symbols
true a < a<> b. ? Sabc
:pat |single symbol | la {} %S$2]

SAT/SMT Solver Summer School Boston, 2011

Concrete Syntax

= S-expressions

(assert
(forall ((11 (List Int)) (12 (List Int)))
(= (append 11 12)

(ite (= 11 (as nil (List Int)))

12

(let ((hl (head 11))
(tl (tail 11)))

(insert hl (append tl 12)))))))

(set-option :print-success true)

SAT/SMT Solver Summer School Boston, 2011

Base Logic

" Essentially, many-sorted (i.e., simply typed) first-
order logic with equality

= Main differences:

1. Sorts denoted by (first-order) sort terms

EX:
Bool Int Elem

(Array Int Elem)
(Set (Array Int Real))

SAT/SMT Solver Summer School Boston, 2011

Base Logic

" Essentially, many-sorted (i.e., simply typed) first-
order logic with equality

= Main differences:

1. Sorts denoted by (first-order) sort terms

2. No distinction between

e function, predicate symbols, and logical connectives
e terms and formulas
e.g. notis a function from Bool to Bool

SAT/SMT Solver Summer School Boston, 2011

Base Logic

= Essentially, many-sorted (i.e., simply typed) first-
order logic with equality

= Main differences:

1. Sorts denoted by (first-order) sort terms

2. No distinction between

e function and predicate symbols
* terms and formulas

3. Overloading and parametric polymorphism

e.g. +can have type Int x Int — Int and Real x Real — Real
= has type o x 0 — Bool for every sort o

SAT/SMT Solver Summer School Boston, 2011

Base Logic

Essentially, many-sorted first-order logic with eq.

Only logical symbols:
= quantifiers (V, 3)
= |et binder

Sort and function symbols, and their type,
declared in

" predefined theories, or
= yser scripts

Meaning of theory symbols specified in a theory

declaration

SAT/SMT Solver Summer School

Boston, 2011

Theory Declarations

Theories in the SMT-LIB catalog are defined with
theory declaration schemas

= Semi-formal

" Formally specified: signature (sort & function symbols)

" Informally specified: semantics

" Parametric

= Provide some advantages of parametric types

= But maintain classical many-sorted semantics

SAT/SMT Solver Summer School Boston, 2011

Example: Core Theory

(theory Core
:sorts ((Bool 0))
:funs ((true Bool) (false Bool) (not Bool Bool)
(and Bool Bool Bool :left assoc)
(or Bool Bool Bool :left assoc)
(xor Bool Bool Bool :left assoc)
(=> Bool Bool Bool :right assoc)
(par (A) (= A A Bool :chainable))
(par (A) (distinct A A Bool :pairwise))
(par (A) (ite Bool A A A))

:éefinition‘ Every theory implicitly includes Core I

"Bool is the two-element domain of Boolean values.
For any sort s,

- (= s s Bool) is the identity relation over the domain
denoted by s.

SAT/SMT Solver Summer School Boston, 2011

Example: Lists with Length

(theory ListsWithLength

:sorts ((List 1) (Int 0))

:funs ((par (X) (nil (List X)))
(par (X) (cons X (List X) (List X)))
(par (X) (head (List X) X))
(par (X) (length (List X) Int)))

)

Sorts: Bool, Int, (List Bool), (List Int),
(List (List Bool)), (List (List Int)), ..

Function symbols: (nil (List Int))), (nil (List Bool))),

(nil (List (List Int))), ..
(cons Int (List Int) (List Int))),
(cons Bool (List Bool) (List Bool))), ..

SAT/SMT Solver Summer School Boston, 2011

Current Theories

ArraysEx Functional arrays with extensionality

Fixed Size BitVectors Bit vectors of all sizes

Core Core theory, basic Boolean operators

Ints Integer numbers

Reals Real numbers

Reals Ints Real and integer numbers

SAT/SMT Solver Summer School Boston, 2011

SMT-LIB Logics

= For efficiency, SMT typically fix
= 3 background theory they reason about

= 3 class of formulas they accept as input

= |n SMT-LIB, this is reflected in the notion of a
(sub)logic, a fragment of the SMT-LIB base
logic

SAT/SMT Solver Summer School Boston, 2011

SMT-LIB Logics

(theories; free symbols; syntax restrictions)

Ex:

QF UF = (Core; free sort and function symbols;
no quantifiers)

QF LIA = (Ints; free constant symbols;
no quantifiers, only linear terms)

AUFLIA = (ArraysEx, Ints; free sort and function symbols;
only linear terms, only arrays of sort
(Array Int Int))

Several of the logics define a decidable fragment of FOL

SAT/SMT Solver Summer School Boston, 2011

Example: QF _IDL

(logic QF IDL
:smt-lib-version 2.0
twritten by "Cesare Tinelli"
:date "2010-04-30"
:theories (Ints)
:language
"Closed quantifier-free formulas with atoms of the form:
- g
- (op (- xy) n),
- (op (- xy) (-n)), or
- (op X Y)
where
- g 1is a variable or free constant symbol of sort Bool,
- op is <, <=, >, >=, =, or distinct,
- X, y are free constant symbols of sort Int,
- n is a numeral."”

)

SAT/SMT Solver Summer School Boston, 2011

Commands

Fed to solver’s standard input channel or stored in a file
Look like Lisp function calls: (<com _name) {arg)*)
Operate on a stack of assertion sets

Cause solver to output an S-expression to standard
output or standard diagnostic channel

Four categories:
= assertion-set commands, modify the assertion set stack
= post-check commands, query about the assertion sets
= option setting commands, set solver parameters

= diagnostic commands, get solver diagnostics

SAT/SMT Solver Summer School Boston, 2011

Assertion Sets

Assertion: a formula, a symbol declaration, or
a symbol definition

Assertion set: a set of assertions
Assertion stack: a stack of assertion sets (stack frames)

" Theory symbols are implicitly declared in initial,
empty stack frame

= Each stack frame defines a lexical scope for (new)
symbols declared/defined in it

" Popping a frame retracts all assertions in it

SAT/SMT Solver Summer School Boston, 2011

Assertion-Set Commands

(set-logic ¥)
Ex.: (set-logic QF LRA)
Effect: establishes the logic to be used

(push n)

Ex.: (push 1)
Effect: pushes n >0 empty frames into the stack

(pop 1)
Ex.: (pop 1)
Effect: pops the most recent n > 0 frames from the stack

SAT/SMT Solver Summer School Boston, 2011

Assertion-Set Commands

(declare-sort sn)

Ex.: (declare-sort Elem 0)
(declare-sort Set 1)

Effect: declares sort symbol s with arity n and
allows the use of sorts such as
Elem, (Set Elem), (Set (Set Elem)),..

(define-sort s (u,...u,) O)
Ex.: (define-sort MyArray (u) (Array Int u))

Effect: allows use of, e.g.,, (MyArray Real)
as a shorthand for (Array Int Real)

SAT/SMT Solver Summer School Boston, 2011

Assertion-Set Commands

(declare-fun f (0,...0,) O)

Ex.: (declare-fun a () Int)

(declare-fun even (Int) Bool)
(declare-fun nth ((List Real) Int) Real)

Effect: declares fwithtype o,x... x0,— o0

(define-fun f ((x,0,) ... (x,0,)) O 1)
EX.: (define-fun a () Int 4)
(define-fun sq ((x Int)) Int (* x X))
Effect: declares fwith type o,x ... x0, — 0 and asserts
(forall ((x;0y) .. (x,0,))
(= (f X = X%,) 1))

SAT/SMT Solver Summer School Boston, 2011

Assertion-Set Commands

(assert 1)

Ex.: (assert (=> P Q))
(assert (or (> x 1) (= xY)))
(assert (forall ((x A))
(exists ((y B)) (p x¥))))
(assert (=> P (! (and Q R) :named F)))

Effect: adds r of sort Bool to the current frame

(check-sat)
Effect: checks if all asserted formulas are satisfiable

in the specified logic
Returns sat, unsat or unknown

SAT/SMT Solver Summer School Boston, 2011

Post-Check Commands

(get-value (7,...7)))

Ex.: (get-value (X (+ vy 2) v))
(get-value ((select a n)))

Effect: returns the value of quantifier-free terms ¢, ... ¢

in the current model ’
Output has the form ((7, v,) .. (%,v,))

1T Nn

(get-unsat-core)

Effect: computes an unsatisfiable core of the asserted formulas
Output is restricted to labels [of formulas ¢
asserted with (assert (r :named [))

See SMT-LIB 2 reference document for the full command list

SAT/SMT Solver Summer School Boston, 2011

SMT-LIB 2 Language
Demo

SAT/SMT Solver Summer School Boston, 2011

Resources and Tools

SAT/SMT Solver Summer School Boston, 2011

Resources and Tools

= Documents
= Official V. 2 reference (Barrett, Stump & Tinelli)
= Tutorial (Cok)
= Scripts
= Benchmark library (Barrett & Deters)
= Validation suite (Cok)

= SMT-EXEC (Deters & Stump)

SAT/SMT Solver Summer School Boston, 2011

Resources and Tools

" (Partially) Conformant SMT solvers

= AProVE

= CVC3

= CVC4

= MathSAT 5
= MiniSmt

=" OpenSMT

SAT/SMT Solver Summer School

= SimplifyingSTP
= SONOLAR

= veriT

= Yices

=73

Boston, 2011

Resources and Tools

" Parsers and type checkers in
= C99: (Griggio)
= Haskell: (Hawkins)
= Java: (Cok)
= OCaml: (Krchak & Stump)
" Converters and adapters
= [SMTLIB (Cok)

SAT/SMT Solver Summer School Boston, 2011

Resources and Tools

" Java API for programmatic interaction
and user extension

= jSMTLIB
" Eclipse plug-in
= jSMTLIB

www.smt-lib.org

SAT/SMT Solver Summer School Boston, 2011

SMT-LIB Repository Demo

SAT/SMT Solver Summer School Boston, 2011

SMT-EXEC Demo

SAT/SMT Solver Summer School Boston, 2011

Future Directions

SAT/SMT Solver Summer School Boston, 2011

Future Directions

" More

= theories and logics (Inductive Data Types, Finite Sets,
Finite Maps, Partial Orders, FP Arithmetic, Strings, ...)

" benchmarks
" commands

= Standard formats for
" proofs

" runtime statistics

= StarExec: mega execution service for logical systems
(not just SMT)

SAT/SMT Solver Summer School Boston, 2011

How You Can Contribute

Provide feedback on the standards: language,
theories, logics, commands

Use the SMT-LIB 2 language to communicate with
compliant solvers

Submit your benchmarks to the repository

" if they do not fit in the existing logics, we’ll create a new
one!

Write a compliant SMT-LIB 2 solver and participate to
SMT-COMP

Write and share utility tools (parsers, converters,
editor modes, ...)

SAT/SMT Solver Summer School Boston, 2011

