
Formalizing DPLL-based Solvers
for

Propositional Satisfiability
and for

Satisfiability Modulo Theories

Cesare Tinelli
(joint work with Robert Nieuwenhuis and Albert Oliveras)

tinelli@cs.uiowa.edu

The University of Iowa

Cambridge, June 2005 – p.1/37

Propositional Satisfiability: SAT

Deciding the satisfiability of a propositional formula is a
well-studied and important problem.

Theoretical interest: first established NP-Complete
problem, phase transition, . . .

Practical interest: applications to scheduling, planning,
logic synthesis, verification, . . .

Development of algorithms and enhancements.

Implementation of extremely efficient tools.

Solvers based on the DPLL procedure have been the
most successful so far.

Cambridge, June 2005 – p.2/37

Satisfiability Modulo Theories

Any SAT solver can be used to decide the satisfiability of
ground (i.e., variable-free) first-order formulas.

Cambridge, June 2005 – p.3/37

Satisfiability Modulo Theories

Any SAT solver can be used to decide the satisfiability of
ground (i.e., variable-free) first-order formulas.

Often, however, one is interested in the satisfiability of
certain ground formulas in a given first-order theory:

Cambridge, June 2005 – p.3/37

Satisfiability Modulo Theories

Any SAT solver can be used to decide the satisfiability of
ground (i.e., variable-free) first-order formulas.

Often, however, one is interested in the satisfiability of
certain ground formulas in a given first-order theory:

Pipelined microprocessors: theory of equality, atoms
like f(g(a, b), c) = g(c, a).

Cambridge, June 2005 – p.3/37

Satisfiability Modulo Theories

Any SAT solver can be used to decide the satisfiability of
ground (i.e., variable-free) first-order formulas.

Often, however, one is interested in the satisfiability of
certain ground formulas in a given first-order theory:

Pipelined microprocessors: theory of equality, atoms
like f(g(a, b), c) = g(c, a).

Timed automata, planning: theory of integers/reals,
atoms like x − y < 2.

Cambridge, June 2005 – p.3/37

Satisfiability Modulo Theories

Any SAT solver can be used to decide the satisfiability of
ground (i.e., variable-free) first-order formulas.

Often, however, one is interested in the satisfiability of
certain ground formulas in a given first-order theory:

Pipelined microprocessors: theory of equality, atoms
like f(g(a, b), c) = g(c, a).

Timed automata, planning: theory of integers/reals,
atoms like x − y < 2.

Software verification: combination of theories, atoms
like 5 + car(a + 2) = cdr(a[j] + 1).

Cambridge, June 2005 – p.3/37

Satisfiability Modulo Theories

Any SAT solver can be used to decide the satisfiability of
ground (i.e., variable-free) first-order formulas.

Often, however, one is interested in the satisfiability of
certain ground formulas in a given first-order theory:

Pipelined microprocessors: theory of equality, atoms
like f(g(a, b), c) = g(c, a).

Timed automata, planning: theory of integers/reals,
atoms like x − y < 2.

Software verification: combination of theories, atoms
like 5 + car(a + 2) = cdr(a[j] + 1).

We refer to this general problems as (ground)
Satisfiability Modulo Theories, or SMT.

Cambridge, June 2005 – p.3/37

Satisfiability Modulo a Theory T

Note: The T -satisfiability of ground formulas is decidable
iff the T -satisfiability of sets of literals is decidable.

Fact: Many theories of interest have (efficient) decision
procedures for sets of literals.

Problem: In practice, dealing with Boolean combinations
of literals is as hard as in the propositional case.

Current solution: Exploit propositional satisfiability
technology.

Cambridge, June 2005 – p.4/37

Lifting SAT to SMT

Eager approach [UCLID]:

translate into an equisatisfiable propositional formula,

feed it to any SAT solver.

Lazy approach [CVC, ICS, MathSAT, Verifun, Zap]:

abstract the input formula into a propositional one,

feed it to a DPLL-based SAT solver,

use a theory decision procedure to refine the formula.

DPLL(T) [DPLLT, Sammy]:

use the decision procedure to guide the search of a
DPLL solver.

Cambridge, June 2005 – p.5/37

Goals of This Work

Develop a declarative formal framework to:

Reason formally about DPLL-based solvers for SAT and
for SMT.

Model modern features such as non-chronological
bactracking, lemma learning or restarts.

Describe different strategies and prove their correctness.

Compare different systems at a higher level.

Get new insights for further enhancements of DPPL
solvers.

Cambridge, June 2005 – p.6/37

Talk Overview

Motivation: SAT and SMT

The DPLL procedure

An Abstract Framework

SAT case

The Original DPLL Procedure

The Basic and the Enhanced DPLL System

SMT case
Very Lazy Theory Learning

Lazy Theory Learning

Theory Propagation

Cambridge, June 2005 – p.7/37

The Original DPLL Procedure

Tries to build incrementally a satisfying truth assignment
M for a CNF formula F .

M is grown by

deducing the truth value of a literal from M and F , or

guessing a truth value.

If a wrong guess for a literal leads to an inconsistency, the
procedure backtracks and tries the opposite value.

Cambridge, June 2005 – p.8/37

The Original DPLL Procedure – Example

Operation Assign. Formula
1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

Cambridge, June 2005 – p.9/37

The Original DPLL Procedure – Example

Operation Assign. Formula
1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

deduce 1 1 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

Cambridge, June 2005 – p.9/37

The Original DPLL Procedure – Example

Operation Assign. Formula
1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

deduce 1 1 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

deduce 2 1, 2 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

Cambridge, June 2005 – p.9/37

The Original DPLL Procedure – Example

Operation Assign. Formula
1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

deduce 1 1 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

deduce 2 1, 2 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

guess 3 1, 2, 3 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

Cambridge, June 2005 – p.9/37

The Original DPLL Procedure – Example

Operation Assign. Formula
1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

deduce 1 1 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

deduce 2 1, 2 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

guess 3 1, 2, 3 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

deduce 4 1, 2, 3, 4 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

Cambridge, June 2005 – p.9/37

The Original DPLL Procedure – Example

Operation Assign. Formula
1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

deduce 1 1 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

deduce 2 1, 2 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

guess 3 1, 2, 3 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

deduce 4 1, 2, 3, 4 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

Inconsistency!

Cambridge, June 2005 – p.9/37

The Original DPLL Procedure – Example

Operation Assign. Formula
1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

deduce 1 1 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

deduce 2 1, 2 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

guess 3 1, 2, 3 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

deduce 4 1, 2, 3, 4 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

undo 3 1, 2 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

Cambridge, June 2005 – p.10/37

The Original DPLL Procedure – Example

Operation Assign. Formula
1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

deduce 1 1 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

deduce 2 1, 2 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

guess 3 1, 2, 3 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

deduce 4 1, 2, 3, 4 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

undo 3 1, 2 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

guess 3 1, 2, 3 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

Cambridge, June 2005 – p.10/37

The Original DPLL Procedure – Example

Operation Assign. Formula
1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

deduce 1 1 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

deduce 2 1, 2 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

guess 3 1, 2, 3 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

deduce 4 1, 2, 3, 4 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

undo 3 1, 2 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

guess 3 1, 2, 3 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 2, 1 ∨ 3 ∨ 4, 1

Model Found!

Cambridge, June 2005 – p.10/37

Talk Overview

Motivation: SAT and SMT

The DPLL procedure

An Abstract Framework

SAT case

The Original DPLL Procedure

The Basic and the Enhanced DPLL System

SMT case
Very Lazy Theory Learning

Lazy Theory Learning

Theory Propagation

Cambridge, June 2005 – p.11/37

An Abstract Framework for DPLL

The DPLL procedure can be described declaratively by
simple sequent-style calculi.

Such calculi however cannot model meta-logical features
such as backtracking, learning and restarts.

We model DPLL and its enhancements as transition
systems instead.

A transition system is a binary relation over states,
induced by a set of conditional transition rules.

Cambridge, June 2005 – p.12/37

An Abstract Framework for DPLL

Our states:

fail or M || F

where F is a CNF formula, a set of clauses, and
M is a sequence of annotated literals
denoting a partial truth assignment.

Cambridge, June 2005 – p.13/37

An Abstract Framework for DPLL

Our states:

fail or M || F

Initial state:

∅ || F , where F is to be checked for satisfiability.

Expected final states:

fail , if F is unsatisfiable

M || G, where M is a model of G and
G is logically equivalent to F .

Cambridge, June 2005 – p.13/37

Transition Rules for the Original DPLL

Extending the assignment:

UnitProp

M || F, C ∨ l → M l || F, C ∨ l if

{
M |= ¬C,

l is undefined in M

Cambridge, June 2005 – p.14/37

Transition Rules for the Original DPLL

Extending the assignment:

UnitProp

M || F, C ∨ l → M l || F, C ∨ l if

{
M |= ¬C,

l is undefined in M

Decide

M || F → M ld || F if

{
l or l occurs in F,

l is undefined in M

Notation: ld annotates l as a decision literal.
Cambridge, June 2005 – p.14/37

Transition Rules for the Original DPLL

Repairing the assignment:

Fail

M || F, C → fail if

{
M |= ¬C,

M contains no decision literals

Cambridge, June 2005 – p.15/37

Transition Rules for the Original DPLL

Repairing the assignment:

Fail

M || F, C → fail if

{
M |= ¬C,

M contains no decision literals

Backtrack

M ld N || F,C → M l || F,C if

{
M ld N |= ¬C,

l last decision literal

Cambridge, June 2005 – p.15/37

Talk Overview

Motivation: SAT and SMT

The DPLL procedure

An Abstract Framework

SAT case

The Original DPLL Procedure

The Basic and the Enhanced DPLL System

SMT case
Very Lazy Theory Learning

Lazy Theory Learning

Theory Propagation

Cambridge, June 2005 – p.16/37

From Backtracking to Backjumping

Backtrack

M ld N || F,C → M l || F,C if

{
M ld N |= ¬C,

l last decision literal

Cambridge, June 2005 – p.17/37

From Backtracking to Backjumping

Backtrack

M ld N || F,C → M l || F,C if

{
M ld N |= ¬C,

l last decision literal

Backjump

M ld N || F,C → M k || F,C if







1. M ld N |= ¬C,

2. for some clause D ∨ k:
F,C ⊢ D ∨ k,

M |= ¬D,

k is undefined in M,

k or k occurs in
M ld N || F,C

Cambridge, June 2005 – p.17/37

From Backtracking to Backjumping

Backtrack

M ld N || F,C → M l || F,C if

{
M ld N |= ¬C,

l last decision literal

Backjump

M ld N || F,C → M k || F,C if







1. M ld N |= ¬C,

2. for some clause D ∨ k:
F,C ⊢ D ∨ k,

M |= ¬D,

k is undefined in M,

k or k occurs in
M ld N || F,C

Note: Condition (1) is actually not necessary.
Cambridge, June 2005 – p.17/37

Basic DPLL System

At the core, current DPLL-based SAT solvers are
implementations of the transition system:

Basic DPLL

UnitProp

Decide

Fail

Backjump

Cambridge, June 2005 – p.18/37

The Basic DPLL System – Correctness

Some terminology

Irreducible state: state to which no transition rule applies.

Execution: sequence of transitions allowed by the rules and
starting with states of the form ∅ || F .

Exhausted execution: execution ending in an irreducible state.

Cambridge, June 2005 – p.19/37

The Basic DPLL System – Correctness

Some terminology

Irreducible state: state to which no transition rule applies.

Execution: sequence of transitions allowed by the rules and
starting with states of the form ∅ || F .

Exhausted execution: execution ending in an irreducible state.

Proposition (Strong Termination) Every execution in Basic
DPLL is finite.

Note: This is not so immediate, because of Backjump.

Cambridge, June 2005 – p.19/37

The Basic DPLL System – Correctness

Some terminology

Irreducible state: state to which no transition rule applies.

Execution: sequence of transitions allowed by the rules and
starting with states of the form ∅ || F .

Exhausted execution: execution ending in an irreducible state.

Proposition (Soundness) For every exhausted execution
starting with ∅ || F and ending in M || F , M |= F .

Proposition (Completeness) If F is unsatisfiable, every
exhausted execution starting with ∅ || F ends with fail .

Cambridge, June 2005 – p.19/37

Enhancements to Basic DPLL

Cambridge, June 2005 – p.20/37

Enhancements to Basic DPLL

Learn

M || F → M || F, C if

{
all atoms of C occur in F,

F ⊢ C

Cambridge, June 2005 – p.20/37

Enhancements to Basic DPLL

Learn

M || F → M || F, C if

{
all atoms of C occur in F,

F ⊢ C

Forget

M || F, C → M || F if F ⊢ C

Cambridge, June 2005 – p.20/37

Enhancements to Basic DPLL

Learn

M || F → M || F, C if

{
all atoms of C occur in F,

F ⊢ C

Forget

M || F, C → M || F if F ⊢ C

Usually C is a clause identified during conflict analysis.

Cambridge, June 2005 – p.20/37

Enhancements to Basic DPLL

Learn

M || F → M || F, C if

{
all atoms of C occur in F,

F ⊢ C

Forget

M || F, C → M || F if F ⊢ C

Restart
M || F → ∅ || F if . . . you want to

Cambridge, June 2005 – p.20/37

Enhancements to Basic DPLL

Learn

M || F → M || F, C if

{
all atoms of C occur in F,

F ⊢ C

Forget

M || F, C → M || F if F ⊢ C

Restart
M || F → ∅ || F if . . . you want to

The DPLL system =
{UnitProp, Decide, Fail, Backjump, Learn, Forget, Restart}

Cambridge, June 2005 – p.20/37

The DPLL System – Strategies

Applying one Basic DPLL rule between each two Learn
and applying Restart less and less often ensures
termination.

Cambridge, June 2005 – p.21/37

The DPLL System – Strategies

Applying one Basic DPLL rule between each two Learn
and applying Restart less and less often ensures
termination.

In practice, Learn is usually (but not only) applied right
after Backjump.

Cambridge, June 2005 – p.21/37

The DPLL System – Strategies

Applying one Basic DPLL rule between each two Learn
and applying Restart less and less often ensures
termination.

In practice, Learn is usually (but not only) applied right
after Backjump.

A common strategy is to apply the rules with these
priorities:

Cambridge, June 2005 – p.21/37

The DPLL System – Strategies

Applying one Basic DPLL rule between each two Learn
and applying Restart less and less often ensures
termination.

In practice, Learn is usually (but not only) applied right
after Backjump.

A common strategy is to apply the rules with these
priorities:

1. If n > 0 conflicts have been found so far,
increase n and apply Restart.

Cambridge, June 2005 – p.21/37

The DPLL System – Strategies

Applying one Basic DPLL rule between each two Learn
and applying Restart less and less often ensures
termination.

In practice, Learn is usually (but not only) applied right
after Backjump.

A common strategy is to apply the rules with these
priorities:

1. If n > 0 conflicts have been found so far,
increase n and apply Restart.

2. If a current clause is falsified by the current
assignment,
apply Fail or Backjump + Learn.

Cambridge, June 2005 – p.21/37

The DPLL System – Strategies

Applying one Basic DPLL rule between each two Learn
and applying Restart less and less often ensures
termination.

In practice, Learn is usually (but not only) applied right
after Backjump.

A common strategy is to apply the rules with these
priorities:

1. If n > 0 conflicts have been found so far,
increase n and apply Restart.

2. If a current clause is falsified by the current
assignment,
apply Fail or Backjump + Learn.

3. Apply UnitProp
Cambridge, June 2005 – p.21/37

The DPLL System – Correctness

Proposition (Termination) Every execution in which
(a) Learn/Forget are applied only finitely many times and
(b) Restart is applied with increased periodicity

is finite.

Cambridge, June 2005 – p.22/37

The DPLL System – Correctness

Proposition (Termination) Every execution in which
(a) Learn/Forget are applied only finitely many times and
(b) Restart is applied with increased periodicity

is finite.

Proposition (Soundness) For every execution
∅ || F =⇒ · · · =⇒ M || F with M || F irreducible wrt. Basic
DPLL, M |= F .

Cambridge, June 2005 – p.22/37

The DPLL System – Correctness

Proposition (Termination) Every execution in which
(a) Learn/Forget are applied only finitely many times and
(b) Restart is applied with increased periodicity

is finite.

Proposition (Soundness) For every execution
∅ || F =⇒ · · · =⇒ M || F with M || F irreducible wrt. Basic
DPLL, M |= F .

Proposition (Completeness) If F is unsatisfiable, for every
execution ∅ || F =⇒ · · · =⇒ S with S irreducible wrt. Basic
DPLL, S = fail .

Cambridge, June 2005 – p.22/37

Talk Overview

Motivation: SAT and SMT

The DPLL procedure

An Abstract Framework

SAT case

The Original DPLL Procedure

The Basic and the Enhanced DPLL System

SMT case
Very Lazy Theory Learning

Lazy Theory Learning

Theory Propagation

Cambridge, June 2005 – p.23/37

(Very) Lazy Approach for SMT – Example

g(a) = c ∧ f(g(a)) 6= f(c) ∨ g(a) = d ∧ c 6= d

Theory: Equality

Cambridge, June 2005 – p.24/37

(Very) Lazy Approach for SMT – Example

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

Cambridge, June 2005 – p.24/37

(Very) Lazy Approach for SMT – Example

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

Send {1, 2 ∨ 3, 4} to SAT solver.

Cambridge, June 2005 – p.25/37

(Very) Lazy Approach for SMT – Example

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

Send {1, 2 ∨ 3, 4} to SAT solver.

SAT solver returns model {1, 2, 4}.
Theory solver finds {1, 2} E-unsatisfiable.

Cambridge, June 2005 – p.25/37

(Very) Lazy Approach for SMT – Example

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

Send {1, 2 ∨ 3, 4} to SAT solver.

SAT solver returns model {1, 2, 4}.
Theory solver finds {1, 2} E-unsatisfiable.

Send {1, 2 ∨ 3, 4, 1 ∨ 2} to SAT solver.

Cambridge, June 2005 – p.25/37

(Very) Lazy Approach for SMT – Example

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

Send {1, 2 ∨ 3, 4} to SAT solver.

SAT solver returns model {1, 2, 4}.
Theory solver finds {1, 2} E-unsatisfiable.

Send {1, 2 ∨ 3, 4, 1 ∨ 2} to SAT solver.

SAT solver returns model {1, 2, 3, 4}.
Theory solver finds {1, 3, 4} E-unsatisfiable.

Cambridge, June 2005 – p.25/37

(Very) Lazy Approach for SMT – Example

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

Send {1, 2 ∨ 3, 4} to SAT solver.

SAT solver returns model {1, 2, 4}.
Theory solver finds {1, 2} E-unsatisfiable.

Send {1, 2 ∨ 3, 4, 1 ∨ 2} to SAT solver.

SAT solver returns model {1, 2, 3, 4}.
Theory solver finds {1, 3, 4} E-unsatisfiable.

Send {1, 2 ∨ 3, 4, 1 ∨ 2, 1 ∨ 3 ∨ 4} to SAT solver.

Cambridge, June 2005 – p.25/37

(Very) Lazy Approach for SMT – Example

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

Send {1, 2 ∨ 3, 4} to SAT solver.

SAT solver returns model {1, 2, 4}.
Theory solver finds {1, 2} E-unsatisfiable.

Send {1, 2 ∨ 3, 4, 1 ∨ 2} to SAT solver.

SAT solver returns model {1, 2, 3, 4}.
Theory solver finds {1, 3, 4} E-unsatisfiable.

Send {1, 2 ∨ 3, 4, 1 ∨ 2, 1 ∨ 3 ∨ 4} to SAT solver.

SAT solver finds {1, 2∨ 3, 4, 1∨ 2, 1∨ 3∨ 4} unsatisfiable.
Cambridge, June 2005 – p.25/37

Modeling the Lazy Approach

Let T be the background theory.

The previous process can be modeled in Abstract DPLL using
the following rules:

UnitProp, Decide, Fail, Restart

(as in the propositional case) and

T -Backjump, T -Learn, T -Forget, Very Lazy Theory Learning

Note: The first component of a state M || F is still a truth
assignment, but now for ground, first-order literals.

Cambridge, June 2005 – p.26/37

Modeling the Lazy Approach

T -Backjump

M ld N || F,C → M k || F,C if







1. M ld N |= ¬C,

2. for some clause D ∨ k:
F,C ⊢T D ∨ k,

M |= ¬D,

k is undefined in M,

k or k occurs in
M ld N || F,CF or M ld N

Only change: ⊢T instead of ⊢

F ⊢T G iff every model of T that satisfies F satisfies G.

Cambridge, June 2005 – p.27/37

Modeling the Lazy Approach

T -Backjump

M ld N || F,C → M k || F,C if







1. M ld N |= ¬C,

2. for some clause D ∨ k:
F,C ⊢T D ∨ k,

M |= ¬D,

k is undefined in M,

k or k occurs in
M ld N || F,CF or M ld N

T -Learn

M || F → M || F, C if

{
all atoms of C occur in F,

F ⊢T C

T -Forget

M || F, C → M || F if F ⊢T C
Cambridge, June 2005 – p.27/37

Modeling the Lazy Approach

The interaction between theory solver and SAT solver in the
previous example can be modeled with the rule

Very Lazy Theory Learning

M || F → ∅ || F, l1 ∨ . . . ∨ ln if







M |= F

{l1, . . . , ln} ⊆ M

l1 ∧ · · · ∧ ln ⊢T ⊥

Cambridge, June 2005 – p.28/37

Modeling the Lazy Approach

The interaction between theory solver and SAT solver in the
previous example can be modeled with the rule

Very Lazy Theory Learning

M || F → ∅ || F, l1 ∨ . . . ∨ ln if







M |= F

{l1, . . . , ln} ⊆ M

l1 ∧ · · · ∧ ln ⊢T ⊥

A better approach is to detect partial assignments that are
already T -unsatisfiable.

Cambridge, June 2005 – p.28/37

Modeling the Lazy Approach

Lazy Theory Learning

M || F → M || F, l1 ∨ . . . ∨ ln if







{l1, . . . , ln} ⊆ M

l1 ∧ · · · ∧ ln ⊢T ⊥

l1 ∨ · · · ∨ ln /∈ F

Cambridge, June 2005 – p.29/37

Modeling the Lazy Approach

Lazy Theory Learning

M || F → M || F, l1 ∨ . . . ∨ ln if







{l1, . . . , ln} ⊆ M

l1 ∧ · · · ∧ ln ⊢T ⊥

l1 ∨ · · · ∨ ln /∈ F

The learned clause is false in M , hence either Backjump or
Fail applies.

If this is always done, the third condition of the rule is
unnecessary

In some solvers, the rule is applied as soon as possible,
i.e., with M = N ln.

Cambridge, June 2005 – p.29/37

Lazy Approach – Strategies

Ignoring Restart (for simplicity), a common strategy is to apply
the rules using the following priorities:

1. If a current clause is falsified by the current assignment,
apply Fail/Backjump + Learn.

2. If the assignment is T -unsatisfiable,
apply Lazy Theory Learning + (Fail/Backjump).

3. Apply UnitProp.

4. Apply Decide.

Cambridge, June 2005 – p.30/37

Talk Overview

Motivation: SAT and SMT

The DPLL procedure

An Abstract Framework

SAT case

The Original DPLL Procedure

The Basic and the Enhanced DPLL System

SMT case
Very Lazy Theory Learning

Lazy Theory Learning

Theory Propagation

Cambridge, June 2005 – p.31/37

DPLL(T) – Eager Theory Propagation

Use the theory information as soon as possible by eagerly
applying

Theory Propagate

M || F → M l || F if







M ⊢T l

l or l occurs in F

l is undefined in M

Cambridge, June 2005 – p.32/37

Eager Theory Propagation - Example

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∅ || 1, 2 ∨ 3, 4

Cambridge, June 2005 – p.33/37

Eager Theory Propagation - Example

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∅ || 1, 2 ∨ 3, 4 =⇒ (UnitProp)

1 || 1, 2 ∨ 3, 4

Cambridge, June 2005 – p.33/37

Eager Theory Propagation - Example

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∅ || 1, 2 ∨ 3, 4 =⇒ (UnitProp)

1 || 1, 2 ∨ 3, 4 =⇒ (Theory Propagate)

1 2 || 1, 2 ∨ 3, 4

Cambridge, June 2005 – p.33/37

Eager Theory Propagation - Example

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∅ || 1, 2 ∨ 3, 4 =⇒ (UnitProp)

1 || 1, 2 ∨ 3, 4 =⇒ (Theory Propagate)

1 2 || 1, 2 ∨ 3, 4 =⇒ (UnitProp)

1 2 3 || 1, 2 ∨ 3, 4

Cambridge, June 2005 – p.33/37

Eager Theory Propagation - Example

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∅ || 1, 2 ∨ 3, 4 =⇒ (UnitProp)

1 || 1, 2 ∨ 3, 4 =⇒ (Theory Propagate)

1 2 || 1, 2 ∨ 3, 4 =⇒ (UnitProp)

1 2 3 || 1, 2 ∨ 3, 4 =⇒ (Theory Propagate)

1 2 3 4 || 1, 2 ∨ 3, 4

Cambridge, June 2005 – p.33/37

Eager Theory Propagation - Example

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∅ || 1, 2 ∨ 3, 4 =⇒ (UnitProp)

1 || 1, 2 ∨ 3, 4 =⇒ (Theory Propagate)

1 2 || 1, 2 ∨ 3, 4 =⇒ (UnitProp)

1 2 3 || 1, 2 ∨ 3, 4 =⇒ (Theory Propagate)

1 2 3 4 || 1, 2 ∨ 3, 4 =⇒ (Fail)

fail

Cambridge, June 2005 – p.33/37

Eager Theory Propagation

By eagerly applying Theory Propagate every assignment is
T -satisfiable, since M l is T -unsatisfiable iff M ⊢T l.

As a consequence, Lazy Theory Learning never applies.

For some logics, e.g., difference logic, his approach is
extremely effective.

For some others, e.g., the theory of equality, it is too
expensive to detect all T -consequences.

If Theory Propagate is not applied eagerly, Lazy Theory Learning
is needed to repair T -unsatisfiable assignments.

Cambridge, June 2005 – p.34/37

Non-Exhaustive Theory Propagation

The six rules of the DPLL system plus Theory Propagate and
Lazy Theory Learning provide a decision procedure for SMT.

Termination can be guaranteed this way:

1. Apply at least one Basic DPLL rule between any two
consecutive Learn applications.

2. Apply Fail/Backjump immediately after
Lazy Theory Learning.

Soundness and completeness are proved similarly to the
propositional case.

Cambridge, June 2005 – p.35/37

Conclusions

The DPLL procedure can be modelled abstractly by a
transition system.

Modern features such as backjumping, learning and
restarts can be captured with our transition systems.

Extensions to SMT are simple and clean.

We can reason formally about the termination and
correctness of DPLL variants for SAT/SMT.

We can compare different systems at a higher level.

We got new insights for further enhancements of DPLL
solvers for SMT. (Stay tuned.)

Cambridge, June 2005 – p.36/37

Thank you

Cambridge, June 2005 – p.37/37

	Propositional Satisfiability: SAT
	Satisfiability Modulo Theories
	Satisfiability Modulo a Theory T
	Lifting SAT to SMT
	Goals of This Work
	Talk Overview
	The Original DPLL Procedure
	The Original DPLL Procedure -- Example
	The Original DPLL Procedure -- Example
	Talk Overview
	An Abstract Framework for DPLL
	An Abstract Framework for DPLL
	Transition Rules for the Original DPLL
	Transition Rules for the Original DPLL
	Talk Overview
	From Backtracking to Backjumping
	Basic DPLL System
	The Basic DPLL System -- Correctness
	Enhancements to Basic DPLL
	The DPLL System -- Strategies
	The DPLL System -- Correctness
	Talk Overview
	(Very)
Lazy Approach for SMT -- Example
	(Very)
Lazy Approach for SMT -- Example
	Modeling the Lazy Approach
	Modeling the Lazy Approach
	Modeling the Lazy Approach
	Modeling the Lazy Approach
	Lazy Approach -- Strategies
	Talk Overview
	DPLL($,T$)
-- Eager Theory Propagation
	Eager Theory Propagation - Example
	Eager Theory Propagation
	Non-Exhaustive Theory Propagation
	Conclusions
	Thank you

