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Abstract

The Nelson-Oppen combination method combines decision procedures
for first-order theories over disjoint signatures into a single decision pro-
cedure for the union theory. To be correct, the method requires that the
component theories be stably infinite. This restriction makes the method
inapplicable to many interesting theories such as, for instance, theories
having only finite models.

In this paper we provide a generalization of the Nelson-Oppen com-
bination method that can combine any theory that is not stably infinite
with another theory, provided that the latter is what we call a shiny the-
ory. Examples of shiny theories include the theory of equality, the theory
of partial orders, and the theory of total orders.

An interesting consequence of our results is that any decision procedure
for the satisfiability of quantifier-free Σ-formulae in a Σ-theory T can
always be extended to accept inputs over an arbitrary signature Ω ⊇ Σ.

Keywords: Theory reasoning, multiple background reasoners.
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1 Introduction

An important research problem in automated reasoning asks how we can mod-
ularly combine decision procedures for theories T1 and T2 into a decision proce-
dure for a combination of T1 and T2.

The most successful and well known method for combining decision proce-
dures was invented in 1979 by Nelson and Oppen [NO79]. This method is at the
heart of the verification systems cvc [SBD02], esc [DLNS98], eves [CKM+91],
and sdvs [LFMM92], among others.

The Nelson-Oppen method allows us to decide the satisfiability of quantifier-
free formulae in a combination T of a theory T1 and a theory T2, using as black
boxes a decision procedure for the satisfiability of quantifier-free formulae in T1

and a decision procedure for the satisfiability of quantifier-free formulae in T2.
The method is correct whenever the theories T , T1, and T2 satisfy the fol-

lowing restrictions:

• T is logically equivalent to T1 ∪ T2;

• the signatures of T1 and T2 are disjoint;

• T1 and T2 are both stably infinite.1

There are several interesting combination problems that do not satisfy all these
restrictions.

In this paper we concentrate on the issue of relaxing the stable infiniteness
requirement. This is an important research problem at the theoretical level
because it allows us to better understand the foundations of combination prob-
lems, and to prove more decidability results by combination techniques. But it
is also interesting at a practical level because (i) proving that a given theory
is stably infinite is not always easy, and (ii) many interesting theories, such as
those admitting only finite models, are not stably infinite.

We show that when one component theory satisfies a stronger property than
stable infiniteness, which we call shininess,2 then the other component theory
does not need to be stably infinite for their decision procedures to be combin-
able. We do that by providing and proving correct a variant of the Nelson-Oppen
method that, in addition to propagating equality constraints between the com-
ponent decision procedures as in the original method, also propagates certain
cardinality constraints.

In providing examples of shiny theories, we show that theory of equality, the
theory of partial orders, and the theory of total orders are shiny. In particular,
the fact that the theory of equality is shiny leads to a notable side result:

Result 1. If the satisfiability in a Σ-theory T of quantifier-free Σ-
formulae is decidable, then the satisfiability in T of quantifier-free
formulae over any arbitrary signature Ω ⊇ Σ is also decidable.

1See Definition 4.
2See Definition 8.
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In particular, the fact that the theory of equality is shiny leads to a notable
side result which, to our knowledge, has never been proven before. The side
result is that if the satisfiability in a Σ-theory T of quantifier-free Σ-formulae
is decidable, then the satisfiability in T of quantifier-free formulae over any
arbitrary signature Ω ⊇ Σ is also decidable, regardless of whether T is stably
infinite or not. proven by Policriti and Schwartz [PS95] for theories T that are
universal. It was also known for theories T that are stably infinite, since in this
case one can use the Nelson-Oppen method to combine the decision procedure
for T with one for the theory of equality over the symbols in Ω \ Σ. In this
paper we prove that Result 1 holds regardless of whether T is universal/stably
infinite or not.

1.1 Related work

Several researchers have worked on relaxing the requirements of the Nelson-
Oppen combination method. The disjointness problem was addressed by Ghi-
lardi [Ghi03], Tinelli [Tin03], Tinelli and Ringeissen [TR03] and Zarba [Zar02c].
The stably infiniteness requirement was addressed by Baader and Tinelli [BT97]
for combinations problems concerning the word problem, and by Zarba [Zar01,
Zar02a, Zar02b] for combinations of integers with lists, sets, and multisets.
(The latter works by Zarba consider combination problems other than simple
set-theoretic union.)

1.2 Organization of the paper

The paper is organized as follows. In Section 2 we introduce some preliminary
notions that we will use in the paper, including the notion of a shiny theory. In
Section 3 we describe a modification of the Nelson-Oppen combination method
for combining the decision procedure of a shiny theory with that of any other
arbitrary theory. In Section 4 we provide some examples that illustrate the
behavior of our extension, and contrast it with the Nelson-Oppen method. In
Section 5 we prove that our method is correct. In Section 6 we present some
examples of shiny theories We conclude in Section 7 with directions for further
research.

2 Preliminaries

2.1 Syntax

A signature Σ is composed by a set ΣC of constants, a set ΣF of function
symbols, and a set ΣP of predicate symbols.

A Σ-atom is either an expression of the form P (t1, . . . , tn), where P ∈ ΣP

and t1, . . . , tn are Σ-terms, or an expression of the form s ≈ t, where ≈ is the
equality logical symbol and s, t are Σ-terms. Σ-formulae are constructed by
applying in the standard way the connectives ¬, ∧, ∨, → and the quantifiers
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∀,∃ to Σ-atoms. Σ-literals are Σ-atoms or their negations. Σ-sentences are
Σ-formulae with no free variables.

If ϕ is a term or a formula, vars(ϕ) denotes the set of variables occurring in
ϕ. Similarly, if Φ is a set of terms or a set of formulae, vars(Φ) denotes the set
of variables occurring in Φ.

In the rest of this paper, we identify a conjunction of formulae ϕ1 ∧ · · · ∧ϕn

with the set {ϕ1, . . . , ϕn}. In addition, we abbreviate literals of the form ¬(s ≈
t) with s 6≈ t.

2.2 Semantics

Definition 1. Let Σ be a signature. A Σ-interpretation A with domain A
over a set of variables V is a map which interprets:

• each variable x as an element xA ∈ A;

• each constant c ∈ ΣC as an element cA ∈ A;

• each function symbol f ∈ ΣF of arity n as a function fA : An → A;

• each predicate symbol P ∈ ΣP of arity n as a subset PA of An. ¤

Unless otherwise specified, we use the convention that calligraphic letters
A, B, . . . denote interpretations, and that the corresponding Roman letters A,
B, . . . denote the domains of the interpretations.

Let A be a Σ-interpretation over a set of variables V . For a Σ-term t over
V , we denote with tA the evaluation of t under the interpretation A. Likewise,
for a Σ-formula ϕ over V , we denote with ϕA the truth-value of ϕ under the
interpretation A. If T is a set of Σ-terms over V , we denote with TA the set
{tA | t ∈ T}.

A formula ϕ is satisfied by an interpretation A if it evaluates to true under
A. If ϕ is satisfied by A, we say that A is a model of ϕ. A formula ϕ over a set
V of variables is:

• valid, if it is satisfied by all interpretations over V ;

• satisfiable, if it is satisfied by some interpretation over V ;

• unsatisfiable, if it is not satisfiable.

The notion of validity, satisfiability, and unsatisfiability naturally extend to
sets of formulae.

Definition 2. Let Σ be a signature, and let A and B be Σ-interpretations over
some set V of variables. A map h : A→ B is an embedding of A into B if the
following conditions hold:

• h is injective;

• h(uA) = uB for each variable or constant u ∈ V ∪ ΣC;
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• h(fA(a1, . . . , an)) = fB(h(a1), . . . , h(an)), for each n-ary function symbol
f ∈ ΣF and a1, . . . , an ∈ A;

• (a1, . . . , an) ∈ PA if and only if (h(a1), . . . h(an)) ∈ PB, for each n-ary
predicate symbol P ∈ ΣP and a1, . . . , an ∈ A. ¤

2.3 Theories

Definition 3. Let Σ be a signature. A Σ-theory is any set of Σ-sentences. ¤

A theory T is axiomatized by a set S of sentences if S and T are logically
equivalent.

Given a Σ-theory T , a T -model is a Σ-interpretation that satisfies all sen-
tences in T . A formula ϕ over a set V of variables is:

• T -valid, if it is satisfied by all T -models over V ;

• T -satisfiable, if it is satisfied by some T -model over V ;

• T -unsatisfiable, if it is not T -satisfiable.

The notion of T -validity, T -satisfiability, and T -unsatisfiability naturally ex-
tend to sets of formulae.

Given a Σ-theory T and a set L of formulae, the satisfiability problem of T
with respect to L is the problem of deciding, for each formula ϕ in L, whether or
not ϕ is T -satisfiable. When we do not specify L, it is implicitly assumed that L
is the set of all Σ-formulae. However, when we say “quantifier-free satisfiability
problem”, without specifying L, then we implicitly assume that L is the set of
all quantifier-free Σ-formulae.

In this paper, we will use the usual notion of stable infiniteness for a theory,
together with its “dual” one, which we call stable finiteness.

Definition 4. A Σ-theory T is stably infinite (respectively, stably finite)
if every quantifier-free Σ-formula ϕ is T -satisfiable if and only if it is satisfied
by a T -interpretation A whose domain A is infinite (respectively, finite). ¤

Examples of stably infinite theories include the theory of equality,3 the the-
ory of integer arithmetic, the theory of rational arithmetic, the theory of acyclic
lists, and the theory of arrays.

Examples of stably finite theories include the theory of equality, all theories
satisfied only by finite interpretations, all theories axiomatized by formulas in
the Bernays-Schönfinkel-Ramsey class, and all theories whose axioms do not
contain ≈.

Note that a theory can be both stably infinite and stably infinite. We will
show that in Section 6.1 for the theory of equality.

3Since we regard ≈ as a logical symbol, for us the theory of equality and the empty theory

are the same theory.
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Definition 5. A Σ-theory T is smooth if for every quantifier-free Σ-formula
ϕ, for every T -model A satisfying ϕ, and for every cardinal number κ > |A|
there exists a T -model B satisfying ϕ such that |B| = κ. ¤

The following proposition is a direct consequence of Definition 5.

Proposition 6. Every smooth theory is stably infinite. ¤

The following proposition is useful when proving that a theory is smooth.

Proposition 7. Let T be a Σ-theory. Then the following are equivalent:

1. T is smooth;

2. for every quantifier-free Σ-formula ϕ and for every finite T -model A of ϕ
there exists a T -model B of ϕ such that |B| = |A|+ 1. ¤

Proof. (1⇒ 2). Trivial.

(2⇒ 1). Let ϕ be a quantifier-free formula, and let A be a model of ϕ.
By induction on |A|, one can see that if A is finite then ϕ has a model of any

finite cardinality κ > |A|. By compactness, ϕ has a countably infinite model,
and by the Upward Löwenheim-Skolem Theorem, ϕ has also a model of any
infinite cardinality κ.

If instead A is infinite then, by the upward Löwenheim-Skolem Theorem, it
follows that ϕ has a model of any (infinite) cardinality κ > |A|. ¥

Given a theory T and a T -satisfiable quantifier-free formula ϕ, we denote
with mincardT (ϕ) the smallest cardinality of a T -model satisfying ϕ. When T
is the theory of equality, we abbreviate mincardT with mincard (without any
subscript).

Note that if T is a stably finite theory then, for every T -satisfiable formula
ϕ, mincardT (ϕ) is a natural number.

Definition 8. A Σ-theory T is shiny if:

• T is smooth;

• T is stably finite;

• mincardT is computable. ¤

3 The combination method

Let S be a shiny Σ-theory and let T be an Ω-theory such that Σ ∩ Ω = ∅
and the quantifier-free satisfiability problem of S and of T is decidable. We
now describe a method for combining decision procedures for the quantifier-free
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satisfiability problems of S and T into a single decision procedure for quantifier-
free satisfiability problem of S ∪ T .

Without loss of generality, we restrict ourselves to conjunctions of literals.
Note that this can always be done because every formula ϕ can be effectively
converted into an equisatisfiable formula in disjunctive normal form ψ1∨· · ·∨ψn,
where each ψi is a conjunction of literals. Then ϕ is satisfiable if and only if at
least one of the disjuncts ψi is satisfiable.

The combination method consists of four phases, described below.

First phase: variable abstraction

Let Γ be a conjunction of (Σ ∪ Ω)-literals. In this phase we convert Γ into a
conjunction Γ′ satisfying the following properties:

(a) each literal in Γ′ is either a Σ-literal or an Ω-literal;

(b) Γ′ is (S ∪ T )-satisfiable if and only if so is Γ.

Note that all properties can be effectively enforced with the help of new auxiliary
variables.

Second phase: partition

Let Γ′ be a conjunction of literals obtained in the variable abstraction phase.
In the second phase we rewrite Γ′ as Γ1 ∪ Γ2 where:

• Γ1 contains all Σ-literals in Γ′;

• Γ2 contains all Ω-literals in Γ′.

We call Γ1 ∪ Γ2 a conjunction of literals in separate form.

Third phase: decomposition

Let Γ = Γ1∪Γ2 be a conjunction of literals obtained in the partition phase. Let
V be the set of variables shared by Γ1 and Γ2, that is V = vars(Γ1)∩ vars(Γ2).

In this phase we nondeterministically guess an equivalence relation E over
V . Intuitively, what we are guessing is, for each variable x, y ∈ V , whether or
not we have x = y.

Fourth phase: check

Let Γ = Γ1∪Γ2 be a conjunction of literals in separate form, let V = vars(Γ1)∩
vars(Γ2), and let E be the equivalence relation over V guessed in the decompo-
sition phase. The fourth phase consists in performing the following steps:

Step 1. Construct the arrangement of V induced by E, defined by

arr(V,E) = {x ≈ y | x, y ∈ V, x, y are distinct and (x, y) ∈ E} ∪

{x 6≈ y | x, y ∈ V and (x, y) /∈ E} .
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Step 2. If Γ1 ∪ arr(V,E) is S-satisfiable go to the next step; otherwise output
fail.

Step 3. Compute n = mincardS(Γ1 ∪ arr(V,E)).

Step 4. Construct a set δn of literals whose purpose is to force models with
cardinality at least n. More precisely, let δn be the set of literals
constructed with the following process:

• generate n new variables w1, . . . , wn not occurring in Γ1 ∪ Γ2;

• let δn = {wi 6≈ wj | 1 ≤ i < j ≤ n}.

Step 5. If Γ2∪arr(V,E)∪δn is T -satisfiable output succeed; otherwise output
fail.

In Section 5 we will prove that:

• if there exists an equivalence relation E over V for which the check phase
outputs succeed then Γ is (S ∪ T )-satisfiable;

• if instead the check phase outputs fails for each equivalence relation E
over V , then Γ is (S ∪ T )-unsatisfiable.

The combination method above is a variant of the non-deterministic version
of the Nelson-Oppen combination method [Rin96, TH96]. The only substantial
differences are in the fourth phase above: In the Nelson-Oppen method, Step 3
and 4 are absent, and Step 5 checks the T satisfiability of Γ2 ∪ arr(V,E) only.
Note that this is enough in the Nelson-Oppen method because there we assume
that T is stably infinite, and therefore the constraint δn is guaranteed to hold.

Note that our method applies just as well in case T is stably-infinite.4 How-
ever, if one knows that T is stably infinite, resorting to the original Nelson-
Oppen method is more appropriate, as it lets one avoid the cost of computing
mincardS .

4 Examples

In this section we discuss two examples of theories that are not combinable
with the Nelson-Oppen method but are combinable with our method. In both
examples we combine the theory S of equality over a signature Σ with a non-
stably infinite theory T over a signature Ω disjoint from Σ. In the first case, T
is not stably infinite because it only admits finite models. In the second case,
T is not stably infinite even if it has infinite models. The examples are adapted
from [TH96] and [BT97], respectively, where they are used to show that the
Nelson-Oppen method is in fact incorrect on non-stably infinite theories.

4Recall that S is already stably infinite, since it is shiny.
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Example 9. Let Σ = {f} and Ω = {g} be signatures, where f and g are
distinct unary function symbols. Also, let S be the theory of equality over
the signature Σ, and let T be an Ω-theory such that all T -interpretations have
cardinality at most two.

Since T is not stably infinite, we cannot use the Nelson-Oppen combination
method in order to combine S with T . However, in Section 6.1 we will show
that the theory of equality is shiny, regardless of the associated signature. Thus,
we can apply the method described in the previous section to S and T .

As an example, let Γ be the following conjunction of literals:

Γ =







f(x) 6≈ f(y) ,
f(x) 6≈ f(z) ,
g(y) 6≈ g(z)







.

Note that Γ is (S∪T )-unsatisfiable. In fact, Γ implies x 6≈ y∧x 6≈ z∧y 6≈ z, and
therefore every interpretation satisfying Γ must have cardinality at least three.
Since every (S ∪ T )-interpretation has at most two elements, it follows that Γ
is (S ∪ T )-unsatisfiable.

Let us apply our combination method to Γ. In the variable abstraction phase
we do not need to generate any new variables. In the partition phase we simply
return the conjunctions

Γ1 =

{

f(x) 6≈ f(y) ,
f(x) 6≈ f(z)

}

, Γ2 =
{

g(y) 6≈ g(z)
}

.

Since vars(Γ1) ∩ vars(Γ2) = {y, z}, in the check phase there are only two
equivalence relations to examine: either (y, z) ∈ E or not (y, z) /∈ E.

If (y, z) ∈ E we have that Γ1∪{y ≈ z} is S-satisfiable and that Γ2∪{y ≈ z}
is T -unsatisfiable. Thus, we will output fail when reaching step 4 of the check
phase.

If instead (y, z) /∈ E then Γ1 ∪ {y 6≈ z} is S-satisfiable. In addition, we have
mincardS(Γ1∪{y 6≈ z}) = 3. To see this, first observe that Γ1∪{y 6≈ z} implies
x 6≈ y ∧ x 6≈ z ∧ y 6≈ z, and therefore mincardS(Γ1 ∪ {y 6≈ z}) ≥ 3. In addition,
we can construct an interpretation A of cardinality 3 satisfying Γ1 ∪{y 6≈ z} by
letting A = {a1, a2, a3}, x

A = a1, y
A = a2, z

A = a3, and f
A(a) = a, for each

a ∈ A.5

In the third step of the check phase we introduce three new variables w1, w2, w3,
and construct δ3 as the set {w1 6≈ w2, w1 6≈ w3, w2 6≈ w3}. Since Γ2∪{y 6≈ z}∪δ3
is T -unsatisfiable, in the fourth step we output fail. We can therefore declare
that Γ is (S ∪ T )-unsatisfiable.

Note that since the Nelson-Oppen method checks the T -satisfiability of just
Γ2 ∪ {y 6≈ z} (and not of Γ2 ∪ {y 6≈ z} ∪ δ3), it may incorrectly output succeed
on input Γ, because Γ2 ∪ {y 6≈ z} is satisfiable in a model of cardinality 2. ¤

Example 10. Let Σ = {k} and Ω = {f, g, h} be signatures, where k, f and g
are distinct unary function symbols. Let S be again the theory of equality over

5We will see how to effectively compute mincardS in Section 6.1.
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the signature Σ, and let T be the equational theory

T =

{

(∀x)(∀y)(x ≈ f(g(x), g(y))),
(∀x)(∀y)(f(g(x), h(y)) ≈ y)

}

.

Using simple term rewriting arguments, it is possible to show that T admits
models of cardinality greater than one, and so admits models of infinite cardi-
nality.6 However, T is not stably infinite.

In fact, consider the set quantifier-free formula g(z) ≈ h(z). This formula
is T -satisfiable because both the formula and T admit a trivial model, i.e. a
model with just one element. Now let A be any T -model of g(z) ≈ h(z), let
a0 = zA, and let a ∈ A. Because of T ’s axioms we have that

a = fA(gA(a), gA(a0)) = fA(gA(a), hA(a0)) = a0

Given that a is arbitrary, this entails that |A| = 1. Thus, g(z) ≈ h(z) is only
satisfiable in trivial models of T , which immediately entails that the theory T
is not stably infinite.

For an application of our combination method to S and T , let Γ be the
following conjunction of literals:

Γ =

{

g(z) ≈ h(z) ,
k(z) 6≈ z

}

.

This conjunction is (S ∪T )-unsatisfiable, because g(z) ≈ h(z) is satisfiable only
in trivial models of S ∪ T (for being satisfiable only in trivial models of T , as
seen above), while k(z) 6≈ z is clearly satisfiable only in non-trivial models of
S ∪ T .

Let us apply our combination method to Γ. In the partition phase we simply
return the conjunctions

Γ1 =
{

k(z) 6≈ z
}

, Γ2 =
{

g(z) ≈ h(z)
}

.

Since vars(Γ1)∩vars(Γ2) = {z}, in the check phase there are no equivalence
relations to examine, therefore we generate the empty arrangement. Clearly, Γ1

is S-satisfiable, and in models of cardinality at least 2. Therefore, we have that
mincardS(Γ1) = 2.

In the third step of the check phase, we then compute δ2 as the set {w1 6≈
w2} for some fresh variables w1, w2. For what we argued above, Γ2 ∪ δ2 is
T -unsatisfiable, so in the fourth step we output fail, as needed. ¤

5 Correctness

In this section we prove that our combination method is correct.
Clearly, our combination method is terminating. This follows from the fact

that, since there is only a finite number of equivalence relations over a finite set

6This is because the set of models of an equational theory is closed under direct products.
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V of variables, the nondeterministic decomposition phase is finitary. Thus, we
only need to prove that our method is partially correct.

We will use the following theorem which is a special case of a more gen-
eral combination result given in [TR03] for theories with possibly non-disjoint
signatures. A direct proof of this theorem can be found in [MZ03].

Theorem 11 (Combination Theorem for Disjoint Signatures). Let Φi be
a set of Σi-formulae, for i = 1, 2, and let Σ1 ∩ Σ2 = ∅.

Then Φ1 ∪ Φ2 is satisfiable if and only if there exists an interpretation A
satisfying Φ1 and an interpretation B satisfying Φ2 such that:

(i) |A| = |B|,

(ii) xA = yA if and only if xB = yB, for every x, y ∈ vars(Φ1) ∩ vars(Φ2). ¤

The following proposition proves that our combination method is also par-
tially correct.

Proposition 12. Let S be a shiny Σ-theory and let T be an Ω-theory such that
Σ ∩ Ω = ∅. Let Γ1 be a conjunction of Σ-literals and let Γ2 be a conjunction
of Ω-literals. Finally, let V = vars(Γ1) ∩ vars(Γ2). Then, the following are
equivalent:

1. Γ1 ∪ Γ2 is (S ∪ T )-satisfiable

2. there exists an equivalence relation E of V such that:

(i) Γ1 ∪ arr(V,E) is S-satisfiable;

(ii) Γ2∪arr(V,E)∪δn is T -satisfiable where n = mincardS(Γ1∪arr(V,E)).¤

Proof. We will assume, as in the combination method, that the variables of
the formula δn are fresh.

(1 ⇒ 2). Assume that Γ1 ∪ Γ2 is (S ∪ T )-satisfiable, and let F be one of its
(S ∪ T )-models. Let

E = {(x, y) | x, y ∈ V and xF = yF} .

Clearly, F is an (S ∪ T )-model of Γ1 ∪ Γ2 ∪ arr(E, V ). It follows that F is also
an S-model of Γ1 ∪ arr(E, V ), thus proving (i). In addition, F is a T -model of
Γ2 ∪ arr(E, V ).

Let κ = |F |, and let n = mincardS(Γ1 ∪ arr(V,E)). By definition of
mincardS , we have n ≤ κ, which implies that F is also a T -model of Γ2 ∪
arr(E, V ) ∪ δn, proving (ii).

(2⇒ 1). Let V1 = vars(Γ1) and V2 = vars(Γ2 ∪ δn), and observe that V1 ∩V2 =
V . Assume there is an equivalence relation E of V such that Γ1 ∪ arr(V,E) is
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S-satisfiable and Γ2 ∪ arr(V,E) ∪ δn is T -satisfiable, where n = mincardS(Γ1 ∪
arr(V,E)).

Then there exist an S-model A of Γ1 ∪ arr(V,E) and a T -model B of Γ2 ∪
arr(V,E) ∪ δn.

Since B satisfies δn, we have |B| ≥ n. Thus, by the smoothness of S, we can
assume without loss of generality that |A| = |B|. In addition, because both A
and B satisfy arr(V,E), we have that xA = yA if and only if xB = yB, for all
x, y ∈ V .

By the Combination Theorem for Disjoint Signatures 11, S ∪ T ∪ Γ1 ∪ Γ2 ∪
arr(V,E) ∪ δn is satisfiable. Thus, Γ1 ∪ Γ2 is (S ∪ T )-satisfiable. ¥

Combining Proposition 12 with the fact that our combination method is
terminating, we obtain the following decidability result.

Theorem 13 (Decidability). Let S be a shiny Σ-theory and let be T an Ω-
theory such that Σ∩Ω = ∅. If the quantifier-free satisfiability problems of S and
of T are decidable, then the quantifier-free satisfiability problem of S ∪T is also
decidable. ¤

6 Applications

In this section, we present some examples of shiny theories to which our com-
bination results apply: the theory of equality, the theory of partial orders, and
the theory of total orders.

6.1 The theory of equality

It is well known that the theory of equality (over an arbitrary signature) is
stably infinite and has a decidable quantifier-free satisfiability problem [Opp80].

We show here that the theory of equality is also shiny. To do that we will use
the following basic lemma of model theory, adapted from page 44 of Hodges’s
book [Hod97] .

Lemma 14. Let A,B be two interpretations such that there is an embedding of
A into B, and let ϕ be a quantifier-free formula. Then ϕ is satisfied by A if and
only if it is satisfied by B. ¤

Proposition 15. Let ϕ be a quantifier-free formula, and let A be a finite model
of ϕ. Then there exists a model B of ϕ such that |B| = |A|+ 1. ¤

Proof. Let k = |A|. We construct a Σ-model B of ϕ such that |B| = k + 1 as
follows. Let

B = A ∪ {b} ,

where b /∈ A. Then, fix an arbitrary element a0 ∈ B, and let
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Input: An S-satisfiable conjunction Γ of Σ-literals
Output: mincard(Γ)
1: if Γ is empty then

2: return 1
3: else

4: U ← terms(Γ)
5: Γ′ ← Γ
6: for s, t ∈ U do

7: if Γ′ ∪ {s ≈ t} is S-satisfiable then

8: Γ′ ← Γ′ ∪ {s ≈ t}
9: end if

10: end for

11: E ← {(s, t) | s ≈ t ∈ Γ′}
12: C ← cong-closure(E)
13: return card(U/C)
14: end if

Figure 1: A procedure for mincard .

• for variables and constants:

uB = uA ,

• for function symbols of arity n:

fB(a1, . . . , an) =

{

fA(a1, . . . , an) , if a1, . . . , an ∈ A ,

a0 , otherwise,

• for predicate symbols of arity n:

(a1, . . . , an) ∈ P
B ⇐⇒ a1, . . . , an ∈ A and (a1, . . . , an) ∈ P

A .

We have |B| = k + 1. In addition, the map h : A→ B defined by h(a) = a,
for each a ∈ A, is an embedding of A into B. Since A satisfies ϕ, by Lemma 14
it follows that B also satisfies ϕ. ¥

Combining Proposition 7 and 15, we obtain the smoothness of the theory of
equality.

Proposition 16. For every signature Σ, the Σ-theory of equality is smooth. ¤

Next, we show that mincard(ϕ) is computable for any satisfiable quantifier-
free formula ϕ. A procedure that computes mincard is given in Figure 1. For
simplicity, and without of generality, the procedure takes as input only satisfiable
conjunctions of literals, returning a positive integer.

In the procedure, the function terms returns the set of all terms and sub-
terms occurring in its input Γ. For instance, if Γ = {f(g(x)) ≈ g(f(y))}

14



then terms(Γ) returns the set {x, g(x), f(g(x)), y, f(y), g(f(y))}. The func-
tion cong-closure computes the congruence closure of the binary relation E
over the signature of Γ.7 U/C denotes the quotient of U with respect to the
congruence relation C.

Both C and U/C can be computed using any standard congruence closure
algorithm [DST80, Koz77, NO80, Sho78]. The complexity of such algorithms
is O(n2), where n is the cardinality of U . The test in line 7 can be performed
by the same congruence closure algorithm used for computing C. Since the
procedure is clearly terminating, it then follows that its complexity is O(n4).

We show below that the procedure is also partially correct.

Proposition 17. For every input Γ, the procedure shown in Figure 1 returns
mincard(Γ). ¤

Proof. If Γ is empty then Γ is satisfied by every interpretation. Thus, in this
case the procedure returns the correct value mincard(Γ) = 1.

Let us consider the case in which Γ is not empty. Let U , Γ′, E and C be as
computed by the procedure. Moreover, let k be the value returned in line 13.
Note that Γ′ is S-satisfiable, and that Γ ⊆ Γ′. Thus, every S-model of Γ′ is also
an S-model of Γ. Finally, since Γ is not empty, then U is not empty either. It
follows that the quotient U/C is also not empty, hence k ≥ 1.

Let A be any S-model of Γ′, and consider the set

B = {tA | t ∈ U} .

We claim that |B| = k. To see this, suppose, for a contradiction, that
|B| 6= k. Then either |B| < k or |B| > k.

Assume first that |B| < k. Since k is equal to the number of equivalence
classes of C, there exist two terms s, t ∈ U such that (s, t) /∈ C and sA = tA.
But then Γ′ ∪{s ≈ t} is satisfied by A, which implies that s ≈ t ∈ Γ′. It follows
that (s, t) ∈ E, and therefore (s, t) ∈ C, a contradiction.

Next, suppose that |B| > k. Then there exist distinct terms t1, . . . , tn, with
n > k, such that tAi 6= tAj , for i < j. Since C is the congruence closure of E, it

follows that, for every term s, t, if (s, t) ∈ C then sA = tA. But then, for every
term s, t, if sA 6= tA then (s, t) /∈ C. Thus, (ti, tj) /∈ C, for i < j. It follows that
C has more than k equivalence classes, a contradiction.

Since |B| = k, by the generality of A, we can conclude that every S-model
of Γ has at least k elements.

We now construct an S-model B of Γ with domain B. The proposition’s
claim will then follow from the fact that |B| = k.

Let b be some element of B. We define

• for variables and constants:

uB =

{

uA , if uA ∈ B ,

b , otherwise ,

7Given a binary relation E, the congruence closure of E is the smallest congruence C

containing E.

15



• for function symbols of arity n:

fB(b1, . . . , bn) =

{

fA(b1, . . . , bn) , if fA(b1, . . . , bn) ∈ B ,

b , otherwise,

• for predicate symbols of arity n:

(b1, . . . , bn) ∈ P
B ⇐⇒ (b1, . . . , bn) ∈ P

A .

We have that B is an S-interpretation. Moreover, by structural induction,
one can show that tB = tA for all terms t ∈ U , and that `B = `A for all literals
` ∈ Γ′. It follows that B satisfies Γ′. Since Γ ⊆ Γ′, B also satisfies Γ. ¥

As an immediate corollary of Proposition 17, we obtain the following result.

Proposition 18. For every signature Σ, the Σ-theory of equality is stably fi-
nite. ¤

Putting together Propositions 7, 17, and 18, we obtain the shininess of the
theory of equality.

Proposition 19. For every signature Σ, the Σ-theory of equality is shiny. ¤

Proposition 19 is relevant because, together with our combination method in
Section 3, it tells us that any procedure that decides the quantifier-free satisfia-
bility problem for a Σ-theory T can be extended to accept inputs Γ containing
arbitrary free symbols8 in addition to the symbols in Σ. This fact was already
known for theories T that are universal [PS95]. It was also known for theories T
that are stably-infinite, since in this case one can use the Nelson-Oppen method
to combine the decision procedure for T with one for the theory of equality
over the symbols of Γ that are not in Σ. Thanks to Proposition 19 and our
combination method, we are able to lift the universal and/or stable-infiniteness
requirement for T altogether.

More formally, we have the following theorem.

Theorem 20. Let T be a Σ-theory such that the quantifier-free satisfiability
problem of T is decidable. Then, for every signature Ω ⊇ Σ, the quantifier-free
satisfiability problem of T with respect to Ω-formulae is decidable. ¤

6.2 BSR-theories

In this subsection we show that a large class of theories immediately satisfy
all the requirements for being combinable with our method except smoothness.
Among these theories we single out a couple, as an example, that are in fact
also smooth.

We call these theories BSR-theories after Bernays, Schönfinkel, and Ramsey,
who studied some of their properties.

8Also referred to as “uninterpreted” symbols by some authors.
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Definition 21 (BSR-theories). A sentence ϕ is a BSR-sentence if it is of
the form (∃x1) · · · (∃xm)(∀y1) · · · (∀yn)ψ, where m,n ≥ 0 and ψ is a quantifier-
free formula that does not contain function symbols.

A BSR-theory is a finite set of BSR-sentences. ¤

The following proposition was proved by Bernays and Schönfinkel [BS28] for
the case of first-order logic without equality, and by Ramsey [Ram30] for the
case of first-order logic with equality.

Proposition 22. Let Φ a conjunction of BSR-sentences. Then there exists an
integer k, bounded above by the size of Φ, such that Φ is satisfiable if and only
if it has a model of cardinality at most k. ¤

An immediate consequence of Proposition 22 is that the satisfiability of finite
sets Φ of BSR-sentences is decidable: one simply Skolemizes Φ into a set Φ′ and
checks the satisfiability of Φ′ in Herbrand interpretations. Now, it is easy to see
that Φ′ will contain no function symbols, therefore all Herbrand interpretations
over the signature of Φ′ are finite. It is enough then to construct all such
interpretations up to cardinality k until one is found that satisfies Φ′.

Proposition 22 is interesting to us because it entails that the quantifier-free
satisfiability problem of any BSR-theory T is decidable. The reason is simply
that a quantifier-free formula ϕ is T -satisfiable exactly when the finite set T ∪ϕ′

of BSR-sentences is satisfiable, where ϕ′ is the existential closure of ϕ. From
this observation it is also immediate that the following proposition holds.

Proposition 23. Every BSR-theory T is stably finite. Moreover, the quantifier-
free satisfiability problem of T is decidable and mincardT is computable. ¤

The discussion above suggests a general algorithm for computingmincardT (ϕ)
when T is a BSR-theory. The complexity of this algorithm is bounded by the
number of Σ-interpretations over vars(ϕ) of cardinality at most n, where n is the
size of the conjunction T ∪ {ϕ}. Since there is an exponential number of such
interpretations, the algorithm belongs to the class of complexity EXPTIME.
Particular theories of course may admit a much faster algorithm, specific to
that theory.

Note that, in general, BSR-theories are not smooth, and so not shiny either.
For instance, the theory

T = { (∀x)(∀y)(x ≈ y) }

is a BSR-theory, but it is obviously not smooth because it only admits models
of cardinality 1. We provide some examples of smooth BSR-theories in the next
two subsections.

Partial and total orders

We now provide two examples of shiny BSR-theories, the theories of partial and
of total orders. The theory PO of partial orders is defined by the following
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axioms:

(∀x)¬(x < x) (irreflexivity)

(∀x)(∀y)(∀z)(x < y ∧ y < z → x < z) (transitivity) .

The theory TO of total orders extends the theory of partial orders, with the
following axiom

(∀x)(∀y)(x < y ∨ x = y ∨ y < x) (trichotomy) .

Since both PO and TO are BSR-theories, they are both stably finite. More-
over, both mincardPO and mincardTO are computable. We prove that both PO
and TO are also smooth.

Proposition 24. Let Σ = {<}, let ϕ be a quantifier-free Σ-formula, let A be a
finite PO-model of ϕ, and let k = |A| be a natural number. Then there exists a
PO-model B of ϕ of cardinality k + 1. ¤

Proof. We construct a Σ-model B of ϕ such that |B| = k + 1 as follows. Let

B = A ∪ {b} ,

where b /∈ A. Then let

uB = uA , for variables and constants ,

and
a1 <

B a2 ⇐⇒ a1 <
A a2 and a1, a2 ∈ A .

We have |B| = k + 1. In addition, the map h : A→ B defined by h(a) = a,
for each a ∈ A, is an embedding of A into B. Since A satisfies ϕ, by Lemma 14
it follows that B also satisfies ϕ. ¥

Combining Proposition 7 and 24 we obtain the smoothness of the theory of
partial orders.

Proposition 25. The theory PO of partial orders is smooth. ¤

Proposition 26. Let Σ = {<}, let ϕ be a quantifier-free Σ-formula, let A be a
finite TO-model of ϕ, and let k = |A| be a natural number. Then there exists a
TO-model B of ϕ of cardinality k + 1. ¤

Proof. We construct a Σ-model B of ϕ such that |B| = k + 1 as follows. Let

B = A ∪ {b} ,

where b /∈ A. Then let

uB = uA , for variables and constants ,
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and

a1 <
B a2 ⇐⇒







a1 <
A a2 and a1, a2 ∈ A

or

a1 6= b and a2 = b







Intuitively, we defined <B exactly as <A, with the difference that the new
element b becomes the maximum element in the total order <B.

We have |B| = k + 1. In addition, the map h : A→ B defined by h(a) = a,
for each a ∈ A, is an embedding of A into B. Since A satisfies ϕ, by Lemma 14
it follows that B also satisfies ϕ. ¥

Combining Proposition 7 and 26 we obtain the smoothness of the theory of
total orders.

Proposition 27. The theory TO of total orders is smooth. ¤

In conclusion, we have the following results.

Proposition 28. The theory TO of total orders and the theory PO partial
orders are shiny. ¤

Theorem 29. Where O is either TO or PO, let T be any theory signature-
disjoint with O. If the quantifier-free satisfiability problem of T is decidable,
then the quantifier-free satisfiability problem of O ∪ T is also decidable. ¤

7 Conclusion

We have addressed the problem of extending the Nelson-Oppen combination
method to theories that are not stably infinite. We provided a modification of
the Nelson-Oppen method for combining two theories, in which it is possible to
lift the stable infiniteness requirement from one theory, provided that the other
one satisfies a stronger condition, which we called shininess.

We gave some examples of shiny theories, namely the theory of equality, the
theory of partial orders, and the theory of total orders.

In particular, the shininess of the theory of equality yields an interesting use-
ful result: Any decision procedure for the quantifier-free satisfiability problem
of a theory T can always be extended to accept input formulae over an arbitrary
signature. The usefulness of this result stems from the fact that, in practice,
satisfiability problems in a theory T often contain free function symbols in ad-
dition to the original symbols of T .9 Our result says that these symbols can be
always dealt with properly, no matter what T is.

The Nelson-Oppen method is applicable to an arbitrary number of stably
infinite and pairwise signature-disjoint theories. Similarly, our method can be
extended to the combination of one arbitrary theory and n > 1 shiny theories,
all pairwise signature-disjoint. It is unlikely that our method be extended to

9These function symbols are typically introduced by skolemization or abstraction processes.
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allow more than one arbitrary theory. In fact, if this were the case, we would
be able to combine two arbitrary theories.

The correctness proof of both the Nelson-Oppen method and our method
relies on the Combination Theorem for Disjoint Theories (Theorem 11). That
theorem requires that the two parts of a separate form of an input formula
be satisfied in models of the respective theories having the same cardinality.
As pointed out in [TR03], this requirement is impossible to check in general.
Considering only stably infinite theories, as done in the original method, allows
one to completely forgo the check, because stably infinite theories always satisfy
it. Our method deals with the cardinality requirement by assuming enough on
one theory, the shiny one, so that a simpler cardinality check, the one represented
by δn, can be performed on the other.

We plan to continue our reserch on relaxing the stable infiniteness require-
ment by aiming at finding general sufficient conditions for shininess, and at
identifying additional specific examples of shiny theories.
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