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Abstract

We propose a general way of combining background reasoners in theory
reasoning. Using a restricted version of the Craig Interpolation Lemma, we
show that background reasoner cooperation can be achieved as a form of con-
straint propagation, much in the spirit of existing combination methods for
decision procedures. In this case, constraint information is propagated across
reasoners by exchanging residues that are, in essence, disjunctions of ground
literals over a common signature. As an application of our approach, we de-
scribe a multi-theory version of the semantic tableau calculus and we prove it
sound and complete.
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1 Introduction

Theory reasoning is a powerful deduction paradigm in which a general-purpose main
reasoner is complemented by a background reasoner, a procedure specialized in (semi-
)deciding formula satisfiability with respect to a fixed theory of interest, the back-
ground theory. In the resulting system, the inference steps of the main reasoner are
typically subject to certain constraints over the background theory. The satisfiability
of these constraints is not verified by the main reasoner itself but is instead dele-
gated to the background reasoner. The main motivation for this delegation is that
a background reasoners, for being domain-specific, is typically more efficient then
the main one at processing constraints over the background theory. Alternatively, a
background reasoner may be already available and ready to use. Finally, a certain
theory may be decidable but impractical to express axiomatically.1 In that case,
a more viable option is to rely on an algorithmic representation of the theory, its
decision procedure, and use it as a background reasoner.

Although the main idea of theory reasoning can be found in several early works
(such as [Bib82, Plo72] to name just a few), the first systematic treatment of it was
given by Stickel in [Sti85] which describes a theory version of the resolution calculus
and the matings calculus. After that work, nearly all existing calculi for automatic
reasoning have been extended to theory reasoning (see [BFP92] for a survey). Essen-
tially all of them, however, consider the integration of just one background reasoner
into the main one.

The reason for such a restriction, despite the clear desirability for modularity
and scalability purposes of having several background reasoners at once, seems to
be simply that no one really knew up to now how to achieve theory reasoning with
multiple background reasoners in general. Note that, typically, it is not enough
to integrate background reasoners separately into the main reasoner. To reason
correctly with formulas spanning over several background theories, some sort of
cooperation among the background reasoners is necessary. Finding a general way to
achieve this cooperation in a sound and complete way is a non-trivial task.

We introduce one such way in this paper.2 We show that the cooperation of
background reasoners in theory reasoning is actually conceptually simple, and can
be easily described in terms of partial theory reasoning in the sense of [Sti85]. We
appeal to a variant of a well-known interpolation result, the Craig Interpolation
Lemma, to show that background reasoner cooperation can be achieved as a form
of constraint propagation, much in the spirit of well-known combination methods
for decision procedures [NO79]. The main idea is to propagate information between

1Presburger arithmetic for instance is decidable but its (first-order) axiomatization contains
infinitely many instances of the induction schema.

2A preliminary version of this paper was presented at FTP 2000 [Tin00].
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reasoners by exchanging quantifier-free residues (see later) over a common signature.
The Craig Interpolation Lemma states that whenever two first-order theories T1

and T2 are jointly unsatisfiable they have an interpolant, a sentence ϕ made only
of symbols shared by T1 and T2, which is entailed by one theory and unsatisfiable
with the other. Now, although the lemma is in principle enough for the type of
reasoner cooperation we suggest, it is not useful in this general formulation because
it provides no information on the syntactical form of interpolants—which could then
be arbitrary formulas. This is unfortunate because most theory reasoning calculi
effectively work only with certain types of formulas (quantifier-free, usually).

We provide a restricted version of the lemma which shows that, in essence, in the
context of theory reasoning all needed interpolants are disjunctions of ground literals.
Thanks to this result, background reasoner cooperation by constraint propagation
becomes a viable option, as we will try to demonstrate. To do that we describe
a multi-theory extension of the semantic tableaux calculus, easily obtained from
the corresponding single-theory version, that integrates and combines background
reasoners by means of residue sharing. We show that the calculus is sound and
complete under very general assumptions on the reasoners and their theories. We
also show that for a large class of background theories the calculus remains complete
even if residues are further restricted from disjunctions of literals to single literals.

After all this it will be clear that—like in all cases of partial theory reasoning—
the real challenge lies in identifying specific situations in which the generation of
residues can be implemented in a reasonably efficient and complete way. But since
this is a research problem in its own right, we must leave its discussion to further
work.

The current paper is organized as follows. Section 2 presents some formal pre-
liminaries. Section 3 briefly describes the theory reasoning paradigm and explains
how it can be extended to more than one background reasoner and theory. The same
section also presents the specialized interpolation results that we will use to combine
background reasoners. Section 4 describes a multi-theory version of free variable se-
mantic tableaux in which background reasoners cooperate by sharing residues. The
calculus is first proved sound in general, and then it is proved complete under the
restriction that shared residues be just disjunctions of literals in the signature shared
by the background theories. Section 5 presents a refinement of the interpolation re-
sults in Section 3 and the completeness result in Section 4 to the case of what we call
Σ-convex theories. The class of Σ-convex theories is both large and significant for
theory reasoning because it includes all universal Horn theories and also a number
of prominent non-Horn background theories such as the theory of rational numbers
under addition. Section 6 compares this work to the few existing results on the
combination of background reasoners for theory reasoning. Section 7 concludes the
paper with suggestions for further research. The proofs of the more technical lemmas
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α α1 α2

φ ∧ ψ φ ψ

¬(φ ∨ ψ) ¬φ ¬ψ

¬(φ→ ψ) φ ¬ψ

¬¬φ φ ¬⊥

β β1 β2

φ ∨ ψ φ ψ

¬(φ ∧ ψ) ¬φ ¬ψ

φ→ ψ ¬φ ψ

φ↔ ψ φ ∧ ψ ¬φ ∧ ¬ψ

¬(φ↔ ψ) φ ∧ ¬ψ ¬φ ∧ ψ

γ γ1(y)

∀x.φ(x) φ{x 7→ y}

¬∃x.φ(x) ¬φ{x 7→ y}

δ δt

¬∀x.φ(x) ¬φ{x 7→ t}

∃x.φ(x) φ{x 7→ t}

Figure 1: Formula Types.

in the paper can be found in the appendix.

2 Preliminaries

For convenience and generality, we will use first-order logic (FOL) with equality
as our logical framework. In this logic, the equality symbol is a predefined logical
constant, always interpreted as the identity relation. FOL without equality, the
traditional logic of automated reasoning, can be obtained from FOL with equality by
simply restricting the language to formulas without the predefined equality symbol.

In this paper, a signature Σ consists of a set ΣP of relation symbols and a set
ΣF of function symbols, each with an associated arity, an integer n ≥ 0. A constant
symbol is a function symbol of zero arity. Throughout the paper, we will fix a
countably infinite set V of variables. Also, we will fix a constant symbol a and we
will implicitly assume that every signature we consider includes a. As it will be clear
later, this assumption leads to no loss of generality as far as the results presented
here are concerned, but it will simplify some of the proofs in the paper.

For all signatures Σ, following [Fit96], we denote by Σsko the signature obtained
by adding to Σ a countably infinite set of function symbols of arity n (not already
in Σ), for all n ≥ 0. Also, if X is any set disjoint from Σ, we denote by Σ(X) the
signature obtained by adding the elements of X as constant symbols to Σ.

We use the standard notions of formula, clause, literal, free and bound variable,
substitution, structure (aka model) and so on. If ϕ is a formula, we denote by ∀̃ ϕ
the universal closure of ϕ and by Var(ϕ) the set of ϕ’s free variables, with Var(Φ)
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extending the notation to sets Φ of formulas in the obvious way. We write ϕ(x) to
indicate that x is a free variable of ϕ.

A sentence is a formula with no free variables. A ground formula is a formula
with no variables. A theory is a set of sentences—we do not insist that the set be
consistent. We will talk of Σ-formula, Σ-structure, Σ-theory and so on, whenever we
want to specify that they have signature Σ. We denote by ⊥ the universally false
formula and assume that it is a (ground) Σ-literal for every signature Σ.

If σ is a substitution be denote by Dom(σ) the set of variables v such that
vσ 6= v and by Ran(σ) the set Var(Dom(σ)σ). We denote the empty substitution
by ε. We use the notation {x1 7→ t1, . . . , xn 7→ tn} to denote a substitution σ with
Dom(σ) = {x1, . . . , xn} and such that xiσ = ti for all i ∈ {1, . . . , n}. As usual, we
only consider idempotent substitutions. We extend the application of substitutions
to first-order formulas as obvious but with the proviso that bound variables are
renamed to fresh variables before the application of the substitution.

When needed, we will use Smullyan’s uniform notation for first-order formulas
(see, e.g., [Fit96]), which classifies them into formulas of type α, β, γ, δ according to
the tables in Figure 1.

We will also use the usual notions of satisfiability and entailment but extended
to the case of formulas, as opposed to sentences, as done in the mathematical logic
literature. Specifically, a set Φ of Σ-formulas is satisfiable in a Σ-structure A, if there
is a valuation θ of V into elements of A that makes every formula in Φ true in A. In
that case, we say that θ satisfies Φ in A. If every valuation θ of V into A satisfies
Φ in A, we say that A is a model of Φ.3 A Σ-formula ϕ is satisfiable in A if {ϕ} is
satisfiable in A. A set Φ of formulas (resp. a formula) is satisfiable if it is satisfiable
in some structure A, and it is unsatisfiable otherwise.

For all sets Φ,Ψ of formulas, Φ entails Ψ, in symbols Φ |= Ψ, if for every structure
A in the signature of Φ∪Ψ and valuation θ, θ satisfies Ψ in A whenever it satisfies Φ
in A.4 The set Φ entails the formula ϕ, in symbols Φ |= ϕ, if Φ |= {ϕ}; equivalently,
Φ |= ϕ if the set Φ∪ {¬ϕ} is unsatisfiable. Notice that Φ is unsatisfiable if and only
if Φ |= ⊥.

The reader unfamiliar with this notion of satisfiability/entailment for formulas
should observe that in it free variables essentially behave as free constant symbols
(they are rigid). This differs from the common practice in automated reasoning of
treating free variables as implicitly universally quantified—perhaps as a consequence
of the fact that clauses are written without their universal quantifier prefix. The
distinction here is important and should be kept in mind because, for example,

3Note that if Φ contains only sentences, A is a model of Φ iff Φ is satisfiable in A.
4Note that in Φ |= Ψ, the set Ψ is essentially seen as the conjunction of its elements, not as the

disjunction as often found in the literature.
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when we talk about the satisfiability of a clause we are quantifying its variables
universally, whereas when we talk about the satisfiability of a quantifier-free formula
we are not. This means for instance that if {p(x),¬p(y)} denotes a set of (unit)
clauses, it is unsatisfiable; if it denotes instead a set of literals (no implicit universal
quantifiers), it is satisfiable.

In theory reasoning, satisfiability and entailment are also given with respect to
a certain theory. The definitions below subsume the various, not always equivalent
ones in the literature.

Definition 2.1 Let T be any theory. A set Φ of formulas is T -satisfiable iff T ∪Φ
is satisfiable; otherwise, it is T -unsatisfiable. The set Φ is literally T -(un)satisfiable
if the set {ϕ ∈ Φ | ϕ is a literal } is T -(un)satisfiable. The set Φ T -entails a set Ψ
of formulas, in symbols Φ |=T Ψ, iff T ∪ Φ |= Ψ.

If ϕ is a formula, we will write Φ |=T ϕ whenever Φ |=T {ϕ}. We will say that ϕ
is T -valid if ∅ |=T ϕ. It is a simple exercise to show that, similarly to the entailment
relation |=, the relation |=T defined above is monotonic and transitive.

Traditionally, authors in theory reasoning define T -satisfiability only for clauses
(in terms of satisfiability of their ground instances in Herbrand models of T ) and
then use another notion, T -complementarity , for quantifier-free formulas. In essence,
they say that a set S of quantifier-free formulas is T -complementary whenever it is
T -unsatisfiable in the sense of Definition 2.1, and they say that it is T -unsatisfiable
whenever the set of the universal closures of the elements of S is T -unsatisfiable again
in the sense of Definition 2.1. We find it more convenient5 to adopt a single notion
of T -satisfiability, the one in Definition 2.1, and simply be careful in distinguishing
(genuinely) free variables from implicitly universally quantified variables.

A formula is universal if it is in prefix normal form and its (possibly empty)
quantifier prefix contains only universal quantifiers. A theory is universal if it is
axiomatized by a set of universal sentences.6 Theory reasoning considers only uni-
versal theories as background theories because they are the only ones that can be
“safely” built-in into a deduction calculus. The reason is that one of the main tools
for proving properties of deduction calculi for automated reasoning, the Herbrand
theorem, extends immediately to T -satisfiability in a universal theory.

In this paper, we will not appeal to the Herbrand Theorem directly. Instead, we
will use the satisfiability properties of a theory version of Hintikka sets . Hintikka sets

5And more in line with the established practice in Model Theory, which after all, provides all
the semantical foundations for automated reasoning.

6Some authors refer to universal theories as open or quantifier-free theories, again because of the
common practice of writing their axioms without the quantifiers.
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(whether they are referred to as such or not) are often used to prove the completeness
of calculi for first-order logic (see [Fit96, SAJ97], among others).

Definition 2.2 (T -Hintikka set) Let T be a theory of signature Ω and let Ω′ be a
signature including Ω. A set H of Ω′-sentences is a T -Hintikka set iff the following
holds:

1. H is literally T -satisfiable.

2. For all sentences α ∈ H, α1, α2 ∈ H.

3. For all sentences β ∈ H, β1 ∈ H or β2 ∈ H.

4. For all sentences γ ∈ H and ground Ω′-terms t, γ1(y){y 7→ t} ∈ H.

5. For all sentences δ ∈ H, there is a ground Ω′-term t such that δt ∈ H.

The usual definition of Hintikka set differs from the one above only in Point 1
where it requires instead that H contain neither ⊥ nor a complementary pair of
(ground) literals. It should be clear that every T -Hintikka set is a Hintikka set
in the usual sense and, by compactness of first-order logic, every Hintikka set is a
T -Hintikka set when T is the empty theory.

In FOL without equality, a Herbrand structure of some signature Ω is a structure
whose domain coincides with the set of ground Ω-terms and that interprets every
ground Ω-term as itself. In FOL with equality, the notion of Herbrand structure is
generalized into that of canonical structure. A canonical structure (of signature Ω) is
a structure each of whose elements is denoted by some ground Ω-term; equivalently, it
is a structure generated by the empty set. Now, it is well-known that every Hintikka
set has a canonical model [Fit96]. That is also true for T -Hintikka sets, provided
that T is universal. More precisely, the following holds.

Lemma 2.3 If T is a satisfiable universal theory, then every T -Hintikka set is sat-
isfiable in a canonical model of T .

A proof of this result is provided in the appendix.

3 Theory Reasoning over Multiple Theories

Because of its generality, theory reasoning encompasses a vast array of seemingly
different reasoning frameworks. Here we will focus on what [BFP92] calls literal
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level theory reasoning .7 The basic operation in traditional refutation-based calculi
is the detection of pairs of complementary literals; in other words, the detection of
an unsatisfiable set Φ made of two quantifier-free formulas of a specific kind. Literal
level theory reasoning generalizes this operation in two directions: the type and
number of quantifier-free formulas in Φ, and the notion of (un)satisfiability, defined
with respect to a certain background theory T .

3.1 Partial Theory Reasoning

In theory reasoning systems, the T -satisfiability test is not performed by the main
reasoner, the foreground reasoner , but is delegated instead to a specialized subsys-
tem, the background reasoner for T . At the ground level, we speak of total theory
reasoning if the background reasoner gets a set Φ of formulas from the foreground
one and simply confirms whether Φ is T -unsatisfiable or not; we speak of partial
theory reasoning if, whenever Φ is not T -unsatisfiable, the background reasoner re-
turns a residue for it, that is, a quantifier-free formula whose negation, if added to Φ,
would make it T -unsatisfiable. At the non-ground level, things a bit more compli-
cated because they involve the computation of substitutions that make Φ (partially)
T -unsatisfiable.

The precise general definition of residue varies in the literature, depending on
the author and the partial theory reasoning calculus in question. But they are all
instances of the one below.

Definition 3.1 (Residue) Let Φ be a set of quantifier-free formulas, called a key
set. Let ϕ be a quantifier free formula and σ a substitution with Dom(σ) ⊆ Var(Φ)
such that ϕσ = ϕ. The pair (σ, ϕ) is a T -residue of Φ iff the set Φσ ∪ {¬ϕ} is
T -unsatisfiable or, equivalently, iff Φσ |=T ϕ.

According to the definition above, the pair (σ,⊥) a is T -residue of the key set
Φ if and only if Φσ is T -unsatisfiable. More precisely then, we talk of total theory
reasoning when the background reasoner computes only residues of the form (σ,⊥),
if any, and of partial theory reasoning otherwise.

In the following, we will simply say residue instead of T -residue whenever T is
clear from context. Abusing the terminology, we will also call residue the second
component of a residue (σ, ϕ), especially when σ is the empty substitution.

7The other forms of theory reasoning can be recast as essentially special cases of the literal level
form.
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3.2 Combining Background Reasoners

Suppose we are interested in a background theory T obtained as the union of n > 1
theories T1, . . . , Tn. Also suppose that we do not have a background reasoner for T
but we do have one for each Ti. From a practical standpoint, instead of implementing
a reasoner for T anew, it would be useful to integrate the reasoners for the various
Ti directly into a foreground reasoner and have them work together to detect the
T -unsatisfiability of formulas. The question then is how to make the reasoners
cooperate in a sound and complete way.

In this section, we provide some interpolation results which suggest that back-
ground reasoners can cooperate by exchanging residues over a common quantifier-free
language. In the next section, we will embed this kind of cooperation into a specific
theory reasoning calculus and show that the resulting calculus is sound and complete.
For simplicity, we will consider the case of just two background theories. From what
follows, however, it should be clear that all the given results lift by iteration to the
case of more than two theories.

We will impose no model-theoretic restrictions on the two theories other than
universality. Also, we will make no assumptions on whether the theories share no,
some or all predicate symbols. However, we will make the following assumption.

Assumption 3.2 All the background theories to be combined will have exactly the
same function symbols.

For our purposes such an assumption is not as stringent as it sounds, at least in
the case of refutation-based theory reasoning calculi.8 In fact, background reasoners
used in such calculi must accept input formulas containing Skolem symbols, i.e., fresh
function symbols produced by the Skolemization of existential variables. Technically
then, all background theories in theory reasoning have a signature with arbitrarily
many function symbols of arity n for every n ≥ 0, even when the theories them-
selves are finitely axiomatized.9 More prosaically, if we make the very reasonable
assumption that a reasoner for a background theory treats every unknown function
symbol as a Skolem symbol, then we can alway pass to it formulas with function
symbols from some other theory. This means that, given two background theories
with reasoners of this sort, the function symbols of one theory can be always thought
with no loss of generality as belonging to the signature of the other.

8Actually, we are not aware of any theory reasoning calculus that is not refutation-based.
9This is also the reason we assume without loss of generality that every signature we consider

contains a designated constant symbol a (see Section 2). Also, observe that we said “arbitrarily
many” function symbols and not “infinitely many”. The reason is that, in any given derivation in
a refutation-based calculus, the number of Skolem symbols needed is always finite.
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3.3 The Interpolation Lemma

For the rest of this section we fix two signatures Σ1,Σ2 such that Σ1
F = Σ2

F, and
two universal theories T1, T2 of respective signature Σ1,Σ2. Also, let Σ := Σ1 ∩ Σ2.

The main theoretical result of the paper is provided by the following restricted
version of the Craig Interpolation Lemma, whose proof can be found in the appendix.

Proposition 3.3 (Ground Interpolation Lemma) If T1∪T2 is unsatisfiable, then

T1 |= ϕ and T2 |= ¬ϕ

for some ground Σ-formula ϕ.

We call the formula ϕ an interpolant of T1 and T2. Note that, although this
notion is not symmetric in T1 and T2, ϕ is an interpolant of T1 and T2 iff ¬ϕ is an
interpolant of T2 and T1.

For our purposes, the following corollary of Proposition 3.3 will be more useful.

Proposition 3.4 For i = 1, 2 let Φi be a set of Σi-literals. Then, the following are
equivalent:

1. Φ1 ∪ Φ2 is (T1 ∪ T2)-unsatisfiable;

2. there is a finite set Ψ of disjunctions of Σ-literals with Var(Ψ) ⊆ Var(Φ1 ∪ Φ2)
such that

Φ1 |=T1 Ψ and Φ2 ∪Ψ |=T2 ⊥ .

Proof. (1 ⇒ 2) Let X = Var(Φ1) ∪ Var(Φ2). For i = 1, 2, let Ωi := Σi(X) and
consider Φi as a set of ground Ωi-formulas. Then note that Ti ∪ Φi is a universal
Ωi-theory and Ω1

F = Ω2
F. By an application of Proposition 3.3 then, there is a

ground Ω-formula ϕ such that T1 ∪ Φ1 |= ϕ and T2 ∪ Φ2 |= ¬ϕ; equivalently, such
that Φ1 |=T1 ϕ and Φ2 ∪ {ϕ} |=T2 ⊥. The claim then follows by assuming, with no
loss of generality, that ϕ is in conjunctive normal form and choosing Ψ to be the set
of ϕ’s conjuncts.

(2⇒ 1) By the monotonicity of entailment (|=), it is immediate that Φ1 |=T1∪T2 Ψ
and Φ2 ∪ Ψ |=T1∪T2 ⊥. From the transitivity and the monotonicity of the relation
|=T1∪T2 it follows that Φ1 ∪ Φ2 |=T1∪T2 ⊥. ut

Note that the existence of an interpolant set Ψ for Φ1 and Φ2 above is already
guaranteed by the Craig Interpolation Lemma. The contribution of Proposition 3.4

11



α

α1
α2

β

β1 | β2

γ

γ1(y)
where y is a fresh free variable

δ

δf(~x)

where f is a fresh function symbol in Ωsko \Ω and
~x = (x1, . . . , xn) with {x1, . . . , xn} = Var(δ)

Figure 2: Tableau Expansion Rules.

is to show that this set can be chosen so that all of its formulas are disjunctions of
literals with no new variables.

Finally, we point out that Proposition 3.4 holds as stated in both flavors of first-
order logic: the one with equality and the one without equality. The only difference
is that, whereas in the first flavor the formulas of the interpolant set Ψ might contain
equations, in the second flavor they will not.10 This entails in particular that, in FOL
without equality, if the theories share no relation symbols at all, the only possible
interpolant set of Φ1 and Φ2 in Proposition 3.4 is either {⊥} or {¬⊥}.

4 A Multi-Theory Tableau Calculus

The interpolation results of the previous section can be used to integrate multiple
background reasoners into a theory reasoning calculus. In this section, we define
a multi-reasoner extension of the partial theory version of free variable semantic
tableaux.

We do this in two stages. First, we provide a generalized (partial) theory reason-
ing version of the semantic tableau calculus. Like every theory reasoning extensions
of existing refutation calculi, this generalized calculus replaces the search for two
complementary literals with the search for a T -unsatisfiable key set, for some back-
ground theory T . Then, we show that when T is in fact the union of two theories
T1 and T2, it is enough to look only for T1-unsatisfiable or T2-unsatisfiable key sets.
The main consequence of this fact is that a stand-alone background reasoner for T
is in principle not necessary if background reasoners for T1 and for T2 are already
available.11

10Unless, of course, an equality predicate is explicitly axiomatized in one of the two theories, and
the equality symbol used in the axiomatization also belongs to the signature of the other theory.

11We must say “in principle” here because we are ignoring efficiency concerns.
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Our treatment of the free variable semantic tableau calculus will follow closely
the one given in [Fit96].

4.1 Free Variable Semantic Tableaux

A tableau is a finite tree each of whose nodes is labeled by a formula. Since tableaux,
for being trees, are directed acyclic graphs, we will represent every tableau S as the
pair (V,E) where V is the set of S’s nodes and E is the set of S’s (directed) edges.
In the following, to simplify the exposition, we blur the distinction between a node
and the formula that labels it. Technically, this is incorrect because it is certainly
possible for a tableau to have distinct nodes with the same label, but it will simplify
our exposition. This imprecision should cause no problems if the distinction between
a node and its label is kept in mind.

We denote an edge from a formula ϕ to a formula ψ in a tableau by the ordered
pair 〈ϕ, ψ〉. A directed path from the root node of a tableaux to one of its leaf
nodes is called a branch. We denote by leaf (B) the leaf node of a branch B. If B is a
branch and σ a substitution, we denote by Bσ the branch obtained by replacing each
node ϕ in B by the node ϕσ—similarly for set of branches or edges in a tableau. For
notational convenience, we will often treat a branch B as the multiset of formulas in
its nodes. A tableau branch is closed if it contains the node ⊥ and open otherwise.
A tableau is closed if all of its branches are closed. In the following, the letters j
and n will denote finite ordinal numbers whereas the letter κ will denote an ordinal
smaller than or equal to the first infinite ordinal. For every κ then, we will denote a
(possibly infinite) sequence a0, a1, a2, . . . of κ elements by (aj)j<κ.

For the rest of this section we will fix a signature Ω and a satisfiable universal
Ω-theory T . Also, we will implicitly assume for all tableaux mentioned below that
the signature of their formulas is (included in) Ωsko.

Definition 4.1 Let S = (V,E) and S ′ be two tableaux. We say that S ′ T -derives
from S iff S ′ is obtained from S in one of the following ways:

1. by applying one of the expansion rules in Fig. 2 to a formula ϕ in a branch B
of S, i.e., by defining S ′ as follows for some ϕ ∈ B:

S ′ :=















(V ∪ {α1, α2}, E ∪ {〈leaf (B), α1〉, 〈α1, α2〉}) if ϕ is of type α
(V ∪ {β1, β2}, E ∪ {〈leaf (B), β1〉, 〈leaf (B), β2〉}) if ϕ is of type β
(V ∪ {γ1(y)}, E ∪ {〈leaf (B), γ1(y)〉}) if ϕ is of type γ
(V ∪ {δf(~x)}, E ∪ {〈leaf (B), δf(~x)〉}) if ϕ is of type δ

where y and f(~x) above are defined as in Figure 2, or
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2. by adding a T -residue to a branch B of S, i.e., by defining S ′ as follows, where
(σ, ψ) is a T -residue of some Ω-key set Φ ⊆ B:

S ′ := (V ∪ {ψ}, E ∪ {〈leaf (B), ψ〉})σ

The definition above reduces to the usual one given for non-theory tableaux if T
is the empty theory. In that case, the key sets of interest consist of two literals with
the same predicate symbol and opposite sign, and all residues have the form (σ,⊥)
where σ is a (most general) syntactical unifier of the key set.

Definition 4.2 (Derivation) A (possibly infinite) sequence (Sj)j<κ of κ tableaux
is a (tableau) T -derivation iff for all j > 0, Sj derives from Sj−1.

We say that a tableau branch B ′ extends a tableau branch B if there is a sub-
stitution σ such that Bσ, as a path, is an initial segment of B ′ (possibly coinciding
with B′). It is easy to verify that every branch of a tableau in a T -derivation extends
one, and only one, branch in each previous tableau in the derivation.

Definition 4.3 (Proof) Let ϕ be an Ω-sentence. A T -derivation (Sj)j<κ is a
(tableau) T -derivation of ϕ iff S0 is a tableau whose only node is ¬ϕ. The derivation
(Sj)j<κ is a (tableau) T -proof of ϕ iff there is an n < κ such that Sn is closed.

For convenience, we will simply say derives, derivation, proof and so on in place of
T -derives, T -derivation, T -proof whenever T is clear from context or not important.

The tableau calculus induced by the above notions of derivation and proof is
sound and complete in the sense that an Ω-formula ϕ is T -valid iff there is a tableau
proof for it. The soundness argument is very similar to that for non-theory tableaux.
We provide a proof below, concentrating on the residue rule. As for completeness,
we will actually show that a restricted version of the calculus is already complete.
The most important restriction will concern the residue rule, as we will see.

Soundness

As usual, every tableau S can be seen as a (Ωsko-)sentence: the universal closure of
the disjunction of all the branches of S, where each branch is seen as the conjunction
of the formulas in it. For simplicity, we will denote this sentence just by ∀̃ S.

To prove the soundness of the calculus, it is enough to show that derivations
preserve the T -satisfiability of tableaux, when seen as sentences.

Lemma 4.4 Let S, S ′ be two tableaux such that S ′ T -derives from S. If ∀̃ S is
T -satisfiable then ∀̃ S ′ is also T -satisfiable.
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Proof. If S ′ derives from S by means of an expansion rule (cf. Definition 4.1(1)), bar
the restriction to the Ωsko-models of T only, the claim is proved exactly as for (non-
theory) free-variable semantic tableaux.12 Suppose then that S ′ derives from S by
an application of the residue rule. Let B,Φ, σ, ψ be as specified in Definition 4.1(2)
and let ϕB be the conjunction of all the formulas in B.

Then, ∀̃S is (logically equivalent to) a sentence of the form ∀̃ (ϕ∨ϕB) and ∀̃S
′ is

(logically equivalent to) a sentence of the form ∀̃ (ϕσ∨ (ϕBσ∧ψ)). Now assume that
∀̃S is T satisfiable, and so there is a Ωsko-model A of T such that ϕ∨ϕB is satisfied
by every valuation into A. From this it follows immediately that ϕσ ∨ ϕBσ is also
satisfied by every valuation into A. Then, any such valuation θ satisfies either ϕσ
or ϕBσ in A. Now, if θ satisfies ϕσ it clearly satisfies ϕσ ∨ (ϕBσ ∧ ψ). If θ satisfies
ϕBσ, it must satisfy ψ as well. The reason is that ϕBσ |=T ψ by definition of residue
and the inclusion Φσ ⊆ Bσ. It follows that then θ satisfies ϕBσ ∧ ψ. Either way, θ
satisfies ϕσ∨ (ϕBσ∧ψ) in A. Since θ was arbitrary, we have that ∀̃ (ϕσ∨ (ϕBσ∧ψ))
is satisfiable in A, which means that ∀̃ S ′ is T -satisfiable. ut

The soundness of the calculus follows immediately from the lemma above.

Proposition 4.5 (Soundness) Every Ω-formula ϕ that has a tableau T -proof is
T -valid.

Completeness

We will now show that our tableaux calculus is complete even if subject to a number
of restrictions on the possible derivations. Some of these restrictions correspond to
the usual ones found in non-theory tableaux: each derivation is strict, in the sense
that no occurrence of non-γ formula in a branch is used more than once to expand
that branch; each derivation is constructed in a fair way, in the sense that every
occurrence of a non-literal formula in a branch has a chance to be expanded later on
in the derivation, and γ formulas have a chance to be expanded arbitrarily often.

The other restrictions are specific to our theory reasoning extension and hence
concern the residue rule. We will see that it is enough to consider only key sets that
are sets of literals, and residues that are disjunctions of literals. In addition, if the
background theory T is the union of two theories T1, T2 with respective signatures
Σ1,Σ2 sharing all of their functions symbols, key sets can be chosen to contain only
Σ1-literal or only Σ2-literals, and residues that contain predicate symbols not in
Σ1 ∩ Σ2 or variables not in the current branch can be ignored.

Definition 4.6 Let (Sj)j≤n be a derivation and B a branch of Sn. A node ϕ of B is
reduced in B iff ϕ is a literal, or it is of type α, β or δ and there is a j ∈ {1, . . . , n}

12See, e.g., [Fit96]. There, a tableau S is called ∀-satisfiable if ∀̃ S is satisfiable in our sense.
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such that Sj derives from Sj−1 by the application of an expansion rule to ϕ in the
branch of Sj−1 extended by B.

Note that according to the definition above, nodes of type γ are never reduced
in any branch. We will use the following fact about reducible nodes in a tableaux
branch of a derivation.

Lemma 4.7 Let (Sj)j≤n be a derivation, B a branch of Sn and ϕ a reduced node of
B. Then,

• if ϕ is of type α, then both α1 and α2 are in B;

• if ϕ is of type β, then either β1 or β2 is in B;

• if ϕ is of type δ, then δt is in B for some Ωsko-term t.

Proof. By a straightforward induction argument based on the definition of the ex-
pansion rules. ut

Definition 4.8 (Strict, Fair Derivation) A derivation (Sj)j<κ is strict iff no tableau
in the derivation derives from the previous one by the application of an expansion
rule to a reduced node in a branch. The derivation is fair iff for every j < κ, every
branch B of Sj, every formula ϕ in B and every m > 0, there is a tableau Sj′ with
j ≤ j′ < κ such that either ϕ is reduced in the branch B ′ of Sj′ extending B or—when
ϕ is of type γ—ϕ has m (distinct) γ1 instances in B

′.

It is easy to show that a derivation that is both strict and fair is infinite if, and
only if, some tableau in the derivation contains a node of type γ.

The next lemma shows that every T -valid sentence has a strict and fair derivation
of a certain restricted form.

Lemma 4.9 Let ϕ be an Ω-sentence. Then, the following holds:

1. there is a strict and fair tableau derivation (Sj)j<κ of ϕ such that, for all
0 < j < κ, Sj derives from Sj−1 by means of a tableau expansion rule;

2. if ϕ T -valid, then for each such derivation there is an n < κ and a substitution
σ such that every branch of Snσ is literally T -unsatisfiable.
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Proof. LetD be the set of all fair and strict derivations of ϕ as in Point 1 above. One
can prove that D is non-empty by using one of the usual fair tableau construction
rules from the literature. Therefore, we prove just Point 2 here and refer the reader
to [Fit96] for a proof of Point 1.13 We prove the claim in Point 2 by proving its
contrapositive.

Assume that every derivation (Sj)j<κ in D is such that

for all n < κ and for all σ, Snσ has a literally T -satisfiable branch. (1)

We prove below that then ¬ϕ is T -satisfiable, which entails that ϕ is not T -valid.
Given any derivation (Sj)j<κ in D, let S∗ := (

⋃

j<κ Vj,
⋃

j<κEj), where for each
j < κ, Vj is the set of nodes and Ej the set of edges of Sj. Note that S∗ is itself a
tree (albeit a possibly infinite one) and that it extends each Sj.

Now let X be the set of S∗’s free variables. Observe that (a) the first tableau in
the derivation has no free variables, (b) a free variable can occur in a later tableau
only as the result of the expansion of a γ formula, and (c) each such expansion
introduces a fresh variable. This means that for each x ∈ X, if any, there is an
n > 0 such that x first occurs in Sn—in the sense that it occurs in Sn but not in
Sn−1. Moreover, x only occurs in Sn in a leaf γ1(x). Where B is the branch of Sn
with leaf of the form γ1(x), let d(x) be the number of free variables y other than
x such that γ1(y) occurs in B. Then, let t0, t1, . . . be any enumeration of all the
ground Ωsko-terms and let σ be a substitution such that xσ = td(x) for all x ∈ X.
It should be clear from the above that σ is well-defined over X (although possibly
non-injective).

To start with, we claim that at least one branch of S∗σ is literally T -satisfiable. In
fact, assume by contradiction that every branch B∗ of S∗σ is literally T -unsatisfiable.
By compactness, for each B∗ then there is a finite set ΦB∗ of literals included in B∗

that is T -unsatisfiable. It follows by construction of S∗ that there is an n < κ such
that each set ΦB∗ is included in a branch of Snσ. But that means that no branch of
Snσ is literally T -satisfiable, against (1) above.

Now, let B∗σ be a literally T -satisfiable branch of S∗σ and assume that a formula
α occurs in B∗. By construction of B∗, α occurs in some tableau Sj of the derivation
in the branch Bj of Sj extended by B∗. Since the derivation is fair there is an n with
j ≤ n < κ such that α is reduced in the branch of Sn extending Bj (and extended
by B∗). By Lemma 4.7, α1 and α2 occur in that branch and so in B∗. In a similar
way, we can show that if a formula β occurs in B∗ then either β1 or β2 occurs in B

∗,
and if a formula δ occurs in B∗ then some δt occurs in B

∗ for some Ωsko-term t.

13A fine but important point to notice here is that every derivation generated according to a fair
tableau construction rule is fair and strict in our sense. In practice, this means that no search is
necessary to produce a derivation that belongs to D above.
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Finally, if a formula γ occurs in B∗, again by the fairness of the derivation, it is
not difficult to show that B∗ contains infinitely-many distinct variants of the formula
γ1(x)—where x is replaced by a different variable. In addition, for each i ≥ 0 there is
a variant γ1(yi) such that d(yi) = i. By construction of the substitution σ, it follows
that γ1(yi){yi 7→ ti} occurs in B∗σ for all i ≥ 0, where t0, t1, . . . is the enumeration
chosen earlier of all ground Ωsko-terms.

All this shows that B∗σ—which, notice, contains only Ωsko-sentences—is a T -
Hintikka set, and so it is T -satisfiable by Lemma 2.3. Now, ¬ϕ belongs to B∗σ

because it is the root node of S∗ and it equals (¬ϕ)σ for having no free variables. It
follows that ¬ϕ is T -satisfiable, as claimed. ut

The completeness of our theory tableau calculus already follows from the lemma
above. In fact, each branch B of Sn in the lemma, given that Bσ is literally unsatis-
fiable, must contain a set of literals that admits 〈σ,⊥〉 as a T -residue. But then Sn
can be turned into a closed tableau by finitely many applications of the residue rule.
The first of these applications closes one branch of Sn by adding ⊥ to it and applying
the substitution σ to the resulting tableau. Each of the following applications closes
one of the remaining branches by simply adding ⊥ to them—the reason being that,
after the substitution, all the branches admit 〈ε,⊥〉 as a residue.

Notice that this completeness argument is a direct generalization of the one given
for the usual (non-theory) semantic tableaux calculus. There, each branch of Sn is
closed by finding a substitution σ, computed by a simultaneous unification algo-
rithm, that when applied to the tableau makes one pair of literals in each branch
complementary. In effect then, the non-theory tableau calculus is an instance of
the calculus described above in which the background theory T is empty and the
background reasoner used to compute T -residues is just a procedure for (syntactic)
unification.

In the general case, where T is not necessarily empty, it is sufficient to have a
background reasoner for T that is able to enumerate all the T -residues of signature
Ωsko for each given Ωsko-key set. From that and Lemma 4.9, one can show that every
T -valid formula has a strict and fair proof. We show below that it is not necessary
to have a background reasoner for T if T is the union of two theories each with its
own background reasoner.

We will do that by assuming that T := T1∪T2 where, for i = 1, 2, Ti is a universal
theory of signature Σi equipped with a background reasoner that can enumerate the
Ti-residues of signature Σsko for each given Σi

sko-key set, where Σ := Σ1 ∩ Σ2. Since
we assume that the background reasoner for Ti accepts arbitrary function symbols in
its input formulas14, we will also assume—with no loss of generality as pointed out

14Those in Σi
sko \Σi.
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in Section 3.2—that Σ1 and Σ2 share all their function symbols, and we will treat
each Ti as Σi

sko-theory.

For the main completeness result, we need the following lemma as well.

Lemma 4.10 Let i ∈ {1, 2} and let Sm be a tableau all of whose branches contain
a Ti-unsatisfiable set of quantifier-free Σi

sko-formulas. Then, there is a strict tableau
derivation (Sj)m≤j≤n for which the following holds:

1. for all j with m < j ≤ n, Sj derives from Sj−1 by means of a tableau expansion
rule;

2. every branch of Sn contains a Ti-unsatisfiable set of Σi
sko-literals.

Proof. It is a simple, if tedious, exercise to show that there is a strict tableau
derivation (Sj)m≤j≤n satisfying Point 1 above and such that each quantifier-free node
of Sn is reduced in every branch of Sn in which it occurs. We prove by contradiction
that Sn satisfies Point 2 above.

Suppose that Sn has a branch Bn such that the set of all Σi
sko-literals in Bn is

Ti-satisfiable. If Bm is the branch of Sm extended by Bn let Φ be a Ti-unsatisfiable set
of quantifier-free Σi

sko-formulas occurring in Bm. Then, consider Φ as a set of ground
formulas in the expanded signature Σi

sko(V ). Using the fact that the elements of
Φ are reduced nodes of Bn and that each of their subformulas occurring in B is
also reduced, we can show by Lemma 4.7 that Φ is contained in a Ti-Hintikka set
of Σi

sko(V )-sentences. But then, as a set of Σi
sko(V )-sentences, Φ is Ti-satisfiable by

Lemma 2.3, which contradicts the assumption that, as a set of Σi
sko-formulas, Φ is

Ti-unsatisfiable. ut

Let us say that an application of the residue rule is restricted to T1 and T2 iff for
i = 1 or i = 2,

1. the key set Φ of the branch B chosen by the rule consists of Σi
sko literals only,

2. the added residue (σ, ψ) is a Ti-residue and such that ψ is a disjunction of
Σsko-literals all of whose variables occur in Bσ.

Our tableau calculus is complete even if every application of the residue rule is
restricted to T1 and T2. But before proving this claim, let us see with an example
how a derivation with such a restriction would look like.
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Example 4.11 Consider the universal theories T1 and T2 defined as follows and
sharing the binary relation symbol R.

T1 :=

{

∀u∀v (P1u ∧Q1(v, v)→ R(u, v)),
∀u∀v (R(u, v)→ T1(u, v))

}

T2 :=
{

∀v (P2v ∧R(v, fv)→ R(fv, v))
}

Now consider a tableau containing a branch B, represented below as the list of
formulas in its nodes:

B = [. . . , P1x, P2x, Q1(y, z), ¬T1(y, x)]

It is not difficult the see that the substitution σ := {y 7→ fx, z 7→ fx} is such
that the subset {P1x, P2x,Q1(fx, fx),¬T1(fx, x)} of formulas in Bσ is (T1 ∪ T2)-
unsatisfiable. The following describes a possible derivation that closes B with a
sequence of applications of the residue rule restricted to T1 and T2. At each step j
below, ◦ denotes list concatenation, B(j) is the current extension of B, Φ

(j)
i is a key

set from B(j) in the signature of Ti, and (σ(j), ψ(j)) is a possible Ti-residue of Φ
(j)
i in

the shared signature.

B(0) = B = [. . . , P1x, P2x, Q1(y, z), ¬T1(y, x)]

Φ
(0)
1 = {P1x, Q1(y, z)}

σ(0) = {z 7→ y}
ψ(0) = R(x, y)

B(1) = (B(0) ◦ [ψ(0)])σ(0) = [. . . , P1x, P2x, Q1(y, y), ¬T1(y, x), R(x, y)]

Φ
(1)
2 = {P2x, R(x, y)}

σ(1) = {y 7→ fx}
ψ(1) = R(fx, x)

B(2) = (B(1) ◦ [ψ(1)])σ(1)

= [. . . , P1x, P2x, Q1(fx, fx), ¬T1(fx, x), R(x, fx), R(fx, x)]

Φ
(2)
1 = {¬T1(fx, x), R(fx, x)}

σ(2) = {}
ψ(2) = ⊥

B(3) = (B(2) ◦ [ψ(2)])σ(2)

= [. . . , P1x, P2x, Q1(fx, fx), ¬T1(fx, x), R(x, fx), R(fx, x), ⊥]
ut
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The example above was constructed for simplicity so that only residues contain-
ing a single literal would be needed to close the branch. In general, however, residues
with a proper disjunctions of literals may be necessary in a proof, unless an addi-
tional condition is imposed on the theories. We will discuss this condition and its
implications in the next section. First, we must prove our completeness claim.

Proposition 4.12 (Completeness) For every T -valid Ω-sentence ϕ, there is a
strict and fair tableau proof of ϕ in which every application of the residue rule is
restricted to T1 and T2.

Proof. By Lemma 4.9, there is a strict and fair derivation (Sj)j<κ of ϕ, a substi-
tution σ into Ωsko-terms, and a m < κ. such that every branch of Smσ is literally
T -unsatisfiable. Let B one of the branches of Sm. First we show that there is a
derivation starting with Sm that does not touch the other branches of Sm and ex-
tends B to a finite number of branches all of which contain a T2-unsatisfiable set of
quantifier-free Σ2-formulas.

Recall that Ω = Σ1 ∪Σ2, Σ1
F = Σ2

F and Σ = Σ1 ∩Σ2. Now, since Bσ is literally
T -unsatisfiable, for i = 1, 2, there must be a finite set Φi of Σ

sko
i -literals in B such

that Φ1σ ∪ Φ2σ is T -unsatisfiable. By Proposition 3.4, the following holds for some
set Ψ := {ψ1, . . . , ψl} of disjunctions of Σsko-literals all of whose variables occur in
Φ1σ ∪ Φ2σ and so in Bσ.

Φ1σ |=T1 Ψ (2)

Φ2σ ∪Ψ |=T2 ⊥ (3)

By (2) Φ1σ T1-entails every formula in Ψ which means, say, that 〈σ, ψ1〉 is a T1-
residue of Φ1 and 〈ε, ψk〉 is a T1-residue of Φ1σ for all k ∈ {2, . . . , l}. It follows
that there is a finite tableau derivation (Sm, Sm+1, . . . , Sm+l) such that (a) Sm+1 is
obtained, through an application of the residue rule, by first adding the formula ψ1
to the branch B of Sm and then applying the substitution σ to the whole tableau,
and (b) for all k ∈ {2, . . . , l}, Sm+k is obtained, also through an application of the
residue rule, by adding the formula ψk to the branch of Sm+k−1 that extends B.

The branch of Sm+l extending B then contains the set Φ2σ ∪Ψ of quantifier-free
Σsko2 -formulas, which is T2-unsatisfiable by (3) above. Also, each of the other branches
of Sm+l coincides with a branch of Smσ and so is literally T -unsatisfiable. Using a
similar argument for these branches we can then show that there is a finite (and
strict) tableau derivation (Sm, . . . , Sm+p) such that every Sm+k (for k ∈ {1, . . . , p})
is obtained from Sm+k−1 by an application of the residue rule restricted to T1 and
T2, and every branch of Sm+p contains a T2-unsatisfiable set of quantifier-free Σsko2 -
formulas.
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Applying Lemma 4.10 to Sm+p and T2, we can conclude that there is a strict
derivation (Sm, . . . , Sm+p+q) such that every branch of Sm+p+q contains a T2-unsatisfiable
set of Σ2

sko-literals. This is to say that each of these sets admits the T2-residue
〈ε,⊥〉. But then, we can argue as before that there is a strict tableau derivation
(Sm, . . . , Sm+p+q+r) such that Sm+p+q+r is obtained by successive applications of the
residue rule restricted to T2, each adding ⊥ to an open branch of Sm+p+q until all of
them are closed. The claim then follows by considering (any fair extension of) the
derivation (Sj)j≤m+p+q+r. ut

In conclusion, we have proven the following about the calculus above.

Theorem 4.13 Let T1, T2 be two universal theories of signature Σ1,Σ2, respectively,
such that Σ1

F = Σ2
F and T := T1 ∪ T2 is satisfiable. Let ϕ be a (Σ1 ∪ Σ2)-sentence.

Then, ϕ is T -valid iff there is a strict and fair tableau proof of ϕ in which every
application of the residue rule is restricted to T1 and T2.

5 Refinements: The Convex Case

In this section we show that the Ground Interpolation Lemma of Section 3.3 can be
further refined if the two theories T1 and T2 are also convex in a sense defined below.
One consequence of this refinement is the possibility of strengthening the theory
tableau calculus described in the previous section. As we will see, when two theories
is convex, the completeness of the calculus is preserved even if one considers only
unit residues , by which we mean residues of the form (σ, p) where p is a single literal.
Such a restriction is significant because it considerably reduces the non-determinism
of the residue rule, allowing more efficient implementations of the calculus.

The notion of theory convexity we adopt here is based on one due to Nelson and
Oppen [NO79]. It is also related to the notion of independence of negative constraints
(see [LM90] for a general treatment) from the constraint programming literature.

Definition 5.1 (Σ-Convex Theory) Let Σ be a signature. A theory T of signa-
ture Ω is Σ-convex iff for every set Φ of Ω-literals and every finite non-empty set Ψ
of positive Σ-literals,

Φ |=T
∨

p∈Ψ

p iff Φ |=T p for some p ∈ Ψ .

We prove in the appendix that universal Horn theories are Σ-convex for any
Σ. There, we also provide references to examples of non-Horn universal theories
that are Σ-convex for some signature Σ. This shows that an important portion of
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candidate background theories for theory reasoning are in fact convex, which justifies
the particular relevance of the results presented in this section.

These results and their proofs will use Horn formulas. Following [Hod93a], we
call a basic Horn formula a formula of the form

¬p1 ∨ · · · ∨ ¬pn ∨ q

where n ≥ 0 and each of p1, . . . , pn, q is a positive literal (possibly ⊥).15

For the rest of this section, we will fix two signatures Σ1,Σ2 such that Σ1
F = Σ2

F

and two universal theories T1, T2 of respective signature Σ1,Σ2 such that T1 ∪ T2 is
satisfiable. Also, we assume that both theories is Σ-convex for Σ := Σ1 ∩ Σ2.

Proposition 5.2 (Horn Ground Interpolation Lemma) If T1∪T2 is unsatisfi-
able, then

T1 |= ϕ and T2 |= ¬ϕ

for some conjunction ϕ of ground basic Horn formulas of signature Σ.

Proof. By Proposition 3.3, there is a ground Σ-formula ϕ such that

T1 |= ψ and T2 |= ¬ψ . (4)

With no loss of generality we can assume that ψ has the conjunctive normal form
ψ1 ∧ · · · ∧ ψn. For each j ∈ {1, . . . , n}, we can also assume that ψj has the form

¬pj1 ∨ · · · ∨ ¬p
j
mj
∨ qj1 ∨ · · · ∨ q

j
nj

where mj ≥ 0, nj ≥ 1, each pjk and each qjk is a positive ground literal, and qj1, say,
is always ⊥. Let j ∈ {1, . . . , n}. By (4) above, we have that T1 |= ¬p

j
1 ∨ · · · ∨¬p

j
mj
∨

q
j
1 ∨ · · · ∨ q

j
nj
. By the properties of logical entailment and the definition of |=T1 it

follows that
{pj1, . . . , p

j
mj
} |=T1 q

j
1 ∨ · · · ∨ q

j
nj
.

From the Σ-convexity of T1 we can conclude that there is a kj ∈ {1, . . . , nj} such
that {pj1, . . . , p

j
mj
} |=T1 q

j
kj
.16 In conclusion, for all j ∈ {1, . . . , n} there is a kj ∈

{1, . . . , nj} such that
T1 |= ¬p

j
1 ∨ · · · ∨ ¬p

j
mj
∨ qjkj

.

15Note that this definition rules out every disjunction ¬p1∨· · ·∨¬pn of negative literals. However,
we can treat such a disjunction as a basic Horn formula as well by identifying it with the logically
equivalent formula ¬p1 ∨ · · · ∨ ¬pn ∨ ⊥.

16If {p
j
1, . . . , p

j
mj

} is T1-unsatisfiable, one such kj is 1, given the assumption that q
j
1 = ⊥.
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Let ϕ be the conjunctions of all the Horn formulas ¬pj1 ∨ · · · ∨ ¬p
j
mj
∨ qjkj

above. It

is immediate that T1 |= ϕ. To prove the proposition then it is enough to show that
T2 ∪ {ϕ} is unsatisfiable.

Suppose ad absurdum that T2 ∪ {ϕ} is satisfiable in some structure A. In that
case, T2 ∪ {¬p

j
1 ∨ · · · ∨ ¬p

j
mj
∨ qjkj

} is satisfiable in A for every j ∈ {1, . . . , n}. But

then, T2 ∪ {ψj} with ψj = ¬p
j
1 ∨ · · · ∨ ¬p

j
mj
∨ qj1 ∨ · · · ∨ q

j
nj

is clearly also satisfiable
in A for every j ∈ {1, . . . , n}. Noting that none of the elements of T2 ∪{ψj} has free
variables, it follows that T2 ∪ {ψ1 ∧ · · · ∧ψn} is satisfiable in A. But this contradicts
the assumptions that ψ = ψ1 ∧ · · · ∧ ψn and T2 |= ¬ψ. It follows that T2 ∪ {ϕ} is
unsatisfiable. ut

As in Section 3.3, the following corollary of Proposition 3.3 is more useful for our
purposes.

Proposition 5.3 For i = 1, 2 let Φi a set of Σi-literals. Then, the following are
equivalent:

1. Φ1 ∪ Φ2 is (T1 ∪ T2)-unsatisfiable;

2. there is a finite set Ψ of basic Horn formulas of signature Σ with Var(Ψ) ⊆
Var(Φ1 ∪ Φ2) such that

Φ1 |=T1 Ψ and Φ2 ∪Ψ |=T2 ⊥ .

Proof. Similarly to Proposition 3.4. ut

Now, we could use the result above in the proof of Proposition 4.12 to show that
the tableau calculus in the previous section is complete even if residues are restricted
to basic Horn formulas. In fact, we can do even better and restrict residues to just
positive literals. The main reason for this is provided by the following lemma.

Lemma 5.4 For i = 1, 2 let Φi a set of Σi-literals such that Φ1 ∪ Φ2 is (T1 ∪ T2)-
unsatisfiable. Then there is a finite n, a sequence (Φi

j)j≤n of sets of Σi-literals with
Φi
0 = Φi for i = 1, 2, and a sequence (aj)j≤n of positive Σ-literals with an = ⊥ such

that:

1. for all j < n and i = 1, 2, Φi
j+1 = Φi

j ∪ {aj};

2. for all j ≤ n, Var(aj) ⊆ Var(Φ
1
j ∪ Φ2j) and either Φ1j |= aj or Φ2j |= aj.
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Proof. We construct recursively three sequences (Φ1j)j≤n, (Φ
2
j)j≤n and (aj)j≤n that

satisfy the statement of the lemma. To build (aj)j≤n we use an auxiliary sequence
(Ψj)j≤n in which each element Ψj is an interpolant set of Φ1j and Φ2j .

Let Φi
0 := Φi for i = 1, 2. By Proposition 5.3, there is a finite set

Ψ0 :=











¬p1,1 ∨ · · · ∨ ¬p1,n1 ∨ q1
...

¬pm,1 ∨ · · · ∨ ¬pm,nm
∨ qm











of basic Horn formulas of signature Σ with Var(Ψ0) ⊆ Var(Φ
1
0 ∪ Φ2)0 such that

Φ10 |=T1 Ψ0 and Φ20 ∪Ψ0 |=T2 ⊥ .

We define a0 according to the following (mutually exclusive and exhaustive) cases:

1. Ψ0 is empty. Then Φ20 |=T2 ⊥. We set a0 = ⊥.

2. Ψ0 6= ∅ and one of Ψ0’s members is a single positive literal qk—which happens
if nk = 0 for some k. Then Φ10 |=T1 qk. We set a0 := qk.

3. Ψ0 6= ∅ but none of Ψ0’s members is a single positive literal. Then nk > 0 for
all k. From the fact that Φ20 ∪ Ψ0 |=T2 ⊥ it is easy to show by simple logical
reasoning that Φ20 |=T2 p1,1∨· · ·∨pm,1. If Φ

2
0 is T2-unsatisfiable, we set a0 := ⊥.

Otherwise, we know that, since T2 is convex, there is a k such that Φ20 |=T2 pk,1.
In that case, we set a0 := pk,1. In both cases we have that Φ20 |=T2 a0.

It is immediate that Var(a0) ⊆ Var(Φ10 ∪ Φ20) in all cases. Now, if a0 = ⊥ we
stop; that is, (aj)j≤n is just (aj)j≤0. Otherwise, we consider the sets Φ11 := Φ10 ∪{a0}
and Φ21 := Φ20 ∪ {a0} and the set Ψ1 obtained from Ψ0 by removing (the disjunction
with) the literal a0 from all the formulas of Ψ0. It is not difficult to see that Ψ1 is
an interpolant set of Φ11 and Φ21, i.e., Φ

1
1 |=T1 Ψ1 and Φ21 ∪Ψ1 |=T2 ⊥.

Applying the same process recursively to Φ11, Φ
2
1 and Ψ1 we can generate the

sequences (Φ1j)j, (Φ
2
j)j, (Ψj)j and (aj)j where each Ψj is an interpolant set of Φ1j ,

Φ2j and (Φ1j)j and (Φ2j)j, and (aj)j have the desired properties. The finiteness of the
all the sequences is guaranteed by the fact that each Ψj+1 is obtained from Ψj by
removing all occurrences of a literal in Ψj. ut

Now let T := T1 ∪ T2 The lemma above is basically saying that a background
reasoner for T1 and a one for T2 can together detect the T -unsatisfiability of a set
like Φ1 ∪ Φ2 above by just exchanging entailed Σ-atoms back and forth. Using the
lemma it is not difficult to modify the proof of Proposition 4.12 to show that the
tableau calculus in the previous section satisfies the following completeness result.
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Proposition 5.5 (Convex Completeness) For every T -valid sentence ϕ of sig-
nature Σ1∪Σ2, there is a strict and fair tableau proof of ϕ in which every application
of the residue rule is restricted to T1 and T2 and its residue has the form (σ, p) where
p is a positive Σ-literal.

6 Related Work

Our Ground Interpolation Lemma (Proposition 3.3) can also be seen as a instance
of a general interpolation theorem for infinitary logic17 due to Malitz [Mal69]. In our
terms, the theorem states that any two theories T1 and T2 whose union is unsatisfi-
able, admit an interpolant ψ in their shared signature which is a universal sentence
(of infinitary logic) whenever T2 is universal. Again, the contribution of Lemma 3.3
is to show that if T1 is also universal and T1 and T2 have the same function symbols
and contain only finitary formulas, then ψ is a ground finitary formula.

The only research we are aware of that focuses on the cooperation of background
reasoners in theory reasoning is that reported in [KZ90, TH98, BR99, Pet00]. Except
for [Pet00], all of these works embed a well-known combination method by Nelson and
Oppen [NO79] into a specific theory reasoning calculus: analytic tableaux in [KZ90],
a variant of the CLP scheme in [TH98], and constrained resolution in [BR99].

In essence, the approach in each of these papers is a specialization of the one
presented here. One major difference is that the background reasoners return only
residues of the form 〈ε, ψ〉, which basically means that they treat key sets as if they
were ground. This is enough for completeness in both the CLP scheme [JM94] and
in constrained resolution [B9̈4]. It is also enough in [KZ90] because in the used
tableau calculus γ formulas are expanded into their ground instances—which makes
the calculus very inefficient though. Another major difference with our approach is
that the two background theories are stably-infinite (see, e.g., [Opp80]) and share
at most the equality and the constant symbols, whereas in our case the theories,
although possibly not stably-infinite, share all function symbols. The net effect
of these differences—leading to more restricted but stronger computational results
than ours—is that for each key set Φ it is enough to consider only the finitely many
residues 〈ε, ψ〉 in which ψ is a disjunction of equations between certain subterms:
the alien subterms in Φ (see [TH96] for details).

In [Pet00], some special types of background theories are integrated into the
theory connection calculus. A number of rather specific syntactical restrictions are
imposed on the theories, including the disjointness of their sets of predicate symbols,

17The extension of first-order logic that contains a conjunction and a disjunction symbol of
countably infinite arity.
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none of which are necessary in our approach. It is not clear, however, exactly how
the approach in [Pet00] compares to ours.

7 Conclusions

In this paper we have sought to demonstrate that, contrary to a common belief in the
field, integrating multiple background reasoners in theory reasoning is conceptually
straightforward. Thanks to a specialization of Craig’s interpolations lemma, the
needed cooperation between the background reasoners can be achieved as a simple
form of constraint propagation over a common language.

Our main contribution was to show that, under some conditions on the back-
ground theories, the propagated constrains can be restricted to disjunctions of liter-
als in the signature Σ shared by the theories. The requirements on the background
theories, namely that they be universal and have all their function symbols in com-
mon, are very mild: the first is a given in all theory reasoning calculi; the second is
typically easy to satisfy, as explained in Section 3.2. We have also shown that if the
theories are Σ-convex as well, the propagated constrains can be further restricted to
single Σ-literals.

For concreteness we have proved our claims here in the context of a specific theory
reasoning calculus. We have described a multi-theory version of the semantic tableau
calculus in which the cooperation among the background reasoners is achieved by
the sort of constraint propagation mentioned above, and we have proved the calculus
sound and complete.

We stress that our combination results are not limited to the theory calculus
considered here. For instance, although not shown in this paper, we have been able to
extend theory resolution [Sti85, Bau92] in a similar way and produce corresponding
soundness and completeness results. We conjecture that analogous multi-theory
extensions can be obtained for all the major literal-level theory reasoning calculi.

7.1 Further Research

Further research is obviously needed to assess the practical utility of the combination
results presented here. The two major practical issues for actual theory reasoning
systems are—on the foreground reasoner side—how to choose key sets effectively
and—on the background reasoner side—how to generate residues efficiently.18 These
same issues remain crucial in our approach as well. We did show that, under the

18A noteworthy approach partially addressing these issues and based on incremental methods is
described in [BP96].
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right conditions, it is enough to consider only certain types of key sets and residues.
But even within these restrictions the number of possible choices is still large enough
to make actual applications impractical without further optimizations. As we men-
tioned in the introduction, the research challenge is now to identify specific com-
binations of theories and more or less general implementation techniques like those
described in [BP96] for which our cooperation approach is feasible.

Focusing on the specialized results from Section 5, one potentially interesting ap-
plication could come in conjunction with Baumgartner’s results on linearizing com-
pletion [Bau96], a technique for producing background reasoners automatically for
certain universal Horn theories. Linearizing completion takes a finite set T of Horn
clauses and either diverges or produces a finite set I(T ) of unit-resulting inference
rules. This set constitutes an inference system that in turn can be automatically
“compiled” into a specialized reasoner RT for T . The reasoner RT is refutationally
complete with respect to T -unsatisfiability. More interestingly for us though, RT can
be used as a rather efficient background reasoner for partial theory reasoning calculi:
one that preserves the completeness of the overall calculus while only needing key
sets up to a certain cardinality, and producing “few” T -residues, all of them unit
(see [Bau96] for more details).

The major limitation of linearizing completion is that it often diverges on the
input set T of clauses. In some cases, however, it is possible to partition T into two
sets T1 and T2 such that linearizing completion on each of them separately succeeds
[Bau01]. Until now this fact was not extremely useful because, clearly, neither of the
two reasoners produced this way would be a background reasoner for T when taken
separately. The two reasoners, however, can now be combined with our approach
to reason over T in cooperation. Although this idea looks promising, the cases
mentioned in [Bau01] involve very simple theories. More work needs to be done to
find more interesting cases of theories that can be partitioned into subtheories on
which linearizing completion converges.
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interpolation theorem to me. Special thanks go Peter Baumgartner for some illu-
minating discussions on several aspects of theory reasoning and for his numerous
and insightful comments on a draft of this paper which have helped to improve it.
Finally, I thank Calogero Zarba for pointing out an erroneous result in a preliminary
version of the paper.
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A Proofs

In the following, we will use the standard model-theoretic notions of embedding,
isomorphism, substructure, generators, reducts and so on. The reader is referred to
[Hod93b], among others, for their definition. The results given here are expressed
and hold in first-order logic with equality. However, all of them can be shown to
hold as stated in first-order logic without equality as well.

Where A is a structure of signature Ω, we denote by diag(A) the set of all ground
Ω-literals that are true in A; if Σ is a subsignature of Ω, we denote by AΣ the reduct
of A to Σ; if X is a subset of the universe of A, we denote by 〈X〉A the substructure
of A generated by X.

We will appeal to the following three basic results from model theory. The first is
an elementary fact. For a proof of the other two, again see [Hod93b], among others.

Lemma A.1 Let A be an Ω-structure, Σ a subsignature of Ω and X a subset of A’s
universe. If ΣF = ΩF, then 〈X〉A

Σ = 〈X〉AΣ.

Lemma A.2 (Robinson’s Diagram Lemma) Let A be a Σ-structure generated
by the empty set and B a structure whose signature includes Σ. Then, A is embed-
dable in BΣ whenever B models the set diag(A).

Lemma A.3 The set of models of a universal Σ-theory T is closed under substruc-
tures. That is, every substructure of a (Σ-)model of T is a model of T .

We will also appeal to the notion of fusion from [TR02] and some of its properties,
proved in [TR02].

Definition A.4 (Fusion) For i = 1, 2 let Ai be a structure of signature Σi. A
(Σ1 ∪ Σ2)-structure F is a fusion of A1 and A2 if FΣi is isomorphic to Ai for
i = 1, 2.

Fusions of structures do not always exist. The following proposition establishes
a necessary and sufficient condition for their existence.

Proposition A.5 Let A and B be two structure and let Σ be the intersection of
their signatures. Then, A and B admit a fusion exactly when AΣ is isomorphic to
BΣ.

Fusions of structures are related to unions of theories as follows.

Proposition A.6 For i = 1, 2 let Ti be a theory of signature Σi. A (Σ1 ∪ Σ2)-
structure is a model of T1 ∪ T2 iff it is the fusion of a model of T1 and a model of
T2.
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A.1 T -Hintikka Sets

We start by proving Lemma 2.3, stating that for each satisfiable universal theory T ,
every T -Hintikka set is satisfiable in a canonical model of T .

Lemma 2.3 If T is a satisfiable universal theory, then every T -Hintikka set is
satisfiable in a canonical model of T .

Proof. Assume that T has signature Ω. Where Ω′ is a signature including Ω (and
having at least a constant symbol), let H be a T -Hintikka set of signature Ω′ and
let Φ be the (possibly infinite) set of all the literals in H.19 By Definition 2.2(1), the
universal theory Φ ∪ T is satisfiable. Let A be any Ω′-model of Φ ∪ T and let B be
the substructure of A generated by the empty set. By Lemma A.3, B as well is a
model of Φ ∪ T . Since it is generated by the empty set, we know that, in addition,
B is (isomorphic to) a canonical model of Φ ∪ T . We prove by structural induction
that every sentence of H holds in B.

(Base case) Every literal of H holds in B by construction, for being an element
of Φ.

(Induction step) We consider just the β and γ sentences ofH. For α or δ sentences
the argument is similar. If a sentence β is in H then βi ∈ H for i = 1 or i = 2.
By induction hypothesis, βi holds in B. But then, by definition, β is also holds in
B. If a sentence γ is in H then γ1(t) ∈ H for all ground Ω′-terms t. By induction
hypothesis, each γ(t) holds in B. Since every element of B is denoted by some ground
term t, given that B is a canonical model, it follows that the formula γ(x) in the
free variable x is satisfied in B by every interpretation of x. But by the semantics of
universal quantification, this means that γ holds in B. ut

A.2 Ground Interpolation Lemma

In this subsection we prove Proposition 3.3, the Ground Interpolation Lemma from
Section 3.3. As in that section, we fix two signatures Σ1,Σ2 such that Σ1

F = Σ2
F and

two universal theories T1, T2 of respective signature Σ1,Σ2. Also, let Σ := Σ1 ∩ Σ2.
The proof of the lemma will be facilitated by the following intermediate result.

In its proof, we use l̄ to denote the complement of a literal l.

Lemma A.7 Let Ψ be the set of all disjunctions ψ of ground Σ-literals such that
T1 |= ψ. If every finite subset of Ψ is T2-satisfiable, then the theory T1 ∪ T2 is
satisfiable.

19Note, that since H is a set of sentences, each literal in it must be ground.
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Proof. Assume that every finite subset of Ψ is T2-satisfiable. Then, every finite
subset of Ψ ∪ T2 is satisfiable. By the compactness of first-order logic, this entails
that the whole Ψ∪T2 is satisfiable. Let A2 be a Σ2-model of Ψ∪T2 and assume with
no loss of generality that A2 is generated by the empty set.20 Since ΣF = Σ1

F = Σ2
F

by assumption, the Σ-reduct A2
Σ as well is generated by the empty set. We start

by showing by contradiction that the Σ1-theory T1 ∪ diag(A2
Σ) is satisfiable.

If T1 ∪ diag(A2
Σ) is not satisfiable, then by compactness again we can show that

there is a finite subset {l1, . . . , ln} of diag(A2
Σ) that is T1-unsatisfiable. This implies

that the formula ψ := l̄1∨· · ·∨ l̄n is entailed by T1. For being a disjunction of ground
Σ-literals, ψ must then be an element of Ψ. Now, since A2 models Ψ and ψ is a
Σ-formula, we then have that l̄1 ∨ · · · ∨ l̄n is true in A2

Σ. But this is impossible
because every lj is in diag(A2

Σ), the set of ground Σ-literals true in A2
Σ, and so

every l̄j is false in A2
Σ.

Now let A1 be a Σ1-model of T1 ∪ diag(A2
Σ), and assume, again with no loss of

generality, that A1 is generated by the empty set. By Lemma A.2, since A1 models
diag(A2

Σ), A2
Σ is embeddable into A1

Σ. Recalling that A2
Σ is generated by the

empty set, this means that A2
Σ is isomorphic to 〈∅〉A1Σ , the substructure of A1

Σ

generated by the empty set. By Lemma A.1, since ΣF = Σ1
F, this substructure

coincides with 〈∅〉A1
Σ, that is, with A1

Σ.

In conclusion, we have shown that the structures A1 and A2 have isomorphic
reducts over their shared signature Σ. Therefore, they admit a fusion F by Propo-
sition A.5. Since by construction A1 is model of T1 and A2 is model of T2, we can
conclude by Proposition A.6 that F is a model of T1 ∪ T2, which makes T1 ∪ T2
satisfiable. ut

Proposition 3.3 (Ground Interpolation Lemma) If T1 ∪ T2 is unsatisfiable,
then T1 |= ϕ and T2 |= ¬ϕ for some ground Σ-formula ϕ.

Proof. Assume that T1 ∪ T2 is unsatisfiable and let Ψ be the set of all disjunctions
ψ of ground Σ-literals such that T1 |= ψ. By the contrapositive of Lemma A.7, we
know that there is a finite subset {ψ1, . . . , ψn} of Ψ that is T2-unsatisfiable. Let
ϕ := ψ1 ∧ · · · ∧ ψn. By construction, ϕ is a ground Σ-formula such that T1 |= ϕ and
T2 |= ¬ϕ. ut

20Otherwise, one can consider in its place the substructure of A2 generated by the empty set.
This substructure exists because Σ2 contains at least a constant symbol; moreover, it is a model of
Ψ ∪ T2 by Lemma A.3 because Ψ ∪ T2 is universal.
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A.3 Σ-Convex Theories

In this subsection we show that every Horn theory, and in particular every universal
Horn theory, is Σ-convex for any Σ. Then, we point to some examples of non-Horn
Σ-convex theories. We start by defining (universal) Horn theories, again following
[Hod93a].

Recall that a basic Horn formula is a formula of the form ¬p1∨· · ·∨¬pn∨q where
n ≥ 0 and each of p1, . . . , pn, q is a positive literal (possibly ⊥). A Horn formula is a
formula of the form Q.(ϕ1∧· · ·∧ϕn) where Q is an arbitrary quantifier prefix, n > 0
and each ϕj is a basic Horn formula. A Horn sentence is Horn formula with no free
variables and a universal Horn sentence is a Horn sentence whose quantifier prefix
contains only universal quantifiers. A universal Horn theory is a set of universal
Horn sentences.21

The convexity of Horn theories is an almost immediate consequence of a well-
known result by McKinsey, one of whose formulations is the following (see [Hod93a]).

Lemma A.8 (McKinsey’s Lemma) Let T be a satisfiable Horn theory and let Ψ
be a set of positive ground literals. If every model of T is a model of at least one
element of Ψ, then there is a p ∈ Ψ such that T |= p.

Proposition A.9 Every Horn theory is Σ-convex for any signature Σ.

Proof. Let Σ be any signature and T a Horn theory of signature Ω. Let Φ be a set of
Ω-literals and Ψ a finite, non-empty set of positive Σ-literals such that Φ |=T

∨

p∈Ψ p.
We show that Φ |=T p for some p ∈ Ψ.

If Φ is T -unsatisfiable, the claim is trivially true for any p ∈ Ψ. Therefore
assume that Φ is T -satisfiable and consider Φ and Ψ as sets of ground literals in the
signature Ω(X) and Σ(X), respectively, where X := Var(Φ ∪Ψ). Then observe that
T ′ := T ∪ Φ is a satisfiable Horn theory of signature Ω(X) and that T ′ |=

∨

p∈Ψ p.
The claim then follows immediately from Lemma A.8. ut

To conclude, in [NO79] an Ω-theory T is called convex iff whenever a conjunction
of Ω-literals T -entails a disjunction of equalities between variables, it T -entails one of
the equalities in the disjunction. That paper also provides some example of convex,
universal theories two of which—a theory of rational numbers under addition and a
theory of lists—are not (axiomatizable by) Horn theories.

It is easy to see that, in FOL with equality, convex theories in the sense of [NO79]
are Σ-convex theories according to Definition 5.1, where Σ is the empty signature.
There is, however, an even stronger connection between the two definitions.

21Note that a universal Horn sentence is a universal sentence as defined in Section 2. Similarly,
a universal Horn theory is a universal theory.
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Proposition A.10 Every convex theory of signature Ω is Σ-convex with Σ := ΩF.

Proof. Let T be the convex Ω-theory and Σ := ΩF. Let Φ be any set of Ω-literals
and Ψ any finite non-empty set of positive Σ-literals such that Φ |=T

∨

p∈Ψ p. We
prove that Φ |=T p for some p ∈ Ψ.

Since Σ contains only function symbols, Ψ must be a set of equalities. So let
Ψ := {s1 ≡ t1, . . . , sn ≡ tn} where ≡ denotes the equality symbol. By compactness,
we can assume with no loss of generality that Φ is finite. Now, from the assumption
that Φ |=T

∨

j=1,...,n sj ≡ tj we can deduce by elementary logical reasoning that

∧

p∈Φ

p ∧ (
∧

j

xj ≡ sj) ∧ (
∧

j

yj ≡ tj) |=T
∨

j

xj ≡ yj

where all the xj and yj are fresh variables. Since the conjunction above is a conjunc-
tion of Ω-literals, by the convexity of T there is a j ∈ {1, . . . , n} such that

∧

p∈Φ

p ∧ (
∧

j

xj ≡ sj) ∧ (
∧

j

yj ≡ tj) |=T xj ≡ yj

But this entails that Φ |=T sj ≡ tj for some j ∈ {1, . . . , n}. ut
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