
Cooperation of Background Reasoners

in Theory Reasoning by Residue Sharing

Cesare Tinelli

Department of Computer Science
University of Iowa

Iowa City, IA 52242 – USA
http://www.cs.uiowa.edu/~tinelli

Abstract. We propose a general way of combining background reasoners in theory
reasoning. Using a restricted version of the Craig Interpolation Lemma, we show that
background reasoner cooperation can be achieved as a form of constraint propagation,
much in the spirit of existing combination methods for decision procedures. In this
case, constraint information is propagated across reasoners by exchanging residues over
a common signature. As an application of our approach, we describe a multi-theory
version of the semantic tableau calculus.

1 Introduction

Theory reasoning is a powerful deduction paradigm in which a general-purpose rea-
soner is complemented by a specialized procedure, the background reasoner, which
(semi-)decides formula satisfiability with respect to a certain background theory. Af-
ter the pioneering work of Stickel who devised a theory version of resolution [8], nearly
all existing calculi for automatic reasoning have been extended to theory reasoning
(see [2] for a survey). Essentially all of them however consider the integration of just
one background reasoner into the main one.

The usual explanation for such a limitation is that, although integrating several
background reasoners would be desirable for modularity and scalability purposes, it
is hard to get them to cooperate in a sound and complete way.

We argue in this paper that the cooperation of background reasoners in theory
reasoning is instead conceptually simple and can be easily described in terms of partial
theory reasoning in the sense of [8]. We will appeal to a variant of a well-known in-
terpolation result, the Craig Interpolation Lemma, to show that background reasoner
cooperation can be achieved as a form of constraint propagation, much in the spirit
of existing combination methods for decision procedures [5]. The main idea in this
case will be to propagate information between reasoners by exchanging quantifier-free
residues (see later) over a common signature.

The Craig Interpolation Lemma states that whenever two theories T1 and T2 are
jointly unsatisfiable they have an interpolant, a sentence ϕ made only of symbols
shared by T1 and T2, which is entailed by one theory and unsatisfiable with the other.
Now, although the lemma is in principle enough for the type of reasoner cooperation
we suggest, it is not too useful in its general formulation because it provides no
information on the syntactical form of interpolants. This is unfortunate because most
theory reasoning calculi effectively work only with certain types of formulas (clauses,
usually).

We provide a restricted version of the lemma which shows that in the context
of theory reasoning all needed interpolants are, in essence, disjunctions of ground

literals. Thanks to this result, background reasoner cooperation via constraint prop-
agation becomes a viable option, as we will try to demonstrate. To do that we will
describe a multi-theory extension of semantic tableaux, for which the soundness and
completeness arguments are particularly straightforward.

It will be clear then that, as in all cases of partial theory reasoning, the real
challenge lies in identifying specific situations in which the generation of residues can
be implemented in a reasonably efficient and complete way. But we will leave that
out of the scope of this paper.

2 Preliminaries

A signature Σ consists of a set ΣP of relation symbols and a set ΣF of function
symbols, each with an associated arity, an integer n ≥ 0. A constant symbol is a
function symbol of zero arity.

We use the standard notions of (Σ-)formula, clause, literal, free and bound vari-
able, substitution, structure (aka model) and so on. Where ϕ is a formula, we denote
by Var(ϕ) the set of ϕ’s free variables (with Var(Φ) extending the notation to sets
Φ of formulas as obvious). A sentence is a formula with no free variables. A ground
formula is a formula with no variables. A theory is a set of sentences—we do not insist
that the set be consistent. We denote by ⊥ the universally false formula and assume
that it is a (ground) Σ-literal for every signature Σ.

We also use the usual notions of satisfiability and entailment but extended to the
case of formulas, as opposed to sentences, as done in the mathematical logic literature.
Specifically, a set Φ of formulas is satisfiable in a structure A if there is a valuation of
Var(Φ) into elements of A that makes every formula in Φ true in A. A formula ϕ is
satisfiable in a structure A if {ϕ} is satisfiable in A. A set of formulas (resp. a formula)
is satisfiable if it is satisfiable in some structure A, and unsatisfiable otherwise. The
set Φ entails the formula ϕ, in symbols Φ |= ϕ, if every structure and valuation that
satisfy Φ also satisfy ϕ; equivalently, if the set Φ ∪ {¬ϕ} is unsatisfiable. Notice that
Φ is unsatisfiable if and only if Φ |= ⊥.

The reader unfamiliar with this notion of satisfiability/entailment for formulas
should observe that in it free variables essentially behave as free constant symbols.
This differs from the practice in automated reasoning of treating free variables as
implicitly universally quantified.1 The distinction here is important and should be kept
in mind because, for example, when we talk about the satisfiability of a clause we are
quantifying its variables universally, whereas when we talk about the satisfiability of
a quantifier-free formula we are not. This means for instance that when {p(x),¬p(y)}
denotes a set of clauses, it is unsatisfiable; when it denotes instead a set of literals, it
is satisfiable.

In theory reasoning, satisfiability and entailment are also given with respect to a
certain theory. The definitions below subsume the various, slightly different ones in
the literature.

Definition 1. Let T be any theory. A set Φ of formulas is T -satisfiable iff T ∪ Φ is
satisfiable; otherwise it is T -unsatisfiable. A formula ϕ is a T -consequence of Φ in
symbols Φ |=T ϕ, iff T ∪ Φ |= ϕ.

1 Perhaps because of the fact that clauses are written without their universal quantifier prefix.

A formula is universal if it is in prefix normal form and its (possibly empty)
quantifier prefix contains only universal quantifiers. A theory is universal if it is ax-
iomatized by a set of universal sentences.2 Theory reasoning considers only universal
theories as background theories because they are the only ones that can be “safely”
built-in into a deduction calculus. The reason is that the Herbrand theorem extends
immediately to T -satisfiability in a universal theory.

Proposition 1 (Herbrand Theorem for Theory Reasoning). Let ϕ1, . . . , ϕn be
n > 0 quantifier-free formulas and T a universal theory. Then the set {∀̃ϕ1, . . . , ∀̃ϕn}
(where ∀̃ ϕ denotes the universal closure of ϕ) is T -unsatisfiable iff there is a finite
set of ground instances of formulae from {ϕ1, . . . , ϕn} that is T -unsatisfiable.

3 Theory Reasoning over Multiple Theories

3.1 Partial Theory Reasoning

Because of its generality, theory reasoning encompasses a vast array of seemingly
different reasoning frameworks. Here we will focus on what [2] calls literal level theory
reasoning .3 The basic operation in traditional refutation-based calculi is the detection
of pairs of complementary literals; in other words, the detection of an unsatisfiable set
Φ made of two quantifier-free formulas of a specific kind. Literal level theory reasoning
generalizes this operation in two directions: the type and number of quantifier-free
formulas in Φ, and the notion of (un)satisfiability, defined with respect to a certain
background theory T in the sense of Def. 1.

In theory reasoning systems, the T -satisfiability test is not performed by the main
reasoner, the foreground reasoner , but is delegated instead to a specialized subsystem,
the background reasoner for T . Roughly, we speak of total theory reasoning if the
background reasoner gets a set Φ of formulas from the foreground one and simply
confirms whether Φ is T -unsatisfiable or not. We speak of partial theory reasoning
if, whenever Φ is not T -unsatisfiable, the background reasoner returns a residue for
it, that is, a quantifier-free formula whose negation, if added to Φ, would make it
T -unsatisfiable.

The precise definition of residue varies depending on the author and the partial
theory reasoning calculus in question. But they are all instances of the one below.

Definition 2 (Residue). Let Φ be a set of quantifier-free formulas, called a key set.
Let ψ be a quantifier free formula and σ a substitution. The pair 〈σ, ψ〉 is a T -residue
of Φ iff the set Φσ ∪ {¬ψ} is T -unsatisfiable or, equivalently, iff Φσ |=T ψ.

According to the definition above, the pair 〈σ,⊥〉 a is T -residue of the key set Φ
if and only if Φσ is T -unsatisfiable. More precisely then, we talk about total theory
reasoning when the background reasoner computes only residues of the form 〈σ,⊥〉,
if any, and partial theory reasoning otherwise.

In the following, we will simply say residue instead of T -residue whenever T is
clear from context. Abusing the terminology, we will also call residue the second
component of a residue 〈σ, ψ〉, especially when σ is the empty substitution.
2 Some authors refer to universal theories as open or quantifier-free theories, again because of the

common practice of writing their axioms without the quantifiers.
3 The other forms of theory reasoning can be recast as essentially special cases of the literal level

form.

3.2 Combining Background Reasoners

Suppose we are interested in a background theory T obtained as the union of n > 1
theories T1, . . . , Tn. Also suppose that we do not have a background reasoner for T
but we do have one for each Ti. From a practical standpoint, instead of implementing
a reasoner for T anew, it would be interesting to integrate the reasoners for the
various Ti directly into a foreground reasoner and have them work together to detect
the T -unsatisfiability of formulas. The question then is how to make the reasoners
cooperate in a sound and complete way.

In this section, we provide some interpolation results which suggest that back-
ground reasoners can cooperate by exchanging residues over a common quantifier-free
language. In the next section, we will embed this kind of cooperation into a specific
theory reasoning calculus and argue that the resulting calculus is sound and complete.
For simplicity, we will consider the case of just two background theories. From what
follows, however, it should be clear that all the given results lift by iteration to the
case of more than two theories.

We will impose no model-theoretic restrictions on the two theories other than
universality. Also, we will make no assumptions on whether the theories share no,
some or all predicate symbols. We will assume, however, that their signatures have
exactly the same set of function symbols. For our purposes such a restriction is not
as stringent as it sounds. In fact, background reasoners used in theory reasoning
typically accept input formulas containing free function symbols, that is, symbols not
appearing in their theory.4 In that case, the signature of each background theory can
be always expanded with free symbols until all the signatures get to have the same
set of function symbols.

3.3 The Interpolation Lemma

The main theoretical result of the paper is provided by the following restricted version
of the Craig Interpolation Lemma.

Proposition 2 (Ground Interpolation Lemma). Let Σ1, Σ2 be two signatures
such that Σ1

F = Σ2
F and let Σ := Σ1 ∩Σ2. For i = 1, 2 let Ti be a universal theory

of signature Σi. The universal theory T1 ∪T2 is unsatisfiable iff there is a disjunction
ψ of ground Σ-literals such that T1 |= ψ and T2 |= ¬ψ.

The proof of this proposition is fairly routine by model theory standards.5 It is
based on three main facts: 1) every substructure of a model of a universal theory is
in turn a model of the theory; 2) a set of generators of a structure does not change if
one adds or removes predicate symbols from its signature; 3) a model A1 of T1 and a
model A2 of T2 above can be amalgamated into a model of T1 ∪ T2 whenever A1 and
A2 are isomorphic over the shared signature Σ.

For our purposes, the following corollary of the proposition will be more useful.

4 Free function symbols occur naturally in refutation-based theory reasoning calculi as a result of
Skolemization of existential variables.

5 Variation on the theme are found as exercises in many mathematical logic or model theory text-
books.

Proposition 3. Let Σ1, Σ2 be two signatures such that Σ1
F = Σ2

F and let Σ :=
Σ1 ∩ Σ2. For i = 1, 2 let Ti be a universal Σi-theory and Φi a set of quantifier-free
Σi-formulas. Then, the following are equivalent:

1. Φ1 ∪ Φ2 is (T1 ∪ T2)-unsatisfiable;
2. there is a disjunction ψ of Σ-literals with Var(ψ) ⊆ Var(Φ1 ∪ Φ2) such that

Φ1 |=T1
ψ and Φ2 ∪ {ψ} |=T2

⊥ .

The existence of an interpolant like ψ above is already guaranteed by the Craig
Interpolation Lemma. The contribution of Prop. 3 is to specify that, under the given
assumptions, Φ1 and Φ2 have an interpolant which is a disjunction of literals with no
new variables.

Prop. 3 holds in the exact same formulation in both flavors of first-order logic: the
one without equality, the traditional logic of automated reasoning, which we use here,
and the one with equality, which treats the equality symbol as a logical constant and
always interprets it as the identity relation. The only difference is that, whereas in
the second flavor interpolants may in general contain equations, they do so in the first
flavor only if equality is explicitly defined in both theories T1 and T2. In particular,
this entails that when the theories share no predicate symbols at all the only possible
interpolant of Φ1 and Φ2 in Prop. 3 is either ⊥ or its negation.6

4 A Multi-Theory Tableau Calculus

We will now show how the interpolation results of the previous section can be used
to integrate multiple background reasoners into a theory reasoning calculus. To be
specific we will define a multi-reasoner extension of the partial theory version of (free
variable) semantic tableaux. Our exposition of the calculus will follow closely the one
given in [3]. There, a tableau is defined as a multiset of tableau branches, where a
branch is a multiset of first-order formulas. As usual, branches are interpreted logically
as the conjunction of their elements, and tableaux as the disjunction of their branches.

Tableaux are manipulated according to the derivation rules listed in Fig. 1 which
operate on the types of formulas defined by the tables in the same figure. The main
idea of the theory tableau calculus is to close a tableau branch by detecting its
unsatisfiability with respect to a given background theory T . Operationally, this is
done by choosing a subset of the formulas in the branch and asking a specialized
reasoner about their T -unsatisfiability.

In our extension of the calculus we consider background theories T that are in
fact the union of a universal Σ1-theory T1 and a universal Σ2-theory T2. Although one
would certainly want T1 and T2 to be such that T = T1 ∪T2 is consistent, technically,
do not need to assume that. We do assume though that the signatures of T1 and T2

have exactly the same function symbols, as discussed in the previous section.
We also assume that for each Ti we have a background reasoner that accepts a

Σi-key set (cf. Def. 2) as input and is capable of enumerating all of its Ti-residues.
Now let Σ := Σ1 ∩ Σ2. The main idea of our extension is to collect into a key

set only formulas in a branch that have the same signature, either Σ1 or Σ2. The
assembled Σi-key set (i = 1, 2) is given to the corresponding background reasoner,

6 Notice that ¬⊥ is the interpolant of Φ1 and Φ2 exactly when ⊥ is the interpolant of Φ2 and Φ1.

which returns a residue for it. The residue may contain Σ-formulas, which can be
later included into a Σj-key set (with j 6= i) by virtue of the fact that Σ ⊆ Σj. In
practice, this means that the two background reasoners share information about the
satisfiability of a branch by exchanging residues over the language of quantifier-free
Σ-formulas, understood by both. We will see that, by the interpolation results of the
previous section, this is in principle all they need to do to detect the T -unsatisfiability
of a branch.

α α1 α2

φ ∧ ψ φ ψ

¬(φ ∨ ψ) ¬φ ¬ψ

¬(φ→ ψ) φ ¬ψ

¬¬φ φ

β β1 β2

φ ∨ ψ φ ψ

¬(φ ∧ ψ) ¬φ ¬ψ

φ→ ψ ¬φ ψ

φ↔ ψ φ ∧ ψ ¬φ ∧ ¬ψ

¬(φ↔ ψ) φ ∧ ¬ψ ¬φ ∧ ψ

γ γ1(y)

∀x.φ(x) φ(y)

¬∃x.φ(x) ¬φ(y)

δ δ1(t)

¬∀x.φ(x) ¬φ(t)

∃x.φ(x) φ(t)

α

α1

α2

β

β1 | β2

γ

γ1(y)
where y is a fresh free variable

δ

δ1(f(x1, . . . , xn))
where f is a fresh function symbol and
{x1, . . . , xn} = Var(δ)

Fig. 1. Formula Types and Tableau Derivation Rules.

The following definition extends the usual notion of tableau derivation to our
multi-theory framework.

Definition 3 (Derivation). A sequence T0, T1, . . . , Tn of n ≥ 0 tableaux is a deriva-
tion of Tn from T0 iff for all j > 0, Tj is obtained from Tj−1

1. by applying one of the derivation rules in Fig. 1 to a branch B ∈ Tj−1, i.e., by
defining Tj as follows for some ϕ ∈ B:

Tj :=















(Tj−1 \ {B}) ∪ {(B \ {ϕ}) ∪ {α1, α2}} if ϕ is of type α
(Tj−1 \ {B}) ∪ {(B \ {ϕ}) ∪ {β1}, (B \ {ϕ}) ∪ {β2}} if ϕ is of type β
(Tj−1 \ {B}) ∪ {B ∪ {γ1}} if ϕ is of type γ
(Tj−1 \ {B}) ∪ {(B \ {ϕ}) ∪ {δ1}} if ϕ is of type δ

2. or by adding a Ti-residue (for i = 1 or i = 2) to a branch B ∈ Tj−1, i.e., by
defining Tj as follows, where 〈σ, ψ〉 is a Ti-residue of some Σi-key set Φ ⊆ B:

Tj := (Tj−1 \ {B})σ ∪ {Bσ ∪ {ψ}}

3. or by closing a branch B ∈ Tj−1, i.e., by defining Tj as Tj−1 \ {B} if ⊥ ∈ B.

The tableau calculus defined by the derivations in Def. 3 is sound and complete
in the following sense.

Theorem 1 (Soundness and Completeness). A (Σ1∪Σ2)-sentence ϕ is entailed
by T = T1 ∪T2 iff there is a derivation of the empty tableau from the tableau {{¬ϕ}}.

It is easy to prove that every derivation preserves the T -satisfiability of a tableau,
which immediately shows the soundness of the calculus. To prove its completeness
one can proceed as in the case of just one background theory by showing that, if
a sentence is T -unsatisfiable, it is possible to derive from it a tableau all of whose
branches can be closed. We sketch the proof below by considering for simplicity just
the ground case.

Let us say that a formula is pure if it is either a Σ1-formula or a Σ2-formula. Let
T0 := {{¬ϕ}} be the initial tableau and assume that the ground (Σ1 ∪ Σ2)-formula
¬ϕ is T -unsatisfiable. Applying a proper sequence of derivation rules from Fig. 1, it
is possible to derive from T0 a tableau T all of whose branches are T -unsatisfiable
and made of pure ground formulas only. Let B be any of these branches.

Since B is T -unsatisfiable it has a subset Φi of Σi-formulas, for i = 1, 2, such that
Φ1 ∪Φ2 is (T1 ∪T2)-unsatisfiable. By Prop. 3, Φ1 and Φ2 have a ground Σ-interpolant
ψ. Now, ψ is a residue of the Σ1-key set Φ1 by definition, hence it can be added to
B by Point 2 of Def. 3. Moreover, Φ2 ∪ ψ is a T2-unsatisfiable Σ2-key set, hence its
residue ⊥ can be added to B by the same point. But then B can be closed by Point 3
of Def. 3. This shows that the calculus is complete for ground sentences. Thanks to
Prop. 1, the completeness proof can then be lifted to the non-ground sentences as
usual.

It is typical for a background reasoner to accept only key sets made just of literals
(and still produce disjunctions of literals as residues). We leave it to the reader to
verify that our extension remains complete even if we only use this restricted kind of
key set.

We conclude this section with some general remarks on our combination results.

First, we would like to stress that the cooperation method described here is not
limited to tableaux only. For instance, we have readily applied it to theory resolution
as well, with a soundness and completeness proof for the resulting calculus that is
almost as simple as in the tableau case. We have every reason to believe that the
method can also be used to produce a multi-theory extension of all the other existing
theory reasoning calculi.

Finally notice that, as pointed out in Subsect. 3.3, when T1 and T2 have no predi-
cate symbols in common (including equality) the only possible non-tautological inter-
polant between the pure parts of a branch is ⊥. In that case then the two background
reasoners are fully decoupled7 and a total theory reasoning strategy can be adopted
separately with each of them. All the foreground reasoner needs to do is to “purify” a
branch enough, using the usual tableaux derivation rules, until it can assemble a pure
key set that will be found unsatisfiable by the corresponding background reasoner.

This sort of approach was already outlined in [8] for (single-)theory resolution.
Stickel argued that key sets never needed to include literals whose predicate symbol
did not belong to the background theory. These literals could instead be processed
by standard resolution steps. His argument can be given a formal justification in our
cooperation framework by looking at non-theory reasoning steps as theory reasoning

7 Strictly speaking, this is true only for ground derivations. In non-ground derivations, the reasoners
share the substitutions applied to the free variables of the tableau.

over an empty background theory. Then, one can simply consider the extra predicate
symbols as part of a second, empty theory and the usual inference steps identifying
complementary literals as a background reasoner returning only ⊥ residues.

5 Related Work

The only research we are aware of that focuses on the cooperation of background
reasoners in theory reasoning is that reported in [4, 9, 1, 7]. Except for [7], all of these
works embed a well-known combination method by Nelson and Oppen [5] into a
specific theory reasoning calculus: analytic tableaux in [4], a variant of the CLP
scheme in [9], and constrained resolution in [1].

Although it is not entirely accurate, we could say that the approach in each of
these papers is a specialization of the one presented here. One essential difference is
that the signatures of the two background theories share at most the equality and the
constant symbols, whereas in our case they must share all function symbols. Another
is that the two theories are stably-infinite (see, e.g., [6]), which is not required in our
case. The net effect of these differences, leading to stronger decidability results, is that
for each key set Φ it is enough to consider only the finitely many residues of the form
〈ε, ψ〉 where ε is the empty substitution and ψ a disjunction of equations between the
variables in Φ.

In [7], certain special types of background theories are integrated into the theory
connection calculus. A number of rather specific syntactical restrictions are imposed
on the theories, including the disjointness of their sets of predicate symbols, none of
which are necessary in our approach. It is presently unclear to us how the approach
in [7] compares to ours.

Acknowledgments. Thanks to the anonymous referees for their helpful com-
ments and suggestions.

References

1. J. Van Baalen and S. Roach. Using decision procedures to accelerate domain-specific deductive
synthesis systems. In P. Flener, editor, Proc. of the 8th Int. Workshop on Logic Programming

Synthesis and Transformation, LOPSTR’98, volume 1559 of Lecture Notes in Computer Science,
pages 61–70. Springer, 1999.

2. P. Baumgartner, U. Furbach, and U. Petermann. A unified approach to theory reasoning. Research
Report 15–92, Universität Koblenz-Landau, Germany, 1992.

3. B. Beckert and Ch. Pape. Incremental theory reasoning methods for semantic tableaux. In
P. Miglioli et al, editors, Proc. of the 5th Workshop on Theorem Proving with Analytic Tableaux

and Related Methods, TABLEAUX’92, volume 1071 of Lecture Notes in Computer Science, pages
93–109. Springer, 1996.

4. T. Käufl and N. Zabel. Cooperation of decision procedures in a tableau-based theorem prover.
Revue d’Intelligence Artificielle, 4(3):99–126, 1990.

5. G. Nelson and D. C. Oppen. Simplification by cooperating decision procedures. ACM Trans. on

Programming Languages and Systems, 1(2):245–257, October 1979.
6. D. C. Oppen. Complexity, convexity and combinations of theories. Theoretical Computer Science,

12:245–257, 1980.
7. U. Petermann. Connection calculus theorem proving with multiple built-in theories. Journal of

Symbolic Computation, 29(2):373–392, February 2000.
8. M. E. Stickel. Automated deduction by theory resolution. Journal of Automated Reasoning,

1(4):333–355, 1985.
9. C. Tinelli and M. T. Harandi. Constraint logic programming over unions of constraint theories.

The Journal of Functional and Logic Programming, 1998(6).

