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Abstract. SMT solvers have recently been extended with techniques for finding
models in presence of universally quantified formulas in some restricted frag-
ments. This paper introduces a translation which reduces axioms specifying a
large class of recursive functions, including well-founded (terminating) functions,
to universally quantified formulas for which these techniques are applicable. An
empirical evaluation confirms that the approach improves the performance of ex-
isting solvers on benchmarks from three sources. The translation is implemented
as a preprocessor in the CVC4 solver and in a new higher-order model finder
called Nunchaku.

1 Introduction

Many solvers based on SMT (satisfiability modulo theories) can reason about quantified
formulas using incomplete instantiation-based methods [11,25]. These methods work
well in the context of proving (i.e., showing unsatisfiability), but they are of little help
for finding models (i.e., showing satisfiability). Often, a single universal quantifier in
one of the axioms of a problem is enough to prevent the discovery of models.

In the past few years, techniques have been developed to find models for quantified
formulas in SMT. Ge and de Moura [14] introduced a complete instantiation-based pro-
cedure for formulas in the essentially uninterpreted fragment. This fragment is limited
to universally quantified formulas where all variables occur as direct subterms of unin-
terpreted functions—e.g., Vx. f(x) = g(x) +5. Other syntactic criteria extend this frag-
ment slightly, including cases when variables occur as arguments of arithmetic pred-
icates. Subsequently, Reynolds et al. [26, 27] introduced techniques for finding finite
models for quantified formulas over uninterpreted types and types having a fixed finite
interpretation. These techniques can find a model for a formula such as Vx, y: 7. x =y V
— f(x) ~ f(y), where 7 is an uninterpreted type.

Unfortunately, none of these fragments can accommodate the vast majority of quan-
tified formulas that correspond to recursive function definitions. The essentially unin-
terpreted fragment does not allow the argument of a recursive function to be used inside
a complex term on the right-hand side, whereas the finite model finding techniques
are not applicable for functions over infinite domains such as the integers or algebraic
datatypes. A simple example where both approaches fail is

Vax:Int. p(x) ~ite(x <0, 1, 2xp(x—1))



This state of affairs is unsatisfactory, given the frequency of recursive definitions in
practice and the addition of a command for introducing them, define-fun-rec, to the
SMT-LIB standard [3].

We present a method for translating formulas involving recursive function defini-
tions into formulas where finite model finding techniques can be applied. The recursive
functions must meet a semantic criterion to be admissible (Section 2). This criterion
is met by well-founded (terminating) recursive function definitions. It is not met by
inconsistent definitions such as Vx : Int. f(x) ~ f(x) + 1.

We define a translation for a class of formulas involving admissible recursive func-
tion definitions (Section 3). A recursive definition Vx : 7. f(x) & rhs is translated to
Va : ar. f(y¢(a)) = rhslys(a)/x], where @, is an uninterpreted abstract type and vy :
a; — T converts the abstract type to the concrete type. Additional constraints ensure
that the abstract values that are relevant to the formula’s satisfiability exist. The trans-
lation preserves satisfiability and, for admissible definitions, unsatisfiability, and makes
finite model finding possible for problems in this class.

The approach is implemented as a preprocessor in CVC4 and in the Nunchaku
model finder (Section ??). We evaluated the two evaluation on benchmarks from Isa-
Planner [16], Leon [5], and Isabelle/HOL, to demonstrate that this translation improves
the effectiveness of the SMT solvers CVC4 and Z3 for finding countermodels to verifi-
cation conditions (Section 4). Unlike earlier work, our approach can be combined with
off-the-shelf SMT solvers (Section ?7?).

An earlier version of this paper was presented at the SMT 2015 workshop in San
Francisco [?]. This paper extends the workshop paper with proof sketches, an expanded
implementation section covering Nunchaku and relevant CVC4 optimizations, and the
evaluation on Isabelle benchmarks produced by Nunchaku.

2 Preliminaries

Our setting is a monomorphic (or many-sorted) first-order logic like the one defined by
SMT-LIB [3]. A signature ¥. consists of a set LY of first-order types (or sorts) and a
set Xf of function symbols over these types. We assume that signatures always contain
a Boolean type Bool and constants T,_L : Bool for truth and falsity, an infix equality
predicate ~ : T X T — Bool for each 7 € XV, standard Boolean connectives (=, A, V,
etc.), and an if—then—else function symbol ite : Bool X 7 x 7 — 7 for each T € Y. We
fix an infinite set XY of variables of type 7 for each 7 € £Y and define XV as (J,cyy ZY.
Y-terms are built as usual over functions symbols in X and variables in X¥. Formulas
are terms of type Bool. We write 17 to denote terms of type 7 and 7 (¢) to denote the
set of subterms in ¢. Given a term u, we write u[f/X| to denote the result of replacing
all occurrences of X with 7 in u. When applied to terms, the symbol = denotes syntactic
equality.

A X-interpretation I maps each type T € X% to a nonempty set v/, the domain of T
in I, each function symbol f : 7; X --- X 7, = T in >f to a total function f : T{ X oee X
71— 77, and each variable x : T of X" to an element of 7. A theory is a pair T = (Z,.7)
where ¥ is a signature and .# is a class of X-interpretations, the models of T, closed
under variable reassignment (i.e., for every I € .#, every X-interpretation that differs



from 7 only on the variables of XV is also in .#). A E-formula ¢ is T-satisfiable if it
is satisfied by some interpretation in .#; otherwise, it is T-unsatisfiable. A formula ¢
T-entails , written ¢ Fr , if all interpretations in .# that satisfy ¢ also satisfy y. Two
formulas ¢ and y are T-equivalent if each T-entails the other. If 7| = (¥,.#)) is a
theory and X, is a signature with Zﬁ N Zg = 0, the extension of T to X, is the theory
T=(X,)where X =xf UL 2% =¥ U thy, and .# is the set of all Z-interpretations
I whose X-reduct is a model of T;. We refer to the symbols of ¥, that are not in X; as
uninterpreted. For the rest of the paper, we fix a theory T = (X,.#) with uninterpreted
symbols constructed as above.

Unconventionally, we consider annotated quantified formulas of the form V¢ X. ¢,
where f € X! is uninterpreted. Their semantics is the same as for standard quantified
formulas VX. ¢. Given f : 7; X --- X T, — 7, an annotated quantified formula V;X. ¢ is
a function definition (for f) if X is a tuple of variables x| : 7y, ..., x, : 7, and ¢ is a
quantifier-free formula T-equivalent to f(X) = ¢ for some term 7 of type 7. We write
3x. ¢ as an abbreviation for - Vx. - ¢.

Definition 1. A formula ¢ is in definitional form with respect to {fy,...,f,} C ! if it
is of the form (¥, X1. ¢1) A -+ A (W, Xn. @n) A W, where fy,...,f, are distinct function
symbols, V¢, X;. ¢; is a function definition for i = 1,...,n, and ¥ contains no function
definitions. We call ¢ the goal of ¢.

In the signature ¥, we distinguish a subset £4™ C Xf of defined uninterpreted func-
tion symbols. We consider X-formulas that are in definitional form with respect to X4,

Definition 2. Given a set of function definitions A = {¥;, . ¢1,..., ¥, X. ¢, }, a ground
formula y is closed under function expansion with respect to A if

Y Fr /\:.1:1{%'[?/?] [fi(7) € T(¥)}

The set A is admissible if for every T-satisfiable formula i closed under function ex-
pansion with respect to A, the formula ¢y A A A is also T-satisfiable.

Admissibility is a semantic criterion that must be satisfied for each function def-
inition before applying the translation described in Section 3. It is useful to connect
it to the standard notion of well-founded function definitions, often called terminating
definitions in a slight abuse of terminology. In such definitions, all recursive calls are
decreasing with respect to a well-founded relation, which must be supplied by the user
or inferred automatically using a termination prover. This ensures that the function is
uniquely defined at all points.

First-order logic has no built-in notion of computation or termination. To ensure
that a function specification is well founded, it is sufficient to require that the function
would terminate when seen as a functional program, under some evaluation order. For
example, the definition Vx : Int. p(x) ~ ite(x <0, 1,2%p(x— 1)), where T is integer
arithmetic extended with the uninterpreted symbol p : Int — Int, can be shown well
founded under a strategy that evaluates the condition of an ite before evaluating the
relevant branch, ignoring the other branch. Logically, such dependencies can be cap-
tured by congruence rules. Krauss developed these ideas in the more general context of
higher-order logic [18, Section 2].
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Theorem 3. If A is a set of well-founded function definitions for £ = {f|, ... f,}, then
it is admissible.

Proof sketch. Let ¢ be a satisfiable formula closed under function expansion with re-
spect to A. We show that y A A A is also satisfiable. Let I be a model of i, and let I
be the restriction of I to the function symbols in f — X9 Because well-founded defi-
nitions uniquely characterize the interpretation of the functions they define, there exists
a Y-interpretation 7 that extends Ip such that 7 F A. Since ¢ is closed under function
expansion, it already constrains the functions in X4 recursively as far as is necessary
for interpreting . Thus, any point v for which fl-l (v) is needed for interpreting y will
have its expected value according to its definition and hence coincide with 7. And since
l//’ does not depend on the interpretation at the other points, 7 is, like 7, a model of .
Since 7 F A by assumption, we have 7 = A A A as desired. O

Another useful fragment of function definitions is the class of productive corecur-
sive functions. Corecursive functions are functions to a coalgebraic datatype. These
functions can be ill founded, without their being inconsistent. Productive corecursive
functions are functions that progressively reveal parts of their potentially infinite out-
put [1,31]. For example, given a type of infinite streams constructed by scons : int x
stream — stream, the definition V. x. e(x) ~ scons(x, e(x+ 1)) falls within this frag-
ment: Each call to e produces one constructor before entering the nested call. Like
terminating recursion, productive corecursion totally specify the functions it defines. It
is even possible to mix recursion and corecursion in the same function [8]. Theorem 3
can be extended to cover such specifications, based on the observation that unfolding a
corecursive definition infinitely computes a unique infinite object.

Beyond totality, an admissible set can contain underspecified functions such as V¢ x :
Int. f(x) = f(x—1) or Vzx. g(x) =~ g(x). We conjecture that one can ignore all tail-
recursive calls (i.e., calls that occupy the right-hand side of the definition, potentially
under some ite branch) when establishing well-foundedness or productivity, without
affecting admissibility.

An example of an inadmissible set is {Vf x : Int. f(x) & f(x) 4+ 1}, where T is integer
arithmetic extended to a set of uninterpreted symbols {f,g : Int — Int, ...}. The reason
is that the formula T is (trivially) closed under function expansion with respect to this
set, and there is no model of T satisfying f’s definition. A more subtle example is

{Vex:Int. f(x) = f(x), Vgx:Int. g(x) = g(x)+f(x)}

While this set has a model where f and g are interpreted as the constant function 0, it
is not admissible since f(0) & 1 is closed under function expansion with respect to this
set and yet there exists no interpretation satisfying both f(0) ~ 1 and g’s definition.

3 The Translation

For the rest of the section, let ¢ be a X-formula in definitional form with respect to
»dM whose definitions are admissible. We present a method that constructs an extended
signature Z£(X) and an £ (X)-formula ¢’ such that ¢’ is T-satisfiable if and only if ¢ is T-
satisfiable—i.e., ¢ and ¢’ are equisatisfiable (in T). The idea behind this translation is to



A7, p) =
if 7 = Bool and t = b(#y,...,1,) then
let (¢, x;) = Ao(t;, pol(b, i, p)) fori=1,...,nin
let y=x; A+ A x,in
if p=pos then (b(f},....1,)) A x, T)
else if p = neg then (b({,....7,) V- x, T)
else (b(t’lzjl)/\/)
else if t = Vi X. u then
let (', x) = Ao(u, p) in (Va: a5 u'[ye(a) /], T)
else if t = Vx. u then
let (', x) = Ao(u, p) in (VX. 4/, VX. x)
else
(t, N{Ba: ar.7¢(a) 5| f(5) € T(1), f € £I})

A(p) =let (¢, x) = Ao(g, pos) in ¢’

Fig. 1. Definition of translation 4

use an uninterpreted type to abstract the set of relevant tuples for each defined function
f and restrict the quantification of f’s definition to a variable of this type. Informally,
the relevant tuples 7 of a function f are the ones for which the interpretation of f(7) is
relevant to the satisfiability of . More precisely, for each f : 7y X - -- x 7, — 7 € £ the
extended signature E(X) contains an uninterpreted abstract type as and n uninterpreted
concretization functions ys : @ — T1, ..., Y - @ — Tp.

The translation 4 defined in Figure 1 translates the X-formula ¢ into the E(X)-
formula ¢'. It relies on the auxiliary function Ay, which takes two arguments: the term
t to translate and a polarity p for ¢, which is either pos, neg, or none. Ay returns a pair
(¢, x), where 7' is a term of the same type as ¢ and y is an Z(X)-formula.

The translation alters the formula ¢ in two ways. First, it restricts the quantifica-
tion on function definitions for f to the corresponding uninterpreted type as, inserting
applications of the concretization functions ¢ ; as needed. Second, it augments ¢ with
additional constraints of the form Ja : af. ¥¢(a) =~ 5, where ¥¢(a) ~ 5 abbreviates the
formula A ¥¢i(a) = s; with 5 = (s1,...,s,). These existential constraints ensure that
the restricted definition for f covers all relevant tuples of terms, namely those occurring
in applications of f that are relevant to the satisfiability of ¢. The constraints are gen-
erated as deep in the formula as possible, based on our knowledge of the polarities of
logical connectives, to allow models in which the domains interpreting the as types are
as small as possible.

If ¢ is an application of a predicate symbol b, including the operators —, A, V, =,
and ite, 4y calls itself recursively on the arguments #; and polarity pol(b,i, p), with pol
defined as

p if either b € {A,V} or b=ite and i € {2,3}
pol(b,i,p)=¢ —p ifb==
none otherwise



where —p is neg if p is pos, pos if p is neg, and none if p is none. The term ¢ is then
reconstructed as b(t’l s t;l) where each t§ is the result of the recursive call with argu-
ment 7;. If the polarity p associated with ¢ is pos, Ay conjunctively adds to b(#,...,1,)
the constraint y derived from the subterms and returns T as the constraint. Dually, if
p is neg, it adds a disjunction with the negated constraint, to achieve the same overall
effect. It p is none, the constraint y is returned to the caller.

If ¢ is a function definition, A, constructs a quantified formula over a single variable
a of type af and replaces all occurrences of X in the body of that formula with ¥¢(a).
(Since function definitions are top-level conjuncts, y must be T and can be ignored.)
If 7 is an unannotated quantified formula, 4y calls itself on the body with the same
polarity; a quantifier is prefixed to the quantified formula and constraint returned by the
recursive call. Otherwise, ¢ is either an application of an uninterpreted predicate symbol
or a term of a type other than Bool. Then, the returned constraint is a conjunction of
formulas of the form Ja : a. ¥¢(a) ~ 5 for each subterm f(5) of 7 such that f € £, Such
constraints, when asserted positively, ensure that some element in the abstract domain
as is the preimage of the argument tuple s.

Example 4. Let T be linear integer arithmetic with the uninterpreted symbols {c : Int
s:Int — Int}. Let ¢ be the X-formula

Vsx:Int. ite(x <0, s(x) & 0, s(x) & x+s(x—1)) As(c) > 100 (1)

The definition of s specifies that it returns the sum of all positive integers up to x. The
formula ¢ is in definitional form with respect to L™ and states that the sum of all
positive numbers up to some constant c is greater than 100. It is satisfiable with a model
that interprets c as 14 or more. Due to the universal quantifier, current SMT techniques
are unable to find a model for ¢. The signature £(X) extends X with the type as and the
uninterpreted function symbol ys : @s — Int. The result of 4(yp), after simplification, is
the E(X)-formula

(Va : as. ite(ys(a) <0, s(ys(a)) ~ 0,
(7

s(vs(a)) » ys(a) +s(ys(a) — 1) A3b: as. y5(b) % ys(a) — 1)) @
/\s(c)>100/\5|a.a5.ys() C

The universal quantifier in formula (2) ranges over an uninterpreted type as, making
it amenable to the finite model finding techniques by Reynolds et al. [26,27], imple-
mented in CVC4, which search for a finite interpretation for ;. Furthermore, since all
occurrences of the quantified variable a are beneath applications of the uninterpreted
function s, the formula is in the essentially uninterpreted fragment, for which Ge and
de Moura [14] provide a complete instantiation procedure, implemented in Z3. As ex-
pected, CVC4 and Z3 run indefinitely on formula (1), whereas they produce a model
for (2) within 100 milliseconds. [ |

Note that the translation 4 results in formulas whose models (i.e., satisfying inter-
pretations) are generally different from those of ¢. One model I for formula (2) in the
above example interprets as as a finite set {ug,...,u14}, ¥s as a finite map u; — i for
i=0,...,14, cas 14, and s as the almost constant function

Ax:nt. ite(x =0, 0, ite(x = 1, 1, ite(x = 2, 3, ite(..., ite(x = 13,91, 105)...))))



In other words, s is interpreted as a function mapping x to the sum of all positive integers
up to x when 0 < x < 13, and 105 otherwise. The X-reduct of I is not a model of the
original formula (1), since I interprets s(n) as 105 when n <0 or n > 14.

However, under the assumption that the function definitions in Y4 are admissible,
A(p) is equisatisfiable with ¢ for any input ¢. Moreover, the models of 4(¢) contain
pertinent information about the models of ¢. For example, the model I for formula (2)
given above interprets ¢ as 14 and s(n) as Y.} i for 0 < n < 14, and there exists a
model of formula (1) that also interprets ¢ and s(n) in the same way (for 0 < n < 14).
In general, for every model of 4(¢), there exists a model of ¢ that coincides with it on
its interpretation of all function symbols in Xf — XM Furthermore, the model of 4(¢p)
will also give correct information for the defined functions at all points belonging to the
domains of the corresponding abstract types as. This can sometimes help users debug
their specifications.

We sketch the correctness of translation 4. For a set of ground literals L, we write
X(L) to denote the set of constraints that force the concretization functions to have the
necessary elements in their range for determining the satisfiability of L with respect to
the function definitions in the translation. Formally,

X(L) ={3a:as. y¢(a)=7|f(f) e T(L),f € den}
The following lemma states the central invariant behind the translation 4.

Lemma 5. Let ¥ be a formula not containing function definitions, and let I be an
E(X)-interpretation. Then I satisfies A(¥) if and only if I satisfies L U X(L), where L
is a set of ground X-literals that entail .

Proof sketch. By definition of 4 and case analysis on the return values of 4. a
Corollary 6. If s is a formula not containing function definitions, then A(y) entails .

Theorem 7. If ¢ is a X-formula in definitional form with respect to £3™ and the set of
function definitions A corresponding to L™ is admissible, then ¢ and A(g) are equi-
satisfiable in T.

Proof sketch. First, we show that if ¢ is satisfied by an X-interpretation I, then A(y) is
satisfied by an £(X)-interpretation 7. Let 4 be the E(X)-interpretation that interprets all
types T € X% as 77, all functions f € ¥fas f1, and for each function f : 7y X -+ X 7, = 7
in 29 interprets s as 71 x -+ x 7} and each s, as the ith projection on such tuples
for i = 1,...,n. Since J satisfies ¢, it satisfies a set of ground literals L that entail ¢.
Furthermore, J satisfies every constraint of the form Ja : af. ¥¢(a) =~ 7, since by our
construction of 7 there exists a value v € af” such that v = 7. Thus, 7 satisfies LU X(L),
and by Lemma 5 we conclude 7 satisfies A(¢).

Second, we show that if A(yp) is satisfied by a E(X)-interpretation 7, then ¢ is
satisfied by a X-interpretation I. Since ¢ is in definitional form with respect to the
functions defined by A, it must be of the form A A ¢y. First, we define a sequence of
Y-literals sets Lo C L; C --- such that 7 satisfies L; U X(L;) for i =0, 1,.... Since J
satisfies A(¢p), by Lemma 5, 7 satisfies a set of literals L U X(L) where L is a set of
Y-literals that entail . Let Lo = L. For each i > 0, let ; be the formula A {4 (¢s[/%]) |



f(7) € T(L;), f € £}, where V;X. ¢ € A. Since 7 satisfies 4(V;X. ¢f) and X(L;), we
know that 7 also satisfies ;. Thus by Lemma 5, 7 satisfies a set of literals L U X(L)
where L is a set of X-literals that entail ;. Let L;;; = Ly U L. Let L., be the limit of
this sequence (i.e., £ € Lo if and only if £ € L; for some i), and let i be the X-formula
A L. To show that ¢ is closed under function expansion with respect to A, we first
note that by construction ¢ entails ... For any function symbol f and terms ¢, since
¢£[#/X] does not contain function definitions, by Corollary 6, A(¢¢[7/X]) entails ¢¢[z/%].
Thus,  entails {¢f[f/X] | f(7) € T (),f € 29}, meaning that y is closed under function
expansion with respect to A. Furthermore, ¢ entails ¢( since Ly C L. Since ¢ is a T-
satisfiable formula that is closed under function expansion with respect to A and A is
admissible, by definition there exists a X-interpretation [ satisfying ¢y A A, which entails
AN @, ie., . O

The intuition of the above proof is as follows. First, 4(¢) cannot be unsatisfiable
when ¢ is satisfiable since any X-interpretation that satisfies ¢ can be extended in a
straightforward way to an E(X)-interpretation that satisfies 4(y), by interpreting the
abstract types in the same way as the cartesian products they abstract, thereby satisfying
all existential constraints introduced by 4. Conversely, if a model is found for 4(y),
existential constraints introduced by 4 ensure that this model also satisfies a X-formula
that is closed under function expansion and that entails the goal of ¢. This implies the
existence of a model for ¢, assuming A is admissible.

Example 8. Let us revisit the formulas in Example 4. If the original formula (1) is
T -satisfiable, the translated formula (2) is clearly also T-satisfiable since @5 can be in-
terpreted as the integers and 7ys as the identity function. Conversely, we claim that (2)
is T-satisfiable only if (1) is T-satisfiable, noting that the set {Vsx. ¢s} is admissible,
where ¢ is the formula ite(x < 0, s(x) ~ 0, s(x) ~ x+s(x— 1)). Clearly, any inter-
pretation [ satisfying formula (2) satisfies Lo U X(Lg), where Lo = {s(c) > 100} and
X(Lo) consists of the single constraint Ja : as. ys(a) ~ c. Since I also satisfies both
the translated function definition for s (the first conjunct of (2)) and X(Ly), it must also
satisfy

ite(c <0, s(c) 0, s(c) c+s(c—1) ATb: as. ys(b) mc—1)

The existential constraint in the above formula ensures that whenever [ satisfies the set
Li=LyU{-c<0,s(c)~c+s(c—1)}, I satisfies X(L,) as well. Hence, by repeated
application of this reasoning, it follows that a model of formula (2) that interprets c as n
must also satisfy ¢

s(c) > 100/\/\1;(1)@ (c—i<0)As(c—i)mc—i+s(c—i—1))
ANc—n<0As(c—n)=0

This formula is closed under function expansion since it entails ¢s[(c —i)/x] for i =
0,...,n, and it contains only s applications corresponding to s(c — i) for i = 0,...,n.
Since {Vsx. ¢s} is admissible, there exists a X-interpretation satisfying & A Vsx. ¢s,
which entails formula (1). [ |



4 Implementations

We have implemented the translation 4 in two separate systems, as a preprocessor
in CVC4 (version 1.5 prerelease) and in the CVC4-based higher-order model finder
Nunchaku. This section describes how the translation is implemented in these systems,
as well as optimizations used by CVC4 for finding models of translated problems.

41 CVC4

In CVC4, function definitions V; X. ¢ can be written using the define-fun-rec command
from SMT-LIB 2.5 [3]. Formula (1) from Example 4 can be specified as

(define-fun-rec s ((x Int)) Int (ite (<= x0) 0 (+ x (s (- x 1)))))
(declare-fun c () Int)

(assert (> (s c) 100))

(check-sat)

When reading this input, CVC4 adds the annotated quantified formula
Vsx. s(x) ~ite(x <0, 0, s(x—1))
to its list of assertions, which after rewriting becomes
Vo x. ite(x <0, s(x) ~ 0, s(x) & s(x—1))

By specifying the command-line option - -fmf-fun, users can enable CVC4’s finite
model finding mode for recursive functions. In this mode, CVC4 will replace its list of
known assertions based on the A4 translation before checking for satisfiability. Accord-
ingly, the solver will output the approximation of the interpretation it used for recursive
function definitions. For the example above, it outputs a model of s where only the
values of s(x) for x =0,..., 14 are correctly given:

(model

(define-fun s (($x1 Int)) Int
(ite (= $x1 14) 105 (ite (= $x1 13) 91 (ite (= $x1 12) 78
(ite (= $x1 11) 66 (ite (= $x1 10) 55 (ite (= $x1 4) 10
(ite (= $x1 9) 45 (ite (= $x1 8) 36 (ite (= $x1 7) 28
(ite (= $x1 6) 21 (ite (= $x1 3) 6 (ite (= $x1 5) 15
(ite (= $x1 2) 3 (ite (= $x1 1) 1 0)))))))))))))))

(define-fun c () Int 14))

With the - -fmf-fun option enabled, CVC4 assumes that functions introduced us-
ing define-fun-rec are admissible. Admissibility must be discharged separately by
the user—e.g., using a syntactic criterion or a termination prover. If some function defi-
nitions are not admissible, CVC4 may answer sat for an unsatisfiable problem. Indeed,
if we add the inconsistent definition

(define-fun-rec h ((x Int)) Int (+ (h x) X))
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to the above problem and run CVC4 with the - -fmf-fun option, it wrongly answers
sat.

CVC(C4 implements a few optimizations designed to help finding finite models of
A(p). Like other systems, the finite model finding capability of CVC4 incrementally
fixes bounds on the cardinalities of uninterpreted types and increases these bounds until
it encounters a model. When multiple types are present, it uses a fairness scheme that
bounds the sum of cardinalities of all uninterpreted types [?]. For example, if a signature
has two uninterpreted types 71 and 77, it will first search for models where |71| + |72| is
at most 2, then 3, 4, and so on. To accelerate the search for models, we implemented an
optimization based on statically inferring monotonic types. A monotonic type is one in
which models can always be extended with additional elements of that type [?,?]. Types
a introduced by our translation A4 are monotonic, because =~ is never used directly on
such types [?]. CVC4 takes advantage of this by fixing the bounds for all monotonic
types simultaneously. That is, if 7; and 7, are inferred monotonic (whether they are
present in the original problem or introduced by our translation), the solver fixes the
bound for both types to be 1, then 2, and so on. This scheme allows the solver greater
flexibility compared with the default scheme, and comes with no loss of generality
with respect to models, since monotonic types can always be extended to have equal
cardinalities.

By default, CVC4 uses techniques to minimize the number of literals it considers
when constructing propositional satisfying assignments for formulas [?]. However, we
have found such techniques degrade performance for finite model finding on problems
having recursive functions that are defined by cases. For this reason, we disable the
techniques for problems produced from our translation.

4.2 Nunchaku

Nunchaku is a new higher-order model finder designed to be integrated with several
proof assistants. The first version, 0.1, was released in January 2016 with support for
(co)algebraic datatypes, (co)recursive functions and (co)inductive predicates. Support
for higher-order functions is planned for the next release. We have developed a pre-
liminary Isabelle frontend and are planning further frontends for Coq, the TLA* Proof
System, and possibly other proof assistants.

Nunchaku is the spiritual successor to Nitpick for Isabelle/HOL [7], but is devel-
oped as a standalone OCaml program, with its own input language. Whereas Nitpick
generates a succession of problems where cardinalities of finite types grow at each
step, Nunchaku translates its input to one first-order logic program that targets the finite
model finding fragment of CVC4, including (co)algebraic datatypes [23]. Using CVC4
also allows Nunchaku to provide efficient arithmetic reasoning and to detect unsatisfia-
bility in addition to satisfiability.

The input syntax was inspired by that other systems based on higher-order logic
(e.g., Isabelle/HOL) and by functional programming languages (e.g., OCaml). The fol-
lowing simple problem gives a taste of the syntax:

data nat := Zero | Suc nat.

pred even : nat -> prop :=
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even Zero;

forall n. odd n => even (Suc n)
and odd : nat -> prop :=

forall n. even n => odd (Suc n).

val m : nat.
goal even m & ~ (m = Zero).

The problem defines a datatype (nat) and two mutually recursive inductive predicates
(even and odd), it declares a constant m, and specifies a goal to satisfy (“m is even and
nonzero”). Nunchaku quickly finds the following partial model:

val m := Suc (Suc Zero).

val odd := fun x. if x = Suc Zero then true else ?__

val even := fun x. if x = Suc (Suc Zero) || x = Zero then true
else ?7__

The partial model gives sufficient information to the user to evaluate the goal: “2 is even
if 1is odd, 1 is odd if O is even, and O is even.”

Nunchaku parses and types the input problem before applying a sequence of trans-
lations, each reducing the distance to the target fragment. In our example, the predicates
even and odd are polarized (specialized into a pair of predicates such that one is used
in positive positions and the other in negative positions), m is skolemized into a fresh
constants, then translated into admissible recursive functions, before another pass ap-
plies the encoding described in this paper. If a model is found, it is translated back to
the input language, with ?__ placeholders indicating unknown values.

Conceptually, the sequence of transformation is a two-way pipeline built by com-
posing pairs (encode, decode) of transformations. For each such pair, encode transforms
a problem over a signature ¥ in a logic . to a problem over a signature ¥’ in a logic .%”,
and decode translates a model in .’ over ¥’ into a model in . over X, in the spirit of
institution theory [?]. The pipeline currently consists of the following phases:

Type inference infers types and checks definitions;

Type skolemization replaces Ja. ¢[a] with ¢[7], where 7 is a fresh type;

Monomorphization specializes polymorphic definitions on their type arguments and
removes unused definitions;

Elimination of equations translates multiple-equation definitions of recursive func-
tions into a single nested pattern matching;

Polarization specializes predicates into a version used in positive positions and a ver-
sion used in negative positions;

Unrolling adds a decreasing argument to possibly ill-founded predicates to make them
well founded;

Skolemization introduces Skolem symbols for term variables;

Elimination of (co)inductive predicates recasts a multiple-clause (co)inductive pred-
icate specification into a recursive equation;

Recursion elimination performs the encoding from Section 3;

Elimination of pattern matching rewrites pattern-matching expressions using data-
type discriminators and selectors;

CVC(C4 invocation runs CVC4 to obtain a model.
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5 [Evaluation

In this section, we evaluate both the overall impact of the translation introduced in Sec-
tion 3 and the performance of individual SMT techniques. We gathered 602 benchmarks
from three sources, which we will refer to as IsaPlanner, Leon, and Nunchaku-Mut:

e IsaPlanner consists of the 79 benchmarks from the IsaPlanner suite [16] that do
not contain higher-order functions. These benchmarks have been used recently as
challenge problems for a variety of inductive theorem provers. They heavily in-
volve recursive functions and are limited to a theory of algebraic datatypes with a
signature that contains uninterpreted function symbols over these datatypes.

e Leon consists of 166 benchmarks from the Leon repository,! which were con-
structed from verification conditions about simple Scala programs. These bench-
marks also heavily involve recursively defined functions over algebraic datatypes,
but cover a wide variety of additional theories, including bit vectors, arrays, and
both linear and nonlinear arithmetic.

e Nunchaku-Mut consists of 357 benchmarks originating from Isabelle/HOL. They
involve (co)recursively defined functions over (co)algebraic datatypes and uninter-
preted functions but no other theories. They were obtained by mutation of negated
Isabelle theorems, as was done for evaluating Nitpick [7]. Benchmarks created by
mutation have a high likelihood of having small, easy-to-find models.

The IsaPlanner and Leon benchmarks are expressed in SMT-LIB 2.5 and are in def-
initional form with respect to a set of well-founded functions. The Leon tool was used
to generate SMT-LIB files. A majority of these benchmarks are unsatisfiable. For each
of the 245 benchmarks, we considered up to three randomly selected mutated forms of
its goal ¢. In particular, we considered unique formulas that are obtained as a result
of exchanging a subterm of i at one position with another of the same type at another
position. In total, we considered 213 mutated forms of theorems from IsaPlanner and
427 mutated forms of theorems from Leon. We will call these sets IsaPlanner-Mut and
Leon-Mut, respectively. Each of these benchmarks exists in two versions: without and
with the A4 translation. Problems with 4 were produced by running CVC4’s preproces-
sor on each benchmark.

For Nunchaku-Mut, the Isabelle Nunchaku frontend was used to generate thousands
of Nunchaku problems from Isabelle/HOL theory files involving lists, trees, and other
functional data structures. Nunchaku was then used to generate SMT-LIB files, again in
two versions: without and with the 4 translation. Problems requiring higher-order logic
were discarted, since Nunchaku does not yet support them, leaving 357 problems.

Among SMT solvers, we considered Z3 [12] and CVC4 [2]. Z3 runs heuristic meth-
ods for quantifier instantiation [11] as well as methods for finding models for quantified
formulas [14]. For CVC4, we considered four configurations, referred to as CVC4h,
CVC4f, CVC4th, and CVC4fm. The configuration CVC4h runs heuristic and conflict-
based techniques for quantifier instantiation [25], but does not include techniques for
finding models. The other configurations run the finite model finding procedure due to

1 https://github.com/epfl-lara/leon/
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73 CVC4h  CVC4f CVC4th  CVC4fm

o Alp) ¢ Alp) ¢ Alp) ¢ Ale) ¢ Alp)

IsaPlanner 0 0 0 0 0 0 0 0 0 0
IsaPlanner-Mut 0 41 0 0 0 153 0 153 0 153
Leon 0 2 0 0 0 9 0 9 0 10
Leon-Mut 11 78 6 6 6 189 6 189 6 189
Nunchaku-Mut 3 27 0 0 3 199 2 200 2 199
Total 14 148 6 6 8 550 8 551 8 551

Fig. 2. Number of sat responses on benchmarks without and with A4 translation

73 CVC4h CVC4f CVC4fh  CVC4fm

e Alp) ¢ Ale) ¢ Alp) ¢ Ale) ¢ Alp)

IsaPlanner 14 15 15 15 1 15 15 15 1 15
IsaPlanner-Mut 18 18 18 18 4 18 18 18 4 18
Leon 74 79 80 80 17 78 80 77 17 78
Leon-Mut 84 98 104 98 24 100 104 98 24 100
Nunchaku-Mut 61 59 46 53 45 59 44 59 45 59
Total 251 269 263 264 91 270 261 267 91 270

Fig. 3. Number of unsat responses on benchmarks without and with 4 translation

Reynolds et al. [26,27]. The configuration CVC4fh additionally incorporates heuristic
quantifier instantiation as described in Section 2.3 of [27], and CVC4fm incorporates
the fairness scheme for monotonic types as described in Section ??.

The results are summarized in Figures 2 and 3. Bold indicates the maximum of a
row. The benchmarks and more detailed results are available online.”> The figures are
divided into benchmarks triggering unsat and sat responses and further into benchmarks
before and after the translation 4. The raw evaluation data reveals no cases in which
a solver answered unsat on a benchmark ¢ and sat on its corresponding benchmark
A(p), or vice versa. This is consistent with our expectations and Theorem 7, since
these benchmarks contain only well-founded function definitions.

Figure 2 shows that for untranslated benchmarks (the “¢” columns), the number
of sat responses is very low across all configurations. This confirms the shortcomings
of existing SMT techniques for finding models for benchmarks containing recursively
defined functions. The translation 4 (the “4(¢)” columns) has a major impact. CVC4f
finds 550 of the 1242 benchmarks to be satisfiable, including 6 benchmarks in the non-
mutated Leon benchmark set. The two optimizations for finite model finding in CVC4
(configurations CVC4fh and CVC4fm) led to a net gain of one satisfiable benchmark
each with respect to CVC4{. The performance of Z3 for countermodels also improved
dramatically, as it finds 134 more benchmarks to be satisfiable, including 5 that are not
solved by CVC4f. We conclude that the translation A4 enables SMT solvers to find coun-
termodels for conjectures involving recursively defined functions whose definitions are
admissible.

2 http://lara.epfl.ch/~reynolds/IJCAR2016- recfun/
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Moreover, the translation A4 helps all configurations for unsat responses as well.
73 solves a total of 269 with the translation, whereas it solves only 251 without it.
Surprisingly, the configuration CVC4f, which is not tailored for handling unsatisfiable
benchmarks, solves 270 unsat benchmarks overall, which is more than both CVC4h
and Z3. These results suggest that the translation do not degrade the performance of
SMT solvers for unsatisfiable problems involving recursive functions, and instead often
improve their performance. It would be interesting to try this out in Sledgehammer [?]
and to try Nunchaku as a proof tool.

6 Related Work

We described the most closely related work, by Ge and de Moura [14] and by Reynolds
et al. [26,27], in the text already. The finite model finding support in the instantiation-
based iProver [17] is also close, given the similarities with SMT.

Some finite model finders are based on a reduction to a decidable logic, typically
propositional logic. They translate the input problem to the weaker logic and pass it to
a solver for that logic. The translation is parameterized by upper or exact finite bounds
on the cardinalities of the atomic types. This procedure was pioneered by McCune in
the earlier versions of Mace (originally styled MACE) [22]. Other conceptually similar
finders are Paradox [10] and FM-Darwin [4] for first-order logic with equality; the Alloy
Analyzer and its back-end Kodkod [30] for first-order relational logic; and Refute [32]
and Nitpick [7] for higher-order logic.

An alternative is to perform an exhaustive model search directly on the original
problem. Given fixed cardinalities, the search space is represented as multidimensional
tables. The procedure tries different values in the function and predicate tables, check-
ing each time if the problem is satisfied. This approach was pioneered by FINDER [29]
and SEM [33] and serves as the basis of many more model finders, notably the Alloy
Analyzer’s precursor [15] and the later versions of Mace [21].

Most of the above tools cannot cope with algebraic datatypes or other infinite types.
Kuncak and Jackson [19] presented an idiom for encoding datatypes and recursive func-
tions in Alloy, by approximating datatypes by finite subterm-closed substructures. The
approach finds sound (fragments of) models for formulas in the existential-bounded-
universal fragment(i.e., formulas whose prenex normal forms contain no unbounded
universal quantifiers ranging over datatypes). This idiom was further developed by
Dunets et al. [13], who presented a translation scheme for primitive recursion. Their
definedness guards play a similar role to the existential constraints generated by our
translation 4. An approach related in scope to ours is given in [?], which establishes
the satisfiability of formulas in the presence of admissible axioms over infinite domains
by proving their negation is entailed.

The higher-order model finder Nitpick [7] for the Isabelle/HOL proof assistant re-
lies on another variant of Kuncak and Jackson’s approach inside a Kleene-style three-
valued logic, inspired by abstract interpretation. It was also the first tool of its kind to
support corecursion and coalgebraic datatypes [6]. The three-valued logic approach ex-
tends each approximated type with an unknown value, which is propagated by function
application. This scheme works reasonably well in Nitpick, because it builds on a rela-
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tional logic, but our initial experiments with CVC4 suggest that it is more efficient to
avoid unknowns by adding existential constraints.

The Leon system [5] implements a procedure that can produce both proofs and
counterexamples for properties of terminating functions written in a subset of Scala.
Leon is based on an SMT solver. It avoids quantifiers altogether by unfolding recursive
definitions up to a certain depth, which is increased on a per-need basis. Our transla-
tion 4 works in an analogous manner, where instead the SMT solver is invoked only
once and quantifier instantiation is used in lieu of function unfolding. It would be worth
investigating how existing approaches for function unfolding can inform approaches for
dedicated quantifier instantiation techniques for function definitions, and vice versa.

Model finding is concerned with satisfying arbitrary logical constraints. Some tools
are tailored for problems that correspond to total functional programs. QuickCheck [9]
for Haskell is an early example, based on random testing. Bounded exhaustive testing
[28] and narrowing [20] are other successful strategies. These tools are often much
faster than model finders, but they typically cannot cope with underspecification and
nonexecutable functions.

7 Conclusion

We presented a translation scheme that extends the scope of finite model finding tech-
niques in SMT, allowing one to use them to find models of quantified formulas over
infinite types, such as integers and algebraic datatypes. In future work, it would be
interesting to evaluate the approach against other counterexample generators, notably
Leon, Nitpick, and Quickcheck, and enrich the benchmark suite with more problems
exercising CVC4’s support for coalgebraic datatypes [23]. We are also working on an
encoding of higher-order functions in SMT-LIB, as a generalization to the current trans-
lation scheme, for Nunchaku. Further work would also include identifying additional
sufficient conditions for admissibility, thereby enlarging the applicability of the transla-
tion scheme presented here.
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