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Abstract. SMT solvers have been used successfully as reasoning engines for au-
tomated verification. Current techniques for dealing with quantified formulas in
SMT are generally incomplete, forcing SMT solvers to report “unknown” when
they fail to prove the unsatisfiability of a formula with quantifiers. This inability
to return counter-models limits their usefulness in applications that produce quan-
tified verification conditions. We present a novel finite model finding method that
reduces these limitations in the case of quantifiers ranging over free sorts. Our
method contrasts with previous approaches for finite model finding in first-order
logic by not relying on the introduction of domain constants for the free sorts and
by being fully integrated into the general architecture used by most SMT solvers.
This integration is achieved through the addition of a novel solver for sort car-
dinality constraints and a module for quantifier instantiation over finite domains.
Initial experiments with verification conditions generated from a deductive ver-
ification tool developed at Intel Corp. show that our approach compares quite
favorably with the state of the art in SMT.

1 Introduction

Techniques and solvers for Satisfiability Modulo Theories (SMT) have been used suc-
cessfully in recent years to support a variety of formal methods for hardware and soft-
ware development, including automated verification. They are especially effective for
verification tasks that can be reduced to proving the unsatisfiability of quantifier-free
formulas in certain logical theories. A number of verification applications, however,
dealing with data structures not modeled by an SMT solver’s built-in theories, or ana-
lyzing systems with an unbounded number of processes or memory locations, require
solvers that can prove the unsatisfiability of quantified formulas in those theories.

SMT solvers that can reason about quantified formulas are based on incomplete
methods and so often report “unknown” when they fail, after some predetermined
amount of effort, to prove a quantified formula unsatisfiable. For verification purposes,
however, it is very useful to know when such formulas are indeed satisfiable; especially
if the solver can also return some representation of the formula’s model, as that can be
used to identify errors in the artifact being verified or in the formulation of its intended
properties. Current SMT solvers are able to produce models of satisfiable quantified
formula only in fairly restricted cases [8], which limits their scope and usefulness.

We reduce these limitations with a novel method for model finding in SMT. By the
undecidability of first-order logic there are no automated methods for finding arbitrary
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models. So we focus on finite models, which can be enumerated and represented sym-
bolically. More precisely, since SMT solvers work with sorted logics with both built-in
and free (“uninterpreted”) sorts, we focus on finding models that interpret the free sorts
as finite domains. As with finite model finders for standard first-order logic, the main
idea is simply to check universal quantifiers exhaustively over candidate models with
increasingly large domains for the free sorts, until an actual model is found. Our method
differs from previous approaches by not relying on the explicit introduction of domain
constants for the free sorts, and by being fully integrated into the general architecture
used by many SMT solvers. While our approach is limited to SMT formulas with quan-
tifiers ranging only over free sorts, it is still quite useful because such formulas occur
often in verification applications; moreover, when satisfiable they usually have small
finite models.

We present our finite model finding method in the context of an abstract framework
that models a large class of SMT solvers supporting multiple theories and quantified
formulas. An overview of this framework is provided in Section 2. The method itself is
described in Section 3. In Section 4, we discuss the initial experimental results obtained
with our implementation of the method within the SMT solver CVC4.

Related work The state of the art in finite model finding in first-order logic is exem-
plified by tools such as MACE and Paradox [5]. Their approach is based on encoding
to SAT the problem of whether a given set of first-order universally quantified formulas
has a model of a given size k. The encoding is based on (1) the introduction of k domain
constants, fresh constant symbols representing the elements of the model’s domain;
and (2) an exhaustive instantiation of the input formulas with these constants. Further
ground constraints are added to state that the k domain constants denote all domain ele-
ments and are pairwise distinct. The resulting ground formulas are then encoded into a
propositional formula and fed to a SAT solver. Advances on this approach mostly focus
on addressing two of its main limitations for scalability: the size of the resulting propo-
sitional formula and the presence of value symmetries, that is, (partial) solutions that
are equivalent modulo a permutation of the domain constants (see [15] for example).

An alternative approach, pioneered by the SEM model finder [17], is based on tra-
ditional constraint satisfaction methods and a built-in treatment of ground equational
reasoning. It relies on special search techniques, such as symmetry reduction and least-
number heuristics, to enumerate possible models efficiently.

Our method is more similar to SEM-style model finding in that it is not based on
reductions to SAT, and is free of the spurious symmetries caused by the use of domain
constants. In contrast to SEM, we rely on the DPLL(T ) architecture common to many
SMT solvers as our core search procedure, and use on-demand instantiation techniques
for handling quantifiers. That way, our method can handle natively formulas that also
involve operators from theories such as arithmetic, arrays, bit vectors, and so on, as long
as none of their quantifiers range over the non-free sorts of these theories.

Formal preliminaries We work in the context of many-sorted first-order logic with
equality. We fix a set S of sort symbols and for every S ∈ S an infinite set of XS of
variables of sort S. We assume the sets XS are pairwise disjoint and let X be their union.
A signature Σ consists of a set Σs ⊆ S of sort symbols and a set Σf of (sorted) function
symbols f S1···SnS, where n≥ 0 and S1, . . . ,Sn,S ∈ Σs. We drop the sort superscript from
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function symbols when it is clear from context or unimportant. Without loss of general-
ity we use equality, denoted by≈, as the only predicate symbol. We abbreviate ¬(s≈ t)
with s 6≈ t.

Given a signature Σ, well-sorted terms, atoms, literals, clauses, and (possibly quan-
tified) formulas with variables in X are defined as usual3 and referred to respectively as
Σ-terms, Σ-atoms and so on. A ground term/formula is a Σ-term/formula with no vari-
ables. Where x = (x1, . . . ,xn) is tuple of variables and Q is either ∀ or ∃, we write Qxϕ

as an abbreviation of Qx1 · · ·Qxn ϕ. If ϕ is a Σ-formula and x has no repeated variables,
we write ϕ[x] to denote that ϕ’s free variables are from x; if t = (t1, . . . , tn) is a term
tuple we write ϕ[t] for the formula obtained from ϕ by simultaneously replacing each
occurrence of xi in ϕ by ti.

A Σ-interpretation I maps: each S ∈ Σs to a non-empty set SI , the domain of S
in I ; each x ∈ X of sort S to an element xI ∈ IS; and each f S1···SnS ∈ Σf to a total
function f I : SI

1×·· ·×SI
n→ SI . A satisfiability relation between Σ-interpretations and

Σ-formulas is defined inductively as usual. The reduct of I to a sub-signature Ω of Σ is
an Ω-interpretation that coincides with I on the symbols in Ω.

A theory is a pair T = (Σ,I) where Σ is a signature and I a class of Σ-interpretations,
the models of T , that is closed under variable reassignment (i.e., every Σ-interpretation
that differs from one in I only for how it interprets the variables is also in I) and iso-
morphism. A formula ϕ[x] of T is satisfiable (resp., unsatisfiable) in T if it is satisfied
by some (resp., no) interpretation in I. A set Γ of formulas entails in T a Σ-formula ϕ,
written Γ |=T ϕ, if every interpretation in I that satisfies all formulas in Γ satisfies ϕ

as well. The set Γ is satisfiable in T if Γ 6|=T ⊥ where ⊥ is the universally false atom.
When Γ and ϕ are ground we write Γ |=p ϕ if Γ propositionally entails ϕ, that is, if the
set Γ∪{¬ϕ} is unsatisfiable when considering all atomic formulas in it as propositional
variables. The combination T1+T2 of two theories T1 = (Σ1,I1) and T2 = (Σ2,I2) is the
theory (Σ,I) where Σ = Σ1 ∪Σ2 and I is the largest class of Σ-interpretations whose
reduct to Σi is in Ii for i = 1,2.

2 Satisfiability modulo multiple theories

In its most general formulation, SMT is the problem of determining the satisfiability of
a set of formulas in some theory T which is possibly a combination of several theories.
Our finite model finding method applies to lazy SMT solvers based on the DPLL(T )
architecture [11]. Such solvers combine modularly a generic CDCL SAT solver4 (the
SAT engine) with one or more reasoners (the theory solvers) specialized on deciding the
satisfiability of constraints, conjunctions of ground literals, in a specific theory. Some
SMT solvers are able to reason also about quantified formulas. All of them rely on some
form of heuristic quantifier instantiation where existential quantifiers are Skolemized
and universal ones are instantiated with a heuristic selection of ground terms.

DPLL(T )-style SMT solvers are conveniently described at an abstract level using a
rule-based framework introduced by Nieuwenhuis et al. [11] and then further developed

3 With atoms s≈ t well sorted iff s and t are well sorted terms of the same sort.
4 Conflict-Driven Clause Learning solvers were previously referred to as DPLL solvers.
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by Krstić and Goel [10] for solvers that combine multiple built-in theories, and by Ge
et al. [7] for solvers that use heuristic quantifier instantiation. We synthesize the main
ideas of those works in a single framework, focusing on aspects most relevant to our
task at hand. We present the general framework here and then show in Section 3 how it
can be extended to look for finite models for formulas with quantifiers over free sorts.

Abstract framework For the rest of the paper we will consider a theory T = T1 +
. . .+Tm where each Ti is a theory of signature Σi, and T1 is the theory of equality over
“uninterpreted functions”, also known as EUF. We call free those sort and function
symbols whose interpretation is not restricted in any way by any of the theories, and
consider them as part of the EUF signature; we call built-in all the others. For conve-
nience and without loss of generality, we assume that Σ1, . . . ,Σm have the same set S of
sort symbols and share a distinguished infinite set CS of free constants of sort S for each
S ∈ S. Let C =

⋃
S∈S CS. We also assume that S includes a Boolean sort Bool and a con-

stant true of that sort—allowing us to encode predicate symbols as function symbols
of return sort Bool. As customary, we impose the (real) restriction that the signatures
Σ1, . . . ,Σm share no function symbols besides the constants in C .

We describe SMT solvers for the theory T abstractly as state transition systems.
States are either the distinguished state fail or triples of the form 〈M,F,C〉 where

– M, the current assignment, is a sequence of literals and decision points •,
– F is a set of formulas derived from the original input problem, and
– C is either the distinguished value no or a conflict clause.

Each assignment M can be factored uniquely into the subsequence concatenation M0 •
M1 •· · ·•Mn, where no Mi contains decision points. For i= 0, . . . ,n, we call Mi the deci-
sion level i of M and denote with M[i] the subsequence M0 • · · · •Mi. When convenient,
we will treat M as the set of its literals and call them the asserted literals.

The formulas in F have a particular purified form that can be assumed with no
loss of generality since any formula can be efficiently converted into that form while
preserving satisfiability in T : each element of F is either a ground clause or a formula
of the form a⇔ ∀xC[x] where a is a ground atom and C is a clause. Moreover, each
atom occurring in F is pure, that is, has signature Σi for some i ∈ {1, . . . ,m}.

Initial states have the form 〈 /0,F0,no〉 where F0 is an input set of formulas to be
checked for satisfiability. The expected final states are fail, when F0 is unsatisfiable in
T ; or 〈M,F,no〉 with M satisfiable in T , F equisatifiable with F0 in T , and M |=p F .

Transition rules The possible behaviors of the system are defined by a set of non-
deterministic state transition rules, specifying a set of successor states for each current
state.5 The rules are provided in Figure 1 in guarded assignment form [10]. A rule
applies to a state s if all of its premises hold for s. In the rules, M, F and C respectively
denote the assignment, formula set, and conflict component of the current state. The
conclusion describes how each component is changed, if at all. We write l to denote the
complement of literal l and l ≺M l′ to indicate that l occurs before l′ in M. The function
lev maps each literal of M to the (unique) decision level at which l occurs in M. The set

5 To simplify the presentation, we do not consider here rules that model the forgetting of learned
lemmas and restarts of the SMT solver.
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Decide
l ∈ LitF∪ IntM l, l /∈M

M :=M• l
Conflicti

C= no l1, . . . , ln ∈M l1, . . . , ln |=i ⊥
C := l1∨·· ·∨ ln

Fail
C 6= no • /∈M

fail
Backjump

C= l1∨·· ·∨ ln∨ l lev l1, . . . , lev ln ≤ i < lev l

C := no M :=M[i] l

Propagatei
l1, . . . , ln ∈M l1, . . . , ln |=i l l ∈ LitF∪ IntM l, l /∈M

M :=M l

Explaini
C= l∨D l1, . . . , ln |=i l l1, . . . , ln ≺M l

C := l1∨·· ·∨ ln∨D
Learn

C 6= no

F := F∪{C}

Learni
/0 |=i ∃x(l1[x]∨·· ·∨ ln[x]) l1, . . . , ln ∈ LitM|i∪ IntM∪Li

F := F∪{l1[c]∨·· ·∨ ln[c]}

∀-Inst
a ∈M a⇔∀xC[x] ∈ F

F := F∪{¬a∨C[t]}
∃-Inst

¬a ∈M a⇔∀x l1[x]∨·· ·∨ ln[x] ∈ F

F := F∪{a∨ l1[c], . . . ,a∨ ln[c]}

Fig. 1: DPLL(T1, . . . ,Tm) rules. In Learni, x may be empty. In Learni and ∃-Inst, c are fresh
constants from C of the same sort as x. In ∀-Inst, t are ground terms of the same sort as x and
such that C[t] is in purified form.

LitF (resp., LitM) consists of all ground literals in F (resp., all literals of M) and their
complements. For i = 1, . . . ,m, the set LitM|i consists of the Σi-literals of LitM. IntM is
the set of all interface literals of M: the equalities and disequalities between constants
c,d with c and d occurring in LitM|i and LitM| j for two distinct i, j ∈ {1, . . . ,m}.

The index i ranges from 0 to m for the rules Propagatei, Conflicti and Explaini,
and from 1 to m for Learni. In all rules, |=i abbreviates |=Ti when i > 0. In Propagate0,
l1, . . . , ln |=0 l simply means that l1∨·· ·∨ ln∨ l ∈ F. Similarly, in Conflict0, l1, . . . , ln |=0
⊥ means that l1 ∨ ·· · ∨ ln ∈ F; in Explain0, l1, . . . , ln |=0 l means that l1 ∨ ·· · ∨ ln ∨
l ∈ F. The rules Decide, Propagate0, Explain0, Conflict0, Fail, Learn, and Backjump
model the behavior of the SAT engine, which treats ground atoms as Boolean variables
and ignores quantified formulas. The rules Conflict0 and Explain0 model the conflict
discovery and analysis mechanism used by CDCL SAT solvers.

All the other rules but ∀-Inst and ∃-Inst model the interaction between the SAT
engine and the individual theory solvers in the overall SMT solver. Generally speaking,
the system uses the SAT engine to construct the assignment M as if the problem were
propositional, but it periodically asks the sub-solvers for each theory Ti to check if
the set of Σi-constraints in M is unsatisfiable in Ti, or entails some yet undetermined
literal from LitF ∪ IntM. In the first case, the sub-solver returns an explanation of the
unsatisfiability as a conflict clause, which is modeled by Conflicti with i = 1, . . . ,m.
The propagation of entailed theory literals and the extension of the conflict analysis
mechanism to them is modeled by the rules Propagatei and Explaini. The inclusion of
the interface literals IntM in Decide and Propagatei achieves the effect of the Nelson-
Oppen combination method [14, 4]. The rule Learni is needed to model theory solvers
following the splitting-on-demand paradigm [3]. When asked about the satisfiability of
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their constraints, these solvers, may return instead a splitting lemma, a formula valid in
their theory and encoding a guess that needs to be made about the constraints before the
solver can determine their satisfiability. The set Li in the rule is a finite set consisting of
literals, not present in the original formula F0, which may be generated by such solvers.

The ∀-Inst and ∃-Inst rules model the quantifier instantiation mechanism. When the
atom a, which serves as a proxy for the quantified formula ∀xC, occurs positively in
the current assignment M, the SMT solver adds one or more ground instances of the
formula a⇒C[x]. When a occurs negatively, the system adds the (Skolemized) clause
form of ¬a⇒¬∀xC. Instantiation heuristics dictate which instances are generated and
how quantifier instantiation applications are interleaved with the other operations.

Executions and correctness An execution of a transition system modeled as above is
a (possibly infinite) sequence s0,s1, . . . of states such that s0 is an initial state and for all
i ≥ 0, si+1 can be generated from si by the application of one of the transition rules. A
system state is irreducible if no transition rules besides Learni apply to it. An exhausted
execution is a finite execution whose last state is irreducible. An application of Learni
is redundant in an execution if the execution contains a previous application of Learni
with the same premise.

Adapting results from [11, 10, 3], it can be shown that every execution satisfies
the following invariants: M contains only pure literals and no repetitions; F |=T C and
M |=p ¬C when C 6= no; every model of T satisfying F satisfies the initial set of formu-
las. Moreover, in the absence of quantified formulas, the transition system is terminat-
ing: every execution with no redundant applications of Learni is finite; and sound : for
every execution starting with a state 〈 /0,F0,no〉 and ending with fail, the clause set F0 is
unsatisfiable in T . Under suitable assumptions on the sub-theories T1, . . . ,Tm, the sys-
tem is also complete: for every exhausted execution starting with 〈 /0,F0,no〉 and ending
with 〈M,F,no〉, M is satisfiable in T and M |=p F0. With quantified formulas, soundness
is preserved but termination and completeness are lost in general.

3 Finite Model Finding with DPLL(T1, . . . ,Tm)

We have developed a method that, given a set F0 of formulas in purified form, searches
for a model of T that satisfies F0 and interprets all the free sorts as finite sets. Abusing
the terminology, we will call such models finite.

The basic version of our method is restricted to input sets whose quantified formu-
las quantify only variables of free sorts. An extended version applies also to quantifiers
over built-in sorts such as integer, real, array sorts and so on, as long as the quanti-
fied variables occur only as arguments of free function symbols. However, we do not
discuss that extension here for space constraints.6 In the basic version, thanks to the
use of formulas in purified form, our treatment of terms constructed with built-in func-
tion symbols is completely standard: built-in ground literals are processed modularly
by their corresponding theory solver, and global consistency of the asserted literals is

6 In fact, the extended version also works with quantifiers over built-in sorts always interpreted
as a fixed finite domain such as, for instance, the sorts in the theory of fixed sized bit vectors.
However, it is practical only for domains of small size.
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guaranteed via the exchange of interface literals. As a consequence, we focus on free
function symbols here.

We look for finite models with the aid of a new theory FCC (finite cardinality con-
straints) and a solver for it. We assume FCC is one of the sub-theories T1, . . . ,Tm.

Definition 1 (Theory FCC of finite cardinality constraints). The signature ΣFCC of
FCC consists of (i) the same free sort symbols of EUF, (ii) the set C of free constants,
and (iii) a constant cardS,k of sort Bool for each free sort S and integer k > 0. Its models
are all ΣFCC-interpretations that satisfy each cardS,k exactly when they interpret S as a
set of cardinality n≤ k.

Note that the only ground atoms in FCC besides those of the form cardS,k are equal-
ities between free constants. It is not difficult to show, using reductions to and from
graph coloring, that the satisfiability of ground literals in FCC is an NP-complete prob-
lem. A solver for ground EUF constraints and one for ground FCC constraints can be
combined Nelson-Oppen style to obtain a solver for ground EUF problems with finite
cardinality constraints. This follows immediately from extended combination results
by Ranise et al. ([12], Theorems 13 and 21). The main idea is to apply the standard
Nelson-Oppen non-deterministic combination procedure [14] but to a flattened version
of the the original input problem, a set of equational literals with equations and dise-
quation respectively of the form c≈ f (c1, . . . ,cn) and d 6≈ d′ where f is a symbol of the
original problem and c,c1, . . . ,cn,d,d′ are constants from C . We will call this form a
flat form. This entails that the theory FCC can be incorporated into our abstract frame-
work without loss of completeness for ground problems, provided that all literals in the
problem are in flat form.7

3.1 An efficient solver for FCC

We have developed an FCC solver meant to be efficient in practice when integrated into
the DPLL(T1, . . . ,Tm) architecture together with a conventional congruence closure-
based solver for EUF. We describe how to use the FCC solver to endow DPLL(T1, . . . ,Tm)
with finite model finding abilities for EUF in the next subsection. Here, we give a high
level overview of the FCC solver and how it cooperates with the EUF solver to solve
ground EUF problems with cardinality constraints.

The main idea is first to find a model of the EUF constraints, if it exists; and then
try to shrink that model as needed to satisfy the cardinality constraints. Consider the
constraints G∪R where

– G is a set of equalities and disequalities in flat form
– R is a set of FCC constraints over the free sorts of EUF
– any (dis)equality between free constants that occurs in R is also in G

Let TG be the set of all (sub-)terms occurring in G. If G is satisfiable, the EUF solver
can compute a congruence relation ≡E over TG that is consistent with G in the sense

7 In reality, a flat form is not needed. One can construct an FCC solver that takes in arbitrary
ground EUF literals but treats every EUF term as a constant.
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that s ≡E t for all s≈ t ∈ E and c 6≡E d for all c 6≈ d ∈ D. Since G is in flat form, each
equivalence class of ≡E of terms of some sort S contains a constant from CS, so we can
use it as the representative of that class and call it a representative constant for S. It is
well-known that if c1, . . . ,ch are all the representative constants for a free sort S, there is
an EUF model M satisfying G such that SM = {c1, . . . ,ch} (see, for example, [1] §4.3).

Now consider just the card constraints in R. Since constraints about a sort impose
no restrictions on the other sorts in FCC, the FCC solver can look at them separately by
sort. So let S be one of the sorts in R and let K = {¬cardS,i}i∈I ∪{cardS, j} j∈J collect
all the card constraints in R for S. Observe that K is satisfiable in FCC iff I = /0 or
J = /0 or max(I) < min(J). When K is satisfiable and J is non-empty, the FCC solver
needs to check that R∪ cardS,k is satisfiable with k = min(J). This is immediate if
k≥ h where h is the number of equivalence classes the EUF solver has computed for S.
Otherwise, R∪cardS,k is satisfiable if and only if enough of those classes can be merged
to reduce their number to at most k. At this point the FCC solver needs to strengthen
R with one equality c≈ d between distinct representative constants. Since R∪{c≈ d}
may be unsatisfiable in FCC, or G∪{c ≈ d} may be unsatisfiable in EUF, all possible
equalities between representative constants may have to be considered. If none of them
works, G∪ cardS,k is unsatisfiable. Otherwise, R must be strengthened again as above
until S has at most k equivalence classes.

Disequality graphs Following the splitting-on-demand approach, the FCC solver will
return “satisfiable” or “unsatisfiable” only if it can determine the satisfiability of its
constraints without having to guess any equality between representative constants. Oth-
erwise, it will simply identify a possible equality c≈ d and let the SAT engine decide on
it by returning the merge lemma c≈ d∨c 6≈ d.8 The solver is able to reduce the number
of equality guesses by maintaining a disequality graph for each free sort S. This is an
undirected graph whose vertices are representative constants for S that occur in G, and
whose edges link only vertices c,d with G |=EUF c 6≈ d. This data structure tells the FCC
solver that certain pairs of constants, the linked ones, cannot be equated.

We illustrate the overall mechanism and the intended collaboration dynamics be-
tween the EUF and the FCC solver with a couple of examples.

Example 1. Let G∪R be {a≈ f (b), b≈ f (c), a 6≈ b, b 6≈ c, cardS,2} over the single sort
S. From it, the EUF solver computes the congruence {{a, f (b)}, {b, f (c)}, {c}}. Using
a,b,c as the representatives, the FCC solver builds the disequality graph with edges
{(a,b),(b,c)}. Since cardS,2 limits the size of S to at most 2, the FCC solver generates
the merge lemma a≈ c∨a 6≈ c. Strengthening R with a≈ c produces no EUF conflicts
and allows the FCC solver to answer “satisfiable”.

Example 2. Consider the constraints {c1 ≈ c, c4 ≈ c, c1 6≈ c2, c2 6≈ c3, c3 6≈ c4, c4 6≈
c5, cardS,2} where all the constants have sort S. The corresponding disequality graph
for these constraints contains a clique of size 3. By discovering that clique, the FCC
solver can conclude that it is impossible to shrink the model to 2 elements, and report a
conflicting clause consisting of the literals that explain the unsatisfiability: c1 6≈ c∨c4 6≈
c∨ c1 ≈ c2∨ c2 ≈ c3∨ c3 ≈ c4∨¬cardS,2.

8 This is slightly inaccurate. In reality, the solver asks the SAT engine to apply Decide on c≈ d.
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3.2 FCC Solver Enhancements: Regions

The FCC solver is able to detect the unsatisfiability of a constraint set D∪{cardS,k},
where D is a set of disequalities between representative constants for S, only if the
disequality graph corresponding to D contains a (k+ 1)-vertex clique. Now, even just
checking for the presence of a (k + 1)-clique in a n-vertex graph is too expensive in
general—as its worst case complexity is O(nk+1(k+1)2). We have developed a method
that reduces that cost in practice by partitioning the vertices of the graph into regions.

The partition is updated incrementally as the graph evolves so as to maintain the
invariant that any (k+1)-clique of the graph is entirely contained in one of the regions.
We call such partitions a regionalization of the graph. Regionalizations help provide a
weak effort type of satisfiability check where the theory solver reports “(un)satisfiable”
only when the (un)satisfiability of its constraints is immediate, and reports “unknown”
otherwise. Frequent weak effort checks are commonly used in SMT solvers [11]. They
are useful during the extension of the assignment M, to avoid extensions that are clearly
unsatisfiable in one of theories. In contrast, strong effort checks, where the theory solver
is required to give a definite answer or provide a splitting lemma, are needed (for cor-
rectness) only when the SMT solver has found an assignment M that propositionally
entails the current set of ground clauses.

Weak effort checks When a vertex is added to the graph it starts into its own singleton
region. Two regions are combined into one whenever the addition of an edge or the
merging of two nodes breaks the regionalization invariant by creating too many inter-
regional edges, which link two vertices belonging to different regions. The choice of
which regions to combine is made heuristically in an effort to increase the likelihood of
generating a (k+1)-clique. Specifically, a region is combined with the one with which
it shares the highest number of inter-regional edges. For any given regionalization of the
disequality graph, small regions, those with less than k+1 vertices, cannot give rise to a
clique. So our solver ignores them and focuses on the large regions, the other ones. The
solver maintains a set of k+ 1 watched vertices from each large region, representing
a candidate clique. A new vertex from the region is added to this set whenever two
vertices in it are merged, to maintain the set’s size at k+1.9 The solver also keeps track
of all pairs of watched vertices that are not linked. This way it knows that the region
contains a (k+1)-clique as soon as the set of those pairs becomes empty. Similarly, it
knows that the graph cannot contain any (k+ 1)-cliques as soon as the set of regions
reduces to one small region. These facts are used to determine the answer of weak effort
satisfiability checks.

Example 3. Consider the constraints {c1 6≈ c2,c2 6≈ c3,c3 6≈ c4,cardS,2}, all over sort S,
and the partition {{c1,c2},{c3,c4}}. That partition is indeed a regionalization because
a 3-clique can span two regions only if it contains two interregional edges, and this
partition only has one. Adding the disequation c2 6≈ c4 or c1 6≈ c4, say, breaks the re-
gionalization invariant. In either case, FCC the solver would then merge the two regions
(and discover a 3-clique with nodes c2,c3,c4 in the first case).

9 If there are no new vertices to watch, the region has become small and can be ignored.

9



Strong effort checks When the satisfiability of the current set of FCC constraints can-
not be determined immediately as in weak effort checks, the FCC solver looks at ways to
reduce the size of large regions by guessing an equality between two unlinked watched
vertices in the same region, and returning the corresponding merge lemma. If there are
no large regions, it creates one by combining smaller ones heuristically. This process
eventually leads to the creation of a clique of watched vertices contradicting the cor-
responding cardinality constraint, or the creation of a single small region per sort. The
solver can then report unsatisfiability in the first case and satisfiability in the second.

3.3 A Finite Model Finding Strategy

In this subsection we show how a DPLL(T1, . . . ,Tm) solver can be turned into a finite
model finder for quantified formulas by incorporating the FCC solver described above
and adopting a specific execution strategy.

Suppose T1 is EUF and T2 is FCC. The strategy starts by applying the Propagatei
rules as much as possible. If propositional or theory conflicts arise in the process, an
application of Conflicti and then Fail ends the execution. Otherwise, for each free sort
S in the input problem, the SMT solver asks the FCC solver for a cardinality lemma
cardS,kS ∨¬cardS,kS , encoding the guessing of a concrete cardinality bound on S and
corresponding to one application of Learn2. This is followed by a corresponding num-
ber of Decide applications, asserting the cardinality constraint cardS,ks from each of
the new lemmas. From then on, the execution proceeds as usual in DPLL(T1, . . . ,Tm)
solvers, but with no applications of the ∀-Inst rule. (The ∃-Inst rule is applied, once, as
soon as the proxy literal ¬a gets added to the current assignment.)

In particular, the EUF solver computes the congruence closure of all the EUF equal-
ities in the assignment M and adds to it, with Propagate1, all the entailed equalities it
derives. The FCC solver builds each disequality graph incrementally, starting with one
whose vertices are all the representative constants of the initial EUF equivalence classes.
New edges, and possibly new vertices, are added to the graph as disequalities get added
to M. Vertices are merged, with each resulting vertex inheriting all the edges of the ver-
tices it replaces, as their equivalence classes get merged by EUF and the corresponding
equation between the class representatives is added to M.

As card literals and (dis)equalities between representative constants are added to M
and sent to the FCC solver, the solver is asked about the satisfiability of its updated set
of constraints. It answers unsatisfiable only if its card constraints are unsatisfiable or
they contain a constraint of the form cardS,k and the disequality graph for S contains
a (k + 1)-vertex clique over the representative constants for S. The solver’s explana-
tion for the unsatisfiability in the latter case is a lemma of the form

∨
c≈d∈E ¬(c ≈

d) ∨
∨
¬(c≈d)∈D c ≈ d ∨ ¬cardS,k where E and D are respectively a set of equal-

ities and disequalities in the current assignment M that together generate the clique.
Returning that clause corresponds to an application of Conflict2, which might lead,
through applications of Explaini and then Backjump, to alternative identifications of
representative constants. If no other alternatives exist, Backjump will backtrack to the
the decision level right before the addition of cardS,k to M, and assert ¬cardS,k. This
will cause the FCC solver to consider a larger cardinality k′ for S, and return the lemma
cardS,k′ ∨¬cardS,k′ when queried again.

10



The constraints given to the FCC solver may be unsatisfiable in the presence of
cardS,k even if the disequality graph for S contains no (k+ 1)-cliques—as long as this
graph has more than k nodes. To see this, simply observe that satisfiability in this case
is akin to the k-colorability problem for that graph, which means that further internal
search might be needed to determine satisfiability. As discussed earlier, to keep the FCC
solver simple it is enough to have it just determine which pairs c,d of representative
constants could be in principle identified in order to shrink the graph, and report that
possibility as the merge lemma c ≈ d ∨ c 6≈ d. With a decision strategy that prefers
c≈ d over c 6≈ d, this lets the SMT solver assert c≈ d with Decide. The new literal is
then used by the FCC solver to shrink the graph and by the EUF solver to merge the
equivalence classes of c and d. Unless this leads to a conflict, the FCC will continue
generating merge lemmas until the size of the disequality graph for S goes down to k.

Remark 1. Because of congruence constraints, guesses on merge lemmas may some-
times lead to inconsistencies in EUF, instead of FCC, unless the EUF solver com-
putes and propagates all entailed disequalities—which is usually not the case, for ef-
ficiency reasons. For example, suppose the current assignment M is {c3 ≈ f (c1), c4 ≈
f (c2), c3 6≈ c4, cardS,2} where all the terms have sort S. Unless the EUF solver prop-
agates the entailed literal c1 6≈ c2, the FCC solver will construct for S the disequality
graph ({c1, . . . ,c4},{(c3,c4)}) and may ask the SAT engine to guess c1 ≈ c2. The sub-
set {c3 ≈ f (c1), c4 ≈ f (c2), c3 6≈ c4, c1 ≈ c2} of the new assignment will then be found
unsatisfiable by the EUF solver. In contrast, guessing for instance c1 ≈ c3 and c2 ≈ c4
will produce a model of the required cardinality. ut

When M propositionally entails all the ground clauses in F and all the sub-solvers
(including the FCC solver) have reported their constraints to be satisfiable, those clauses
have a model that interprets each free sort S as a finite set of representative constants.
Following that, the SMT solver goes into an instantiation round where it applies the
∀-Inst rule exhaustively. That is, if for each a ∈M and a⇔∀xC[x] ∈ F it adds to F all
possible well-sorted instances C[c], where where the elements of c are current represen-
tative constants. The system processes the new ground clauses, and the new constraints
they generate, as described above until Fail is applicable or a new model of the (ex-
tended set of) ground clauses of F is found. Then the system starts another instantiation
round, but adding to F only clause instances C[c] that had not been added in previous
instantiation rounds. More precisely, it will discard a newly generated instance C[d] if
F contains an instance C[c] where c and d are equivalent in the current congruence clo-
sure. The whole process stops if a new instantiation round produces no new instances.
This is because at that point the literals of M have a finite model that satisfies all the
instances of the quantified formulas.

In our default strategy, the cardinality upper bounds expressed with the card con-
straints start at 1 for each sort and are incremented only by 1 at a time, with the goal of
minimizing sort sizes in candidate models. Keeping those sizes small is essential to con-
tain the explosion of formula instances added during instantiation rounds. An additional
way to control this explosion is to replace exhaustive instantiation with smarter heuris-
tics that avoid the generation of redundant instances of quantified formulas—intuitively,
instances guaranteed to be satisfied by the current candidate model. We have developed
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an effective notion of redundancy and a non-exhaustive instantiation method that relies
on advanced data structures to represent and query candidate models. That work and
the performance improvements it yields are discussed in a companion paper [13].

Correctness To argue about the soundness of our finite model finding method (i.e., the
input problem is unsatisfiable whenever the execution ends with the fail state), observe
first that the method can be described entirely as a particular execution strategy of the
abstract framework presented in Section 2. Thus, it suffices to show that the FCC solver
is itself sound.

Proposition 1. Whenever the FCC solver returns “unsatisfiable” for a set R of FCC
constraints, R is unsatisfiable in the FCC theory.10

Our model finding method is non-terminating in general because there exists sat-
isfiable quantified EUF formulas with no finite models. The more interesting question
is whether it is finite-model complete, that is, guaranteed to find a finite model of the
input problem if one exists. As described here, our approach is finite-model complete
for input problems whose quantifiers all range over the same free sort, but not in the
more general case involving several free sorts. Informally, the reason for this incom-
pleteness is that our method allows executions that keep increasing indefinitely the size
of the wrong sort. We are working on the definition of a practical fairness restriction on
executions that addresses this issue. For the sort of applications we have been targeting,
however, this source of finite-model incompleteness did not seem to be a problem.

4 Experimental Results

We implemented a finite model finder as described here within CVC4 [2] which is based
on DPLL(T1, . . . ,Tm). We added to CVC4 our FCC solver, implementing it as a direct
extension of CVC4’s EUF solver. That solver maintains backtrackable data structures
for representing the current congruence closure over EUF terms as well as keeping
track of asserted disequalities between them. In addition, the FCC solver maintains
data structures for the current regionalization as described in Section 3.2.

We ran two sets of experiments, the first to evaluate the relative effectiveness of var-
ious strategies for the FCC solver, and the second to evaluate the model finder’s overall
performance when used with quantified formulas. For the second set of experiments,
we compared our model finder against various state-of-the-art SMT solvers, including
CVC4 itself. All experiments were run on a Linux machine with an 8-core 2.60GHz
Intel R© Xeon R© E5-2670 processor.11

4.1 FCC Solver Evaluation

We tested various configurations of the FCC solver, starting with the default config-
uration cvc4+f, which implements the region-based enhancements described in Sec-
tion 3.2 as well as an additional enhancement where conflict clauses have simply the
10 We omit the proof of this proposition because it is relatively straightforward thanks to the

restricted cases in which the FCC solver returns “unsatisfiable.”
11 The finite model finder, detailed results, and the non-proprietary benchmarks discussed in this

section are available at http://cvc4.cs.nyu.edu/experiments/CAV-2013/ .
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Fig. 2: Results for randomly generated benchmarks. Runtimes are on a log-log scale.

form ¬distinct(c1, . . . ,ck+1)∨¬cardS,k , where distinct is a variadic logical predicate
satisfied exactly when its arguments evaluate to pairwise distinct elements. We also
tested a configuration, cvc4+fe, where conflict clauses are as described in Section 3.3.
This configuration avoids the introduction of new predicates into the search (the distinct
ones), but has the disadvantage that it can generate different conflict clauses for essen-
tially the same clique. Additionally, we considered configuration cvc4+f-r, which dif-
fers from cvc4+f only in that regionalizations have always just one region per sort S,
encompassing the entire disequality graph for S.

We also evaluated the MACE-style approach to finite model finding described in
related work, which we encoded in the configuration cvc4+mace. For a basic idea of
this encoding in the simple case of a ground EUF formula ϕ involving a single sort,
if Tϕ is the set of all terms in ϕ and c1, . . . ,ck are fresh constants serving as domain
constants, this configuration uses CVC4 to check the satisfiability of

ϕ∧distinct(c1, . . . ,ck)∧
∧

t∈Tϕ

(t = c1∨ . . .∨ t = ck) (1)

for k = 1,2, . . . until (1) is found satisfiable for some k. Then, the minimal model size
for ϕ is k. As we mentioned in Section 1, a major shortcoming of this approach is the
introduction of unwanted value symmetries in the problem. CVC4 can address this issue
to some extent since it incorporates a few symmetry breaking techniques directly at the
EUF level [6].

We considered satisfiable benchmarks encoding randomly generated graph color-
ing problems and consisting of a conjunction of disequalities between constants of a
single sort. In particular, we considered a total of 793 non-trivial problems containing
between 20 and 50 unique constants and between 100 and 900 disequalities, and mea-
sured the time it takes each configuration to find a model of minimum size, with a 60
second timeout. For the benchmarks we tested, the configuration cvc4+f solves the most
benchmarks, 723, within the time limit. Although not shown here in detail, cvc4+f was
an order of magnitude faster than cvc4+fe on most benchmarks, with the latter only
being able to solve 309 benchmarks within the time limit. This strongly suggests that
generating explanations for cliques in conflict lemmas involving cardinality constraints
is not an effective approach in this scheme.
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Figure 2 compares the performance of the configuration cvc4+f against cvc4+f-r
and cvc4+mace. The first scatter plot clearly shows that the cvc4+f configuration gen-
erally requires less time and solves more benchmarks (723 vs. 664) than cvc4+f-r,
confirming the usefulness of a region-based approach for clique detection. The second
scatter plot compares cvc4+f against cvc4+mace. The latter configuration was able to
solve only 617 benchmarks and generally performed poorly on benchmarks with larger
model size. The median model size of the 123 benchmarks solved only by cvc4+f was
17, whereas the median size of the 13 benchmarks solved only by cvc4+mace was 10.
This suggests that for larger cardinalities cvc4+mace suffers from the model symme-
tries created by the introduction of domain constants, something that cvc4+f avoids.

4.2 Finite Model Finder Evaluation

We also evaluated the overall effectiveness of CVC4’s finite model finder for quantified
SMT formulas. We used benchmarks derived from verification conditions generated by
DVF [9], a tool used at Intel for verifying properties of security protocols and design
architectures, among other applications. Both unsatisfiable and satisfiable benchmarks
were produced, the latter by manually removing necessary assumptions from verifi-
cation conditions. All benchmarks contain quantifiers, although only over free sorts,
and span a wide range of theories, including linear integer arithmetic, arrays, EUF, and
inductive datatypes.

For comparison we looked at the SMT solvers CVC3 (version 2.4.1), Yices (version
1.0.32), Z3 (version 4.1). We also considered CVC4 (release r4751) in native mode, that
is, without the finite model finding techniques described here. We did not look at tradi-
tional theorem provers and finite model finders because they do not have built-in sup-
port for the theories in our benchmark set. All the solvers considered use E-matching
as a heuristic method for answering unsatisfiable in the presence of universally quanti-
fied formulas. CVC4 uses no sophisticated techniques for detecting satisfiability, which
means that it reports “unknown” for most satisfiable quantified problems. In contrast,
Z3 additionally relies on model-based quantifier instantiation [8] to be able to detect
satisfiable quantified problems in certain cases.

The results, separated into unsatisfiable and satisfiable instances, are shown in Fig-
ure 3 for five classes of benchmarks and a timeout of 600s per benchmark. The first two
classes, refcount and german, represent verification conditions for systems described
in [9]; benchmarks in the third are taken from [16]; the last two classes are verification
problems internal to Intel.

For the satisfiable benchmarks, our finite model finder is the only tool capable of
solving any instance in the last three benchmark classes.12 In fact, cvc4+f is able to
solve all but two, and most of them in less than a second. By comparing cvc4+f against
cvc4+f-r, we see that the region-based approach for recognizing cliques is beneficial,
particularly for the harder classes where the latter configuration solves fewer bench-
marks within the timeout. The model sizes found for these benchmarks were relatively

12 Yices reports “unsat” for two of these benchmarks. We believe that, based on the way they
were constructed, the two benchmarks are in fact satisfiable. Also, all other solvers (including
previous versions of Yices) time out or answer “unknown”.
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Sat german refcount agree apg bmk
(45) (6) (42) (19) (37)

solved time solved time solved time solved time solved time
cvc3 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0
yices 2 0.02 0 0.0 0 0.0 0 0.0 0 0.0
z3 45 1.1 1 7.0 0 0.0 0 0.0 0 0.0
cvc4 2 0.00 0 0.00 0 0.0 0 0.0 0 0.0
cvc4+f 45 0.3 6 0.1 42 15.5 18 200.0 36 1201.5
cvc4+f-r 45 0.3 6 0.1 42 18.6 15 364.3 34 720.4

Unsat german refcount agree apg bmk
(145) (40) (488) (304) (244)

solved time solved time solved time solved time solved time
cvc3 145 0.4 40 0.2 457 6.8 267 77.0 229 76.2
yices 145 1.8 40 7.0 488 1475.4 304 35.8 244 25.3
z3 145 1.9 40 0.9 488 10.6 304 12.2 244 5.3
cvc4 145 0.1 40 0.2 484 6.8 304 11.2 244 2.9
cvc4+f 145 0.8 40 0.4 476 3782.1 298 2252.5 242 1507.0
cvc4+f-r 145 0.4 40 0.2 475 1574.3 294 3836.0 240 1930.5

Fig. 3: Results for DVF benchmarks. All times are in seconds.

small, only a handful had a model with sort cardinalities larger than 4. To our knowl-
edge, our model finder is the only tool capable of solving these benchmarks.

For the unsatisfiable benchmarks, Yices and Z3 can solve all of them, with Z3 being
much faster in some cases. Interestingly, all of these benchmarks are solved in less than
3s by either cvc4 (plain CVC4) or cvc4+f, indicating that a combination of the two is
advantageous in general. We observe that cvc4+f is orders of magnitude slower than the
SMT solvers on these benchmarks. This is, however, to be expected since it is geared
towards finding models, and applies exhaustive instantiation with increasingly large car-
dinality bounds, which normally delays the discovery that the problem is unsatisfiable
regardless of those bounds.

5 Conclusion and Further Work

We presented a method for endowing DPLL(T )-based SMT solvers with finite model
finding capabilities for quantified SMT formulas with quantifiers ranging over free
sorts. The method relies on a novel and efficient sub-solver for finite cardinality con-
straints that is fully integrated in the overall SMT solver. Our experimental results with
benchmarks generated from a variety of verification applications show that our model
finding approach is superior to current quantifier instantiation methods in SMT in the
case of satisfiable inputs.

Future work will focus on identifying suitable fair execution strategies that guaran-
tee finite model completeness for problems with multiple free sorts. We are also plan to
investigate further approaches for finding models of formulas with quantifiers ranging
also over built-in domains such as the integers.
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[10] S. Krstić and A. Goel. Architecting solvers for SAT modulo theories: Nelson-Oppen with
DPLL. In Proceeding of FroCoS’07, volume 4720 of LNCS, pages 1–27. Springer, 2007.

[11] R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT and SAT Modulo Theories:
from an abstract Davis-Putnam-Logemann-Loveland Procedure to DPLL(T). Journal of
the ACM, 53(6):937–977, Nov. 2006.

[12] S. Ranise, C. Ringeissen, and C. G. Zarba. Combining data structures with nonstably
infinite theories using many-sorted logic. In Proceedings of FroCoS’05, volume 3717 of
LNCS, pages 48–64. Springer, 2005.

[13] A. Reynolds, C. Tinelli, A. Goel, S. Krstić, M. Deters, and C. Barrett. Quantifier instan-
tiation techniques for finite model finding in SMT. In Proceedings of CADE-24, LNCS.
Springer, 2013. (Accepted).

[14] C. Tinelli and M. T. Harandi. A new correctness proof of the Nelson–Oppen combination
procedure. In Proceeding of FroCoS’96, pages 103–120. Kluwer, 1996.

[15] E. Torlak and D. Jackson. Kodkod: a relational model finder. In Proceedings of TACAS’07,
volume 4424 of LNCS, pages 632–647. Springer, 2007.

[16] M. R. Tuttle and A. Goel. Protocol proof checking simplified with SMT. In Proceedings
of NCA’12, pages 195–202. IEEE Computer Society, 2012.

[17] J. Zhang and H. Zhang. SEM: a system for enumerating models. In Proceedings of IJ-
CAI’95, pages 298–303, 1995.

16


