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Abstract. We give a fresh theoretical foundation for designing com-
prehensive SMT solvers, generalizing in a practically motivated direc-
tion. We define parametric theories that most appropriately express the
“logic” of common data types. Our main result is a combination theorem
for decision procedures for disjoint theories of this kind. Virtually all of
the deeply nested data structures (lists of arrays of sets of . . . ) that arise
in verification work are covered.

1 Introduction

Formal methods for hardware or software development require checking valid-
ity (or, dually, satisfiability) of formulas in logical theories modeling relevant
datatypes. Satisfiability procedures have been devised for the basic ones—reals,
integers, arrays, lists, tuples, queues, and so on—especially when restricted to
formulas in some some quantifier-free fragment of first-order logic. Thanks to a
seminal result by Nelson and Oppen [11], these basic procedures can often be
modularly combined to cover formulas that mingle several datatypes.

Most research on Satisfiability Modulo Theories (SMT) has traditionally used
classical first-order logic as a foundation for defining the language of satisfiabil-
ity procedures, or SMT solvers, and reasoning about their correctness. However,
the untypedness of this most familiar logic is a major limitation. It unnecessarily
complicates correctness arguments for combination methods and restricts the ap-
plicability of sufficient conditions for their completeness. Thus, researchers have
recently begun to frame SMT problems directly in terms of richer typed logics
and to develop combination results for these logics [21, 4, 24, 15, 3, 6]. Ahead of
the theory, solvers supporting the PVS system [19], solvers of the CVC family
[2], and some others adopted a typed setting early on.

The SMT-LIB initiative, an international effort aimed at developing common
standards for the SMT field, proposes a version of many-sorted first-order logic
as an initial underlying logic for SMT [16]. We see this as a step in the right
direction, but only the first one, because the many-sorted logic’s rudimentary
type system is still inadequate for describing and working with typical cases of
combined theories and their solvers. For example, in this logic one can define a
generic theory of lists using a sort List for the lists and the sort E for the list
elements. Then, a theory of integer lists can be defined formally as the union



of the list theory with the integer theory, modulo the identification of the sort
E with the integer sort of the second theory. This combination mechanism gets
quickly out of hand if we want to reason about, say, lists of arrays of lists of
integers, and it cannot be used at all to specify arbitrarily nested lists. Because
of the frequent occurrence of such combined datatypes in verification practice,
this is a serious shortcoming.

Fortunately, virtually all structured datatypes arising in formal methods are
parametric, the way arrays or lists are. Combined datatypes like those mentioned
above are constructed simply by parameter instantiation. For this reason, we
believe that any logic for SMT should directly support parametric types and,
consequently, parametric polymorphism. The goal of this paper is to provide a
Nelson-Oppen-style framework and results for theories combinable by parameter
instantiation.

The key concept of parametric theory can likely be defined in various logics
with polymorphic types. We adopt the higher-order logic of the theorem provers
HOL [7], HOL Light [9], and Isabelle/HOL [14]. It is well studied and widely
used, and has an elegant syntax and intuitive set-theoretic semantics.

Integration of SMT solvers with other reasoning tools, in particular with
interactive provers, is a topic of independent interest [5, 1] with a host of issues,
including language compatibility [8]. This paper contributes a solid theoretical
foundation for the design of HOL-friendly SMT solvers.

Finally, a striking outcome of this work is that in practically oriented (that is,
dealing with common datatypes) SMT research, the vexatious stable infiniteness
condition of the traditional Nelson-Oppen approach does not need to be men-
tioned. Its role is played by a milder flexibility condition that, by our results, is
automatically satisfied for all fully parametric theories.

Related Work. Observations that the congruence closure algorithm of [12] effec-
tively translates a first-order goal into HOL via currying, and that the solver for
algebraic datatypes of [3] actually works for lists of lists and the like, were key
to the unveiling of parametric HOL theories.

Like all other work on combining SMT solvers for disjoint theories, from [11]
on, our approach is based on inter-solver propagation of constraints over a com-
mon language. Similarly to [22], the constraints also involve cardinalities, so our
method can manage both infinite and finite datatypes. The purification proce-
dure that transforms the input query in the mixed language of several solvers into
pure parts is more involved here than anywhere else because of the complexity
brought by the rich type system.

We give model-theretical correctness arguments, analogous to those used in
other modern treatments of Nelson-Oppen combination, from [18, 20] to the
recent work [6] which also tackles some non-disjoint combinations. However, in
the completeness proof, we rely on the parametricity of the types modeled by the
component theories, not on the theories’ stable infiniteness. This difference has
important practical consequences. While our results do not subsume existing
results nor are subsumed by them, they apply more widely because most of
the datatypes relevant in applications are described by theories that satisfy our
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parametricity requirements without necessarily satisfying the stable infiniteness
requirements of other combination methods.

In this, our approach is closely related to the recent work of Ranise et al. [15].
They present an extension of the Nelson-Oppen method in which a many-sorted
theory S modeling a data structure like lists or arrays can be combined with
an arbitrary theory T modeling the elements of the data structure. The the-
ory S is required to satisfy a technical condition (“politeness”) for each element
sort. This corresponds to our requiring that the data structure be a parametric
type with flexibility conditions. (More specifically, the “smoothness” and “finite
witnessability” parts of politeness correspond to our up-flexibility and down-
flexibility, the latter being significantly weaker than its counterpart in [15].) The
results in [15] can be extended in principle to more than two theories by incre-
mental pairwise combinations. However, as we argued, many-sorted logic is not
well-suited for working with elaborate combinations of theories, while in a logic
with parametric types such combinations are straightforward. In particular, our
main result about combination of multiple pairwise disjoint parametric theories,
would be difficult even to state in the language of [15]. Yet, the important insight
that it is parametricity and not stable infiniteness that justifies Nelson-Oppen
cooperation of common solvers is already in [15]; we have given it full expression.

Outline. In Section 2, reviewing the standard HOL material, we define the
syntactic concept of signatures, and their semantic counterpart, structures. In
Section 3, we introduce the crucial (fully) parametric structures, which are es-
sentially collections of polymorphic constants with uniform behavior specified
by relational parametricity. In Section 4, we discuss satisfiability in parametric
structures and a process that corresponds to the familiar reduction of satisfi-
ability of arbitrary quantifier-free formulas to sets of literals. In Section 5, we
describe the algorithm for combining solvers and identify conditions under which
it is complete. All proofs, omitted for lack of space, can be found in the accom-
panying technical report [10].

Acknowledgments Thanks to John O’Leary for discussions on HOL semantics,
and to Levent Erkök, John Harrison, John Matthews, Albert Oliveras, and Mark
Tuttle for reading parts of the manuscript and commenting on it.

2 Syntax and Semantics of Higher Order Logic

We give a brief account of the standard syntax and semantics of higher-order
logic, similar to that given by Pitts for the logic of the HOL theorem prover [7].
Much of it has been formalized by Harrison in a “HOL in HOL” fashion [9].

2.1 Syntax of HOL Types and Terms

The syntactic world of HOL types is built using type operators and type
variables. Each type operator has a non-negative arity. Given a set O of type
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operators, the set TypeO is the smallest set containing all type variables and
expressions of the form F (σ1, . . . , σn), where F ∈ O has arity n and σi ∈ TypeO.
The set of type variables occurring in σ will be denoted tyvar(σ).

A type instantiation is a finite map from type variables to types. The no-
tation [σ1/α1, . . . , σn/αn] is for the finite map that takes α1, . . . , αn to σ1, . . . , σn.
For any type σ and type instantiation θ, θ(σ) denotes the simultaneous substi-
tution of every occurrence of αi in σ with σi. We say that τ is an instance of
σ and write τ � σ if there is some θ such that τ = θ(σ). Clearly, θ(σ) = θ′(σ)
holds if and only if θ and θ′ agree on tyvar(σ). Thus, if τ � σ, then there is a
unique minimal type instantiation that maps σ to τ ; its domain is tyvar(σ) and
it will be denoted [τ//σ].

A HOL signature Σ = 〈O |K〉 consists of a set O of type operators and a
set K of typed constants. Each constant kσ ∈ K is a pair of a symbol k and
a type σ ∈ TypeO, with no two constants sharing the same symbol. Let K+ be
the set of all pairs (also called constants) kτ where kσ ∈ K and τ � σ.

The standard boolean connectives and equality make up the signature ΣEq:3

ΣEq = 〈Bool,⇒ |=α2⇒Bool, trueBool, falseBool,¬Bool⇒Bool,∧Bool2⇒Bool, . . .〉

The constants of ΣEq will be called logical. From now on we will assume that
every signature we consider includes ΣEq. When—as in the following examples—
we write a concrete signature Σ = 〈O |K〉, we will tacitly assume that the
ΣEq-part is there, even if it is not explicitly shown.

Example 1. Here are some familiar signatures.

ΣInt = 〈Int | 0Int, 1Int, (−1)Int, . . . ,+Int2⇒Int,−Int2⇒Int,×Int2⇒Int,≤Int2⇒Bool, . . .〉
ΣArray = 〈Array | mk arrβ⇒Array(α,β), read[Array(α,β),α]⇒β ,write[Array(α,β),α,β]⇒Array(α,β)〉
ΣList = 〈List | cons[α,List(α)]⇒List(α), nilList(α), headList(α)⇒α, tailList(α)⇒List(α)〉
ΣMonoid = 〈Monoid | 1Monoid, ∗Monoid2⇒Monoid〉

The arity of a constant kσ ∈ K is the number m from the unique expression
of σ in the form [σ1, . . . , σm] ⇒ τ , where τ is not a function type. If all σi are non-
function types too, we will say that the constant is algebraic. All signatures
in Example 1 are algebraic in the sense that all their constants are such.

The set TermΣ of HOL terms over a signature Σ is defined by the rules in
Figure 1. The four rules classify terms into variables, constants, applica-
tions, and abstractions. The rules actually define the set of term-type pairs
M :σ, which we read as “term M has type σ”. By structural induction, every
term has a unique type. Non-typeable expressions like vσuσ are not considered
to be terms at all.

Each occurrence of a variable in a term is free or bound, by the usual
inductive definition. We regard two terms M and N as equal if they are equal
up to renaming of bound variables. The set of free variables occurring in M is
denoted var(M). We define tyvar(M) to be the set of type variables occurring
in the type of any variable or constant subterm of M .
3 By convention, [α2, β] ⇒ γ is α ⇒ α ⇒ β ⇒ γ, and ⇒ associates to the right.
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vσ : σ

kτ ∈ K+

kτ : τ

M : σ ⇒ τ N : σ

M N : τ

M : τ

λvσ. M : σ ⇒ τ

Fig. 1. Typing rules for HOL terms

2.2 Semantics of Types

Type operators of arity n are interpreted as n-ary set operations—functions
Un → U , where U is a suitably large universe of sets. Fixing such an inter-
pretation that associates with every F ∈ O a set operation [F ], we define the
interpretation of σ ∈ TypeO in Figure 2. The interpretation of a type σ in
a type environment ι—a finite map from type variables to U —is a set JσK ι,
“the meaning of σ in ι”. The set JσK ι is defined when tyvar(σ) ⊆ dom(ι) and
will be unchanged if ι is replaced with ι′ as long as ι and ι′ agree on tyvar(σ).
(Here and in what follows, dom is used to denote the domain of a finite map.)

JαK ι = ι(α) for every α ∈ dom(ι)

JF (σ1, . . . , σn)K ι = [F ]
`
Jσ1K ι, . . . , JσnK ι

´
Fig. 2. Interpretation of HOL types

Common type operators usually come with a unique intended interpretation,
so it becomes awkward to make a notational distinction between F and [F ]. But,
for the sake of clarity, we will distinguish syntax from the semantics. For constant
types (0-ary type operators) Unit, Bool and Int we will use [Unit] = U = {∗},
[Bool] = B = {true, false} and [Int] = Z. The symbols ⇒ and⇒⇒⇒⇒⇒⇒⇒⇒⇒ will be used for
the syntactic type operator and the full function space set operation it represents;
that is, we have [⇒] = ⇒⇒⇒⇒⇒⇒⇒⇒⇒. Similar convention holds for the Cartesian product
and disjoint sum operators × and +, and operations ×××××××××, +++++++++. The unary type
operator List is interpreted as the set operation ListListList, where ListListList(A) is the set of
finite lists with elements in the set A.

The meaning of an instantiated type in some environment is the same as
that of the original type in an appropriately updated environment. Precisely,
if τ = θ(σ), then JτK ι = JσK ι′, where ι′ is defined by ι′(α) = Jθ(α)K ι. The
environment ι′ will be denoted θ·ι. (See Figure 3 for its use.) For example, if
σ = (α ⇒ β), τ = (γ ⇒ γ ⇒ Bool), and ι = [X/γ], then ι′ = [X/α, (X⇒⇒⇒⇒⇒⇒⇒⇒⇒ B)/β].

2.3 Semantics of Terms

Suppose now an interpretation JσK for σ ∈ TypeO is given as in Section 2.2.
We define an indexed element of JσK to be a family of elements a ι indexed
by type environments ι whose domains contain tyvar(σ); the requirements are
that a ι ∈ JσK ι and and that a ι = a ι′ when ι and ι′ agree on tyvar(σ). For
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example, the list length function len is an indexed element of JList(α) ⇒ IntK;
for every ι with ι(α) = A, len ι is the concrete length function lenA, an element
of ListListList(A)⇒⇒⇒⇒⇒⇒⇒⇒⇒Z. Similarly, the identity function is an indexed element of Jα ⇒ αK,
but note that there are no “natural” indexed elements of Jα ⇒ βK.

Given an arbitrary signature Σ = 〈O |K〉, a Σ-structure S consists of

– an arity-respecting assignment Stypeop that maps every F in O to a set op-
eration [F ], as in Section 2.2;

– an assignment Sconst of an indexed element [kσ] of JσK to every kσ in K.4

We stipulate that the type operators Bool and ⇒, as well as boolean connec-
tives and the equality predicate be always assigned their standard meanings.
For example, [∧Bool2⇒Bool] ι is the conjunction operation on booleans for all type
environments ι. Also, [=α2⇒Bool] ι is always the identity relation on the set ι(α).
In other words, there is only one ΣEq-structure we care about, and it is “part
of” all Σ-structures that include it.

Example 2. For signatures associated with datatypes, we normally associate a
unique structure. Referring to Example 1, this is clear for ΣInt. For ΣArray, we
define [Array](X, Y ) to be the set of functions from X to Y that give the same
result for all but finitely many arguments; the interpretation of the constants is
obvious. For ΣList there is an issue with partiality of head and tail, which can be
resolved, for example, by defining [headList(α)⇒α] ι to be an arbitrary element of
ι(α). (See Example 5 below for better solutions.) Unlike these examples, there
are multiple ΣMonoid-structures of interest; every monoid gives us one.

Interpretation of terms requires two environments: one for type variables
and one for the free term variables. For example, the meaning of the ΣEq-term
λuα⇒β .uα⇒βvα in the pair of environments 〈[Z/α,Z/β], [0/vα]〉 is the function
that maps its argument f ∈ (Z⇒⇒⇒⇒⇒⇒⇒⇒⇒ Z) to f(0). To make this precise, define first,
for a given type environment ι, a term environment over ι to be any finite
map that associates to each variable vσ in its domain an element of the set JσK ι.
Then, for any term M , an environment for M is a pair 〈ι, ρ〉, where ι is a
type environment such that tyvar(M) ⊆ dom(ι) and ρ is a term environment
over ι such that var(M) ⊆ dom(ρ).

Given a Σ-structure, a Σ-term M of type σ, and an environment 〈ι, ρ〉 for
M , the interpretation of M is an element JMK〈ι, ρ〉 of the set JσK ι defined
inductively by the equations in Figure 3. The interpretation of a variable vτ is
found by consulting the term environment ρ. To interpret a constant kτ , which
must be an instance of a unique kσ ∈ K, we transform ι from a type environment
for τ to the type environment [τ//σ]·ι for σ (see the last paragraph of Section 2.2),
whereupon we can find the interpretation for kτ using the function [kσ] supplied
by the Σ-structure. The interpretations of applications and abstractions are
straightforward. The notation ρ[vσ 7→x] is for the environment that maps vσ to
x, and is otherwise equal to ρ. It is easy to check that JMK〈ι, ρ〉 is determined
by the restriction of ι and ρ to tyvar(M) and var(M) respectively.
4 The proper notation would be [F ]S , [kσ]S , JσKS , but the structure S will always be

understood from the context.
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Jvτ K〈ι, ρ〉 = ρ(vτ ) JM NK〈ι, ρ〉 =
`
JMK〈ι, ρ〉

´`
JNK〈ι, ρ〉

´
Jkτ K〈ι, ρ〉 = [kσ]([τ//σ]·ι) Jλvσ. MK〈ι, ρ〉 = λλλλλλλλλx ∈ JσK ι. JMK〈ι, ρ[vσ 7→x]〉

Fig. 3. Interpretation of HOL terms

3 Parametric Structures

The uniformity exhibited by commonly used polymorphic type operators and
constants is not captured by the semantics in Section 2, but has been formalized
by the notion of relational parametricity [17, 23]. It leads us to the concept of fully
parametric structures and gives us powerful techniques, based on the Abstraction
Theorem [17] to reason about them. See [10] for full statements and proofs of
results needed in this paper.

3.1 Relational Semantics

A parametric set operation is a pair consisting of a set operation G and
an operation G] on relations such that if R1 : A1 ↔ B1, . . . , Rn : An ↔ Bn, then
G](R1, . . . , Rn) : G(A1, . . . , An) ↔ G(B1, . . . , Bn). It is also required that G] be
functorial on bijections: G](R1, . . . , Rn) must be a bijection if the Ri are all bijec-
tions, and the identities G](R1, . . . , Rn) ◦G](S1, . . . , Sn) = G](R1 ◦S1, . . . , Rn ◦
Sn) and G](idA1 , . . . , idAn) = idG(A1,...,An) must hold, where Ri : Ai ↔ Bi and
Si : Bi ↔ Ci are arbitrary bijections and idA denotes the identity relation on A.
Note that the conditions are meaningful when n = 0: every set G together with
G] = idG is a parametric 0-ary set operation.

Informally, we will say that a set operation G is parametric if there is a G]

such that (G, G]) is a parametric set operation.

Example 3. ListListList is parametric: for a given relation R : A ↔ B, the relation
ListListList](R) : ListListList(A) ↔ ListListList(B) is the generalization of the familiar map func-
tion. The binary set operations ××××××××× and ⇒⇒⇒⇒⇒⇒⇒⇒⇒ are also parametric: given relations
R1 : A1 ↔ B1 and R2 : A2 ↔ B2, the relation R1×××××××××] R2 : A1×××××××××A2 ↔ B1×××××××××B2

relates 〈x1, x2〉 with 〈y1, y2〉 iff 〈x1, y1〉 ∈ R1 and 〈x2, y2〉 ∈ R2; the rela-
tion R1⇒⇒⇒⇒⇒⇒⇒⇒⇒] R2 : (A1⇒⇒⇒⇒⇒⇒⇒⇒⇒B1) ↔ (A2⇒⇒⇒⇒⇒⇒⇒⇒⇒B2) relates f1 with f2 iff for every x1, x2,
〈x1, x2〉 ∈ R1 implies 〈f1(x1), f2(x2)〉 ∈ R2.

Let ι1 and ι2 be two type environments with equal domains. An environ-
ment relation R : ι1 ↔ ι2 is a collection of relations R(α) : ι1(α) ↔ ι2(α), for
each α in the domain of ι1 and ι2. The identity relation id ι : ι ↔ ι is defined by
id ι(α) = id ι(α).

Suppose O is a set of type operators, and that for each F ∈ O the set
operation [F ] is parametric, with the relational part denoted [F ]]. Then for any
type σ and a relation R : ι1 ↔ ι2 between type environments whose domain
contains tyvar(σ), there is an induced relation JσK] R : JσK ι1 ↔ JσK ι2, defined
in Figure 4. It is easy to prove that JσK] id ι = id JσK ι holds for every σ, the result
known as Identity Extension Lemma [17].
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JαK] R = R(α)

JF (σ1, . . . , σn)K] R = [F ]](Jσ1K] R, . . . , JσnK] R)

Fig. 4. Relational type semantics

An indexed element a of JσK is called parametric if

〈a ι1, a ι2〉 ∈ JσK] R for every relation R : ι1 ↔ ι2. (1)

Example 4. Let us check that len is a parametric indexed element of JList(α) ⇒
IntK. Pick a relation R : [A/α] ↔ [B/α] between type environments, i.e., R(α) is
some relation r : A ↔ B. By definition len [A/α] is the concrete length function
lenA ∈ ListListList(A)⇒⇒⇒⇒⇒⇒⇒⇒⇒Z; and similarly len [B/α] = lenB . To verify the condition (1),
we need to check that 〈lenA, lenB〉 ∈ JList(α) ⇒ IntK] R. By the equations in
Figure 4, the relation on the right is equal to map(r)⇒⇒⇒⇒⇒⇒⇒⇒⇒] idZ. By the definition of
⇒⇒⇒⇒⇒⇒⇒⇒⇒], we need to check that for every x ∈ ListListList(A), y ∈ ListListList(B) such that 〈x, y〉 ∈
map(r) one must have lenA(x) = lenB(y)—which is true.

Example 5. Standard interpretations of constants in ΣList and ΣArray are para-
metric, except for the partiality of head and tail. This can be fixed by giving
head the type List α ⇒ α + Unit or List α ⇒ α ⇒ Bool, and similarly for tail.

3.2 Fully Parametric Structures

Polymorphic equality is not parametric! Indeed, given R : A ↔ B, condition (1)
says: if 〈x, y〉, 〈x′, y′〉 ∈ R, then (x =A x′) ⇔ (y =B y′) [23]. This condition
is not true in general, but holds if and only if R is a partial bijection. To ac-
count for this limited parametricity of equality, we define a set operation G to
be fully parametric if G] is functorial on partial bijections. We also define
an indexed element a to be fully parametric if (1) holds for all partial bi-
jections R. (Thus, to specify a fully parametric set operation G, one need define
G](R1, . . . , Rn) only for the case where all the Ri are partial bijections.)

Note that the “Reynolds parametricity” defined in Section 3.1 and full para-
metricity are incomparable: to get from the former to the latter, we strengthened
the functoriality condition and weakened the condition (1) on elements.

The following definition is crucial. An 〈O |K〉-structure S is fully para-
metric if Stypeop(F ) is a fully parametric set operation for every F ∈ O − {⇒}
and Sconst(kσ) is a fully parametric indexed element for every kσ ∈ K.

The function space operation ⇒⇒⇒⇒⇒⇒⇒⇒⇒ is not fully parametric; for example, if
R : A → A′ is an injection, then R⇒⇒⇒⇒⇒⇒⇒⇒⇒] idB : (A⇒⇒⇒⇒⇒⇒⇒⇒⇒B) ↔ (A′⇒⇒⇒⇒⇒⇒⇒⇒⇒B) is not a partial
bijection. Fortunately, this is an exception.

Lemma 1. The structures corresponding to the following datatypes are fully
parametric: datatypes with 0-ary type constructors (such as Bool, Int, etc.); all
algebraic datatypes (including sums, products, lists); arrays; sets; and multisets.

In Section 5, we will see that full parametricity legitimizes structures’ par-
ticipation in the Nelson-Oppen combination algorithm.
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4 HOL Theories and Satisfiability

In HOL, formulas are simply terms of type Bool. If φ is a Σ-formula, S is
a Σ-structure, and e = 〈ι, ρ〉 is an environment for φ, we write e |= φ as an
abbreviation for JφK e = true. We say that φ is S-satisfiable if e |= φ for some
e, in which case we also say that the environment e is a model for φ. When Φ
is a set of formulas (for which we will use the term query), we write e |= Φ to
mean that e |= φ holds for all φ ∈ Φ.

We will need to discuss satisfiability in models with specified cardinality, so
let the “equality” σ

.= n denote a cardinality constraint: by 〈ι, ρ〉 |= σ
.= n

we mean that the set JσK ι has n elements.
Similarly, we will consider type constraints of the form α

.= σ and vari-
able constraints of the form uσ .= vτ . By definition, 〈ι, ρ〉 |= α

.= σ holds iff
ι(α) = JσK ι, and 〈ι, ρ〉 |= uσ .= vτ holds iff JσK ι = JτK ι and ρ(uσ) = ρ(vτ ).

Example 6. Consider the SEq-queries {f(f(f x)) = x, f(f x) = x, f x 6= x} and
{f x = g x, g x = h x, f 6= g, g 6= h, h 6= f}, where f, g, h are variables of type
α ⇒ α and x is one of type α. The first query is unsatisfiable. The second query
is satisfiable, but is not simultaneously satisfiable with the cardinality constraint
α

.= 2. (E.g., there are only two functions B→ B that map true to false.)

A Σ-theory is a set of Σ-structures. If T is a Σ-theory, we say that a
formula φ is T -satisfiable if it is S-satisfiable for some S ∈ T .

The theories TInt, TList, TArray (Examples 1 and 2) are each the theory of a
single structure: SInt, SList, SArray respectively. On the other hand, TMonoid is the
theory of all monoids. From now on, we assume that every theory is defined by
a single algebraic structure, since such theories are of greatest practical interest.

By a solver we will mean a sound and complete satisfiability procedure for
Σ-queries whose formulas belong to a specified subset (fragment) of TermΣ .
For example, integer linear arithmetic is the ΣInt-fragment consisting of boolean
combinations of linear equalities and inequalites, and the integer linear program-
ming algorithms can be seen as solvers for this fragment. Solvers that can check
satisfiability with cardinality constraints will be called strong.

We will concern ourselves only with subfragments of the applicative frag-
ment of theories, where a Σ-term is called applicative if it contains no subterms
that are abstractions and all occurrences of constants are fully applied. The lat-
ter means that every occurrence of a constant kτ is part of a subterm of the
form kτ M1 · · · Mm, where m is the constant’s arity. Define also the algebraic
fragment to consist of all applicative terms that do not contain any occurrences
of subterms of the form xN , where x is a variable (“uninterpreted function”).

In the rest of this section we will narrow down the applicative fragment to
a subfragment whose queries have a particularly simple form. First, we mini-
mize the size of the formulas occurring in the query at the price of increasing
the number of formulas in the query. Second, we do away with the proposi-
tional complexity of the query by case splitting over boolean variables. Finally,
with a substitution, we remove equalities between variables from the query. This
reduction will further ease our reasoning, and will incur no cost in generality.
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Lemma 2. Every applicative query over 〈O |K〉 is equisatisfiable with a query
all of whose formulas are atomic, i.e. have one of the following forms:

(A) x0 = k x1 . . . xn, where k ∈ K+ has arity n
(B) x0 = x1 x2

where the xi are variables. Also, an algebraic query is equisatisfiable with a query
whose formulas all have the form (A).

Transforming an applicative formula into a set of atomic formulas is done
simply by introducing proxy variables for subterms, a process often called vari-
able abstraction. For example, (f x 1 ≥ 1) ∨ (x = 1) is equisatisfiable with: (A)
y = 1, p = (z ≥ y), q = (x = y), r = p ∨ q, r = true; (B) g = f x, z = g y.

An arrangement is a query determined by a set V of variables of the same
type and an equivalence relation ∼ on V . For every x, y ∈ V , the arrangement
contains either x = y or x 6= y, depending on whether x ∼ y holds or not. The
arrangement that forces all variables in V to be distinct will be denoted Dist(V ).

Suppose now Φ is a set of atomic formulas and let Xσ be the set of variables
of type σ that occur in Φ. Let Eσ be the subset of Φ consisting of formulas of
the form z = (x = y), where x, y ∈ Xσ. We can assume that EBool is empty
by using the alternative way z = (x ⇔ y) of writing z = (x = y). We can also
assume that for every σ 6= Bool and every x, y ∈ Xσ there exists z such that
z = (x = y) occurs in Eσ; just add this equality with a fresh z if necessary.

There are finitely many substitutions ξ : XBool → {true, false} and Φ is satis-
fiable iff some ξ(Φ) is. Let Φ0 be the subset of Φ consisting of formulas (A) in
which k is a boolean connective. Note that for any ξ, the query ξ(Eσ) is either
unsatisfiable, or equivalent to an arrangement on Xσ. Searching for a model for
Φ, we can enumerate all ξ such that ξ(Φ0) is satisfiable, and every ξ(Eσ) is an
arrangement. Thus, we will have a solver for all applicative T -queries as soon as
we have a solver for almost-reduced queries that consist of

– arrangements ∆σ for every type σ 6= Bool that occurs in the query
– the set ∆Bool containing x = true or x = false for every x ∈ XBool

– non-logical atomic formulas (where constants k in (A) are not logical)

Observe finally that for every almost-reduced query there is an equisatisfiable
reduced query in which (1) ∆σ = Dist(Xσ) for every σ 6= Bool and (2) there are
only two variables of type Bool—say t and f—and two equations in ∆Bool, namely
t = true and f = false. Indeed, we can bring a given almost-reduced query to
this simpler form by choosing a representative for each class of the arrangements
∆σ and then replacing every occurrence of x ∈ Xσ with its representative.

Example 7. Let T = T1 + T2, where T1 = TInt and T2 = T× is the simple para-
metric theory of pairs over the signature

Σ× = 〈× | 〈-, -〉[α,β]⇒α×β
, fstα×β⇒α, sndα×β⇒β〉.

Consider the query Φ = {x2 = 〈snd(sndx3), x1 x2〉, fst(sndx3) > 0} whose vari-
ables are typed as follows: x1 : ω ×Bool ⇒ Bool;x2 : ω ×Bool;x3 : ω × (Int× ω),
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where ω is a type variable. The types of instances of fst and snd can be in-
ferred, so we leave them implicit. Variable abstraction produces Φ′ = {x4 =
x1 x2, x5 = sndx3, x6 = sndx5, x2 = 〈x6, x4〉, x7 = fst x5, x8 = 0, x9 =
(x7 > x8), x9 = true}. Proxy variables have the following types: x4, x9 : Bool;
x7, x8 : Int; x5 : Int × ω; x6 : ω. The assignment ξ = [false/x4, true/x9] to propo-
sitional variables and the arrangement Dist{x7, x8} produce the reduced query
Φ′′ = ∆Bool ∪ Dist{x7, x8} ∪ Φ0 ∪ Φ1 ∪ Φ2, where Φ0 = {f = x1 x2}, Φ1 = {x8 =
0, t = (x7 > x8)}, Φ2 = {x5 = sndx3, x6 = sndx5, x2 = 〈x6, f〉, x7 = fst x5}.

5 Nelson-Oppen Cooperation

The signatures Σ1 = 〈O1 |K1〉, . . . , Σn = 〈ON |KN 〉 are disjoint if each prop-
erly contains ΣEq and the only constants and type operators that any two have
in common are those of ΣEq. Their sum signature is Σ = Σ1 + · · · + ΣN =
〈O1 ∪ · · · ∪ ON | K1 ∪ · · · ∪ KN 〉. If each Ti is a Σi-theory determined by
the structure Si, the sum theory T is defined by the sum Σ-structure
S = S1 + · · · + SN that interprets every F ∈ Oi and every kσ ∈ Ki the same
way the structure Si does it.

Our main result is the construction of a strong solver for the applicative frag-
ment of T , assuming the existence of strong solvers for the applicative fragment
of TEq and the algebraic fragment of every Ti. The construction follows the orig-
inal Nelson-Oppen approach [11], as revised by Tinelli and Harandi [20]. The
completeness proof, however, is radically different and relies essentially on the
parametricity of the component structures Si.

5.1 The Combined Solver

Let Σ and T be a sum signature and sum theory as above; for convenience, from
now on, Σ0 will stand for ΣEq. Given an input applicative Σ-query Φin and a
set of cardinality constraints Γ , the combined solver proceeds as follows.

1. Create, as described in Section 4, a set F of reduced queries such that Φin, Γ
is T -satisfiable iff Φ, Γ is T -satisfiable for some Φ ∈ F .5

2. Processing a Φ ∈ F , partition it into subqueries ∆Bool = {t = true, f = false},
Dist(Xσ) for all σ 6= Bool, and Φ0, Φ1,. . . ,ΦN , where Φ0 is a set of atomic
formulas of the form (B), and Φi is a set of non-logical atomic formulas of
the form (A) with the constant k taken from K+

i . (See Example 7.)
3. Purify each Φi into a reduced Σi-query Ψi, algebraic for i > 0, and a set of

constraints Γi that are all together T -equisatisfiable with Φ, Γ . (See Exam-
ple 8 below.)

4. Use strong solvers for Ti to check the joint Ti-satisfiability of Ψi and the
cardinality constraints in Γi. Return “Φ, Γ satisfiable” iff all solvers return
“satisfiable”.

5 The terrible inefficiency of enumerating propositional assignments and arrangements
can be alleviated with techniques involving the use of a SAT solver, but is not our
concern here. See, e.g., [13].
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Purification in 3. is a four-step procedure:
1. Proxying types. Let T be the set of types containing the types of all sub-

terms of formulas in Φ, and all types that occur as subexpressions of these.
Partition T into the set of type variables T var, the set T0 of function types, and
the sets Ti (i = 1, , , . , N) of types of the form F (σ1, . . . , σn) where F ∈ Oi−{⇒}.
For every σ ∈ Ti, let ασ be a fresh (proxy) type variable, and let σ◦ be the type
obtained from σ by replacing each maximal alien (i.e., element of Tj for j 6= i)
type τ that occurs as a subexpression in σ with the proxy ατ .

2. Proxying variables. Partition the set X of variables occurring in Φ into
{t, f}, Xvar, X0, . . . , XN , where x ∈ Xvar iff the type of x is in T var, and x ∈ Xi

iff the type of x is in Ti. For convenience, let us assume that the elements
of X are x1, x2, . . .. Introduce sets of fresh variables Yi = {yj | xj ∈ Xi} and
Zi = {zj | xj ∈ Xi}. By definition, the type of each yj is σ◦, and the type of zj is
ασ, where σ is the type of xj . Let Y σ = {yj | xj ∈ Xσ} and Zσ = {zj | xj ∈ Xσ}.
Let Y be the union of all the Yi and Z be the union of the Zi. Finally, let
∆i = ∆Bool +

⋃
σ/∈Ti

Dist(Y σ) +
⋃

σ∈Ti
Dist(Zσ)—a union of arrangements.

3. Generating constraints. Let Γ card
i be the union of Γ and cardinality con-

straints ασ
.= n, where σ ∈ Tj , j 6= i, and σ

.= n is implied by Γ . Let also Γ type
i

be the set of type constraints ασ
.= σ◦, where σ is an i-type. Note that these

type constraints imply ασ
.= σ for every non-variable type σ. Let Γ var

i be the
set of variable constraints zj

.= yj , where xj ∈ Xi. Finally, let Γi be the union
of Γ card

i , Γ type
i , and Γ var

i .
4. Purifying atomic formulas. For every x ∈ X and i = 0, . . . , N define

x
[i]
j =

xj if xj ∈ {t, f} ∪Xvar

yj if xj ∈ Xi

zj if xj ∈ Xi′ and i′ 6= i

and then (with k′ and k in (3) being appropriately typed instances of the same
constant in Ki)

Ψ0 = ∆0 ∪ {u[0]
0 = u

[0]
1 u

[0]
2 | (u0 = u1 u2) ∈ Φ0} (2)

Ψi = ∆i ∪ {u[i]
0 = k′ u

[i]
1 . . . u[i]

n | (u0 = k u1 . . . un) ∈ Φi} (i > 0) (3)

Lemma 3 (Purification). Every Ψi is a well-defined Σi-query and Γi is a set
of Σi-constraints. The union of all the Ψi and Γi is T -equisatisfiable with Φ, Γ .

Example 8. Continuing with Example 7, purification of Φ0 ∪ Φ1 ∪ Φ2 produces:

Ψ0 = ∆Bool ∪ {f = y1 z2} Γ0 = {αω×Bool⇒Bool
.= αω×Bool ⇒ Bool, z1

.= y1}
Ψ1 = ∆Bool ∪ {y7 6= y8; y8 = 0, t = (y7 > y8)} Γ1 = {αInt

.= Int, z7
.= y7, z8

.= y8}
Ψ2 = ∆Bool ∪ {y5 = snd y3, x6 = snd y5, z7 = fst y5, y2 = 〈x6, f〉}
Γ2 = {αω×Bool

.= ω × Bool, z2
.= y2; αω×(Int×ω)

.= ω × (αInt × ω), z3
.= y3;

αInt×ω
.= αInt × ω, z5

.= y5}

where each type constraint ασ
.= σ◦ in Γi is followed by variable constraints

zj
.= yj with zj : ασ and yj : σ◦.
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5.2 The Combination Theorem

Lemma 3 implies that the combined solver is sound: the input Φin, Γ is unsatis-
fiable if the solver says so. Completeness is less clear because it requires that a
T -model be assembled from a collection of Ti-models. When the theories satisfy
a flexibility condition à la Löwenheim-Skolem, completeness follows immediately
from the following theorem.

Theorem 1. Assume the notation is as in the previous section and that the
theories T1, . . . , Tn are flexible for reduced algebraic queries. Then: Φ, Γ is T -
satisfiable if and only if Ψi, Γ

card
i is Ti-satisfiable for every i = 0, . . . , N .

Here are the requisite definitions. An environment 〈ι, ρ〉 is separating if ρ
maps all variables of the same type to distinct elements. A theory is flexible
for a fragment F if for every separating model 〈ι, ρ〉 for an F-query Ψ and every
α ∈ dom(ι), there exist separating models 〈ιup(κ), ρup(κ)〉 and 〈ιdown, ρdown〉 for
Ψ such that ιup(κ)(β) = ι(β) = ιdown(β) for every β 6= α, and

1. [up-flexibility] ιup(κ)(α) has any prescribed cardinality κ greater than
the cardinality of ι(α)

2. [down-flexibility] ιdown(α) is countable

Lemma 4. Every fully parametric structure is up-flexible for reduced algebraic
queries. It is also down-flexible for this fragment if it satisfies the following con-
dition: for every type operator F and every element a ∈ [F ](A1, . . . , An), there
exist countable subsets A′

i of Ai such that a ∈ [F ](A′
1, . . . , A

′
n).

We have proved that TEq is flexible for reduced queries [10]. Also, by Lemma 4,
the theories of common datatypes mentioned in Lemma 1 all qualify for com-
plete Nelson-Oppen cooperation. The mild condition in Lemma 4 required for
down-flexibility is probably unnecessary. We conjecture (but are unable to prove
without informal reference to the downward Löwenheim-Skolem Theorem) that
down-flexibility for algebraic queries holds for all fully parametric theories.

The lemma below follows from parametricity theorems [10] and is central for
the proof of Theorem 1. We use it to incrementally modify the members of a given
family of Ti-models so that at each step they agree more on the intersections of
their domains; at the end, a T -model is obtained by amalgamating the modified
Ti-models.

Lemma 5 (Remodeling). Suppose 〈ι, ρ〉 is a separating model for an algebraic
query Ψ in a fully parametric structure, and f : ι(α) → ι(α) is a bijection for
some α ∈ dom(ι). Then there exists a separating model 〈ι, ρ′〉 for Ψ such that

(a) ρ′(x) = f(ρ(x)) for every variable x ∈ dom(ρ) of type α
(b) ρ′(y) = ρ(y) for every y ∈ dom(ρ) whose type does not depend on α

Example 9. To illustrate the proof of Theorem 1, let us continue with Example 8.
Starting with Ti-models 〈ιi, ρi〉 for Ψi (i = 0, 1, 2), we build a model 〈ι, ρ〉 for
the union of the Ψi and Γi. Let us order the types in T with respect to their
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complexity as in the first row of the table below. Let ι be a type environment
that maps the original type variable ω and the proxy type variables ασ for
σ ∈ T to sets in the second row of the table. Here I = {?, †, ‡, . . .} is an arbitrary
infinite set. Using the up- or down-flexibility of Ti and a simple consequence of
parametricity (“permutational invariance”), we first modify the given models to
achieve ι0 = ι1 = ι2 = ι; this will satisfy all type constraints too. Then we modify
the environments ρi in six steps, corresponding to the six types in T , so that
after the step related to σ ∈ T , the ρi agree on their variables associated with σ
and all types preceding σ. (For each xm ∈ Xσ, one of the ρi has ym in its domain,
while the others have zm.) These changes are possible by Lemma 5. The top half
of the table shows the ρi’s after the second step, where we have agreement on
variables associated with ω and ω×Bool (the shaded area). Turning to the type
Int, the pivot values 4, 0 (underlined) are picked from the “owner” model ρ1, and
ρ0, ρ2 adjust to it, with appropriate changes at “higher” types. The table also
shows the pivot value 〈4, †〉 for the next step .

σ ω ω × Bool Int Int× ω ω × (Int× ω) ω × Bool ⇒ Bool

JσK ι I I××××××××× B Z Z××××××××× I I××××××××× (Z××××××××× I) I××××××××× B⇒⇒⇒⇒⇒⇒⇒⇒⇒ B

x6 y2 or z2 y7 or z7 y8 or z8 y5 or z5 y3 or z3 y1 or z1

ρ0 † 〈†, false〉 1 5 〈10, ‡〉 〈†, 〈11, ?〉〉 λλλλλλλλλu. false

ρ1 † 〈†, false〉 4 0 〈12, ?〉 〈?, 〈13, †〉〉 λλλλλλλλλu. true

ρ2 † 〈†, false〉 3 7 〈3, †〉 〈‡, 〈3, †〉〉 λλλλλλλλλu. true

ρ′0 † 〈†, false〉 4 0 〈10, ‡〉 〈†, 〈11, ?〉〉 λλλλλλλλλu. false

ρ′1 † 〈†, false〉 4 0 〈12, ?〉 〈?, 〈13, †〉〉 λλλλλλλλλu. true

ρ′2 † 〈†, false〉 4 0 〈4, †〉 〈‡, 〈4, †〉〉 λλλλλλλλλu. true

6 Conclusion and Future Work

We contend that the base logic for SMT should have parametric types and
polymorphic functions. These features make it possible to easily model typical
datatypes by single parametric structures and to model (unbounded) combina-
tions of several datatypes by simple parameter instantiation. of several datatypes
by simple parameter instantiation.

Our revision of the Nelson-Oppen method relies just on the parametricity of
the datatypes modeled by the component theories and on the existence of strong
solvers for them. Parametricity requirements hold for virtually all datatypes of
interest, so to make our method widely applicable it remains to enhance the
existing satisfiability procedures into efficient strong solvers. This can likely be
done in ways similar to [15], and is the subject of future work.
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