
Instantiation-Based Invariant Discovery?

Temesghen Kahsai and Yeting Ge and Cesare Tinelli

The University of Iowa

Abstract. We present a general scheme for automated instantiation-based in-
variant discovery. Given a transition system, the scheme produces k-inductive in-
variants from templates representing decidable predicates over the system’s data
types. The proposed scheme relies on efficient reasoning engines such as SAT and
SMT solvers, and capitalizes on their ability to quickly generate counter-models
of non-invariant conjectures. We discuss in detail two practical specializations of
the general scheme in which templates represent partial orders. Our experimen-
tal results show that both specializations are able to quickly produce invariants
from a variety of synchronous systems which prove quite useful in proving safety
properties for these systems.

1 Introduction

The automated verification of hardware or software systems benefits greatly from the
specification of invariants, state properties that hold over all iterations of a program
loop or over all reachable states of a transition system. Since invariants are notoriously
difficult or time-consuming to specify manually, a lot of research in verification over
the years has been dedicated to their automatic generation.

In much of previous work, invariants are synthesized from a system’s description
(formal specification or source code), using sophisticated algorithms guided by the se-
mantics of the description language. In this paper, we propose a complementary ap-
proach based on a somewhat brute-force invariant discovery scheme which has proven
quite effective in our experimental evaluation. The approach looks for possible invari-
ants by sifting through a large set of automatically generated formulas. These formulas
are all instances of the same template, the parameter of the scheme, representing a de-
cidable relation over one of the system’s data types.

Our approach relies on efficient reasoning engines such as SAT and SMT solvers,
and capitalizes on their ability to quickly generate counter-models. For the invariant
discovery scheme to be practical, they key point is to encode large sets of candidate
invariants compactly and process them efficiently. One case when this is possible is
when the chosen template represents a partial order, that is, a reflexive, transitive and
antisymmetric relation. This paper investigate two specializations of the scheme, one
for general partial order sets (posets) and one for binary posets.

Our primary intended use for the discovered invariants is to assist the automatic
verification of safety properties. To illustrate the effectiveness of our approach, we de-
veloped a new tool based on it. While our invariant discovery scheme can be applied

? This work was partially supported by AFOSR grant #AF9550-09-1-0517.

2 Temesghen Kahsai and Yeting Ge and Cesare Tinelli

to any transition system, our tool applies to programs in the synchronous data flow
language Lustre [8] and generates invariants over their Boolean and integer variables.
We have carried extensive experiments with a large set of Lustre programs and anno-
tated with safety properties. Our experimental results indicate that our techniques are
quite effective in practice. As we discuss later, the generated invariants considerably
increase the number of provable safety properties; moreover, they do not slow down the
processing of safety properties already provable without those invariants.

Related work. Automatic invariant generation has been intensively investigated since
the 1970s, producing a large body of literature. Manna and Pnueli [10] provide a com-
pendium of this research and an extensive set of references. They present a number of
methods for generating invariants to prove safety properties, which have been later ex-
tended by others (e.g., [13, 2]). These methods could be classified as either top-down
or bottom-up. Top-down invariant generation begins with a property to be verified for
a particular system. When attempts to prove the property fail, various heuristics are
applied to strengthen it. Bottom-up methods look at the system and use it to deduce
properties of it. Until recently, invariants generated with these methods tended to be
simple properties and not very useful. The invariant discovery scheme described in this
paper could be classified as a bottom-up method. Its major distinction with respect to
previous approaches is its ability to produce more complex invariants efficiently.

Counterexample guided refinement is a popular technique in model checking that
has also been used for invariant generation [15, 3, 11]. Thalmaier et al. propose an
induction-guided refinement process to approximate reachability analysis by provid-
ing inductive invariants to a SAT-based property checker [14]. Such analysis is based
on BDD techniques. Another line of research on invariant generation builds on pred-
icate abstraction techniques [6, 11]. De Moura et al. describe invariant strengthening
techniques based on quantifier elimination. That work is one of the first to use modern
SMT solvers as reasoning engines for the verification of safety properties. There is re-
cent interest in using SMT-solvers for generating inductive loop invariants. Srivastava
and Gulwani describe a technique combining templates and predicate abstraction [12].

The work by Hunt et al. [9] is more closely related to ours, and was in fact its main
inspiration. They propose a SAT-based method to prove safety properties of circuits
that uses induction to identify equivalent sub-circuits inexpensively before attempting
to prove the given property. This equivalence information either implies the property
directly or can be used to decrease the amount of state space traversal by the main
model checking procedure. Compared with that work, our approach is more general,
with respect to both the transition systems it applies to and the relations it discovers
between sub-circuits.

Synopsis. In the next sub-section we give a brief description of the notions and nota-
tions that will be used throughout the paper. Section 2 presents a general scheme for
invariant discovery using k-induction. Section 3 describes two specializations of the
general scheme. Experimental results are reported in Section 4. Section 5 concludes
with a discussion of further research.

Instantiation-Based Invariant Discovery 3

Formal Preliminaries We denote finite tuples (or vectors) by letters in bold font. If t
is an n-tuple, t(i) is the i-th element of t for i = 1, . . . , n.

For generality, we consider here an arbitrary logic L (with classical semantics) ex-
tending propositional logic. We employ L’s notion of variable, term, formula, free vari-
able, model, and formula satisfiability in a model. Relevant examples of L are proposi-
tional logic or any of the logics used in SMT: linear arithmetic, linear arithmetic with
uninterpreted function symbols, and so on. If Γ is a set of formulas in L, a modelM
satisfies Γ if it satisfies every formula in it; Γ is L-(un)satisfiable in L if some (no)
model of L satisfies it. We define an entailment relation |=L in L as usual: for any set
Γ ∪ {F} of formulas in L, we have that Γ |=L F iff every model of L that satisfies Γ
satisfies F as well. Two formulas F and G are L-equivalent if F |=L G and G |=L F .

If F is a formula with free variables x1, . . . , xm, and t1, . . . , tm are any terms in the
logic, we use F [t1, . . . , tm] to denote the formula obtained from F by simultaneously
replacing each occurrence of xi in F by ti, for all i = 1, . . . ,m. Abusing the notation,
we will write F [x1, . . . , xm] also to denote that F has free variables x1, . . . , xm, and
sometimes just F [, . . . ,] when the name of the free variables is unimportant.

LetQ be a set of states, a state space. A transition system S overQ is a pair (SI, ST)
where SI ⊆ Q is the set of S’s initial states, and ST ⊆ Q×Q is S’s transition relation.
A state q ∈ Q is 0-reachable if q ∈ SI; it is k-reachable with k > 0 if it is (k − 1)-
reachable or (s, q) ∈ ST for some (k−1)-reachable state s. A state is (S-)reachable if it
is k-reachable for some k ≥ 0. We assume some encoding of the state space Q in terms
of n-tuples of ground terms in L, for some fixed n.1 Then, we say that (the encoding of)
a state q satisfies a formula F [x], where x is an n-tuple of distinct variables, if F [x] is
satisfied by every model of L interpreting x as q. This terminology extends to formulas
over several n-tuples of free variables in the obvious way.

Let S = (SI, ST) be a transitions system. A (state) property is any formula P [x]
over an n-tuple x of variables. It is invariant (for S) if it is satisfied by all S-reachable
states. An L-encoding of S is a pair (I[x], T [x,y]) of formulas of L respectively over
the n-tuples of variables x and x,y, where

– I[x] is a formula satisfied exactly by the initial states of S;
– T [x,y] is a formula satisfied by two reachable states q, q′ iff (q, q′) ∈ ST.

For any formula F over a single state and formula G over two states, we will write
Fi and Gi+1 as an abbreviation of G[xi] and G[xi,xi+1], respectively, where xi and
xi+1 are n-tuples of distinct variables.

Definition 1. A state property P [x] is k-inductive (wrt T) for some k ≥ 0 if

I0 ∧ T1 ∧ · · · ∧ Tk |=L P0 ∧ · · · ∧ Pk (1)
T1 ∧ · · · ∧ Tk+1 ∧ P0 ∧ · · · ∧ Pk |=L Pk+1 (2)

A property is inductive in the usual sense if it is 0-inductive. Every property that is
k-inductive for some k is invariant (but not vice versa). An invariant P [x] is trivial if
T1 |=L P1. Note that this includes all properties P [x] that are valid in L.

1 Depending on L, states may be encoded for instance as n-tuples of Boolean constants or as
n-tuples of integer constants, and so on.

4 Temesghen Kahsai and Yeting Ge and Cesare Tinelli

Require: a template formula R[,] and a term set U
Ensure: P is invariant
i := 0
C :=

∧
{R[s, t] | s, t ∈ U}

---------------- Phase 1 ----------------
repeat
i := i+ 1; refined := FALSE
repeat
a := SAT(I0 ∧ T1 ∧ · · · ∧ Ti−1 ∧ ¬Ci−1)
if a = (q0, . . . , qi−1) then
C := filter(C, qi−1); refined := TRUE

until a = unsat
until ¬refined
---------------- Phase 2 ----------------
k := i− 1
repeat
a := SAT(T1 ∧ · · · ∧ Tk ∧ C0 ∧ · · · ∧ Ck−1 ∧ ¬Ck)
if a = (q0, . . . , qk) then
C := filter(C, qk)

until a = unsat
P := C
---------------- Phase 3 ----------------
repeat
a := SAT(T1 ∧ ¬C1)
if a = (q0, q1) then
C := filter(C, q1)

until a = unsat
P := P \ C

Fig. 1. Pseudo-code for the general invariant discovery scheme. The function SAT implements
the L-solver. It takes a formula F over n states and returns either unsat or a sequence of n states
that satisfies F . The function filter takes a conjunctive property P and a state q and returns the
property obtained from P by removing all conjuncts that are falsified by q. In the last statement,
P \ C denotes the conjunction of the conjuncts of P that do not occur in C.

2 A general scheme for invariant discovery

Given an L-encoding S = (I[x], T [x,y]) of a system S = (SI,ST), we are inter-
ested in discovering invariants for S automatically. We describe here a general scheme
for doing so. The scheme is parameterized by a template formula R[,] and produces
invariants for S that are conjunction of instances R[s, t] of R where s, t are in prin-
ciple arbitrary terms over a single state.2 The scheme relies on the existence of an
L-solver, a decision procedure for L-satisfiability, which for each L-satisfiable formula
F [x1, . . . ,xm] is also able to return a state list q1, . . . , qm that satisfiesF [x1, . . . ,xm].3

The scheme also relies on a procedure that can generate from S a non-empty instanti-

2 The restriction to binary templates is used here only to simplify the exposition.
3 Modern SAT or SMT solvers are of course examples of L-solvers for specific L’s.

Instantiation-Based Invariant Discovery 5

ation set U of terms over x to be used to generate the instance of R. In this setting, a
naive approach would be to check every possible instanceR[s, t] individually for invari-
ance. This would be highly impractical since the number of instances of R is quadratic
in the size of the instantiation set U . In our approach, we check the satisfiability of all
instances at the same time and rely on the model generation ability of the L-solver to
weed out several non-invariant instances at once.

The general scheme consists of a simple two-phase procedure, with an optional
third phase. Given the formula R[,] and the term set U , the first phase starts with the
optimistic conjecture that the property

C[x] =
∧

s,t∈U

R[s, t]

is invariant. Then, it uses the L-solver to weaken that conjecture by eliminating from
it as many conjuncts R[s, t] as possible—specifically, all conjuncts falsified by a k-
reachable state, for some heuristically determined k. The resulting formula C is passed
to the second phase, which attempts to prove C k-inductive by establishing the entail-
ment (2) in Definition 1. Counterexamples to (2), i.e., models that falsify the entailment,
are used to weaken C further by eliminating additional conjuncts until (2) holds. The
final formula—the empty conjunction in the worst case—is guaranteed to be invariant.
That formula can be further processed in the optional third phase by removing from
it any conjunct that is a trivial invariant. The rationale for the last phase is that triv-
ial invariants are never needed, for being directly implied by the formula encoding the
transition relation, and including them could put extra burden on the L-solver.

The pseudo-code for the procedure sketched above is provided in Figure 1. The
termination condition for Phase 1 is a heuristic one: the search for the value k stops
when C is falsified by no k-reachable states. Furthermore, every conjunct of C that
does not pass the test in Phase 2 is conservatively assumed not to be invariant (even
if it may be k′-inductive for some k′ > k) and removed. It is not difficult to show
that both phases are terminating. The final C is invariant because, by construction, it is
k-inductive for the final k.

The practical feasibility of this invariant discovery scheme depends on the possibil-
ity of representing the conjecture C compactly, i.e., by an equivalent formula using less
than O(n2) space with n being the size of the instantiation set U , and refining it effi-
ciently, i.e., in less than O(n2) time . This may not be the case in general for arbitrary
template formulasR[,]. Hence, we focus on a class of templates for which in practice,
if not in theory, these space and time costs are sub-quadratic in n: L-formulas denoting
a partial order. Common useful examples of partial orders include implication over the
Booleans, the usual orderings over numeric domains, set inclusion over finite sets, as
well as equality over any domain.

3 Partial order templates

In this section, we describe two specializations of the general invariant discovering
scheme provided in Figure 1. Both specializations rely on the properties of partial or-
ders in order to represent the conjunctive conjecture C compactly and process it effi-
ciently. We start with one that works for any domain D and partial order � ⊆ D × D

6 Temesghen Kahsai and Yeting Ge and Cesare Tinelli

provided that both the identity relation ≈ (i.e., equality) over D and the partial order �
are expressible in a logic L with a decidable satisfiability problem. For example, this is
the case when L is rational (resp., linear integer) arithmetic and� is≤ or≥ over the ra-
tional numbers (resp., the integers). Then, we discuss a further specialization for binary
domains. For simplicity, in both cases we assume that ≈ and � are built-in symbols of
L. As a consequence, the template R[,] will be just � .

Let U be again the given instantiation set, and let M be a sequence (q1, . . . , qm)
of m ≥ 0 states from Q. To each t ∈ U we associate an m-vector vt where, for
i = 1, . . . ,m, vt(i) is the value of t in state qi, i.e., the element of D that t evaluates
to in qi. The state sequence M induces an equivalence relation ≡M over the terms in U
where s ≡M t iff vs = vt.

Definition 2. Let M be a state sequence. Suppose ≡M has m equivalence classes and
let r1, . . . , rm be their respective representatives. Let the point-wise extension of � to
m-vectors over D be denoted by � as well.4 The strongest conjecture CM consistent
with M is the smallest conjunction of ≈- and �-atoms that satisfies the following.

1. For each i = 1, . . . ,m and t ∈ U \ {ri}, CM contains t ≈ ri if t ≡M ri.
2. For each distinct i, j = 1, . . . ,m, CM contains the atom ri � rj if vri � vrj .

We can specialize the procedure described in Figure 1 by using the formula CM

above instead of C where M is a sequence of states produced by the L-solver. We
describe this specialization in the following. We consider just Phase 1 since the other
phases are analogous.

Specializing the general scheme (Phase 1) For each iteration of the repeat loop in
Phase 1 let M be the sequence of all the states generated until then (those passed to
filter in Figure 1). Initially, M is the empty sequence, which means that ≡M is U × U
and so CM has the form t2 ≈ t1 ∧ · · · ∧ tm ≈ t1 with {t1, . . . , tm} = U . Calls to filter
now amount to computing the formula CM for the most recent M . This specialization
maintains the following (meta-)invariants on M : for all s, t ∈ U , (i) s ≡M t iff none
the models generated by the L-solver so far falsifies the formula s ≈ t, i.e., contradicts
the conjecture that s ≈ t is invariant; (ii) vs � vt iff at least one of the models so far
falsifies the formula t � s but none falsify s � t; in other words, the evidence so far
disproves the conjecture that s ≈ t is invariant but not that s � t is.

Relying on the two properties above it possible to show that, at each step of Phase 1,
the formula CM is L-equivalent to the formula C in Figure 1. The formula CM is more
compact than C because it replaces the quadratically many �-atoms between distinct
≡M -equivalent terms by linearly-many equality atoms between these terms and their
equivalence class representative (e.g., {t2 ≈ t1, t3 ≈ t1} in place of {t1 � t2, t1 �
t3, t2 � t3, t2 � t1, t3 � t1, t3 � t2}).

An even more compact version of CM is possible by exploiting the transitivity of
�. In concrete, this can be done by computing a minimal, or close to minimal, base
for the poset (VM ,�) where VM = {vr1 , . . . ,vrm} (vr1 , . . . ,vrm are again the repre-
sentatives of ≡M ’s classes). A base for the poset is a binary relation B on VM whose

4 So (u1, . . . , un) � (v1, . . . , vn) iff ui � vi for i = 1, . . . , n.

Instantiation-Based Invariant Discovery 7

Require: (VM ,�) is a poset,
Ensure: C is set of chains over VM , σ : VM → 2VM , and v � v′ for all v′ ∈ σ(v)
C := ∅; σ := ∅
for v ∈ VM do
σ := σ ∪ {v 7→ ∅}
for c ∈ C do
i := greatestBelow(v, c)
j := leastAbove(v, c)
if j = 1 then

insert v at the beginning of c
else

if i = j − 1 then
insert v at position j in c

else
if i = the length of c then

append v at the end of c
else

if 0 < i then
add v to σ(c(i))

if 0 < j then
add c(j) to σ(v)

if v was not inserted into any chain then
C := C ∪ {[v]}

Fig. 2. A partial order sorting procedure. The call greatestBelow(v, c) returns the position in
the chain c of its greatest element smaller than v, if any; otherwise, it returns 0. The call
leastAbove(v, c) returns the position of the least element of c larger than v, if any; otherwise, it
returns 0. The notation c(i) stands for the i-th element of c.

transitive closure B+ coincides with � over VM .5 A base is minimal if no strict subset
of B is a base for the poset. Then, given a base B, Requirement 2 in the definition of
CM (Definition 2) can be relaxed to having CM contain ri � rj only if (vri ,vrj) ∈ B.

Partial order sorting One way to compute a base B for the poset (VM ,�) is to use a
procedure for partial order sorting. We describe here a procedure that, while probably
not as efficient in general as those in the most recent literature (see, e.g., [4]), is much
simpler to describe and implement, and is explicitly geared towards posets with many
incomparable elements such as those generated by our invariant discovery scheme.

A chain over VM is a list [v1,v2, . . . ,vp] of members of VM such as v1 � v2 �
. . . � vp. Our sorting procedure takes the set VM as input, and computes a set C of
chains over VM as well as a mapping σ from VM to 2VM such that v � v′ for all
v′ ∈ σ(v). In essence, C is a selection of chains in the partial order, and for each
element v in a chain, σ(v) collects all the immediate successors of v in chains of C that
do not contain v. The base B for the poset (VM ,�) is obtained by collecting all pairs
(v,v′) such that v′ ∈ σ(v) or v and v′ occur consecutively in a chain of C.

5 That is, for all distinct v,v′ ∈ VM , v � v′ iff (v,v′) ∈ B+.

8 Temesghen Kahsai and Yeting Ge and Cesare Tinelli

The procedure, shown in Figure 2, works as follows. For each v ∈ VM and for each
existing chain c ∈ C, it inserts v into c if possible. That is the case if, with respect to �,
v is smaller than the first value of c, greater than the last, or in between two consecutive
elements of c. Otherwise, if c contains elements smaller than v, it adds v to the set σ(vi)
where vi is the greatest of these elements; also, if c contains elements greater than v,
it adds vj to the set σ(v) where vj is the least of these elements. If the procedure is
unable to add v to any existing chain, it puts v in its own chain and adds that to C.

Example 1. We briefly illustrate the partial order sorting procedure where D is the
domain of the integers and � is the usual ≤ relation. Consider a sequence M with
two states. Let s, t, q, r, p ∈ U be terms, and let the associated poset (VM ,�) be
({vs,vt,vq,vr,vp},≤) where

vs = (6, 5), vt = (5, 2), vq = (5, 3), vr = (10, 2), vp = (2, 4) .

Initially, the chain C and the mapping σ are empty. The following table shows the value
of C and σ after each main iteration of the sorting procedure.

C σ
1 [vs] vs 7→ ∅
2 [vt,vs] vs 7→ ∅, vt 7→ ∅
3 [vt,vq,vs] vs 7→ ∅, vt 7→ ∅, vq 7→ ∅, vr 7→ ∅
4 [vt,vq,vs], [vr] vs 7→ ∅, vt 7→ {vr}, vq 7→ ∅, vr 7→ ∅
5 [vt,vq,vs], [vr], [vp] vs 7→ ∅, vt 7→ {vr}, vq 7→ ∅, vr 7→ ∅, vp 7→ {vs}

ut

Analysis of the sorting procedure Our sorting procedure is trivially terminating be-
cause the input VM is finite and the set C and map σ are initially empty. It is correct
in the sense that the set B determined by C and σ is a base of (VM ,�). It is not opti-
mal because it may produce non-disjoint chains, giving rise to non-minimal bases; but it
seemed to work fairly well during the experimental evaluation we describe in Section 4.

A coarse-grained worst-case complexity analysis shows that the procedure has time
complexity O(nwh), where w is the width of the poset (VM ,�), the cardinality of the
largest anti-chain in it, h is the height of the poset, the length of its longest chain, and n
is the cardinality of VM .6 This analysis assumes that comparing two elements of VM for
� takes constant time and that we store chains into arrays, which allows the functions
greatestBelow and leastAbove in Figure 2 to be implemented by binary search. The
former assumption does not generally hold because � is a point-wise ordering over
vectors. One can make it only with a careful implementation based on the fact that
the elements of VM are built incrementally at each round of the invariant discovery
procedure: vectors of length k + 1 are obtained by adding a new component to vectors
of length k. Since (u1, . . . , uk+1) � (v1, . . . , vk+1) iff (u1, . . . , uk) � (v1, . . . , vk)
and uk+1 � vk+1, by caching in a hash table the results of vector comparisons at round
k, vector comparisons at round k + 1 can be reduced to two constant time operations.7

6 Note that h ≤ n− w + 1, h = n when w = 1, and h = 1 when w = n.
7 The hash table will have quadratic size only in the worst case when a linear number of vectors

are all pairwise comparable.

Instantiation-Based Invariant Discovery 9

A recent and efficient partial sorting algorithm by Daskalakis et al. based on merge
sort [4] has complexity O(w2n log n

w), where again n is the cardinality of the poset
and w its width. This complexity and that of our procedure do not easily compare in
general. But we note that the posets we work with tend to have a small height, because
most value vectors are incomparable. Now, with an upper bound on a poset’s height,
the poset’s width grows proportionally with its cardinality. This makes our procedure
quadratic in n and the one by Daskalakis et al. more than cubic.

3.1 Binary domains

When the domain D has cardinality 2, for example in the Boolean case, there is a bet-
ter way to compute a base B for the poset (VM ,�). Instead of a partial order sorting
procedure, we can use one that represents B more directly as a directed acyclic graph
(dag) GM whose nodes are the equivalence classes of ≡M , and whose edges represent
(selected) pairs in �. More precisely, the set of edges is such that for all distinct equiv-
alence classes S and T of ≡M with respective representatives s and t, S and T are
connected in GM iff vs � vt. The graph for the initial, empty state sequence is simply
the graph with no edges and a single node, the whole instantiation set U .

Graph generation We developed a procedure to compute the graph GM for state
sequences M , relying on the fact that each M is built incrementally, by appending a
new state q to a previous sequence L. Given a sequence L and its graph GL, and a
new state q, the procedure computes the graph GM for the sequence M obtained by
appending q to L. We do not describe the procedure in detail here for space constraints.
Instead, we give a general intuition on how it works.

Assume for concreteness that D = {0, 1} and 0 � 1, and let X be an arbitrary
node of the old graph GL. For i = 0, 1, let Xi be the set consisting of all the terms in
X that evaluate to i in the new state q. The set Xi becomes a node of the new graph
GM iff Xi 6= ∅. In other words, GM gets a node identical to X if all the terms of X
have the same value in q, and gets two new nodes, partitioningX , otherwise. Whenever
both X0 and X1 are added to GM , the edge X0 −→ X1 is also added. Edges between
old nodes in GL are inherited by the corresponding new nodes consistently with the
ordering induced by M . In general, every edge Xi −→ Yj of GM (where X and Y are
nodes of GL) comes from a path of length at most 2 from X to Y in GL; moreover,
i ≤ j. The effect of the procedure is best illustrated with an example.

Example 2. Let M = (L, q) and suppose GL is the following dag.

Instantiation-Based Invariant Discovery 9

vectors of length k + 1 are obtained by adding a new component to vectors of
length k. Since (u1, . . . , uk+1) � (v1, . . . , vk+1) iff (u1, . . . , uk) � (v1, . . . , vk) and
uk+1 � vk+1, by caching in a hash table the results of vector comparisons at
round k, vector comparisons at round k+1 can be reduced to two constant time
operations.7 A recent and efficient partial sorting algorithm by Daskalakis et al.
based on merge sort [?] has complexity O(w2n log n

w), where again n is the size
of the poset and w its width. This complexity and that of our procedure do not
easily compare in general. But we note that for posets with a small height, and
so a width close to n, our procedure is basically quadratic in n while the one by
Daskalakis et al. is cubic.

3.1 Binary domains

When the domain D has cardinality 2, for example in the Boolean case, there is
a better way to compute a base B for the poset (VM ,�). Instead of the generic
partial order sorting procedure given earlier, we can use one that represents B
more directly as a directed acyclic graph GM whose nodes are the equivalence
classes of ≡M , and whose edges represent (selected) pairs in �. More precisely,
the set of edges is such that for all distinct equivalence classes A and B of ≡M

with respective representatives rA and rB , A and B are connected in GM iff
rA � rB . The graph for the initial state sequence, which is empty, is simply the
graph with no edges and a single node, the whole candidate set U .

We have developed a procedure to compute the graph GM for non-empty
state sequences M , relying on the fact that the M is built incrementally, by
appending a new state q to a previous sequence L. The new procedure takes q
and the dag GL as input, and produces GM as output. We do not describe the
procedure in full details here for space constraints. Instead, we give a general
intuition on how it works.

Assume for concreteness that D = {0, 1} and 0 � 1, and let A be an arbitrary
node of the old graph GL. For i = 0, 1, let Ai be the set consisting of all the
terms in A that evaluate to i in the new state q. The set Ai becomes a node of
the new graph GM iff Ai �= ∅. In other words, GM gets a node identical to A if
all the terms of A have the same value in q, and get two new nodes, partitioning
A, otherwise. If both A0 and A1 are added to GM , the edge A0 −→ A1 is
also added. Edges between old nodes are inherited by the corresponding new
nodes consistently with the ordering induced by M . The way this is done is best
illustrated with one example.

Example 3. Suppose GL is the following graph.

A B C

Suppose C1 is empty, and A0, A1, B0, C0 and C1 are all non-empty. Then the
procedure initially computes GM with the following nodes and edges.

7 Note that the hash table will have quadratic size only in the worst case when a linear
number of vectors are all pairwise comparable.

Suppose B1 is empty, and A0, A1, B0, C0, C1 are all non-empty. The procedure starts
by creating GM with the following nodes and edges.

10 Temesghen Kahsai and Yeting Ge and Cesare Tinelli

A0 A1 B0 C0 C1

After that, it adds the edges derived from GL, producing the following final
version of GM .

A0 A1

B0

C0 C1

The actual procedure

4 Experimental Evaluation

To evaluate experimentally the approaches described in the previous section we
have implemented two instances of the general invariant discovery scheme: one
for the domain of linear integer arithmetic, with the standard ≤ as the partial
order,8 and one for the Boolean domain, with implication as the partial order.
The instances are implemented in a new tool, Kind-Inv, built on top of the Kind
model checker [?]. Kind was developed to check safety properties of programs
written in the specification/programming Lustre [?]. Lustre is a synchronous
data-flow language operating on infinite streams of values of three basic types:
bool, int, and real. It is typically used to model circuits at a high level or
control software in embedded devices.

Invariant generation for Lustre programs. More accurately, Kind is a k-
induction-based model checker for programs in an idealized version of Lustre
that uses mathematical integers in place of machine integer values, and rational
numbers in place of floating values. The underlying logic of Kind, and of Kind-
Inv, is a quantifier-free logic that includes both propositional logic and linear
arithmetic. We’ll refer to it as IL (for Idealized Lustre logic) here. The SMT
solvers CVC3 [?] and Yices [?] are used, in alternative, as satisfiability solvers for
this logic. Lustre programs can be readily encoded in IL as transition systems
of the sort described in the previous sections (see [?]) for more details).

A Lustre programs can be structured as a set of modules called nodes which
can be understood as macros. Kind-Inv, however, takes a single-node Lustre
program as input and automatically generates invariants for it. A multi-node

8 Actually, this instance works with rational numbers as well, but we will ignore that
here to simplify the exposition a bit.

10 Temesghen Kahsai and Yeting Ge and Cesare Tinelli

Then it adds edges derived from GL, returning the following dag as GM .

10 Temesghen Kahsai and Yeting Ge and Cesare Tinelli

A0 A1 B0 C0 C1

After that, it adds the edges derived from GL, producing the following final
version of GM .

A0

B0 C0

C1

A1

The actual procedure

4 Experimental Evaluation

To evaluate experimentally the approaches described in the previous section we
have implemented two instances of the general invariant discovery scheme: one
for the domain of linear integer arithmetic, with the standard ≤ as the partial
order,8 and one for the Boolean domain, with implication as the partial order.
The instances are implemented in a new tool, Kind-Inv, built on top of the Kind
model checker [?]. Kind was developed to check safety properties of programs
written in the specification/programming Lustre [?]. Lustre is a synchronous
data-flow language operating on infinite streams of values of three basic types:
bool, int, and real. It is typically used to model circuits at a high level or
control software in embedded devices.

Invariant generation for Lustre programs. More accurately, Kind is a k-
induction-based model checker for programs in an idealized version of Lustre
that uses mathematical integers in place of machine integer values, and rational
numbers in place of floating values. The underlying logic of Kind, and of Kind-
Inv, is a quantifier-free logic that includes both propositional logic and linear
arithmetic. We’ll refer to it as IL (for Idealized Lustre logic) here. The SMT
solvers CVC3 [?] and Yices [?] are used, in alternative, as satisfiability solvers for
this logic. Lustre programs can be readily encoded in IL as transition systems
of the sort described in the previous sections (see [?]) for more details).

A Lustre programs can be structured as a set of modules called nodes which
can be understood as macros. Kind-Inv, however, takes a single-node Lustre
program as input and automatically generates invariants for it. A multi-node
program can be treated by a previous expansion to a behaviorally equivalent
single-node one. The invariants discovered by Kind-Inv are added to the input
program as Lustre “assertions.” Contrary to other languages, assertions in Lustre
are expressions of type bool that are assumed to be true at each execution step of

8 Actually, this instance works with rational numbers as well, but we will ignore that
here to simplify the exposition a bit.

The edge A0 −→ B0 comes from A −→ B. Similarly, B0 −→ C0 comes from B −→
C. In contrast, A1 −→ C1 comes from the path A −→ B −→ C, because of the
absence of B1. ut

The procedure works in three phases. In the first phase, it scans GL’s node set to
generate the nodes of GM and the edges between nodes X0 and X1. It also builds a
map from each node of GL to its corresponding node(s) in GM . In the second phase, it
traverses the dagGL bottom up (from leaves to roots), to determine for each of its nodes
which nodes of GM should inherit the node’s incoming edges, and how. A marking
mechanism is used to visit each node of GL only once. In the third phase, it scans GL’s
edge set to generate the corresponding edges in GM .

Analysis of the graph generation procedure From the above high-level description of
the procedure it is perhaps already clear that its time complexity is linear in the number
of nodes and edges of GL. The linearity, however, comes at the cost of sub-optimality.
Since in the second phase each node of GL is visited only once, it is possible for GM to
end up containing redundant edges, edges connecting directly two nodes also connected
by a longer path. Redundant edges lead to non-minimal bases for the associated poset
because the inequations they generate are implied by other inequations in the base.

For example, the edge A −→ C is redundant if A −→ B and B −→ C are also
in GM . By the transitivity of �, the inequation rA � rB between the A’s and C’s
representatives is then superfluous. In our implementation, discussed next, redundant
edges are removed in an optional post-processing step on the final dag.

4 Experimental Evaluation

To evaluate experimentally the specialized invariant discovery procedures described in
the previous section we implemented two instances of the general invariant discovery
scheme: one for the domain of linear integer arithmetic, with ≤ as the partial order,8

and one for the Boolean domain, with implication as the partial order. The instances
are implemented in a new tool, called KIND-INV9, built with components of the KIND
model checker [7]. Kind was developed to check safety properties of Lustre programs.
Lustre [8] is a synchronous data-flow language with infinite streams of values of three
basic types: bool, int, and real. It is typically used to model circuits at a high level or
control software in embedded devices.

8 This instance works with rational numbers as well, but we ignore that here for simplicity.
9 System and experimental data can be found at http://clc.cs.uiowa.edu/Kind/.

Instantiation-Based Invariant Discovery 11

KIND is a k-induction-based model checker for programs in an idealized version of
Lustre that uses (mathematical) integers in place of machine integer values, and rational
numbers in place of floating values. The underlying logic of KIND, and of KIND-INV,
is a quantifier-free logic that includes both propositional logic and linear arithmetic.
We’ll refer to it as IL (for Idealized Lustre logic) here. Lustre programs can be readily
encoded in IL as transition systems of the sort we use here (see [7] for more details).
The SMT solvers CVC3 [1] and Yices [5] are used, in alternative, as satisfiability solvers
for this logic. A Lustre program can be structured as a set of modules called nodes
which can be understood as macros. KIND-INV currently takes a single-node Lustre
program as input. A multi-node program can be treated by expanding it in advance to
a behaviorally equivalent single-node one. The invariants discovered by KIND-INV are
then added to the Lustre input program as “assertions.” Contrary to other languages,
such as C, assertions in Lustre are expressions of type bool that are assumed to be true
at each execution step of the program.

KIND-INV accepts two options for generating invariants: bool and int. The first
option produces invariants of the form s→ t or s = t where s and t are Lustre Boolean
terms. The second produces invariants of the form s ≤ t or s = t where s and t are
integer terms. The instantiation set U currently consists of heuristically selected terms
from the input Lustre program plus some distinguished constant terms such as true and
false. Note that bool terms may contain int terms, as in (x + y > 0) or done, and vice
versa, as in x + (if y > 0 then y else 1).

KIND-INV provides three binary options affecting invariant generation. The first
two work only with the bool invariant option, the last one with both options:

No Ands : When this flag is turned on, KIND-INV will not consider candidate terms of
the form s∧ t. The rationale behind this flag is that, conjunctive terms lead to many
trivial invariants, for instance, those of the form (s ∧ t) → s. Having too many of
these unnecessary invariants can be burdensome for the SMT-solver, limiting the
effectiveness of the non-trivial invariants in the generated assertion.

No Redundant Edges : When this flag is on, KIND-INV will remove redundant edges
from the final dag storing the computed poset (see Section 3.1).

No Trivial Invariants : This flags governs whether the third phase of the invari-
ant discovery procedure is performed or not. Its rationale is that the third phase is
expensive and may not be worthwhile.

Evaluation setup To evaluate KIND-INV, we used a benchmark set derived from
the one used in [7], which consists of a variety of benchmarks from several sources.
Each benchmark in the original set is a Lustre program together with a single prop-
erty to check, expressed as a Lustre bool term. Our derived set discards some duplicate
benchmarks—included in the original set by mistake—and converts each program to a
single-node one using the pollux tool from the Lustre 4 distribution.

Let us call a benchmark valid if its safety property holds for the associated program,
and invalid otherwise. KIND is able to prove 438 of the 941 benchmarks in our set
invalid by returning a (independently verified) counter-example trace for the program.
KIND reports 309 of the remaining benchmarks as valid, and diverges on the remaining
194 benchmarks, even with very large timeout values. We conjecture that those 194

12 Temesghen Kahsai and Yeting Ge and Cesare Tinelli

Fig. 3. Distribution of solved and unsolved benchmarks for three classes of invariants. Green bars
indicate the percentage of benchmarks solvable only with invariants. All bars are drawn to scale.

unsolved benchmarks are all valid but contain a property that is either k-inductive for
an extremely large k or, more plausibly, not k-inductive for any k.

For the experiments described here the benchmark set consists of the valid and the
unsolved benchmarks, 503 in total. Our main goal was to evaluate how effective the
invariants generated by KIND-INV are at improving KIND’s precision, measured as
the percentage of solved benchmarks. The experiments were run on a small dedicated
cluster of identical machines with a 3.0 GHz Intel Pentium 4 cpu, 1GB of memory
and Redhat Enterprise Linux 4.0. Version 1.0.9 of the Yices solver was used both for
KIND-INV and KIND.

In a first step, we ran KIND-INV on the benchmark set twice, once for the bool
and once with the int invariant generation option. For each of the benchmarks where
KIND-INV did not time out, we obtained a set of invariants, and added them to the
benchmark as a single conjunctive assertion. The added assertion was the constant true
when KIND-INV timed out or ended up discarding all conjectures from the initial set.
To make sure that the added assertions were indeed invariants, we verified each of them
independently by formulating it as a safety property and asking KIND to prove it.10 In
a second step, we ran KIND in inductive mode on each benchmark, with and without
the assertion that collects the discovered invariants. In that mode, KIND attempts to
prove the benchmark’s property by k-induction, using any assertion in the program to
strengthen the k-induction hypothesis with the invariant in the assertion. The timeout
for KIND-INV was set to 300 seconds and that for KIND to 120 seconds.

We did an extensive evaluation over our benchmarks with various configurations. By
and large, all configurations are comparable in terms of the precision achieved by KIND
when using their generated invariants. The only significant differences are with respect
to invariant generation speed. A statistical analysis of the results obtained with the var-
ious configurations, not reported here, indicated that the following configuration is su-
perior to the others: No Ands = on, No Redundant Edges = on, and No Trivial In-
variants = off. Hence, we report our results just for that configuration.

Precision results The size of the generated invariants, measured as their number of
conjuncts, varies from 0 to 1150, with a median value of 133. With the bool option,
KIND-INV times out in 19 cases (out of 503), and terminates normally but with an

10 Since KIND-INV and KIND used the same SMT solver it is possible that we missed incorrect
assertions because of a bug in the solver, but we believe this to be unlikely.

Instantiation-Based Invariant Discovery 13

Fig. 4. Solving times without invariants versus int invariant generation times plus solving times
with int invariants. In the parallel simulation, solving without invariants is attempted during in-
variant generation. Invariants are then used once available, and only if still needed.

empty invariant in 2 cases. With the int option, it times out in 62 cases and terminates
with an empty invariant in 12 cases.

Using only bool invariants, i.e., invariants generated by KIND-INV with the bool
option, KIND is able to prove 40% of the 194 previously unsolved benchmarks; using
int invariants, invariants generated with the int option, it proves 53% of the unsolved
benchmarks; using both bool and int invariants, it proves 63% of the unsolved bench-
marks. In the three cases above, Kind’s precision over all 513 benchmarks grows from
61% (without invariants) to 77%, 82%, and 85%, respectively. For all the newly solv-
able benchmarks the properties goes from (most likely) not k-inductive for any k to
k-inductive with some k ≤ 16. The set of new benchmarks solved with bool invariants
and that solved with int invariants have a large overlap, which we find somewhat sur-
prising. Less surprising is that using bool and int invariants together allows KIND to
solve all the benchmarks solvable with either type alone, and more.

The addition of invariants preserves the set of benchmarks proved valid by KIND
without them. Furthermore, it often shortcuts the k-induction process. In fact, without
invariants, 14.5% of the previously valid benchmark have a safety property that is k-
inductive for some k > 1; that percentage goes down respectively to 6.7%, 8.7% and
3.8%, with only bool, only int and both bool and int invariants.

Figure 4 summarizes graphically the various effects achieved with bool and int in-
variants, alone and in combination. For each of these three cases, column A represents
benchmarks solvable by KIND without invariants; columns B to E represent bench-
marks solvable with the generated invariants; column F represents benchmarks that
remain unsolved, either because KIND-INV was not able to generate an invariant for
them or because the generated invariant is not helpful. Columns C and D represent the
benchmarks solved only with int and only with bool invariants, respectively. Column E
represents the benchmarks solved only with both bool and int invariants together.

Runtime results Adding invariants to previously solvable benchmarks systematically
makes them slightly faster to solve. The total time to solve them decrease from 305.7
to 246.5 seconds. Individual solving times in the presence of invariants are very small;

14 Temesghen Kahsai and Yeting Ge and Cesare Tinelli

on average just 0.95s for all solvable benchmarks. In addition to the substantial in-
crease in precision, this provides further evidence that our invariant discovery proce-
dure produces high quality invariants. Invariant generation has of course its own, non-
insignificant cost. Over the whole benchmark set, KIND-INV runtimes vary from less
than a second to hundreds of seconds, to timing out at 300s. However, their median
value is fairly small: 22.4s for int invariants and just 6.3s for bool ones. For the great
majority of benchmarks (84%) bool invariant generation takes less than a minute per
benchmark.

Evaluating invariant generation costs against the increase in precision is a diffi-
cult task because it also depends on the relative importance of precision versus prompt
response. A supporting argument is that invariant generation and k-induction model
checking can be done in parallel—with invariants fed to the k-induction loop as soon
as they are generated—mitigating this way the cost of invariant generation. Develop-
ing a parallel model checker integrating KIND and KIND-INV was beyond the scope of
this work. An approximate analysis, however, can be provided with a rough conceptual
simulation of such a concurrent system.

Since the synchronization overhead in the parallel model checker would be arguably
very small, we can ignore it here for simplicity. Then we can imagine the parallel
checker’s runtimes to be, for each benchmark, the minimum between the following
two values: (i) the time KIND takes to prove the property without invariants and (ii)
the sum of the times KIND-INV takes to output an invariant and KIND takes to prove
the property using that invariant. The scatter plots in Figure 4 illustrate this comparison
with int invariants—the results are similar for bool invariants. The first plot compares
for each benchmark the runtime of KIND with no invariants and a 420s timeout11 against
the runtime of a hypothetical sequential checker that uses KIND-INV with a timeout of
120s, to add an invariant to the program, and then calls KIND with a timeout of 300s.
The considerable invariant generation time penalty paid by the sequential checker (il-
lustrated by all the points above the diagonal lines in the first plot) essentially disappears
with the parallel checker, as shown in the second plot.

5 Conclusion and Future Work

We presented a novel scheme for discovering invariants in transition systems. The
scheme is parametrized by a formula template representing a decidable relation over the
system’s datatypes, and by a set of terms used to instantiate the template. Its main fea-
tures are that it checks all template instances for invariance at the same time and makes
heavy use of a satisfiability solver for the logic in which the system and the instances
are encoded. We described two specializations of the scheme to templates representing
partial orders where we can exploit the properties of posets to achieve space and time
efficiencies. Initial experimental results are very encouraging in terms of the speed of
invariant generation and the effectiveness of the generated invariants in automating the
verification of safety properties.

In the implementation discussed in the previous section, invariant generation is done
off-line. We are developing a parallel model checking architecture and implementation
11 Increasing the timeout from 300s to 420s does not change the set of solved benchmarks.

Instantiation-Based Invariant Discovery 15

in which k-induction and invariant generation are done concurrently, with invariants fed
to the k-induction loop as soon as they are produced.

Our invariant discovery scheme lumps together, in a single invariant produced at
the end, instances of the template that may be k-inductive for different values of k.
We believe that the effectiveness of the parallel model checking architecture would in-
crease if invariant instances were identified and output progressively—with k-inductive
instances produced before (k + 1)-inductive ones. We are working on a new version of
the scheme based on this idea.

We are also investigating techniques for compositional reasoning with synchronous
systems based on the invariant discovery method presented in this paper. The main idea
is to generate invariants separately for each module of a multi-module system, and then
use them to aid the verification of properties of the entire system.

References

1. C. Barrett and C. Tinelli. CVC3. In W. Damm and H. Hermanns, editors, CAV’07, volume
4590 of LNCS, 2007.

2. S. Bensalem and Y. Lakhnech. Automatic generation of invariants. Form. Methods Syst.
Des., 15(1):75–92, 1999.

3. S. Das and D. L. Dill. Counter-example based predicate discovery in predicate abstraction.
In FMCAD ’02, pages 19–32. Springer-Verlag, 2002.

4. C. Daskalakis, R. M. Karp, E. Mossel, S. Riesenfeld, and E. Verbin. Sorting and selection in
posets. In ACM-SIAM Symposium on Discrete Algorithms, pages 392–401, 2009.

5. B. Dutertre and L. de Moura. The YICES SMT solver. Technical report, SRI International,
2006.

6. S. Gulwani, S. Srivastava, and R. Venkatesan. Constraint-based invariant inference over
predicate abstraction. In VMCAI ’09, pages 120–135, Berlin, Heidelberg, 2009.

7. G. Hagen and C. Tinelli. Scaling up the formal verification of lustre programs with SMT-
based techniques. In FMCAD ’08, pages 1–9, Piscataway, NJ, USA, 2008. IEEE Press.

8. N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous data-flow program-
ming language LUSTRE. Proceedings of the IEEE, 79(9):1305–1320, September 1991.

9. W. Hunt, S. Johnson, P. Bjesse, and K. Claessen. SAT-Based Verification without State Space
Traversal, volume 1954, pages 409–426. Springer Berlin / Heidelberg, 2000.

10. Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems: Safety. Springer-Verlag,
1995.

11. S. Pandav, K. Slind, and G. Gopalakrishnan. Counterexample guided invariant discovery for
parameterized cache coherence protocol verification. In CHARME 2005, pages 317–331,
2005. LNCS 2144.

12. S. Srivastava and S. Gulwani. Program verification using templates over predicate abstrac-
tion. SIGPLAN Not., 44:223–234, 2009.

13. J. X. Su, D. L. Dill, and C. W. Barrett. Automatic generation of invariants in processor
verification. In In FMCAD ’96, volume 1166 of LNCS, pages 377–388, 1996.

14. M. Thalmaier, M. D. Nguyen, M. Wedler, D. Stoffel, J. Bormann, and W. Kunz. Analyzing
k-step induction to compute invariants for SAT-based property checking. In DAC ’10, pages
176–181. ACM, 2010.

15. A. Tiwari, H. Rueß, H. Saı̈di, and N. Shankar. A technique for invariant generation. In
TACAS ’01, pages 113–127. Springer-Verlag, 2001.

