
Model Evolution with Equality
Modulo Built-in Theories

Peter Baumgartner
NICTA∗and Australian National University, Canberra, Australia

Peter.Baumgartner@nicta.com.au

Cesare Tinelli
The University of Iowa, USA,

cesare-tinelli@uiowa.edu

April 22, 2011

Abstract

Many applications of automated deduction require reasoning modulo background
theories, in particular some form of integer arithmetic. Developing corresponding auto-
mated reasoning systems that are also able to deal with quantified formulas has recently
been an active area of research. We contribute to this line of research and propose a
novel instantiation-based method for a large fragment of first-order logic with equality
modulo a given complete background theory, such as linear integer arithmetic. The
new calculus is an extension of the Model Evolution Calculus with Equality, a first-
order logic version of the propositional DPLL procedure, including its ordering-based
redundancy criteria. We present a basic version of the calculus and prove it sound and
(refutationally) complete under certain conditions.

1 Introduction

Many applications of automated deduction require reasoning modulo background theories,
in particular some form of integer arithmetic. Older theory reasoning techniques developed
within first-order theorem proving are often impractical as they require the enumeration
of complete sets of theory unifiers (in particular those in the tradition of Stickel’s Theory
Resolution [14]) or feature only weak or no redundancy criteria (e.g., Bürckert’s Constraint
Resolution [7]). Developing sophisticated automated reasoning systems that are also able to
deal with quantified formulas has recently been an active area of research [8, 10, 13, 4, 1].
We contribute to this line of research and propose a novel instantiation-based method for a
large fragment of first-order logic with equality modulo a given complete background theory,
such as linear integer arithmetic. The new calculus, MEE(T), is an extension of the Model

∗NICTA is funded by the Australian Government’s Backing Australia’s Ability initiative.

1

Evolution calculus with equality [5], a first-order logic version of the propositional DPLL
procedure, including its ordering-based redundancy criteria as recently developed in [6].
At the same time, MEE(T) is a generalization wrt. these features of the earlier ME(LIA)
calculus [4].

Instantiation based methods, including Model Evolution, have proven to be a successful
alternative to classical, saturation-based automated theorem proving methods. This then
justifies attempts to develop theory-reasoning versions of them, even if their input logic
or their associated decidability results are not new. As one of these extensions, we think
MEE(T) is relevant in particular for its versatility since it combines powerful techniques for
first-order equational logic with equality, based on an adaptation of the Bachmair-Ganzinger
theory of superposition, with a black-box theory reasoner. In this sense, MEE(T) is similar
to the hierarchic superposition calculus [1, 3].

Another angle to look at MEE(T) is from SMT-solving: Over the last years, Satisfiability
Modulo Theories has become a major paradigm for theorem proving modulo background
theories. In one of its main approaches, DPLL(T), a DPLL-style SAT-solver is combined
with a decision procedure for the quantifier-free fragment of the background theory T [11].
DPLL(T) is essentially limited to the ground case and resorts to incomplete or inefficient
heuristics to deal with quantified formulas [9, e.g.]. In fact, addressing this intrinsic limita-
tion by lifting DPLL(T) to the first-order level is one of the main motivations for the MEE(T)
calculus (much like Model Evolution was motivated by the goal of lifting the propositional
DPLL procedure to the first-order level while preserving its good properties).

One possible application of MEE(T) is in finite model reasoning. For example, the three
formulas 1≤ a ≤ 100, P(a) and ¬P(x)← 1≤ x∧x ≤ 100 together are unsatisfiable because
the interval declaration 1 ≤ a ≤ 100 for the constant a together with the unit clause P(a)
permit only models that satisfy one of P(1), . . . , P(100). Such models however falsify the
third formula. Finite model finders, e.g., need about 100 steps to refute the clause set,
one for each possible value of a. Our calculus, on the other hand, can reason directly with
integer intervals and allows a refutation in O(1) steps. See Section 7 for further discussion of
how this is achieved, variations of the example, and considerations on MEE(T) as a decision
procedure.

The most promising applications of MEE(T) could be in software verification. Quite fre-
quently, proof obligations arise there that require quantified formulas to define data struc-
tures with specific properties, e.g., ordered lists or ordered arrays, and to prove that these
properties are preserved under certain operations, e.g., when an element is inserted at an
appropriate position. In the array case, one could define ordered arrays with an axiom of
the form “for all i, j with 0≤ i < j ≤ m, a[i]≤ a[j]”, where i and j are variables and m is a
parameter, all integer-valued. Our calculus natively supports parameters like m and is well
suited to reason with bounded quantification like the one above. In general, parameters like
m must be additionally constrained to a finite domain for the calculus to be effective, see
again Section 7.

The general idea behind our calculus with respect to theory reasoning is to use rigid
variables to represent individual, but not yet known, elements of the background domain,
and instantiate them as needed to carry the derivation forward. As a simple example without

2

parameters, consider the clauses f (x) ≈ g(x) ← x > 5 and ¬(f (y + y) ≈ g(8)). These
clauses will be refuted, essentially, by checking satisfiability of the set {v1 = v2 + v2, v1 >

5, v1 = 8} of constraints over rigid variables and (ordered) paramodulation inferences for
reasoning with the equations in these clauses.

2 Preliminaries

We work in the context of standard many-sorted logic with first-order signatures comprised
of sorts and operators (i.e., function symbols and predicate symbols) of given arities over
these sorts. We rely on the usual notions of structure, (well-sorted) term/formula, satis-
fiability, and so on. If Σ is a sorted signature and X a set of sorted variables we will call
Σ(X)-term (resp. -formula) a well-sorted term (resp. formula) built with symbols from Σ
and variables from X . The notation Σ(X1, X2) is a shorthand for Σ(X1 ∪ X2).

Syntax. For simplicity, we consider here only signatures with at most two sorts: a back-
ground sort B and a foreground sort F. We assume a background signature ΣB having B
as the only sort and an at most countable set of operators that includes an (infix) equality
predicate symbol = of arity B×B. We will write s 6= t as an abbreviation of ¬(s = t). We
fix an infinite set XB of B-variables, variables of sort B.

We assume a complete first-order background theory T of signature ΣB all of whose
models interpret = as the identity relation. Since T is complete and we do not extend ΣB in
any essential way with respect to T , we can specify it with no loss of generality simply as a
ΣB-structure. We call the set |B| that T associates to the sort B the background domain. We
assume, again with no loss of generality, that |B| is at most countably infinite and all of its
elements are included in Σ as B-constant symbols.1 Our running example for T will be the
theory of linear integer arithmetic (LIA). For that example, ΣB’s operators are ≤,+ and all
the integer constants, all with the expected arities, T is the structure of the integer numbers
with those operators, and |B|= {0,±1,±2, . . .}.

We will consider formulas over an expanded signature ΣΠB and expanded set of variables
XB ∪ V where ΣΠB is obtained by adding to ΣB an infinite set Π of parameters, free constants
of sort B, and V is a set of B-variables not in XB, which we call rigid variables. The function
and predicate symbols of ΣΠB are collectively referred to as the background operators. We
call (background) constraint any formula in the closure of the set of ΣΠB (XB, V)-atoms under
conjunction, negation and existential quantification of variables.2 A closed constraint is a
constraint with no free variables (but possibly with rigid variables).

Note that rigid variables always occur free in a constraint. We will always interpret
distinct rigid variables in a constraint as distinct elements of |B|. Intuitively, in the calculus
presented here, a rigid variable v will stand for a specific, but unspecified, background

1 The latter assumption can be relaxed to the assumption that |B| is Σ-generated, meaning that every back-
ground domain element n ∈ |B| is the interpretation of a ground Σ-term.

2 The calculus needs a decision procedure only for the validity of the ∀∃-fragment over the class of constraints
used in input formulas. When such formulas contain no parameters, a decision procedure for the ∃-fragment is
sufficient.

3

domain element, and will be introduced during proof search similarly to rigid variables
in free-variable tableaux calculi. In contrast, parameters will be free constants in input
formulas, standing for arbitrary domain values.

The full signature Σ for our calculus is obtained by adding to ΣΠB the foreground sort F,
function symbols of given arities over B and F, and one infix equality predicate symbol, ≈,
of arity F×F. The new function symbols and ≈ are the foreground operators. As usual, we
do not consider additional foreground predicate symbols because they can be encoded as
function symbols, e.g., an atom of the form P(t1, . . . , tn) can be encoded as P(t1, . . . , tn) ≈
tt, where tt is a new, otherwise unused, foreground constant. For convenience, however, in
examples we will often write the former and mean the latter. Since ≈ will always denote a
congruence relation, we will identify s ≈ t with t ≈ s.

Let XF be an infinite set of F-variables, variables of sort F, disjoint from XB and V , and
let X = XB ∪ XF. When we say just “variable” we will always mean a variable in X , not a
rigid variable.

The calculus takes as input Σ(X)-formulas of a specific form, defined later, and manipu-
late more generally Σ(X , V) formulas, i.e., formulas possibly containing rigid variables. We
use, possibly with subscripts, the letters {x , y}, {u, v}, {a, b}, and { f , e} to denote respec-
tively regular variables (those in X), rigid variables, parameters, and foreground function
symbols.

To simplify the presentation here, we restrict the return sort of all foreground function
symbols to be F . This is a true restriction for non-constant function symbols.3 For example,
if Σ is the signature of lists of integers, with T being again LIA and F being the list sort, our
logic allows formulas like cdr(cons(x , y)) ≈ y but not car(cons(x , y)) ≈ x , as car would be
integer-sorted. To overcome this limitation somewhat, one could turn car into a predicate
symbol and use car(cons(x , y), x) instead, together with the (universal) functionality con-
straint ¬car(x , y)∨¬car(x , z)← y 6= z. This solution is however approximate as it does not
include a totality restriction on the new predicate symbols.

A term is a (well-sorted) Σ(X , V)-term, a formula is a (well-sorted) Σ(X , V)-formula.
A foreground term is a term with no operators from ΣΠB . Foreground atoms, literals, and
formulas are defined analogously. An ordinary foreground clause is a multiset of foreground
literals, usually written as a disjunction. A background term is a (well-sorted) ΣΠB (XB, V)-
term. Note that background terms are always B-sorted and vice versa. Foreground terms
are made of foreground symbols, variables and rigid variables; they are all F-sorted unless
they are rigid variables. A ground term is a term with no variables and no rigid variables. A
Herbrand term is a ground term whose only background subterms are background domain
elements. Intuitively, Herbrand terms do not contain symbols that need external evaluation,
i.e., they contain no parameters, no variables, and no rigid variables. For example, f (e, 1)
and 1 are Herbrand terms, but f (v, 1) and f (a, 1) are not.

A substitution is a mapping σ from variables to terms that is sort respecting, that is,
maps each variable x ∈ X to a term of the same sort. We write substitution application in
postfix form and extend the notation to (multi)sets S of terms or formulas as expected, that

3Foreground constant symbols of sort B could be treated in the calculus just like parameters, and so they are
not needed.

4

is, Sσ = {Fσ | F ∈ S}. The domain of a substitution σ is the set dom(σ) = {x | x 6= xσ}. We
work with substitutions with finite domains only. A Herbrand substitution is a substitution
that maps every variable to a Herbrand term. We denote by fvar(F) the set of non-rigid
variables that occur free in F , where F is a term or formula.

Semantics. An interpretation I is any Σ-structure augmented to include an injective, pos-
sibly partial, mapping from the set V of rigid variables to the domain of B in I . We will be
interested primarily in Herbrand interpretations, defined below.

Definition 2.1 (Herbrand interpretations) A (T -based) Herbrand interpretation is any in-
terpretation I that (i) is identical to T over the symbols of ΣB, (ii) interprets every fore-
ground n-ary function symbol f as itself, i.e., f I(d1, . . . , dn) = f (d1, . . . , dn) for every tuple
(d1, . . . , dn) of domain elements from the proper domain, and (iii) interprets ≈ as a congru-
ence relation on F-sorted Herbrand terms.4

A (parameter) valuation π is a mapping from Π to |B|. An assignment α is an injective
mapping from a (finite or infinite) subset of V to |B|. The range of α is denoted by ran(α).
Since T is fixed, a Herbrand interpretation I is completely characterized by a congruence
relation on the Herbrand terms, a valuation π and an assignment α.

An assignment α is suitable for a formula or set of formulas F if its domain includes
all the rigid variables occurring in F . Since all the elements of |B| are constants of ΣB we
will often treat assignments and valuations similarly to substitutions. For any Herbrand
interpretation I , valuation π and assignment α, we denote by I[π] the interpretation that
agrees with π on the meaning of the parameters (that is, aI = aπ for all a ∈ Π) and is
otherwise identical to I ; we denote by I[α] the interpretation that agrees with α on the
meaning of the rigid variables in α’s domain and is otherwise identical to I . We write
I[π,α] as a shorthand for I[π][α].

The symbols I , α and π we will always denote respectively Herbrand interpretations,
assignments and valuations. Hence, we will often use the symbols directly, without further
qualification. We will do the same for other selected symbols introduced later. Also, we will
often implicitly assume that α is suitable for the formulas in its context.

Definition 2.2 (Satisfaction of constraints) Let c be a closed constraint. For all π and all
α suitable for c, the pair (π,α) satisfies c, written as (π,α) |= c, if T |= cπα in the standard
sense.5 If α is suitable for a set Γ of closed constraints, (π,α) satisfies Γ, written (π,α) |= Γ,
iff (π,α) satisfies every c ∈ Γ.

The set Γ above is satisfiable if (π,α) |= Γ, for some π and α. Since constraints contain no
foreground symbols, for any interpretation I[π,α], I[π,α] |= c iff (π,α) |= c.

4 Note that Condition (iii) is well defined because, by Condition (ii), the interpretation of the sort F is the
set of all F-sorted Herbrand terms.

5 Observe that the test T |= cπα is well formed because cπα is closed and contains neither parameters nor
rigid variables.

5

Note 2.3 (Deciding the satisfiability of closed constraints) The satisfiability of arbitrary
closed constraints, which may contain rigid variables, reduces in a straightforward way to
the satisfiability of ΣB-constraints without rigid variables, and so can be decided by any
decision procedure for the latter. In fact, let VΓ be the set of all the rigid variables occurring
in a set Γ of closed constraints. Then, Γ is satisfiable iff Distinct(VΓ) ∪ Γ is satisfiable in T
in the usual sense, where all the rigid variables and the parameters of Γ are treated as free
variables, and Distinct(U) = {v 6= u | v ∈ U , u ∈ U \ v} for all U ⊆ V . The constraint set
Distinct(VΓ) reflects the injectivity of assignments.

This method obviously applies also to finite sets of closed constraints by taking conjunc-
tions. For example, {3 > v1, dv > 1, v2 = 2} is not satisfiable (in LIA), because v1 6= v2 ∧ 3 >
v1 ∧ v1 > 1∧ v2 = 2 is not satisfiable.

Finally, we assume a reduction ordering � that is total on the Herbrand terms.6 We also
require that � is stable under assignments, i.e., if s � t then sα � tα, for every suitable
assignment α for s and t. The ordering � is extended to literals over Herbrand terms by
identifying a positive literal s ≈ t with the multiset {s, t}, a negative literal ¬(s ≈ t) with the
multiset {s, s, t, t}, and using the multiset extension of �. Multisets of literals are compared
by the multiset extension of that ordering, also denoted by �.

3 Contexts and Constrained clauses

The calculus maintains two data structures for representing Herbrand interpretations: a
foreground context, for the foreground operators, and a background context, for valuations
and assignments. The former is a finite set of foreground literals, which we call context
literals. The latter is a finite set of closed constraints. A context is a pair Λ · Γ consisting of
a foreground context Λ and a background context Γ.

The symbols Λ and Γ will always denote respectively foreground contexts and back-
ground contexts, even without further qualification. We identify every foreground context
Λ with its closure under renaming of (regular) variables, and assume it contains a pseudo-
literal of the form ¬x . A foreground literal K is contradictory with Λ if K ∈ Λ, where K
denotes the complement of K . Λ itself is contradictory if it contains a literal that is contra-
dictory with Λ. We will work only with non-contradictory contexts.

For any foreground literals K and L, we write K ¦ L iff L is an instance of K , i.e., iff there
is a substitution σ such that Kσ = L. We write K ∼ L iff K and L are variants, equivalently,
iff K ¦ L and L ¦ K . We write K � L iff K ¦ L but L 6¦ K .

Definition 3.1 (Productivity) Let K , L be foreground literals. We say that K produces L in
Λ if (i) K ¦ L, and (ii) there is no K ′ ∈ Λ such that K � K ′ ¦ L.

Since foreground contexts contain the pseudo-literal ¬x , it is not difficult to see that Λ
produces at least one of K and K , for every Λ and literal K .

6A reduction ordering is a strict, well-founded ordering on terms that is compatible with contexts, i.e., s � t
implies f [s]� f [t], and stable under substitutions, i.e., s � t implies sσ � tσ.

6

Definition 3.2 (Context unifier) Let C = L1∨· · ·∨Ln be an ordinary foreground clause with
n≥ 0. A substitution σ is a context unifier of C against Λ if there are literals K1, . . . , Kn ∈ Λ
such that σ is a simultaneous most general unifier of the sets {K1, L1}, . . . , {Kn, Ln}. The
literals K1, . . . , Kn are the context literals of σ.

We say that σ is productive iff Ki produces Liσ in Λ, for all i = 1, . . . , n.
Observe that context unifiers treat rigid variables like constants. A context unifier σ

can be computed by composing most general unifiers of the literals in C with fresh variants
of literals in Λ, one after another, while ignoring the sorts. That σ will be sort-respecting,
and hence a substitution in our sense, which follows from the well-sortedness of literals and
clauses.

For, if x is a background variable then xσ can only be another background variable
or rigid variable (these are the only B-sorted terms in foreground formulas); and if x is
a foreground variable, xσ can only be a foreground term occurring in C , possibly further
instantiated in the same way.

The calculus works with constrained clauses, expressions of the form C ← R·c where R is
a multiset of foreground literals, the set of context restrictions, C is an ordinary foreground
clause, and c is a (background) constraint with fvar(c) ⊆ fvar(C) ∪ fvar(R). When C is
empty we write it as �. When R is empty, we write the constrained clause more simply as
C ← c. The calculus takes as input only clauses of the latter form, hence we call such clauses
input constrained clauses. Below we will often speak of (input) clauses instead of (input)
constrained clauses when no confusion can arise.

We can turn any expression of the form C ← c where C is an arbitrary ordinary Σ-clause
and c a constraint into an input clause by abstracting out offending subterms from C , moving
them to the constraint side of ←, and existentially quantifying variables in the constraint
side that do not occur in the clause side. For example, P(a, v, x + 5) ← x > v becomes
P(x1, v, x2)← ∃x (x > v ∧ x1 = a ∧ x2 = x + 5). As will be clear later, this transformation
preserves the semantics of the original expression.

The variables of input clauses are implicitly universally quantified. Because the back-
ground domain elements (such as, e.g., 0, 1,−1, . . .) are also background constants, we can
define the semantics of input clauses in terms of Herbrand interpretations. To do that, we
need one auxiliary definition first.

If γ is a Herbrand substitution and C ← c an input clause, the clause (C ← c)γ = Cγ←
cγ is a Herbrand instance of C ← c. For example, (P(v, x , y)← x > a)γ is P(v, 1, f (1, e))←
1 > a if γ = {x 7→ 1, y 7→ f (1, e), . . .}. A Herbrand instance C ← c can be evaluated
directly by an interpretation I[α], for suitable α: we say that I[α] satisfies C ← c, written
I[α] |= C ← c if I[α] |= C ∨¬c. For input clauses C ← c we say that I[α] satisfies C ← c iff
I[α] satisfies every Herbrand instance of C ← c.

Definition 3.3 (Satisfaction of sets of formulas) Let∆ be a set of input clauses and closed
constraints. We say that I[α] satisfies ∆, written as I[α] |=∆, if I[α] |= F , for every F ∈∆.

We say that ∆ is satisfiable if some I[α] satisfies F . Let G be an input clause or closed

7

constraint. We say that ∆ entails G, written as ∆ |= G, if for every suitable assignment α for
∆ and G, every interpretation I[α] that satisfies ∆ also satisfies G.

The definition of satisfaction of general constrained clauses C ← R · c, with a non-empty
restriction R, is more complex because in our completeness argument for the calculus C
is evaluated semantically, with respect to Herbrand interpretations induced by a context,
whereas R is evaluated syntactically, with respect to productivity in a context. Moreover,
constrained clause satisfaction is not definable purely at the ground level but requires a
suitable notion of Herbrand closure.

Definition 3.4 (Herbrand closure) Let γ be a Herbrand substitution. The pair (C ← R ·
c, γ) is a Herbrand closure (of C ← R · c).

Context restrictions are evaluated in terms of productivity by applying an assignment to the
involved rigid variables first. To this end, we will use evaluated contexts Λα= {Kα | K ∈ Λ}.
By the injectivity of α, the notions above on contexts apply isomorphically after evaluation
by α. For instance, K produces L in Λ iff Kα produces Lα in Λα.

Definition 3.5 (Satisfaction of context restrictions) Let R be a set of context restrictions
and γ a Herbrand substitution. The pair (Λ,α) satisfies (R,γ), written as (Λ,α) |= (R,γ), if

(i) Rαγ contains no trivial literals, of the form t ≈ t or ¬(t ≈ t), and for every l ≈ r ∈
Rαγ, if l � r then l is not a variable, and

(ii) for every K ∈ Rα there is an L ∈ Λα that produces both K and Kγ in Λα.

If Point (ii) above holds for some K ∈ Rα, we also say that Λα produces K and Kγ with the
same literal.

Point (i) makes paramodulation into variables unnecessary for completeness in the cal-
culus.

Definition 3.6 (Satisfaction of Herbrand closures) A triple (Λ,α, I) satisfies (C ← R·c, γ),
written as (Λ,α, I) |= (C ← R · c, γ), iff (Λ,α) 6|= (R,γ) or I |= (C ← c)γ.

We will use Definition 3.6 always with I = I[α]. The component Λ in the previous definition
is irrelevant for input clauses (where R = ;), and satisfaction of Herbrand closures and
Herbrand instances coincide then. Formally, (Λ,α, I[α]) |= (C ← ; · c, γ) if and only if
I[α] |= (C ← c)γ.

In our soundness arguments for the calculus a constrained clause C ← R · c will stand for
the Σ-formula C ∨ (

∨

L∈R L)∨¬c. We call the latter the clause form of C ← R · c and denote
it by (C ← R · c)c. If Φ is a set of clauses, Φc = {F c | F ∈ Φ}.

8

4 Core Inference Rules

The calculus works on sequents of the form Λ ·Γ ` Φ, where Λ ·Γ is a context and Φ is a set
of constrained clauses.

It has five core inference rules: Ref, Para, Pos-Res, Split and Close. In their description,
if S is a set and a is an element, we will write S, a as an abbreviation of S ∪ {a}.

The first two inference rules perform equality reasoning at the foreground level.

Ref
Λ ·Γ ` Φ
Λ ·Γ ` Φ, (C ← R · c)σ

if Φ contains a clause ¬(s ≈ t)∨ C ← R · c, the selected clause, and σ is an mgu of s and t.
The new clause in the conclusion is the derived clause.

The next inference rule is a variant of ordered paramodulation.

Para
Λ ·Γ ` Φ
Λ ·Γ ` Φ, (L[r]∨ C ← (R ∪ {l ≈ r}) · c)σ

if l ≈ r ∈ Λ and Φ contains a clause L[s]∨ C ← R · c, the selected clause, such that (i) σ is
an mgu of l and s, (ii) s is neither a variable nor a rigid variable, (iii) rσ 6� lσ, and (iv)
l ≈ r produces (l ≈ r)σ in Λ.

The context literal l ≈ r is the selected context equation, and the new clause in the
conclusion is the derived clause.

We can afford to not paramodulate into rigid variables s, as these are B-sorted, and the
resulting unifier with (an F-sorted variable) l would be ill-sorted. The equation l ≈ r is
added to R to preserve soundness.

For example, if Λ = { f (x , y, e) ≈ x} then the clause P(f (x , e, y)) ∨ y ≈ e ← ; · x > 5
paramodulates into P(x)∨ e ≈ e ← f (x , e, e)≈ x · x > 5.

If L is a negative equation t1[s] 6≈ t2, the Para rule could be improved by requiring
that t2σ 6� t1σ. That is, paramodulation into smaller sides of negative equations is not
necessary.

We could afford a selection function that select zero or more occurrences of negative
equations in the component C of a clause C ← R · c. The Ref and Para inference rules then
must selected a literal that is among the ones selected by the selection function, if there are
any. The rationale for this restriction is that negative equations must be “proven” by making
their two sides (syntactically) equal anyway, so this can be done at any time.

If C is an ordinary foreground clause, C denotes the multiset of the complements of the
literals in C , i.e. C = {L | L ∈ C}, which is a set of context restrictions.

The next rule turns the ordinary clause part of a constrained clause into context restric-
tions.

Pos-Res
Λ ·Γ ` Φ
Λ ·Γ ` Φ, (�← (R ∪ C) · c)σ

9

if Φ contains a clause of the form C ← R · c, the selected clause, such that (i) C 6= � and
C consists of positive literals only, and (ii) σ is a productive context unifier of C against Λ.
the derived clause.

Note that the derived clause is indeed a constrained clause. The reason is that the
literals of C and the context literals used for the unifier σ are all foreground literals.
As a consequence, σ replaces foreground variables by foreground terms and background
variables by background variables or rigid variables. For example, if Λ = {¬P(e)}, from
f (x , y, z) ≈ g(y) ∨ P(x) ← ; · y > 5 one gets � ← {¬(f (e, y, z) ≈ g(y)),¬P(e)} · y > 5.
(Recall that Λ implicitly contains ¬x .)

Intuitively, Pos-Res is applied when all literals in the ordinary clause part of a clause
have been sufficiently processed by the equality inference rules Para and Ref and turns
them into context restrictions. Deriving an empty constrained clause this way does not
necessary produce a contradiction, as the clause could be satisfied, in an interpretation that
falsifies its context restriction or falsifies its constraint. The Split rule below considers this
possibility.

It takes a constrained empty clause from Φ and splits on one of its context restriction
literals, after instantiating all free variables in the constraint (only) by some rigid variables.

The rule has side conditions that treat context literals as constrained clauses. Formally,
let Λ(e,n) = {K(e,n) ← > | K ∈ Λ} be the clause form of Λ, where K(e,n) is the context literal
obtained from K by replacing every foreground variable by a fixed foreground constant e
and replacing every background variable by a fixed background domain element n. We say
that (C ← R·c)δ is a domain instance of a clause C ← R·c if δmoves every B-sorted variable
of fvar(c) to a rigid variable and does not move the other variables of fvar(c).

Split
Λ ·Γ ` Φ

Λ, K ·Γ, c ` Φ Λ, K ·Γ? ` Φ

if there is a domain instance (� ← R · c) of some clause in Φ such that (i) K ∈ R and
neither K nor K is contradictory with Λ, (ii) for every L ∈ R, Λ produces L, (iii) Γ ∪ {c}
is satisfiable, and (iv) Γ? is any satisfiable background context such that Γ ∪ {c} ⊆ Γ? and
(Λ ∪ K)(e,n) ∪ Φc ∪ Γ? is not satisfiable, if such a Γ? exists, or else Γ? = Γ ∪ {c}. The clause
�← R · c is the selected clause, and the literal K is the split literal.

For example, if Λ = {¬P(e)} and Φ contains �← {¬(f (e, y, z) ≈ g(y)),¬P(e) · y > 5,
where y is B-sorted and the sort of z is irrelevant, the domain instance could be � ←
{¬(f (e, v1, z)≈ g(v1)),¬P(e)} · v1 > 5, and the split literal then is f (e, v1, z)≈ g(v1).

The set Φ can also be seen to implicitly contain with each clause all its domain instances,
and taking one of those as the selected clause for Split.

While splitting is done in a complementary way, as in earlier ME calculi, background
contexts are global to derivations. Moreover, all constraints added to Γ in the course of the
further derivation of the left branch need to be present in the right branch as well. This is
modeled by Condition (iv). The branch Γ? can be obtained in a constructive way by trying
to extend the left branch to a refutation sub-tree, which, if successful, gives the desired Γ?.
If not successful, no matter if finite or infinite, the input clause set is satisfiable, and the

10

derivation need not return to the right branch anyway. We remark that extending back-
ground constraints, as done by Split (and Close and Restrict below) causes no soundness
problems, as our soundness theorem applies relative to derived background contexts only.
See Section 7 for details and how soundness in the usual sense is recovered.

Close
Λ ·Γ ` Φ
Λ ·Γ, c ` Φ, (�← ; ·>)

if Φ contains a clause � ← R · c such that (i) R ⊆ Λ, and (ii) Γ ∪ {c} is satisfiable. The
clause �← R · c is the selected clause. Observe that if Split is applicable then Close cannot
be applied with the same selected clause, as its Condition (i) will not be satisfied.

5 Model Construction, Redundancy and Static Completeness

In this section we show how to derive from a sequent Λ · Γ ` Φ an intended interpretation
I[Λ,π,α] as a canonical candidate model for Φ. Its components π and α will be determined
first by Γ, and its congruence relation will be presented by a convergent ground rewrite
system RΛ,α extracted from Λ and α. The general technique for defining RΛ,α is borrowed
from the completeness proof of the Superposition calculus [2, 12] and earlier ME calculi [6,
5]. One difference is that MEE(T) requires the construction of a fully reduced rewrite
system, whereas for Superposition a left-reduced rewrite system is sufficient.

A rewrite rule is an expression of the form l → r where l and r are F-sorted Herbrand
terms. A rewrite system is a set of rewrite rules. The rewrite systems constructed below
will be ordered, that is, consist of rules of the form l → r such that l � r. For a given Λ
and suitable assignment α, we define by induction on the term ordering � sets εK and RK
for every ground equation K between F-sorted Herbrand-terms. Assume that εL has already
been defined for all such L with K � L. Let RK =

⋃

K�L εL , where

εl≈r =

{l → r} if Λα produces l ≈ r, l � r, and l and r are irreducible
wrt Rl≈r

; otherwise

Finally define RΛ,α =
⋃

K εK . If εl≈r = l → r we say that l ≈ r generates l → r in RΛ,α.
For example, if Λ = {P(x),¬P(v)} and α = {v 7→ 1} then RΛ,α contains P(0) → tt,

P(−1)→ tt, P(−2)→ tt, P(2)→ tt, P(−3)→ tt, P(3)→ tt, . . . but not P(1)→ tt, which is
irreducible, but P(1)→ tt is not produced by Λα.

Definition 5.1 (Induced interpretation) Let Λ be a context, π a valuation, and α a suitable
assignment for Λ. The interpretation induced by Λ, π and α, written as I[Λ,π,α], is the
Herbrand interpretation I[π,α] that interprets foreground equality asR?Λ,α, the congruence
closure of RΛ,α (as a set of equations) over the Herbrand terms.

The rewrite system RΛ,α is fully reduced by construction (no rule in RΛ,α rewrites any
other rule in it). Since � is well-founded on the Herbrand terms, RΛ,α is convergent. It

11

follows from well-known results that equality of Herbrand terms in R?Λ,α can be decided by
reduction to normal form using the rules in RΛ,α.

The rewrite system RΛ,α will also be used to evaluate evaluated context restrictions:

Definition 5.2 (Satisfaction of variable-free foreground literals) Let R be a set of literals
over Herbrand terms. We say that RΛ,α satisfies R, and write RΛ,α |= R, iff

(i) for every l ≈ r ∈ R, if l � r then l → r ∈ RΛ,α, and

(ii) for every ¬(l ≈ r) ∈ R, l and r are irreducible wrt. RΛ,α.

For example, if Λ = { f (v) ≈ e2}, α = {v 7→ 1}, and f (1) � e1 � e2 � 1 then RΛ,α =
{ f (1)→ e2} and RΛ,α 6|= {¬(f (1) ≈ e1), e2 ≈ e1} because the left-hand side of ¬(f (1) ≈ e1)
is reducible wrt. RΛ,α, and because e1→ e2 is not in RΛ,α.

Our concepts of redundancy require comparing Herbrand closures. To this end, define
(C1← R1 · c1, γ1)� (C2← R2 · c2, γ2) iff C1γ1 � C2γ2, or else C1γ1 = C2γ2 and R1γ1 � R2γ2.
Note that even if it ignores constraints, this ordering is not total, as constrained clauses may
contain rigid variables.

Definition 5.3 (Redundant clause) Let Λ · Γ ` Φ be a sequent, and D and (C ← R · c, γ)
Herbrand closures. We say that (C ← R · c, γ) is redundant wrt D and Λ · Γ ` Φ iff (a)
there is a K ∈ R that is contradictory with Λ, (b) Γ ∪ {cγ} is not satisfiable, or (c) there exist
Herbrand closures (Ci ← Ri · ci , γi) of clauses in Φ, such that all of the following hold:

(i) for every L ∈ Ri there is a K ∈ R such that L ∼ K and Lγi = Kγ,

(ii) Γ ∪ {cγ} |= ciγi ,

(iii) D � (Ci ← Ri · ci , γi), and

(iv) {C1γ1, . . . , Cnγn} |= Cγ.

We say that a Herbrand closure (C ← R · c, γ) is redundant wrt Λ · Γ ` Φ iff it is redundant
wrt (C ← R · c, γ) and Λ · Γ ` Φ, and that a clause C ← R · c is redundant wrt Λ · Γ ` Φ iff
every Herbrand closure of C ← R · c is redundant wrt. Λ ·Γ ` Φ.

If case (a) or (b) in the previous definition applies then (C ← R · c, γ) is trivially satisfied
by (Λ,α, I[α]), for every suitable α that satisfies Γ and every I[α]. Case (c) provides with
(ii) and (iv) conditions under which (C ← c)γ follows from the (Ci ← ci)γi ’s (in the sense
of Definition 3.3). The context restrictions are taken into account by condition (i), which
makes sure that evaluation of the pairs (Ri ,γi) in terms of Definition 3.5 is the same as for
(R,γ). In condition (iv), entailment |= is meant as entailment in equational clause logic
between sets of ordinary ground clauses and an ordinary ground clause.

Given a Pos-Res, Ref or Para inference with premise Λ ·Γ ` Φ, selected clause C ← R · c,
selected context equation l ≈ r in case of Para, and a Herbrand substitution γ. If applying

12

γ to C ← R · c, the derived clause, and l ≈ r satisfies all applicability conditions of that
inference rule, except (C ← R · c)γ ∈ Φ and (l ≈ r)γ ∈ Λ, we call the resulting ground
inference a ground instance via γ (of the given inference). This is not always the case, as, e.g.,
ordering constraints could be unsatisfied after application of γ.

Definition 5.4 (Redundant inference) Let Λ · Γ ` Φ and Λ′ · Γ′ ` Φ′ be sequents. An
inference with premise Λ ·Γ ` Φ and selected clause C ← R · c is redundant wrt Λ′ ·Γ′ ` Φ′

iff for every Herbrand substitution γ, (C ← R · c, γ) is redundant wrt. Λ′ · Γ′ ` Φ′ or the
following holds, depending on the inference rule applied:

Pos-Res, Ref, Para: Applying γ to that inference does not result in a ground instance via γ,
or (C ′← R′ · c′, γ) is redundant wrt. (C ← R · c, γ) and Λ′ ·Γ′ ` Φ′, where C ′← R′ · c′

is the derived clause of that inference.

Split (C =�): (a) there is a literal K ∈ R such that Λ′ does not produce K or (b) the split
literal is contradictory with Λ′.

Close (C =�): �← ; ·> ∈ Φ′ .

Definition 5.5 (Saturated sequent) A sequent Λ · Γ ` Φ is saturated iff every inference
with a core inference rule and premise Λ ·Γ ` Φ is redundant wrt. Λ ·Γ ` Φ.

We note that actually carrying out an inference makes it redundant wrt. the (all) conclu-
sion(s), which already indicates that saturated sequents, although possibly infinite in each
of its components, can be effectively computed.

Our first completeness result holds only for saturated sequents with respect to relevant
closures. We say that a clause (C ← R · c,γ) is relevant wrt. Λ and α iff RΛ,α |= Rαγ. All
Herbrand closures of input clauses are always relevant.

Theorem 5.6 (Static completeness) Let Λ · Γ ` Φ be a saturated sequent, π a valuation
and α a suitable assignment for Λ · Γ ` Φ. If (π,α) |= Γ, ran(α) = |B| and (�← ; ·>) /∈ Φ
then the induced interpretation I[Λ,π,α] satisfies all Herbrand closures of all clauses in Φ
that are relevant wrt. Λ and α. Moreover, I[Λ,π,α] |= C ← c, for every C ← c ∈ Φ.

The stronger statement I[Λ,π,α] |= Φ does in general not follow, as I[Λ,π,α] possibly does
not satisfy a non-relevant closure of a clause in Φ. An example is the sequent (with e1 � e2)
Λ · Γ ` Φ = P(x), e1 ≈ e2, ¬P(e2) · ; ` P(x) ← P(x) · > . For any α, we get RΛ,α =
{e1 → e2}. By taking γ = {x 7→ e1} observe that (Λ,α) |= (P(x),γ) but R?Λ,α 6|= P(x)γ,
hence I[Λ,π,α] 6|= P(x)← P(x) · >. Deriving �← ¬P(x), P(x) · > does not help to close.
But notice that R?Λ,α 6|= {P(x)γ}, as P(e1) /∈ RΛ,α, and so P(x)← P(x) · > is not a relevant
closure wrt. Λ and α, and so Theorem 5.6 is not violated.

Theorem 5.6 applies to a statically given sequent Λ · Γ ` Φ. The connection to the
dynamic derivation process of the MEE(T) calculus will be given later, and Theorem 5.6 will
be essential then in proving the completeness of the MEE(T) calculus.

13

6 The MEE(T) Calculus

We now turn to the process of deriving saturated sequents. First, we introduce two more
inference rules. The first one, Simp, is a generic simplification rule.

Simp
Λ ·Γ ` Φ, C ← R · c
Λ ·Γ ` Φ, C ′← R′ · c′

if (1) C ← R · c is redundant wrt. Λ · Γ ` Φ, C ′ ← R′ · c′, and (2) Γ ∪ Λ(e,n) ∪ (Φ ∪ {C ←
R · c})c |= (C ′ ← R′ · c′)c. The first condition is needed for completeness, the second for
soundness.

For example, if Λ contains a ground literal K , then every constrained clause of the form
C ← ({K} ∪ R) · c can be deleted, and every constrained clause of the form C ← ({K} ∪ R) · c
can be replaced by C ← R · c. The Simp rule encompasses various additional forms of
simplification of the literals in C based on rewriting and subsumption, see [6].

We only note here that additional (optional) inference rules can be defined for simplify-
ing contexts.

Restrict
Λ ·Γ ` Φ
Λ ·Γ, c ` Φ

if c is a closed constraint such that Γ ∪ {c} is satisfiable.
For example, by 10-fold application of restrict one can construct a background context

{1 ≤ v1 ≤ 10, . . . , 1 ≤ v10 ≤ 10} that represents the numbers 1, . . . , 10 in a “nondetermin-
istic” way. The purpose of Restrict is to construct finitely committed branches, as formally
introduced below.

We are now ready to introduce derivation formally. In the following, we will use κ
to denote an at most countably infinite ordinal. Let Ψ be a set of input clauses and Γ a
satisfiable set of closed constraints, both rigid variable-free. A derivation from Ψ and Γ is
a sequence ((Ni , Ei))0≤i<κ of trees of sequents (called derivation trees) with nodes Ni and
edges Ei , such that T0 consists of the root-only tree whose sequent is ¬x · Γ ` Ψ, and Ti is
obtained by one single application of one of the core inference rules, Simp or Restrict to a
leaf of Ti−1, for all 1≤ i < κ.

A refutation is a derivation that contains a refutation tree, that is, a derivation tree that
contains in each leaf a sequent with �← ; ·> in its clauses.

Every derivation determines a possibly infinite limit tree T = (
⋃

i<κ Ni ,
⋃

i<κ Ei). In the
following, let Λi ·Γi ` Φi be the sequent labeling the node i in some branch B with κ nodes
of a limit tree T, for all i < κ. Let

• ΓB =
⋃

i<κΓi the limit background context,

• ΛB =
⋃

i<κΛi be the limit foreground context, and

• ΦB =
⋃

i<κ

⋂

i≤ j<κΦi be the persistent clauses.

14

The tuple ΛB ·ΓB ` ΦB is the limit sequent (of B). To prove a completeness result, derivations
in MEE(T) need to construct limit sequents with certain properties:

Definition 6.1 (Exhausted branch) We say that B is exhausted iff for all i < κ:

(i) every Pos-Res, Ref, Para, Split and Close inference with premise Λi · Γi ` Φi and a
persistent selected clause is redundant wrt. Λ j ·Γ j ` Φ j for some j with i ≤ j < κ.

(ii) (�← ; ·>) /∈ Φi .

While the above notion is similar to the one already used in MEE, MEE(T) has additional
requirements on the limit background context ΓB, introduced next.

Definition 6.2 (Finitely committed branch) We say that B is finitely committed iff (a) ΓB
is finite or (b) for all i < κ, there are πi and αi such that (πi ,αi) |= Γi , and

(i)
⋃

i<κ

⋂

i≤ j<κ ran(α j) = |B|,

(ii) for every n ∈ |B|, the set {v | αi(v) = n, for some i < κ} is finite,

(iii) for every rigid variable v occuring in ΓB, the set {αi(v) | v ∈ dom(αi), for some i < κ}
is finite, and

(iv) for every parameter a occuring in ΓB, the set {πi(a) | i < κ} is finite.

The set in condition (i) consists of those background domain elements that are represented
by some (not necessarily the same) rigid variable from some point on forever. The condition
requires that this must be the case for all background domain elements. Condition (ii) says
that only finitely many rigid variables can be used for that. Condition (iii) says that no
rigid variable occuring in ΓB can be assigned infinitely many values as the context evolves.
Condition (iv) is similar, but for parameters. (Recall that parameter valuations are total,
hence πi(a) is defined for every parameter a.)

The purpose of Definition 6.2 is to make sure that a valuation π and a suitable assign-
ment α for Γ always exists, and moreover, that (π,α) satisfies ΓB:

Proposition 6.3 (Compactness of finitely committed branches) If B is finitely commit-
ted then there is a π and an α such that ran(α) = |B| and (π,α) |= ΓB.

Proposition 6.3 states a compactness property. By construction, the sequence (Γi)i<κ is an
non-decreasing chain wrt ⊆ and every Γi is satisfiable. Proposition 6.3 then takes satisfia-
bility to the limit ΓB.

One might wonder if the lemma is in contradiction to well-known results. Linear integer
arithmetic, for instance, is not compact (let d be a rigid variable and take the set {d 6= n |

15

n is an integer}, every finite subset of which is satisfable). However, the lemma is about sets
ΓB with specific properties.

To see one of the issues that Proposition 6.3 addresses consider Γi =
⋃

n≤i{v1 > n}, then
ΓB is not satisfiable, although every finite subset is satisfiable. On the other hand, condition
(iii) in Definition 6.2 is not satisfied.

With enough Restrict applications finitely committed limit branches can be constructed
in a straightforward way if the input background constraints confine every parameter to a
finite domain. In the LIA case, e.g., one could “slice” the integers in intervals of, say, 100
elements and enumerate, with Restrict, declarations like 1 ≤ v1 ≤ 100, . . . , 1 ≤ v100 ≤ 100
before any rigid variable vi is used for the first time (in Split), and do that for all intervals.
In certain cases it is possible to determine a priori that limit background contexts will be
finite, and then Restrict is not required at all, see Section 7.

Definition 6.4 (Fairness) A derivation is fair iff it is a refutation or its limit tree has an
exhausted and finitely committed branch.

The following proposition is instrumental in proving completeness:

Proposition 6.5 (Exhausted branches are saturated) If B is an exhausted branch of a limit
tree of a fair derivation then ΛB ·ΓB ` ΦB is saturated.

Theorem 6.6 (Completeness) Let Ψ be a set of input clauses and Γ a satisfiable set of
closed constraints, both rigid variable-free. Suppose a fair derivation from Ψ and Γ that is
not a refutation. Let B be any exhausted and finitely committed branch of its limit tree, and
let ΛB ·ΓB ` ΦB be the limit sequent of B.

Then there is a valuation π and a suitable assignment α for ΓB such that ran(α) = |B|
and (π,α) |= ΓB, and it holds I[ΛB,π] |= Γ ∪ Ψ, where I[ΛB,π,α] is the interpretation
induced by ΛB, π, and α.

The proof exploits Proposition 6.3 to show that π and α exist as claimed. It then pro-
ceeds by showing that ΛB ·ΓB ` ΦB is saturated, as a link with Theorem 6.6.

7 Soundness and Special Cases

Theorem 7.1 (Relative refutational soundness) Let Ψ be a set of input clauses and Γ a
satisfiable set of closed constraints, both rigid variable-free. Suppose a refutation from Ψ
and Γ and let ΓB be its limit background context. Then, ΓB ⊇ Γ, ΓB is satisfiable, and ΓB ∪Ψ
is not satisfiable.

Here, by the limit background context ΓB of a refutation we mean the background context
of the sequent in the leaf of the rightmost branch in its refutation tree.

Suppose the conditions of Theorem 7.1 hold, and let I[π,α] be such that (π,α) |= ΓB, as
claimed. It follows I[π,α] 6|= Ψ and, as Ψ is rigid variable-free, I[π] 6|= Ψ. (If additionally
Ψ is parameter-free then ΓB and Ψ are independent, and so Ψ alone is not satisfiable.) For
example, if Ψ= {P(x)← x = a, ¬P(x)← x = 5} and Γ = {a > 2} then there is a refutation

16

with, say, ΓB = {a > 2, v1 = a, v1 = 5}. Notice that (π,α) |= ΓB entails π = {a 7→ 5} , and,
obviously, I[π] 6|= Ψ. But of course Ψ ∪ Γ is satisfiable, take, e.g., π = {a 7→ 3}. A usual
soundness result can thus be not based on single refutations, and this is why we call the
soundness result above “relative”. To fix that, we work with sequences of refutations whose
limit background contexts collectively cover the initially given Γ. In the example, the next
derivation starts with (essentially) Γ = {a > 2,¬(a = 5)}, which leads to a derivation that
provides the expected model.

Define mods(Γ) = {π | (π,α) |= Γ, for some suitable α}. Then, the intuition above leads
to the following general procedure:

1: D← a fair derivation from Ψ and Γ {both Ψ and Γ assumed rigid-variable free}
2: while D is a refutation do
3: ΓB← the limit background context of D
4: if mods(ΓB) =mods(Γ) then
5: return unsatisfiable
6: else
7: Γ′← any background context s.t. mods(Γ′) =mods(Γ) \mods(ΓB)
8: Γ← Γ′; D← a fair derivation from Ψ and Γ
9: return satisfiable

At line 4, mods(Γ) is the set of parameter valuations under which the unsatisfiability
of Ψ is yet to be established. If the current refutation D from Ψ and Γ does not further
constrain Γ, i.e., if mods(ΓB) = mods(Γ), then nothing remains to be done. Otherwise
mods(Γ) \mods(ΓB) is non-empty, and in the next iteration Γ is taken to stand for exactly
those parameter valuations that are not sanctioned by the current refutation, i.e., those that
satisfy the current Γ but not ΓB. It follows easily with Theorem 7.1 that if the procedure
terminates with “unsatisfiable” on line 5 then Ψ ∪ Γ is indeed unsatisfiable, the desired
standard soundness result. If on the other hand D is not a refutation then the procedure
returns “satisfiable”, which is sanctioned by Theorem 6.6.

Notice that the test in line 4 can be made operational by checking the validity of the
formula (∃ ∧c∈Γ c) ≡ (∃ ∧c∈ΓB

c), where ∃F denotes the existential quantification over all
rigid variables occurring in F . Similarly, Γ′ on line 7 can be taken as Γ ∪ {¬∃ ∧c∈ΓB

c}.
If the background theory admits quantifier elimination (e.g., LIA extended with divisibility
predicates) the existential quantifiers can be removed and further simplifications may take
place. In the example, the background context Γ′ computed in the first iteration is Γ′ = {a >
2,¬∃v1 (a > 2∧ v1 = a ∧ v1 = 5)} ≡ {a > 2,¬(a = 5)}.

The derivation D might not be finite. In this case the procedure does not terminate,
but this is acceptable as by Ψ ∪ Γ is satisfiable then. Another source of non-termination
comes from growing the sets Γ′ without bound. This is theoretically acceptable, as our
logic is not even semi-decidable. In practice, one could add to Γ finite domain declarations
for all parameters involved, such as 1 ≤ a ≤ 100. This leads to finitely many Γ′ only.
Moreover, the sets Γ′ can then be computed in a conflict-driven way. For example, if Ψ =
{P(x) ← x = a, ¬P(x) ← 1 ≤ x ≤ 100} and Γ = {1 ≤ a ≤ 100} then the procedure
above will terminate with “unsatisfiable” in the first round, and the refutation can be found
in O(1) time. By contrast, finite-domain finders will essentially, work with the disjunction

17

a = 1 ∨ · · · ∨ a = 100. If Ψ = {P(x)← x = a, ¬P(x)← 1 ≤ x ≤ 50} instead, a derivation
(non-refutation) will be found in the second round that confines a to 51≤ a ≤ 100.

Another special case is when all clauses are of the form C ← R·(c∧x1 = t1∧· · ·∧xn = tn),
where {x1, . . . , xn} = fvar(C) ∪ fvar(R), and c and the t i ’s are ground. Such clauses, where
initially R = ;, are obtained from abstraction of formulas of the form C ← c, where C is an
ordinary ground Σ-clause and c is a ground constraint. (This is the fragment over which
MEE(T) overlaps with typical SMT methods.) It is not too difficult to argue that all derivable
clauses then have that form as well. As a consequence, (i) all split literals are variable-free,
and hence so are all derivable foreground contexts, and (ii) there is only one instantiation
of the x i ’s in Split, since no (satisfiable) background context can contain v1 = t and v2 = t
for different rigid variables v1 and v2. It follows that the limit background contexts are
finite for any input background context, hence no finite domain declarations for parameters
are needed. Moreover, as the set of (non-rigid variable) background terms t i is fixed a
priori, there are only finitely many non-equivalent background contexts. Therefore, the
procedure above cannot grow Γ indefinitely. Furthermore, all derivations are guaranteed
to be final because context literals are variable-free and can use only finitely-many rigid
variables. As a consequence, MEE(T) provides a decision procedure for ground problems in
the combination of the background theory and uninterpreted (F-sorted) function symbols
with equality.

8 Conclusions

We presented the new MEE(T) calculus, which properly generalizes the essentials of two
earlier Model Evolution calculi, MEE [5], and ME(LIA) [4], one with equational inference
rules but without theory reasoning, and the other with theory reasoning by without equality
over non-theory symbols.

Much remains to be done. Further work includes extending the calculus with “universal
variables” and additional simplification rules. A further extension, which could be done
along the lines of [3], would allow also B-sorted (non-constant) function symbols.

Another important research question is how to strengthen the model-building capabil-
ities of the calculus, to guarantee termination in more cases of practical relevance. For
example, an input clause like P(x) ← x > 0 leads to nontermination, as, in essence, in-
finitely many instances P(vi)← vi > 0 over rigid variables v1, v2, . . . are needed to represent
the model of P(x) ← x > 0. This is clearly an undesirable situation. But other theorem
proving calculi designed for the same logic face the same problem, if not on this example,
only slightly more complicated ones will do. This indicates a non-trivial research problem,
which is beyond the scope of this paper.

References

[1] E. Althaus, E. Kruglov, and C. Weidenbach. Superposition modulo linear arithmetic
sup(la). In S. Ghilardi and R. Sebastiani, editors, FroCos, volume 5749 of Lecture

18

Notes in Computer Science, pages 84–99. Springer, 2009.

[2] L. Bachmair and H. Ganzinger. Chapter 11: Equational Reasoning in Saturation-Based
Theorem Proving. In W. Bibel and P. H. Schmitt, editors, Automated Deduction. A
Basis for Applications, volume I: Foundations. Calculi and Refinements, pages 353–
398. Kluwer Academic Publishers, 1998.

[3] L. Bachmair, H. Ganzinger, and U. Waldmann. Refutational theorem proving for hier-
achic first-order theories. Appl. Algebra Eng. Commun. Comput, 5:193–212, 1994.

[4] P. Baumgartner, A. Fuchs, and C. Tinelli. ME(LIA) – Model Evolution With Linear
Integer Arithmetic Constraints. In I. Cervesato, H. Veith, and A. Voronkov, editors,
Proceedings of the 15th International Conference on Logic for Programming, Artificial
Intelligence and Reasoning (LPAR’08), volume 5330 of Lecture Notes in Artificial Intelli-
gence, pages 258–273. Springer, November 2008.

[5] P. Baumgartner and C. Tinelli. The model evolution calculus with equality. In
R. Nieuwenhuis, editor, CADE-20 – The 20th International Conference on Automated
Deduction, volume 3632 of Lecture Notes in Artificial Intelligence, pages 392–408.
Springer, 2005.

[6] P. Baumgartner and U. Waldmann. Superposition and model evolution combined. In
R. Schmidt, editor, CADE-22 – The 22nd International Conference on Automated De-
duction, volume 5663 of Lecture Notes in Artificial Intelligence, pages 17–34, Montreal,
Canada, July 2009. Springer.

[7] H. Bürckert. A Resolution Principle for Clauses with Constraints. In M. E. Stickel,
editor, 10th International Conference on Automated Deduction, LNAI 449, pages 178–
192, Kaiserslautern, FRG, July 24–27, 1990. Springer-Verlag.

[8] H. Ganzinger and K. Korovin. Theory Instantiation. In Proceedings of the 13 Conference
on Logic for Programming Artificial Intelligence Reasoning (LPAR’06), volume 4246 of
Lecture Notes in Computer Science, pages 497–511. Springer, 2006.

[9] Y. Ge, C. Barrett, and C. Tinelli. Solving quantified verification conditions using sat-
isfiability modulo theories. In F. Pfenning, editor, Proceedings of the 21st International
Conference on Automated Deduction (CADE-21), Bremen, Germany, Lecture Notes in
Computer Science. Springer, 2007.

[10] K. Korovin and A. Voronkov. Integrating linear arithmetic into superposition calculus.
In Computer Science Logic (CSL’07), volume 4646 of Lecture Notes in Computer Science,
pages 223–237. Springer, 2007.

[11] R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT and SAT Modulo Theories:
from an Abstract Davis-Putnam-Logemann-Loveland Procedure to DPLL(T). Journal
of the ACM, 53(6):937–977, Nov. 2006.

19

[12] R. Nieuwenhuis and A. Rubio. Theorem Proving with Ordering and Equality Con-
strained Clauses. Journal of Symbolic Computation, 19:321–351, 1995.

[13] P. Rümmer. A constraint sequent calculus for first-order logic with linear integer arith-
metic. In I. Cervesato, H. Veith, and A. Voronkov, editors, Proceedings of the 15th
International Conference on Logic for Programming, Artificial Intelligence and Reason-
ing (LPAR’08), volume 5330 of Lecture Notes in Artificial Intelligence, pages 274–289.
Springer, November 2008.

[14] M. Stickel. Automated Deduction by Theory Resolution. Journal of Automated Reason-
ing, 1:333–355, 1985.

20

A Proofs

The following lemma establishes an important relation between ground literals produced
by Λ and the rewrite system RΛ,α.

Lemma A.1 Let l and r be variable-free foreground terms and α a suitable assignment. If
lα� rα. Then,

(i) if (l → r)α ∈ RΛ,α then Λ produces l ≈ r, and

(ii) if (l → r)α /∈ RΛ,α and lα and rα are irreducible wrt RΛ,α then Λ produces ¬(l ≈ r)
and Λ does not produce (l ≈ r).

Proof. By stability of � under assignments, l � r entails lα� rα.
The statement (i) follows immediately from the definition of RΛ,α and the fact that Λ

produces a literal K if and only if Λα produces Kα (recall that α is injective).
Concerning (ii), suppose that lα and rα are irreducible wrt. RΛ,α. If Λ produces l ≈ r

then Λα produces (l ≈ r)α. We distinguish two cases. If RΛ,α generates (l → r)α then lα
is reducible by (l → r)α ∈ RΛ,α. If RΛ,α does not generate (l → r)α then, by definition of
RΛ,α, lα or rα must be reducible wrt. (RΛ,α)(l≈r)α, hence reducible wrt. RΛ,α. Both cases
thus contradict the assumption that lα and rα are irreducible wrt. RΛ,α. It follows that Λ
does not produce l → r.

Thanks to the presence of the pseudo-literal ¬x in every context, it is not difficult to see
that every context produces K or K , for every literal K . Thus, with Λ not producing l ≈ r
we can conclude that Λ produces ¬(l ≈ r).

By combining Definition 5.2 and Lemma A.1, we immediately conclude that Λ produces
every literal in a variable-free context restriction R ifRΛ,α |= Rα. The relevance of this result
is that, whenever Rα is satisfied by RΛ,α then the “syntactic” notion of productivity can be
used to identify such situations, independent of α, in particular to identify relevant Herbrand
closures of clauses C ← R · c that are falsified by an induced interpretation I[Λ,π,α]).

The completeness proof works consistently with relevant constrained clauses. The fol-
lowing result is instrumental in reducing a hypothetical relevant counterexample, one that
is falsified in the induced model, to a smaller relevant counterexample that additionally
preserves satisfaction of its context restriction. (For notions around redundancy, relevancy
and preservation of satisfaction of context constraints is preserved by property (i) in Defini-
tion 5.3.)

Lemma A.2 (Inferences preserve relevant closures) Let Λ · Γ ` Φ be a sequent and α a
suitable assignment. Assume given a Pos-Res, Para or Ref inference with selected clause
C ← R · c, selected context equation l ≈ r in case of Para, derived clause C ′← R′ · c′, and a
ground instance via γ of this inference such that

(i) (C ← R · c,γ) is a relevant closure wrt. Λ and α, and (Λ,α) |= (R,γ),

21

(ii-a) in case of Para, where σ is the mgu of the given inference, l ≈ r produces
(l ≈ r)ασ in Λα, l ≈ r produces (l ≈ r)αγ in Λα, and (l ≈ r)αγ generates the
rule (l → r)αγ in RΛ,α, and

(ii-b) in case of Pos-Res, where σ is the context unifier of the given inference and
Ki ∈ Λ is the context literal paired with the clause literal Li ∈ C , Ki produces
Liασ in Λα, Ki produces Liαγ in Λα, and Liαγ is irreducible wrt. RΛ,α.

Then, (C ′← R′ · c′,γ) is a relevant closure wrt. Λ and α, and (Λ,α) |= (R′,γ)

Proof. For convenience we abbreviate R :=RΛ,α below.
With (i), by relevancy we have R |= Rαγ, i.e., with Definition 5.2, if l ≈ r ∈ Rαγ

then l → r ∈ R, and if ¬(l ≈ r) ∈ Rαγ then l and r are irreducible wrt. R. Moreover,
(Λ,α) |= (R,γ) means that Rαγ is non-trivial, and for every l ≈ r ∈ Rα, if lγ � rγ then l is
not a variable, and for every K ∈ Rα, Λ produces K and Kγ by the same literal.

We have to show

(1) R′αγ is non-trivial, and for every l ≈ r ∈ R′α, if lγ� rγ then l is not a variable,

(2) for every K ′ ∈ R′α, Λ produces K ′ and K ′γ by the same literal,

(3) if l → r ∈ R′αγ then l → r ∈ R, and

(4) if ¬(l ≈ r) ∈ R′αγ then l and r are irreducible wrt. R.

The property (1) is easily obtained from inspection of the inference rules. For the second
part it is crucial that paramodulation into variables is forbidden. It remains to show (2), (3)
and (4).

Let σ be the unifier as mentioned in case (ii-a) and (ii-b). Assume σ is idempotent,
which is the case with usual unification algorithms. Because γ gives a ground instance of
the given inference, γ must be a unifier for the same terms as σ. Because σ is a most
general unifier, there is a substitution δ such that γ = σδ. With the idempotency of σ we
get γ= σδ = σσδ = σγ.

For later use we prove some simple facts:

(i) if K ′ ∈ Rασ then Λ produces K ′ and K ′γ by the same literals.

Proof: Assume K ′ ∈ Rασ and let K ∈ Rα such that Kσ = K ′. We already know that
some L ∈ Λα produces K in Λα and L produces Kγ in Λα. If L didn’t produce Kσ in
Λα then there would be a L′ ∈ Λα with L � L′ ¦ Kσ. With γ= σδ and by transitivity
of ¦ we would get L � L′ ¦ Kγ, and so L would not produce Kγ either. Hence
L produces Kσ in Λα. Because L produces Kγ in Λα, with Kσ = K ′ and γ = σγ
conclude that L produces K ′γ in Λα, too.

(ii) if l ≈ r ∈ Rασγ then l → r ∈ R.

Proof: we already know that if l → r ∈ Rαγ then l → r ∈ R. The claim then follows
immediately with γ= σγ.

22

(iii) if ¬(l ≈ r) ∈ Rασγ then l and r are irreducible wrt. R.

Proof: we already know that if ¬(l ≈ r) ∈ Rαγ then l and r are irreducible wrt. R. The
claim then follows immediately with γ= σγ.

To prove (2), (3) and (4) we carry out a case analysis with respect to the inference rule
applied.

In case of a Ref inference let the selected clause be s 6≈ t ∨ C ′′ ← R · c and the derived
clause C ′ ← R′ · c′ = (C ′′ ← R · c)σ. With R′ = Rσ, (2) follows directly from fact (i), (3)
follows immediately from fact (ii), and (4) follows immediately from fact (iii).

In case of a Para inference let the selected clause be C ← R·c = [¬](s[u]p ≈ t)∨C ′′← R·c
and the conclusion C ′ ← R′ · c′ = ([¬](s[r]p ≈ t) ∨ C ′′ ← R ∪ {l ≈ r} · c)σ. The proofs of
(2), (3) and (4) for the subset Rσ of R′ follows immediately from facts (i), (ii) and (iii),
respectively. Now consider the sole additional element (l ≈ r)σ that is in Γ′ but not in
Rσ. Recall we are given that l ≈ r produces (l ≈ r)ασ in Λα and that l ≈ r produces
(l ≈ r)αγ = (l ≈ r)ασγ in Λα, which proves (2). Regarding (3), recall we are given that
(l ≈ r)αγ generates (l → r)αγ in R, which entails (l → r)αγ= (l → r)ασγ ∈ R.

The proof for the case of Pos-Res is similar and is omitted.

The ordering� has already been extended to closures. For the purposes of the complete-
ness proof, we work with evaluated closures, i.e., closures with some fixed assignment α
applied to them. To this end, we introduce for any assignment α the parametrized ordering
�α as s �α t iff sα� tα. Notice that �α is total and well-founded on any set of variable-free
foreground terms that α is suitable for, because α maps such terms to Herbrand terms, and
� is well-founded and total on Herbrand terms.

Now define (C1 ← R1 · c1, γ1) �α (C2 ← R2 · c2, γ2) iff ((C1 ← R1 · c1)α, γ1) � ((C2 ←
R2 · c2)α, γ2).

Because � is stable under assignments (by definition) it follows C �α D if C � D, for
any Herbrand closures C and D. Furthermore, with the remarks above, �α is total and
well-founded for any set of Herbrand closures that α is suitable for.

Definition A.3 (Smaller Relevant Closures from Φ wrt. Λ and α) Let Φ be a set of clauses,
Λ a context, α an assignment, and D a Herbrand closure. Define

ΦΛ,α = {(C ← R · c,γ) | C ← R · c ∈ Φ and
(C ← R · c,γ) is a relevant closure wrt. Λ and α},
and

ΦΛ,α
D = {C ∈ ΦΛ,α | D �α C} .

In words, ΦΛ,α
D is the set of relevant closures wrt. Λ and α of all clauses from Φ that, when

evaluated under α, are all smaller wrt. � than D evaluated under α.

Lemma A.4 Suppose (π,α) |= Γ. If (i) (C ← R · c,γ) is redundant wrt. Λ · Γ ` Φ and
D, (ii) (C ← R · c,γ) is a relevant closure wrt. Λ and α, and (iii) I[Λ,π,α] |= ΦΛ,α

D then
I[Λ,π,α] |= (C ← R · c,γ).

23

Proof. Assume (i), (ii) and (iii). We have to show I[Λ,π,α] |= (C ← R · c,γ).
If (Λ,α) 6|= (R,γ) then the conclusion follows trivially. Hence assume (Λ,α) |= (R,γ)

from now on. From (ii) conclude RΛ,α |= Rαγ by definition of relevance.
If case (a) or (b) in Definition 5.3 applies the claim holds trivially. Otherwise case (c)

in Definition 5.3 gives us Herbrand closures (Ci · Γi ,γi) of clauses Ci · Γi ∈ Φ that satisfy
conditions (i) – (iv) in Definition 5.3.

With (Λ,α) |= (R,γ) from property (i) in Definition 5.3 it follows (Λ,α) |= (Ri ,γi).
Likewise, with RΛ,α |= Rαγ from property (i) in Definition 5.3 it follows RΛ,α |= Riαγi .
Thus, each (Ci ← Ri · ci , γi) is a relevant closure wrt. Λ and α. By condition (iii) in Defi-
nition 5.3, (Ci ← Ri · ci , γi) is smaller wrt. � than D, and also smaller wrt. �α than D by
stability of � under assignments. More formally, thus, (Ci ← Ri · ci , γi) ∈ Φ

Λ,α
D , and with

(iii) conclude I[Λ,π,α] |= (Ci ← Ri · ci , γi). With (Λ,α) |= (Ri ,γi) from above it follows
I[Λ,π,α] |= (Ci ← ci)γi .

Because each ci is closed, ciγi = ci . If (π,α) 6|= ci for some such ci then from (π,α) |= Γ
and (ii) conclude (π,α) 6|= c and using cγ= c it follows (trivially) I[Λ,π,α] |= (C ← c)γ.

If (π,α) |= ci for each ci , then fromI[Λ,π,α] |= (Ci ← ci)γi and the definition of induced
interpretation it follows R?Λ,α |= Ciγiα. By property (iv) of redundancy, {C1γ1, . . . , Cnγn} |=
Cγ. Because α is injective it can be seen as a renaming of the rigid variables in these
clauses into background domain elements, i.e, constants from a disjoint domain. There-
fore {C1γ1α, . . . , Cnγnα} |= Cγα, and so R?Λ,α |= Cγα. Again by induced interpretation
I[Λ,π,α] |= (C ← c)γ.

In both cases I[Λ,π,α] |= (C ← R · c,γ) follows trivially from I[Λ,π,α] |= (C ← c)γ and
we are done.

Proposition A.5 Suppose (π,α) |= Γ. Let Λ · Γ ` Φ be a sequent and (C ← R · c,γ) a
Herbrand closure. If (i) C ← R · c is redundant wrt. Λ ·Γ ` Φ, (ii) (C ← R · c,γ) is a relevant
closure wrt. Λ and α, and (iii) I[Λ,π,α] |= ΦΛ,α

(C←R·c,γ) then I[Λ,π,α] |= (C ← R · c,γ).

Proposition A.5 establishes a relationship between redundant clauses and satisfaction
by I[Λ,π,α]. It is used in the completeness proof below, which is based on an inductive
argument that allows to assume that all relevant closures wrt. Λ and α that are smaller
wrt. �α than a hypothetically falsified closure (C ← R · c,γ) are all satisfied by I[Λ,π,α].
Proposition A.5 then allows to conclude that (C ← R · c,γ) is satisfied by I[Λ,π,α], and
hence cannot be that hypothetically falsified clause.

Proof. Immediate from Lemma A.4 by setting D = (C ← R · c,γ), and using Definition 5.3.

Theorem 5.6 (Static completeness) Let Λ · Γ ` Φ be a saturated sequent, π a valuation
and α a suitable assignment for Λ · Γ ` Φ. If (π,α) |= Γ, ran(α) = |B| and (�← ; ·>) /∈ Φ
then the induced interpretation I[Λ,π,α] satisfies all Herbrand closures of all clauses in Φ
that are relevant wrt. Λ and α. Moreover, I[Λ,π,α] |= C ← c, for every C ← c ∈ Φ.

Proof. Suppose (π,α) |= Γ, ran(α) = |B| and (� ← ; · >) /∈ Φ. For the proof of the first
statement we show the following property (P):

24

(P) I[Λ,π,α] |= (C ← R · c,γ),

for every relevant closure (C ← R · c,γ) wrt. Λ and α of every clause C ← R · c ∈ Φ.
Once (P) is shown, the “moreover” statement follows easily from the (trivial) facts that

for clauses with empty context restrictions every Herbrand instance is trivially relevant and
that (Λα, I[α]) |= (C ← ; · c, γ) holds if and only if I[α] |= (C ← c)γ.

We prove (P) by contradiction. Every counterexample, that is, every closure (C ← R·c,γ)
of a clause C ← R · c ∈ Φ that is relevant wrt. Λ and α and that does not satisfy (P) must
satisfy the following properties:

(i) RΛ,α |= Rαγ, by relevancy.

(ii) (Λ,α) |= (R,γ), and

(iii) I[Λ,π,α] 6|= (C ← c)γ, from (C ← R · c,γ) not satisfying (P) by Definition 3.6.

(iv) (π,α) |= c, and

(v) R?Λ,α 6|= Cαγ, from (iii) and by definition of induced interpretation.

Among all counterexamples, by well-foundedness of the ordering �α on Herband closures,
there is a minimal counterexample (minimal wrt. �α). From now on let (C ← R · c,γ) be
such a minimal counterexample.

By minimality of (C ← R · c,γ), every relevant closure of a clause in Φ wrt. Λ and α that
is smaller wrt. �α than (C ← R · c,γ) satisfies (P). More formally, I[Λ,π,α] |= ΦΛ,α

(C←R·c,γ).
We carry out an exhaustive case analysis on properties of (C ← R · c,γ).

(1) (C ← R · c,γ) is redundant wrt. Λ ·Γ ` Φ.
If (C ← R · c,γ) is redundant wrt. Λ · Γ ` Φ, then by Lemma A.4, setting D = (C ← R · c,γ)
there, (P) follows immediately, contradicting our assumption. Hence, (C ← R · c,γ) cannot
be redundant wrt. Λ ·Γ ` Φ.

(2) var(C)αγ is reducible wrt. RΛ,α.
The MEE(T) calculus does not paramodulate into or below variables. To explain the com-
pleteness of this restriction we need to know that var(C)αγ is irreducible wrt. RΛ,α.

First we show that every term t ∈ (var(C) ∩ var(R))αγ is irreducible wrt. RΛ,α. For,
if t is reducible wrt. RΛ,α and occurs in a negative literal ¬(l ≈ r) ∈ Rαγ then we get a
contradiction to (i), as that negative literal is reducible wrt. RΛ,α. If t occurs in a positive
literal l ≈ r ∈ Rαγ we conclude as follows: from (i) it follows l 6= r and hence, w.l.o.g, l � r.
As l ≈ r ∈ Rαγ there is a l ′ ≈ r ′ ∈ Rα such that (l ′ ≈ r ′)γ = l ≈ r. By Definition 3.5-(i), l ′

is not a variable. Hence, t occurs as a subterm of r or as a proper subterm of l. But then
l → r is reducible by a smaller rule from RΛ,α, and hence l → r cannot be generated in
RΛ,α, again contradicting (i).

If xαγ is reducible for some x ∈ var(C) \ var(R), then a term in the range of γα can be
replaced by a smaller yet congruent term wrt. R?Λ,α. Observe that this results in a smaller
(wrt. �α) counterexample, thus contradicting the choice of (C ← R · c,γ).

25

In summary, thus, var(C)αγ is irreducible wrt. RΛ,α, which we may assume from now
on.

(3) C = s 6≈ t ∨ D.
Suppose that none of the preceding cases holds and C = s 6≈ t ∨ D.

(3.1) sαγ= tαγ.
If sαγ = tαγ then sγ = tγ (because α is injective) and so there is a Ref inference with
selected clause (s 6≈ t∨D← R·c)γ and derived clause (D← R·c)γ, which is a ground instance
of a Ref inference with selected clause s 6≈ t ∨ D← R · c and derived clause (D← R · c)σ. It
is safe to assume that σ is idempotent, which gives us σγ= γ.

By saturation, that Ref inference is redundant wrt. Λ · Γ ` Φ. Because the closure
(C ← R · c,γ) is not redundant wrt. Λ · Γ ` Φ, the derived clause, taken as the closure
C := ((D ← R ∪ {l ′ ≈ r ′} · c)σ,γ). must be redundant wrt. Λ · Γ ` Φ and (C ← R ·
c,γ) by definition of redundant inferences. Furthermore, with Lemma A.2 it is a relevant
closure wrt. Λ and α, hence, by Lemma A.4, I[Λ,π,α] |= C . By Definition 3.6, this means
(Λ,α) 6|= (R ∪ {l ′ → r ′})σ,γ) or I[Λ,π,α] |= (D ← c)σγ. However, Lemma A.2 gives us
additionally Λ |= ((R ∪ {l ′ ≈ r ′})σ,γ), and so the former case is impossible. But then,
from I[Λ,π,α] |= (D← c)σγ and σγ = γ by definition of induced interpretation it follows
(π,α) 6|= c or R?Λ,α |= Dαγ. However, by (iv) the first case is impossible, and in the second
case, trivially, R?Λ,α |= Cαγ, a plain contradiction to (v) above.

(3.2) sαγ 6= tαγ.
If sαγ 6= tαγ then without loss of generality assume sαγ � tαγ. With (v) it follows R?Λ,α |=
(s ≈ t)αγ. Because RΛ,α is a convergent rewrite system, sαγ and tαγ must have the same
normal forms. In particular, thus, sαγ is reducible wrt. RΛ,α. Suppose sαγ= (sαγ)[lα]p for
some position p and ground terms l and r such that (l → r)α ∈ RΛ,α. Because α is injective
it follows sγ= (sγ)[l]p

With Lemma A.1-(i) it follows that Λ produces l ≈ r. For later use let l ′ ≈ r ′ ∈ Λ be a
fresh variant that produces l ≈ r in Λ and assume that γ has already been extended so that
(l ′ ≈ r ′)γ= l ≈ r.

The conclusions so far give that Para is applicable with selected context equation (l ′ ≈
r ′)γ, selected clause sγ[l ′γ]p 6≈ tγ∨ Dγ← Rγ · c7 and derived clause sγ[r ′γ]p 6≈ tγ∨ Dγ←
Rγ ∪ {(l ′ ≈ r ′)γ}· c. The next step is to show that this inference is a ground instance via γ of
a Para inference with selected context equation l ′ ≈ r ′, selected clause C ← R · c = s[u]p 6≈
t ∨ D← R · c and derived clause (s[r ′]p 6≈ t ∨ D← R ∪ {l ′ ≈ r ′} · c)σ, where σ is an mgu of
l ′ and u.

The position p in sγ cannot be at or below a variable position in s, because otherwise
we had xγ[l ′γ]p for some variable x occuring in s, and so xαγ would be reducible by
(l ′→ r ′)αγ = (l → r)α, which is impossible by case (2) above. Hence, the position p exists
in s, and the term u at that position is not a variable. Then it follows easily that the mgu σ
of l ′ and u exists. Furthermore, the rules in RΛ,α are all between F-sorted Herbrand terms,
and it follows that l ′ (and r ′) are F-sorted, and hence u cannot be a rigid variable, as rigid
variables and F-sorted terms are syntactically different, and hence do not unify. Finally, as

7As c is closed we have cγ= c.

26

all rules in RΛ,a are ordered wrt. �, from (l → r)α ∈ RΛ,α it follows r ′σ 6� l ′σ. Alltogether,
we have established now that the claimed Para inference exists.

It is safe to assume that σ is idempotent, which gives us σγ= γ.
By saturation, the Para inference is redundant wrt. Λ · Γ ` Φ. Because the closure

(C ← R · c,γ) is not redundant wrt. Λ · Γ ` Φ, the derived clause, taken as the closure
C := ((s[r ′]p 6≈ t ∨ D← R ∪ {l ′ ≈ r ′} · c)σ,γ). must be redundant wrt. Λ ·Γ ` Φ and (C ←
R · c,γ) by definition of redundant inferences. Furthermore, with Lemma A.2 it is a relevant
closure wrt. Λ and α, hence, by Lemma A.4, I[Λ,π,α] |= C . By Definition 3.6, this means
(Λ,α) 6|= (R ∪ {l ′→ r ′})σ,γ) or I[Λ,π,α] |= (s[r ′]p 6≈ t ∨ D← c)σγ. However, Lemma A.2
gives us additionally Λ |= ((R ∪ {l ′ ≈ r ′})σ,γ), and so the former case is impossible. But
then, from I[Λ,π,α] |= (s[r ′]p 6≈ t ∨ D ← c)σγ by definition of induced interpretation it
follows (π,α) 6|= c (observe that cσγ = c, as c is closed) or R?Λ,α |= (s[r

′]p 6≈ t ∨ D)ασγ.
However, by (iv) the first case is impossible. In the second case, with (l ′→ r ′)αγ ∈ RΛ,α by
congruence and σγ = γ it follows R?Λ,α |= (s 6≈ t ∨ D)αγ. Using C = s 6≈ t ∨ D this is a plain
contradiction to (v) above.

(4) C = s ≈ t ∨ D.
Suppose that none of the previous cases applies. This entails that C cannot contain a neg-
ative literal. In case (4) we examine the case that C is not empty, i.e., that C consists of
positive literals only, at least one.

Suppose C = s ≈ t ∨D. With (v), sαγ= tαγ and hence also sγ= tγ is impossible. Hence
assume sγ 6= tγ in the following. We distinguish two further cases.

(4.1) sαγ or tαγ is reducible wrt. RΛ,α.
If sαγ or tαγ is reducible wrt. RΛ,α then there are ground terms l and r such that rule
(l → r)α ∈ RΛ,α that rewrites sαγ or tαγ. With the same argumentation as in case (3.2) one
shows that a smaller, yet congruent counterexample would exists due to a Para inference,
which leads to the same contradiction as in case (3.2).

(4.2) sαγ and tαγ are irreducible wrt. RΛ,α.
This case is meant to say that case (4.1) does not apply, for no equation s ≈ t ∈ C . Thus,
for every s ≈ t ∈ C , sαγ and tαγ are irreducible wrt. RΛ,α. Assume, w.l.o.g., sαγ � tαγ.
With Lemma A.1-(ii) then conclude that some literal ¬A ∈ Λ produces ¬(s ≈ t)γ in Λ.
This indicates that a Pos-Res inference exists. More precisely, the selected clause of that
inference is (C ← R · c)γ and the derived clause is (�← (R ∪ C) · c)γ. It is routine by now
to check that this Pos-Res inference is a ground instance via γ of a Pos-Res inference with
selected clause C ← R · c and derived clause (�← (R ∪ C) · c)σ, where σ is the most general
simultaneous unifier of that inference.

The rest of the proof uses the same arguments as in case (3.2) and is omitted (we just
note that (C ← R · c)γ �α (� ← (R ∪ C) · c)γ and hence the latter clause is satisfied in
I[Λ,π,α] by induction, which will again lead to a contradiction to (v)).

(5) C =�.
Suppose C =�. First we are going to show that Split is applicable to Λ ·Γ ` Φ with selected
clause �← R · c.

27

With property (ii) above, Λα produces every literal in Rα and every literal in Rαγ . More
precisely, for every K ′ ∈ Rα there is a L ∈ Λα that produces K in Λα (and that produces
Kγ in Λα). As said earlier, from properties of assignments it follows that L produces K in Λ
(and that produces Kγ in Λ) , where K ∈ R such that Kα = K ′ and L ∈ Λ such that Lα = L′

(*).
If Close were applicable with selected clause � ← R · c, then, by saturation, this Close

inference is redundant, which is the case only if �← ; ·> ∈ Φ. However, we are given that
�← ; · > /∈ Φ, and hence Close is not applicable. Together with (π,α) |= Γ, as given, and
(iv) it follows that Γ ∪ {c} is satisfiable, and therefore R 6⊆ Λ. Thus, there is a literal K ∈ R
such that K /∈ R. In other words, K is not contradictory with Λ.

In order to show that Split is applicable we need to show, additionally, that K is not
contradictory with Λ. For, if it were, this means that K ∈ Λ, and then Λ produces K . But, as
all derived contexts are not contradictory, Λ cannot produce K then, plainly contradicting
(*) above. Notice that the background context Γ? required for the right conclusion of Split
exists trivially, as a consequence of condition (4), albeit not in a constructive way.

Thus, at this stage we know that Split is applicable with selected clause �← R · c and
split literal K .

By redundancy then, (a) there is a literal L ∈ R such that Λ does not produce L in Λ,
or (b) K is contradictory with Λ. The case (a) plainly contradicts (*), and case (b) plainly
contradicts an earlier conclusion that K is not contradictory with Λ.

Lemma A.7 If C ← R · c is redundant wrt. Λ ·Γ ` Φ, Γ′ is obtained from Γ by adding closed
constraints, Λ′ is obtained from Λ by adding non-contradictory rewrite literals, and Φ′ is
obtained from Φ by deleting clauses that are redundant wrt. Λ · Γ ` Φ and/or by adding
arbitrary clauses, then C ← R · c is redundant wrt. Λ′ ·Γ′ ` Φ′.

Proof. It is obvious from Def. 5.3 that a clause that is redundant wrt. Λ · Γ ` Φ remains
redundant if a closed constraint is added to Γ (by monotonicity of first-order logic) or an
arbitrary clause is added to Φ, if a non-contradictory literal is added to Λ one needs to prove
that, in terms of Def. 5.3, (C ← R · c,γ) remains redundant wrt. Λ · Γ ` Φ and D. This is
straightforward to check.

To prove that a clause that is redundant wrt. Λ ·Γ ` Φ remains redundant if redundant
clauses are deleted from Φ, it suffices to show that the clauses Ci ← Ri · ci ∈ Φ in Defini-
tion 5.3 can always be chosen in such a way that they are not themselves redundant or their
deletion does not affect redundancy of C ← R · c: Suppose that a closure (C ← R · c,γ) is
redundant wrt. Λ · Γ ` Φ and D. Let { (Ci ← Ri · ci ,γi) | 1 ≤ i ≤ n } be a minimal set of
closures of clauses in Φ (wrt. the multiset extension of the clause ordering) that satisfies the
conditions of Definition 5.3. Suppose that one of the (Ci ← Ri · ci ,γi), say (C1← R1 · c1,γ1),
is redundant itself.

If case (a) in Definition 5.3 applies to (C1 ← R1 · c1,γ1) then from Definition 5.3-(i)
it follows that (C ← R · c,γ) is redundant, too. Otherwise there exist Herbrand closures
(C1i ← R1i · c1i ,γ1i) of clauses C1i ← R1i · c1i ∈ Φ that satisfy the conditions of Definition 5.3
for (C1 ← R1 · c1,γ1). But then { (Ci ← Ri · ci ,γi) | 2 ≤ i ≤ n } ∪ { (C1i ← R1i · c1i ,γ1i) | 1 ≤

28

i ≤ m } would also satisfy the conditions of Definition 5.3 for (C ← R · c,γ), contradicting
the minimality of { (Ci ← Ri · ci ,γi) | 1≤ i ≤ n }.

Lemma A.8 If a Pos-Res, Ref or Para inference is redundant wrt. Λ ·Γ ` Φ, Γ′ is obtained
from Γ by adding closed constraints, Λ′ is obtained from Λ by adding non-contradictory
literals, and Φ′ is obtained from Φ by deleting clauses that are redundant wrt. Λ · Γ ` Φ
and/or by adding arbitrary clauses, then this Deduce inference is redundant wrt. Λ′ ·Γ′ ` Φ′.

Proof. The non-trivial case is, in terms of Definition 5.4, to show that (C ′← R′ ·c′, γ) remains
redundant under the stated modifications of Λ · Γ ` Φ. This is shown analogously to the
proof of Lemma A.7.

Lemma A.9 Let C ← R · c be a clause. If C ← R · c is redundant wrt. Λ j · Γ j ` Φ j , for some
j < κ, then C ← R · c is redundant wrt. ΛB ·ΓB ` ΦB.

Proof. As a convenience, we denote the union of all clauses of a branch B by Φ+B =
⋃

i<κΦi .
Suppose that C ← R · c is redundant wrt. Λ j · Γ j ` Φ j . Since ΓB ⊇ Γ j , ΛB ⊇ Λ j and

Φ+B ⊇ Φ j , Lemma A.7 implies that C ← R · c is redundant wrt. ΛB · ΓB ` Φ+B . Now observe
that every clause in Φ+B \ΦB has been deleted at some node of the branch B, which is only
possible if it was redundant wrt. some Λk · Γk ` Φk with k < κ. Again using Lemma A.7,
we see that every clause in Φ+B \ΦB is redundant wrt. ΛB · ΓB ` Φ+B . Hence ΦB is obtained
from Φ+B by deleting redundant clauses. By using Lemma A.7 a third time, we conclude that
C ← R · c is redundant wrt. ΛB ·ΓB ` ΦB.

Lemma A.10 Every Pos-Res, Ref or Para inference that is redundant wrt. Λ j · Γ j ` Φ j , for
some j < κ, is redundant wrt. ΛB ·ΓB ` ΦB.

Proof. Analogously to the proof of Lemma A.9 using Lemma A.8.

Proposition 6.5 (Exhausted Branches are Saturated) If B is an exhausted branch of a
limit tree of a fair derivation then ΛB ·ΓB ` ΦB is saturated.

Proof. Suppose B is an exhausted branch of a limit tree of some fair derivation. We have to
show that every MEE(T) inference with a core inference rule and premise ΛB · ΓB ` ΦB is
redundant wrt. ΛB · ΓB ` ΦB. We do this by assuming such an inference and carrying out a
case analysis wrt. the inference rule applied.

By Definition 6.1 there is no Close inference with premise Λi ·Γi ` Φi , for no i < κ, with
a persistent selected clause. But then there is no Close inference with premise ΛB ·ΓB ` ΦB
either. (Because if so, for a large enough i there would be Close inference with premise
Λi ·Γi ` Φi , which we excluded.) Thus there is nothing to show for Close.

If the inference rule is Split then let � ← R · c be the selected clause. There are only
finitely many literals L, modulo renaming and modulo sign, that are more general wrt. the
instantiation preorder � than a given literal K . The applicability conditions of the Split
inference rule, the only rule that can add literals to foreground contexts, makes sure that

29

from some time k onwards, no more such literal L will be added to Λk,Λk+1, Suppose k
is chosen large enough so that this is the case for all literals K ∈ R.

We are given that �← R·c is persistent. Therefore suppose also �← R·c ∈ Φk,Φk+1, . . .,
or choose k big enough. Together this shows that every Split inference with premise ΛB·ΓB `
ΦB already exists with with premise Λk · Γk ` Φk and same selected clause, and vice versa.
Recall from the definition of Split that Λk must produce every literal in R.

By Definition 6.1, the Split inference is redundant wrt. Λ j ·Γ j ` Φ j , for some j < κ with
j ≥ k. By redundancy, the selected clause �← R · c is redundant wrt. Λ j ·Γ j ` Φ j , and, with
Lemma A.9, redundant wrt. ΛB · ΓB ` ΦB. Or, (a) there is a literal K ∈ R such that Λ j does
not produce K or (b) the split literal is contradictory with Λ j . The case (a) is impossible
because from time k onwards no more general literal than K (modulo sign) is added to Λk,
and so Λ j cannot contain a literal that would prevent Λ j from producing K as well. In case
(b), the split literal is also contradictory with ΛB (as ΛB ⊇ Λ j), and hence the assumed Split
inference would not exist.

If the inference rule is Pos-Res, Ref or Para then by Definition 6.1 the inference is
redundant wrt. Λ j · Γ j ` Φ j , for some j ≥ i, and by Lemma A.10 it is redundant wrt.
ΛB ·ΓB ` ΦB.

Proposition 6.3 (Compactness of finitely committed branches) If B is finitely commit-
ted then there is a π and an α such that ran(α) = |B| and (π,α) |= ΓB.

Proof. Let B as stated. If ΓB is finite, let πB and αB such that (πB,αB) |= ΓB, which must
exist as all derivable background contexts are satisfiable by definition of the inference rules.
Take π = πB and obtain α from αB by composition with any injective mapping from the
rigid variables onto |B| \ ran(αB). It is easy to see that π and α suffice to prove the claim.

Hence suppose from now on that ΓB is infinite. Let Λi ·Γi ` Φi be the sequent labelling
the node i in the branch B, for all i < κ.

By Definition 6.2 there are valuations πi and assignments αi such that (πi ,αi) |= Γi , for
all i < κ.

Take an arbitrary background domain element n ∈ |B|. By Definition 6.2-(ii), the set
pre(n) := {v | αi(v) = n, for some i < κ} is finite (it is the set of rigid variables that represent
n in the αi ’s). Moreover, with Definition 6.2-(i) it follows there is an i such that for all j ≥ i
there is a v ∈ pre(n) such that α j(v) = n (*).

Consider an arbitrary rigid variable v that occurs in ΓB. By Definition 6.2-(iii), the set
img(v) := {αi(v) | v ∈ dom(αi), for some i < κ} is finite (it is the set of background domain
elements that v is mapped to in the αi ’s). Because v occurs in ΓB and because background
contexts grow monotonically, there is an i such that for all j ≥ i, v occurs in Γi . Together,
thus, there is an i such that for all j ≥ i it holds that α j(v) ∈ img(v) (**).

Consider an arbitrary parameter a that occurs in ΓB. By Definition 6.2-(iv), the set
img(a) := {πi(a) | i < κ} is finite. Because a occurs in ΓB and because background contexts
grow monotonically, there is an i such that for all j ≥ i, a occurs in Γi . Together, thus, there
is an i such that for all j ≥ i it holds that π j(a) ∈ img(a) (***).

Observe that for (*), (**) and (***) the same start index i can be chosen.

30

The next step is to define the desired valuation π and assignment α. Let K = {1,2, . . .}
be an index set consisting initially of all natural numbers. We consider sequences (Γi)i∈K
and their associated valuations πi and assignments αi . Below we describe how to “thin out”
K by iteratively taking subsets of K , which will provide π after finitely many steps, and α in
the limit.

The first step is to fix π this way. Let A be the set of parameters that occurs in ΓB and
initially K = {1, 2, . . .}. For a given a ∈ A there is an infinite subset {k1, k2, . . .} ⊆ K , a
thinning of K , such that k1, k2, . . . ≥ i and such that n = πk1

(a) = πk2
(a) = · · · , for some

n ∈ img(a). Such a thinning and must exist by (***) (recall that img(a) is finite, but there
are infinitely many indices k ∈ K with k ≥ i, and so among all these valuations αk there
must be infinitely many that map a to n.)

As input clause sets are finite and there are no inference rules that introduce parameters,
the set A is finite. This allows us to iterate the procedure just describe for all parameters in
A. The result will be an infinite subset KA of K such that πk1

(a) = πk2
(a) = · · · for all a ∈ A

where KA = {k1, k2, . . .}. Let π be any valuation that extends πk1
to the paramaters not in A.

The next step is to determine α, starting with KA. This is done by simultaneously taking a
domain element from |B| and a rigid variable that occurs in ΓB, one pair after the other, and
chosing rigid variables to represent the elements from |B|, and chosing background domain
elements to map the rigid variables from ΓB to. These choices are guided by the satisfying
assignments (πi ,αi) for Γi , where i is taken from the current index set K , initially KA. After
each such choice, K is “thinned out” by keeping only those (infinitely many) indices that
enforce compatibility of all subsequent choices with the current choice.

Let K = KA now. For a given n ∈ |B| there is an infinite subset {k1, k2, . . .} ⊆ K such that
k1, k2, . . . ≥ i and such that n = αk1

(v) = αk2
(v) = · · · , for some v ∈ pre(n) (****). Such a

set {k1, k2, . . .} and a rigid variable v must exist by (*) (recall that pre(n) is finite, but there
are infinitely many indices k ∈ K with k ≥ i, and so among these assignments αk there must
be infinitely many that map some element v ∈ pre(n) to n).

Let V be the set of rigid variables that occurs in ΓB. For a given v ∈ V there is an infinite
subset {k1, k2, . . .} ⊆ K such that k1, k2, . . . ≥ i and such that n = αk1

(v) = αk2
(v) = · · · , for

some n ∈ img(v) (*****). The arguments are similar as above, this time using (**) instead
of (*).

For a given v and n selected either way, we refer to the set {k1, k2, . . .} as a thinning of
K to (v, n).

We are now ready to describe a procedure that yields, in the limit, the desired assign-
ment α. It proceeds as follows.

Set N := |B|
Set K := {1,2, . . .}
Set D := {v | v is a rigid variable that occurs in ΓB}
loop:

Chose some n ∈ N
Let Kn be a thinning of K to (v′, n), for some v′ ∈ pre(n)
Set N := N \ {n}, V := V \ {v′}, and K := Kn
Chose some v ∈ V

31

Let Kv be a thinning of K to (v, n′), for some n′ ∈ img(v)
Set N := N \ {n′}, V := V \ {v}, and K := Kv
goto loop

Observe that, given n, a thinning Kn of K to (v′, n) for some v′ ∈ pre(n) exists by the
argumentation above whenever K is infinite, and similarly for a given v and thinning Kv of
K to (v, n′) Notice that initially K is infinite, and thus infiniteness of K is preserved as an
invariant. This shows that the above procedure is well-defined.

The next step is to define the desired assignment α as a collection of all the pairs (v, n)
mentioned in the loop body. To this end, we show first that there are no such pairs (v, n)
and (v, n′) with n 6= n′ (to guarantee functionality), and that there are no pairs (v, n) and
(v′, n) with v 6= v′ (to guarantee injectivity).

Suppose the procedure has obtained K ′ as a thinning of K to (v, n), for some v and
n. Then, by construction n is removed from N and v is removed from V . Therefore, the
procedure cannot chose n (in the first part) or v (in the second part) for thinning in the
future.

Should the procedure consider a thinning to (v, n′) in the future with n 6= n′, thus, this
could only be because in the first part n′ is chosen and the thinning is to (v, n′). But then,
from (****) and (*****) and by consruction of thinnings there would be an αi such that
αi(v) = n and αi(v) = n′, which is impossible by functionality of assignments.

Similarly, should the procedure consider a thinning to (v′, n) in the future with v 6= v′,
thus, this could only be because in the second part v′ is chosen and the thinning is to (v′, n).
But then, again from (****) and (*****) and by construction of thinnings there would be
an αi such that αi(v) = n and αi(v′) = n, which is impossible by injectivity of assignments.

By construction, the procedure above defines a pair (v′, n) for every n ∈ N and a pair
(v, n′) for every rigid variable v occuring in ΓB. With the functionality and injectivity prop-
erties already shown above, we can define α(v) = n for every such pair, and it holds that α
is well-defined (as a function) and injective, that its range includes N and that it is defined
on every rigid variable occurring in ΓB, i.e., α is suitable for ΓB.

Finally, it remains to show (π,α) |= c, for every c ∈ ΓB. We do this by contradiction.
Suppose (π,α) 6|= c, for some c ∈ ΓB. By definition, c ∈ ΓB means that c ∈ Γ j ,

for some i and all j ≥ i. The constraint c can contain only finitely many rigid vari-
ables, say v1, . . . , vm. As α is suitable for ΓB, α is defined on all v1, . . . , vm. Say, α(v1) =
n1, . . . ,α(vm) = nm. By construction of α, the procedure must have derived the correspond-
ing tuples (v1, n1), . . . , (vn, nm) (in some order). Once more with (****) and (*****) and by
construction of thinnings there would be an αi such that αi(v1) = n1, . . . ,αi(vm) = nm.

Chosing i large enough we may assume c ∈ Γi . By definition of πi and αi , (πi ,αi) |= Γi
and hence αi |= c. However, c is a closed constraint, and α and αi are the same function on
all rigid variables in c. Recall that the procedure to define α starts with the index set KA and
π j(a) = π(a) by construction, for all j ∈ KA and a ∈ A, and hence πi(a) = π(a). We thus
get a contradiction to the assumption (π,α) 6|= c. Hence, (π,α) |= c, for every c ∈ ΓB.

Theorem 6.6 (Completeness) Let Ψ be a set of input clauses and Γ a satisfiable set of
closed constraints, both rigid variable-free. Suppose a fair derivation from Ψ and Γ that is

32

not a refutation. Let B be any exhausted and finitely committed branch of its limit tree, and
let ΛB ·ΓB ` ΦB be the limit sequent of B.

Then there is a valuation π and a suitable assignment α for ΓB such that ran(α) = |B|
and (π,α) |= ΓB, and it holds I[ΛB,π] |= Γ ∪ Ψ, where I[ΛB,π,α] is the interpretation
induced by ΛB, π, and α.

Proof. By Proposition 6.5 the limit sequent ΛB · ΓB ` ΦB is saturated. Proposition 6.3
guarantees that π and α as claimed indeed exists. From Theorem 5.6 we get that I[ΛB,π,α]
satisfies all Herbrand closures of all clauses in ΦB that are relevant wrt. Λ and α. We use
this further below.

The calculus does not shrink background contexts (this is easily seen from inspection of
the inference rules). Hence Γ ⊆ ΓB, and with (π,α) |= ΓB it follows I[ΛB,π] |= Γ (as Γ is
rigid variable-free its satisfaction is independent of assignments).

It only remains to show I[ΛB,π] |= Ψ. To this end, let C ← c be any clause from Ψ.
If C ← c ∈ ΦB then with the second part of Theorem 5.6 we get I[ΛB,π,α] |= C ← c.
Otherwise C ← c /∈ ΦB. Hence C ← c has been removed at some time k < κ from the clause
set Φk of the sequent Λk ·Γk ` Φk by an application of the Simp rule. By definition of Simp,
C ← c is redundant wrt. Λk+1 · Γk+1 ` Φk+1. By Lemma A.9, C ← c is redundant wrt.
ΛB · ΓB ` ΦB. Since C ← c has an empty constraint, all its closures are relevant, and by
Proposition A.5, all relevant closures wrt. ΛB and α that are redundant wrt. ΛB · ΓB ` ΦB
are entailed by clauses in (ΦB)ΛB,α. As concluded above,I[ΛB,π,α] satisfies all Herbrand
closures of all clauses in ΦB that are relevant wrt. Λ and α, more formally, I[ΛB,π,α] |=
(ΦB)ΛB,α. Together it follows I[ΛB,π,α] |= C ← c in this case, too.

Finally, because Ψ is rigid variable-free, we get I[ΛB,π] |= C ← c, which completes the
proof.

Theorem 7.1 (Refutational soundness) Let D be a refutation from a set Ψ of input clauses
and a satisfiable set Γ of closed constraints, both rigid variable-free.

If T is a refutation tree in D, B the rightmost branch in T, and ΓB the the background
context in the leaf of B, then ΓB ⊇ Γ, ΓB is satisfiable, and ΓB ∪ Ψ is not satisfiable.

Proof. Let T, B and ΓB as stated.
By structural induction on derivation trees we show a slight more general property:

(P) for every sequent Λ·Γ ` Φ (labeling a node) in T there is a satisfiable set of background
constraints Γ′ with Γ⊆ Γ′ ⊆ ΓB such that Λ(e,n) ∪ Φc ∪ Γ′ is not satisfiable.

From (P) follows immediately that ΓB ∪ Ψ is not satisfiable: in the initial sequent we have
Λ = {¬x} and Φc =Ψ. Thus, with (P), Ψc ∪ Γ′ is not satisfiable, and with Γ′ ⊆ ΓB, Ψc ∪ ΓB
is not satisfiable either.

It remains to prove (P). Let Λ · Γ ` Φ be a sequent in T. If Λ · Γ ` Φ is in a leaf node,
then � ← ; · > ∈ Φ is the defining property of refutations, and setting Γ′ = Γ proves (P)
immediately.

Otherwise assume that Λ · Γ ` Φ has one or two successor nodes. We carry out a case
analysis wrt. the inference rule applied to Λ · Γ ` Φ. We note first that every background

33

context in every derived sequent in T is a subset of ΓB, the background context in the leaf
of the rightmost branch in T. This can be seen from inspection of the inference rules: in
every Split inference the background context in the left conclusion is always a subset of the
background context in the right conclusion, and none of the other (non-branching) infer-
ence rules shrinks background contexts. Hence, if we chose below Γ′ to be a background
constraint in one of the sequents in T, Γ′ ⊆ ΓB will follow. Furthermore, by design of
the inference rules, satisfiability of background contexts is preserved for every background
context in every derived sequent. It follows thatΓB is satisfiable.

If the inference rule is Close then the selected clause is of the form �← R · c and it holds
R ⊆ Λ. The clause form of � ← R · c is R ← c. Let R

(e,n)
be obtained from R by replacing

every variable by e and every rigid variable by d. With R⊆ Λ it follows that no interpretation
satisfies Λ(e,n) ∪ {�← R · c}c. Finally, chose Γ′ = Γ ∪ {c} and (P) follows immediately.

If the inference rule is Restrict, by induction (P) holds for its conclusion. Chosing Γ′ as
provided by the induction suffices to prove (P) for Λ ·Γ ` Φ.

If the inference rule is Simp, by induction (P) holds for its conclusion. Again chosing Γ′

as provided by the induction suffices to prove (P) for Λ · Γ ` Φ. Condition (2) in Simp is
crucial here.

If the inference rule is Ref, Para or Pos-Res, let C ′ ← R′ · c′ be the derived clause.
It is not difficult to show that each of these rules entails the derived clause in the sense
Γ ∪ Λ(e,n) ∪ Φc |= (C ′← R′ · c′)c. Again the same argument as for Simp applies.

If the inference rule is Split let Λ, K ·Γ, c ` Φ be the left conclusion and Λ, K ·Γ? ` Φ be
the right conclusion. By induction applied to the left conclusion, there is a satisfiable set of
background constraints Γ′ with Γ ∪ {c} ⊆ Γ′ ⊆ ΓB such that (Λ ∪ {K)(e,n) ∪ Φc ∪ Γ′ is not
satisfiable (*). By condition (4) in Split, Γ? is any such set Γ′. As we have made no further
assumption on Γ′ we can set Γ? = Γ′.

By induction applied to the right conclusion, there is a satisfiable set of background
constraints Γ′′ with Γ ∪ {c} ⊆ Γ′ ⊆ Γ′′ ⊆ ΓB such that (Λ ∪ {K})(e,n) ∪ Φc ∪ Γ′′ is not
satisfiable. From (*) and with Γ′ ⊆ Γ′′ it follows that (Λ∪ {K)(e,n) ∪Φc ∪Γ′′ is not satisfiable,

either. These two sets differ only in the literal K(e,n) and K
(e,n)

. Because every interpretation
satisfies a literal or its complement, it follows that Λ(e,n) ∪ Φc ∪ Γ′′ is not satisfiable. Finally
choose Γ′′ to complete the proof for (P) in the Split case.

34

	Introduction
	Preliminaries
	Contexts and Constrained clauses
	Core Inference Rules
	Model Construction, Redundancy and Static Completeness
	The MEE(T) Calculus
	Soundness and Special Cases
	Conclusions
	Proofs

