The Model Evolution Calculus with Equality

Peter Baumgartnémand Cesare Tinefli

1 Max-Planck Institute for Computer Science, Saadien baumgart@mpi-sb.mpg.de
2 Department of Computer Science, The University of lowael1i@cs.uiowa.edu

Abstract. In many theorem proving applications, a proper treatment of equa-
tional theories or equality is mandatory. In this paper we show how to integrate
a modern treatment of equality in the Model Evolution calculv&], a first-
order version of the propositional DPLL procedure. The new calcl&g, is

a proper extension of th®(E calculus without equality. LikéV(E it maintains

an explicitcandidate modelwhich is searched for by DPLL-style splitting. For
equational reasonin®y{Eg uses an adapted version of the ordered paramodu-
lation inference rule, where equations used for paramodulation are drawn (only)
from the candidate model. The calculus also features a generic, semantically justi-
fied simplification rule which covers many simplification techniques known from
superposition-style theorem proving. Our main result is the correctness of the
MEE calculus in the presence of very general redundancy elimination criteria.

1 Introduction

The Model Evolution &) Calculus #] has recently been introduced by the authors of
this paper as a first-order version of the propositional DPLL procedr€pmpared
to its predecessor, the FDPLL calcul@, [it lifts to the first-order case not only the
core of the DPLL procedure, the splitting rule, but also DPLL's simplification rules,
which are crucial for effectiveness in practice.
Our implementation of th&(& calculus, the Darwin systen3], performs well in
some domains, but, unsurprisingly, it generally performs poorly in domains with equal-
ity. In this paper we address this issue and propose an extension df&healculus
with dedicated inference rules for equality reasoning. These rules are centered around
a version theordered paramodulatiomference rule adapted to tBe€ calculus. The
new calculus MEg, is a proper extension of tHe(E calculus without equality. Like
ME, it searches for a model of the input clause set by maintaining and incrementally
modifying a finite representation, calleccantext of a candidate modefior the clause
set. INMEg, equations from the context, and only those, are used for ordered paramod-
ulation inferences into the current clause set. The used equations are kept together with
the clause paramodulated into and act as passive constraints in the search for a model.
In this paper we present the calculus and discuss its soundness and completeness.
The completeness proof is obtained as an extension of the completeness proof of the
ME calculus (without equality) by adapting techniques from the Bachmair/Ganzinger
framework developed for proving the completeness of the superposition caltidus [
e.g.]. The underlying model construction technique allows us to justify a rather gen-
eral simplification rule on semantic grounds. The simplification rule is based on a

general redundancy criterion that covers many simplification techniques known from
superposition-style theorem proving.

Related Work. Like M &, theMEg calculus is related tmstance based methods (IMs)

a family of calculi and proof procedures developed over the last ten years. What has
been said in4] aboutME in relation to IMs also applies td(Eg when equality is not

an issue, and the points made there will not be repeated here in detail. Instead, we focus
on instance based methods that natively support equality reasoning.

Among them is Ordered Semantic Hyperlinking (OSHLYJ[OSHL uses rewriting
and narrowing (paramodulation) with unit equations, but requires some other mecha-
nism such as Brand'’s transformation to handle equations that appear in nonunit clauses.

To our knowledge there are only two instance-based methods that have been ex-
tended with dedicated equality inference rules for full equational clausal logic. One is
called disconnection tableaux, which is a successor of the disconnection méltiod [
The other is the IM described 9]l Both methods are conceptually rather different
from ME in that the main derivation rules there are based on resopairg of comple-
mentary literals (connections) frotwo clauses, whereds(E's splitting rule is based
on evaluatingll literals of asingleclause against a current candidate model.

The article O] discusses various ways of integrating equality reasoning in dis-
connection tableaux. It includes a variant based on ordered paramodulation, where
paramodulation inferences are determined by inspecting connections between literals
of two clauses. Only comparably weak redundancy criteria are available.

The instance based method B] has been extended with equality i8].[Beyond
what has been said above there is one more conceptual difference, in that the inference
step for equality reasoning is based on refuting, as a subtask, a set of unit clauses (which
is obtained by picking clause literals).

Paper organization. We start with an informal explanation of the main ideas behind
the MEg calculus in Section 2, followed by a more formal treatmentatextsand

their associated interpretations in Section 3. Then, in Section 4, we present what we
call constrained clauseand a way to perform equality reasoning on them. We describe
the MEg calculus over constrained clauses in Section 6, and discuss its correctness in
Section 7. For space constraints we cannot provide proofs of the results presented in
this paper. Also, we must assume that the reader has already some familiarity with the
ME calculus. All proofs as well as a more detailed exposition the calculus can be found
in the paper’s extended versios|.[

2 Main Ideas

The ME calculus of], and by extension th&(Eg calculus, is informally best de-
scribed with an eye to the propositional DPLL procedure, of whith is a first-order

lifting. DPLL can be viewed as a procedure that searches the space of possible inter-
pretations for a given clause set until it finds one that satisfies the clause set, if it exists.
This can be done by keeping a current candidate modelegairing it as needed until

3 Even in that early paper a paramodulation-like inference rule was considered, however a rather
weak one.

it satisfies every input clause. The repairs are done incrementally by changing the truth
value of one clause literal at a time, and involve a non-deterministic guess (a “split”) on
whether the value of a selected literal should be changed or kept as it is. The number of
guesses is limited by a constraint propagation process (“unit propagation”) that is able
to deduce deterministically the value of some input literals.

BothM¢E andMEg lift this idea to first-order logic by maintainingfaist-ordercan-
didate model, by identifyingnstancesof input clauses that are falsified by the model,
and by repairing the model incrementally until it satisfies all of these instances. The
difference between the two calculi is thstEg works with equationalmodels, orE-
interpretations that is, Herbrand interpretations in which the equality symbol is the
only predicate symbols and always denotes a congruence relation.

The current E-interpretation is represented (or more precisely, inducedgdny-a
text a finite set of non-ground equations and disequations directly processed by the
calculus. Context literals can be built over two kinds of variablesversalandpara-
metricvariables. The difference between the two lies in how they constrain the possible
additions of further literals to a context and, as a consequence, the possible repairs to its
induced E-interpretation. As far as the induced E-interpretation is concerned, however,
the two types of variables are interchangeable. The construction of this E-interpretation
is best explained in two stages, each based on an ordering on terms/atoms: the usual
instantiation preordering, with its strict subseg;, and an arbitrary reduction order-
ing - total on ground terms. Using the first we associate to a corvtestmilarly to
the M€ calculus, a (non-equational) interpretatipn Roughly, and modulo symme-
try of ~, this interpretation satisfies a ground equatifir t”, over an underlying
signatureZ, iff s’ ~t” is an instance of an equati@t in A without being an in-
stance of any equatiosi~ t’ such thas~t - s’ ~t’ ands #t’ € A. For instance, if
A ={f(u) = u, f(a) % a} whereu is a (parametric) variable and the signatfreon-
sists of the unary function symbdland the constant symbadsandb, thenl, is the
symmetric closure of f"*1(b) ~ f"(b) |[n >0} U {f"1(a) ~ f"(a) | n> 1}.

In generall, is not an E-interpretation. Its purpose is merely to supply a set of
candidate equations that determine the final E-interpretation induced B¥is E-
interpretation, denoted %, is defined as the smallest congruence on graisterms
that includes a specific sB}, of ordered equations selected frég The selR, is con-
structed inductively on the reduction orderirgby adding to it an ordered equation
s—tiff ssxtort=xsisinl, s>t and boths andt are irreducible wrt. the equations
of R that are smaller thas— t. This construction guarantees tlit is a convergent
rewrite system. In the example aboWw, is {f(b) — b, f(f(a)) — f(a)} for any re-
duction ordering-; the E-interpretatiofR; induced byA is the congruence closure of
{f(b)=~ Db, f(f(a)) =~ f(a)}. SinceRy is convergent by construction for any contéxt
any two ground-terms are equal iR,E\ iff they have the samBa-normal form.

Now that we have sketched how the E-interpretation is constructed, we can ex-
plain how the calculus detects the need to repair the cuErénterpretation and how
it goes about repairing it. To simplify the exposition we consider here only ground in-
put clauses. A repair involves conceptually two steps: (i) determining whether a given
clauseC is false in the E-interpretatioRf, and (ii) if so, modifyingA so that the new
RE satisfies it.

For step (i), by congruence it suffices to rewrite the literal€afith the rewrite
rulesRx to normal form. IfC| g, denotes that normal form, thd®; fasifiesC iff all
equations inClg, are of the forms~ t with s# t, and all disequations are of the
form s# s. In the earlier example, i€ = f(a) ~ aV f(f(a)) = bV f(b) % b then
Clg, = f(a) ~aV f(a) = bvb# b, meaning thaR indeed falsifie<.

For step (ii), we first point out that the actual repair needs to be carried out only on
the literals ofC| g, , not on the literals o€. More precisely, the calculus considers only
the positive equations @| g, , as the trivial disequatiors# sin it do not provide any
usable information. To repair the E-interpretation it is enough to motlifp thatRa
contains one of the positive equatiss t of C |g,. Then, by congruenc&f will also
satisfyC, as desired. Concretels, is modified by creating a choice point and adding
to A one of the literald. of C|g, or its complement. Adding—which is possible only
provided that neithelt not its complement are contradictory, in a precise sense defined
later, with A—-will make sure that the ne\R,E\ satisfiesC. Adding the complement
of L instead will not makeC satisfiable in the new candidate E-model. However, it is
necessary for soundness and marks some progress in the derivation because it will force
the calculus to consider other literals®f r, for addition to the context.

Referring again to our running example, of the two positive literal€of, =
f(a)~aV f(a)~bvb#b, only f(a) ~ b can be added to the contekt= {f(u) ~
u, f(a) # a} because neither it nor its complement is contradictory Wittby con-
trastf(a) ~ ais contradictory witt\). With A = {f(u) = u, f(a) # a, f(a) = b}, now
Ry = {f(b) — b, f(a) — b} andC|g, becomed~ aVvb~ bV bz b, which means
thatC is satisfied byR.

We point out that adding positive equations to the context is not always enough.
Sometimes it is necessary to add negative equations, whose effect is to eliminate from
Ra rewrite rules that cause the disequation€db rewrite to trivial disequations. The
calculus takes care of this possibility as well. To achieve that we found it convenient to
haveMEg work with a slightly generalized data structure. More precisely, instead of
clause<C we considerconstrained clauses @, whererl is a set of rewrite rules. The
constraint” consists just of those (instances efjuationsfrom a context\ that were
used to obtailC from some input clause (whose constraint is empty).

Reusing our example, the clauSewould be represented as the constraint clause
C-r=f(a)~aVvf(f(a)~bvf(b)#b-0, withitsRr-normal form being |r, -I =
f(ay=avf(a)=bvbzb- f(f(a)— f(a), f(b) — bfor A={f(u)~u,f(a) #a}.

Now, the rewrite rulef(b) — b used to obtain the normal form is available in the
constraint part, as written. The calculus may add its negatidm 5 b to A, with
the effect of removingf(b) — b from Rx. The resulting context and rewrite system
would be, respectively)’ = {f(u) = u, f(a) # a, f(b) £ b}, andRy» = {f(f(b)) —
f(b), f(f(a)) — f(a)}. Itis easy to see that the ne@ satisfie<C as well, as desired.

While the above informal description illustrates the main ideas behigdg, it is
not entirely faithful to the actual calculus as defined later in the paper. Perhaps the most
significant differences to mention here are that (i) the calculus works with non-ground
clauses as well (by treating them, as usual in refutation-based calculi, as schematic for
their ground instances and relying heavily on unification), and (ii) the normal form of a
constrained clause is not derived in one sweep, as presented above. Instead the calculus,

when equipped with a fair strategy, derives all intermediate constrained clauses as well.
It does so by a suitably defined paramodulation rule, where the equations paramodulat-
ing (only) into the clause part of a constrained clause are drawn from the current context
A\. The rationale is that the rewrite syst@&n is in general not available to the calculus.
Hence rewriting (ground) clause literals with rules fr&x, which would theoretically
suffice to obtain a complete calculus at the ground level, is approximated by ordered
paramodulation with equations frofinstead.

3 Contexts and Induced Interpretations

We start with some formal preliminaries. We will use two disjoint, infinite sets of vari-
ables: a seX of universalvariables, which we will refer to just as variables, and another
setV, which we will always refer to aparametersWe will useu andv to denote el-
ements ofV andx andy to denote elements of. We fix a signature throughout the
paper and denote [&F*° the expansion of obtained by adding t& an infinite number

of fresh (Skolem) constants. tifis a term we denote by/ar(t) the set ot’s variables
and byPar(t) the set ot’s parameters. A terrnis groundiff Var(t) = Par(t) = 0.

A substitutionp is arenaming on WC (V U X)) iff its restriction toW is a bijection
of W onto itself; p is simply arenamingif it is a renaming orV U X. A substitution
o is p-preserving(short for parameter preserving) if it is a renaming\onif s andt
are two terms, we write > t, iff there is a substitutiow such thatso = t.* We say
thatsis a variant of , and writes ~ t, iff s>t andt 2 sor, equivalently, iff there is a
renamingp such thatsp =t. We writes 2 t if s t buts £ t. We writes >t and say
thatt is a p-instance of #f there is a p-preserving substitutiansuch thatsoc =t. We
say thatsis a p-variant of { and writes ~ t, iff s>t andt > s; equivalently, iff there
is a p-preserving renamirgsuch thatsp = t. The notatiorsjt], means that the termn
occurs in the terns at positionp, as usual.

All of the above is extended from terms to literals in the obvious way.

In this paper we restrict to equational clause logic. Therefore, and essentially with-
out loss of generality, we assume that the only predicate symholisn~. An atom
then is always an equation, and a literal then is always an equation or the negation of
an equation. Literals of the latter kind, i.e., literals of the for(s~ t) are also called
negative equationand generally writters % t instead. We call a literarivial if it is
of the formt ~t ort % t. We denote literals by the letteks andL. We denote by
the complement of a literdl, and byLSk° the result of replacing each variableloby
a fresh Skolem constant E¥k°\ . We denote clauses by the lett€@andD, and the
empty clause by1. We will write L vV C to denote a clause obtained as the disjunction
of a (possibly empty) clause and a literal.

A (Herbrand) interpretation is a set of ground-equations—those that are true in
the interpretation. Satisfiability/validity of grourkdliterals, Z-clauses, and clause sets
in a Herbrand interpretation is defined as usual. We wviriteF to denote the fact that
| satisfied, whereF is a ground>-literal or aZ-clause (set). AlE-interpretationis an
interpretation that is also a congruence relation orzterms. Ifl is an interpretation,

4 Note that many authors would wrige< t in this case.

we denote byF the smallest congruence relation on Beerms that includek, which
is an E-interpretation. We say thhE-satisfies Fiff I1F |= F. Instead ofiF = F we
generally writel =g F. We say that E-entails F, written F =g F/, iff every E-
interpretation that satisfigs also satisfie§’. We say thaF andF’ areE-equivalentff
F |:E F’ andF’):E F.

The Model Evolution calculus, with and without equality, works with sequents of
the form A F ®, whereA is a finite set of literals possibly with variables or with
parameters called a context, afdis a finite set of clauses possibly with variables.
As in [4], we impose for simplicity that literals in a context can contain parameters or
variables but not both, but this limitation can be overcome.

Definition 3.1 (Context [4]). A contextis a set of the forr{—v} U S where \e V and
S is a finite set of literals each of which is parameter-free or variable-free.

Differently from [4], we implicitly treat any contexf\ as if it contained the symmetric
version of each of its literals. For instance Nf= {—v, f(u) = a, f(X) % x} thena =
f(u), f(u) = a,x% f(x), f(X) % x are all considered to be literals 6f and we write,
for instancea = f(u) € A.

WherelL is a literal andA\ a context, we writdl €. A if L is a variant of a literal
in A, write L e~ A if L is a p-variant of a literal im\, and writeL €> A if L is a p-
instance of a literal im\. A literal L is contradictory witha contextA iff Lo = Ko for
someK €. A and some p-preserving substitutionA contextA is contradictoryiff it
contains a literal that is contradictory with Referring to the context above,f (v) # a,

a% f(v),a~ f(a), f(a) ~ aall are contradictory witi\. Notice that an equatios~ t
is contradictory with a context if and only ift ~ sis so. The same applies to negative
equations.

We will work only with non-contradictory contexts. Thanks to the next two notions,
such contexts can be used as finite denotations of (certain) Herbrand interpretations. Let
L be a literal and\ a context. A literaK is a most specific generalization (msg) of L in
Aiff K 2 L and there is n&’ € A such thaK Z K’ > L.

Definition 3.2 (Productivity [4]). Let L be a literal, C a clause, andl a context. A
literal K produced. in A iff (i) K is an msg of L inA\, and (ii) there is no Ke A such
that K K’ 2 L. The contex\ produced. iff it contains a literal K that produces L in
A

Notice that a literaK produces a literal in a contextA if and only if K produces
the symmetric version df in A. For instance, the conteit above produce$(b) ~ a
anda = f(b) but A produces neithef(a) ~ anora= f(a). Instead it produces both
a# f(a)andf(a) # a.

A non-contradictory contexA uniquely induces a (Herbrand}interpretationi,
defined as follows:

In:={l =r |l ~ris apositive ground-equation and\ produced ~r}

For instance, i\ = {x~ f(x)} andX consists of a constaatand the unary function
symbolf thenly = {a~ f(a),f(a)~a, f(a) = f(f(a)), f(f(a) = f(a),...}.

A consequence of the presence of the pseudo-literah every contexi\ is that/A
produces orL for every literalL. Moreover, it can be easily shown that whendyge=
L thenA produced., even wherl is a negative literal. This fact provides a “syntactic”
handle on literals satisfied Iby. The induced interpretatidp is not an E-interpretation
in generaf But we will use it to define a uniquE-interpretation associated fa

4 Equality Reasoning on Constrained Clauses

The MEg calculus operates withonstrained clauseslefined below. In this section
we will introduce derivation rules for equality reasoning on constrained clauses. These
derivation rules will be used by tH& &g calculus in a modular way. The section con-
cludes with a first soundness and completeness result, which will serve as a lemma for
the completeness proof of théCg calculus.

As an important preliminary remark, whenever the choice of the signature makes
a difference in this section, e.g. in the definition of grounding substitution, we always
implicitly meant the signaturg, not the signatur&ske,

Constrained ClausesA (rewrite) ruleis an expression of the forin— r wherel and

r arez-terms. Given a parameter-freeclauseC =L,V ---V L, and a set of parameter-
freeZ-rewrite ruled” = {Aq,...,Am}, the expressio€ I is called aconstrained clause
(with constraintl). Instead ofC - {A4,...,Am} we generally writeC- Ay, ..., An. The
notationC-I",AmeansC-T U {A}.

A constrained claus€ - I is a constrained clause without expansion constraints
iff I contains noexpansion rulesi.e., rules of the fornx — t, wherex is a variable
andt is a term. Aconstrained clause set without expansion constramésconstrained
clause set that consists of constrained clauses without expansion constraiftécd he
calculus works only with such constrained clause $ets.

Applying a substitutioro to C- I, written as(C - I')a, means to apply to C and all
rewrite rules in. A constrained clausé - I is groundiff both C andl™ are ground. If
y is a substitution such th&€ - ')y is ground, ther{C - I')y is called aground instance
of C-T, andy is called agrounding substitutiorior C-I'. We say thaCC-I" properly
subsumes CI’ iff there is a substitutiow such thaCo c C' andfo C " orCo C C’
andlo C I’. We say thaC - I" non-properly subsumes 0’ iff there is a substitution
o such thatCo = C’ andl'c =I"’. The constrained claus€s ' andC’ - T’ arevariants
iff C-T non-properly subsumes -’ and vice versa. For a set of constrained clauses
®, ®I" denotes the set of all grouridinstances of all constrained clauseshin

In principle, a constraint clau€& ' =L1V---VLn lmi1 — rme,-- -, In— rn could
be understood as standing for the ordinary cldyse- - -VLnVImi1 #Z rmea V- Vi %
rn, which we call theclausal form of GI” and denote byC-TI')€. In effect, however,
constrained clauses and their clausal forms are rather different from an operational point
of view. The derivation rules for equality reasoning below, in particular paramodulation,
areneverapplied to constraints—as a consequence, the calculus cannot be said to be a
resolution calculus.

5 In fact, in the earlier example= f(f(a)) ¢ Ix.
6 As will become clear later, disallowing expansion constraints comes from the fact that
paramodulation into variables is unnecessaryliég as well.

Orderings. We suppose as given a reduction orderinthat is total on ground-terms.

It has to be extended to rewrite rules, equations and constrained clauses. Following
usual techniquesl[11, e.g.], rewrite rules and equations are compared by comparing
the multisets of their top-level terms with the multiset extension of the base ordering
. There is no need in our framework to distinguish between positive and negative
equations. It is important, though, that when comparing constrained clauses the clause
part is given precedence over the constraint part. This can be achieved by défining

I >=C' -T"iff (C,I') is strictly greater thafC’,"’) in the lexicographical ordering over

the multiset extension of the above ordering on equations and rewrite rules5[8me [

an alternative definition.) This way, the calculus’ derivation riRe$,.c andParay¢

for equality reasoning defined in Sectibavork in an order-decreasing way.

Derivation Rules. We first define two auxiliary derivation rules for equality reasoning
on constrained clauses. The rules will be used later idvide calculus.

tvC-r
Ref(0) S?(écr) if 0is a mgu ofsandt.
-MNo

We writes 7tV C-T =gefq) (C-T)0 to denote &Ref inference’

t is not a variable,
if ¢ oisamgu oft andl, and
loA£ro.

LitjpvC-T
(LrlpvC-T,l —=r)o

Para(l ~r,0)

We writeL[t]pVC T =paai~rae) (LIMpVC-T,I —r)o to denote @ara inference.

A Ref or Para inference iggroundif both its premise and conclusion are ground and
as well as the equatidn= r in the Para case. If from a giverRef or Para inference a
ground inference results by applying a substitutj@a the premise, the conclusion and
the used equation= r in case ofPara, we call the resulting ground inferencgeund
instance viay (of the inference)

As in the superposition calculumodel constructionredundancyand saturation
are core concepts for the understanding offit&g calculus.

Model Construction. A rewrite system is a set df-rewrite rules. A ground rewrite
systenRis ordered by iff | > r, for every ruld — r € R. As a non-standard notion, we
define arewrite system without overlaps be a ground rewrite systeRithat is ordered
by >, and whenevel — r € R then there is no other rule iR of the forms[l] — t
or s — t[I]. In other words, no rule can be reduced by another rule, neither the left
hand sidenor the right hand sideAny rewrite system without overlaps is a convergent
ground rewrite system. In the sequel, the leRewill always denote a (ground) rewrite
system without overlaps.

We show how every non-contradictory contéxtnduces a ground rewrite system
Ra without overlaps. The general technique is taken from the completeness proof of the
superposition calculud[11] but adapted to our needs.

First, for a given non-contradictory contektand positive ground-equations ~ t
we define by induction on the literal orderingsets of rewrite rules?,; andR), as

7 An inferenceis an instance of a derivation rule that satisfies the rule’s side condition.

follows. Assume that’g\%t, has already been defined for all groufequationss’ ~ t’
with sat = ~t'. WhereRYy = Usus gt €3y define

N {s—t} if In Es~t,s~t, andsandt are irreducible wrtR},,
ST o otherwise

Then,Rx = Usy €5 Wheres andt range over all ground-terms.

By constructionRa has no critical pairs, neither with left hand sides nor with right
hand sides, and thus is a rewrite system without overlaps. Sinisea well-founded
ordering,Rx is a convergent rewrite system by construction. The given conterimes
into play as stated in the first condition of the definitione@f,, which says, in other
words, thatA must produces =~ t as a necessary condition fer— t to be contained
in Ry. An important detail is that whenevéris non-contradictory and producss- t,
then it will also produce =~ s. Thus, ifs <t thens~t may still be turned into the
rewrite rulet — sin Ry by means of its symmetric versionx s.

Where théM & calculus would associate to a sequént @ the interpretatiohy as a
candidate model ab, the M EE calculus will instead associate to it the E-interpretation
R,E\, the congruence closure Bf, (or, more correctly, of the interpretation containing
the same equations Bs). There is an interesting connection between the two interpre-
tations: ifL is a ground literal andl |r, is the normal form oL wrt. Ra thenR,E\ EL
(or, equivalentlyRa =g L) iff In = L|R, OrL|R, is atrivial equation. This connection
is fundamental toM(Eg, as it makes it possible to reduce satisfiability in the intended
E-interpretatiorR,E\ to satisfiability inl .

For an example for the model construction fet= {a =~ u,b ~ c,a % c} a non-
contradictory context. With the orderiray>- b > ¢ the induced rewrite systefR, is
again{b — c}. To see why, observe that the candidate aule c is assigned false by
In, as/\ does not produce ~ c, and that the other candidade— b is reducible by
the smaller ruldo — c. Had we chosen to omit in the definition ®the condition t is
irreducible wrtR.;” & the construction would have givé®, = {a — b,b — c}. This
leads to the undesirable situation that a constrained clause gay; 0 is falsified by
R,E\. But the MEg calculus cannot modify to revert this situation, and to detect the
inconsistency (ordered) paramodulation into variables would be needed.

Semantics of Constrained Claused.etC-I" be a ground constrained clause dd
ground rewrite system. We say tHatis anE-modelof C-T" and writeR =g C - T iff

I' Z RorR =g C (in the sense of Sectidh) by treatingR as an interpretation). We write
R =g ® for a set® of constrained clauses iR C-T forallC-T e ®. If Fis a
non-ground constrained clause (set) we wWRteg F iff R=g F9Y'.

The general intuition for this notion of satisfiability for constrained clauses is that
ground constrained clauses whose constraint is not a subset of a rewrite Byatem
considered to be trivially satisfied B while the other constrained clauses are consid-
ered to be satisfied By exactly when their non-constraint partissatisfied byR. Note
that for constrained claus€s 0 with an empty constrainR =g C- 0 iff R=g C.

8 This condition is absent in the model construction for the superposition calculus. Its presence
in the end explains why paramodulation into smaller sides of equations is necessary.

If ® andd’ are sets of constrained clauses, we saydhantails®’ wrt. R, written
as® =R @, iff Rl=g @ impliesR =g @'.

Redundancy. Let ® be a set of constrained clauses &dl a ground constrained
clause. Defingbc.r = {C'-T" € ®9" |C'-" < C-T'} as the set of ground instances of
clauses fromp that are smaller tha@ - T".

Let R be a rewrite system without overlaps. We say that the ground constrained
clauseC- T is redundant wrt.® and Riff ®cr =g C-T, that is, iff C- I is entailed
wrt. Rby smaller ground instances of clauses frémNotice that ifr Z RthenC-T is
trivially redundant wrt. every constrained clause set B{dsR is ordered by-). For
a (possibly non-ground) constrained cla@d™ we say thaC - I is redundant wrt.®
and Riff all ground instances of - " are redundant wrtd andR.

SupposeC - I =p C' - is a ground inference, for some constrained clatisé”,
whereD stands foRef(g) or Para(l & r,€) (with | = r ground). The ground inference is
calledredundant wrt® and Riff ®c.r E=rC’ -, We say that &ef or Para inference
is redundant wrt® and Riff every ground instance of it is redundant wait.andR.

Saturation. Let A be a context. LeRY; = Uswt. g~ €2 b€ the rewrite system de-
fined earlier and consisting of those ground rules trug ithat are smaller thag~ t.

Definition 4.1 (Productive constrained clause)Let C-T = A1V --- VAL T be a
ground constrained clause, for some>nD, where A is a positive non-trivial equa-
tion for all i = 1,...,m. We say that CI" is productive wrt. A iff T C Ry and A is
irreducible wrt. Ry for all i =1,...,m. A (possibly non-ground) constrained clause
C-T is productive wrtA iff some ground instance of-C is productive wrtA.

Intuitively, if C-T is a productive ground constrained clauses WrthenC provides
positive equations, all irreducible in the sense as stated, at least one of which must be
satisfied byla, so that in consequenﬂﬁ satisfiesC - I'. The following definition turns

this intuition into a demand oh (in its second item).

Definition 4.2 (Saturation up to redundancy). A sequent\ - & is saturated up to
redundancyiff for all C - € & such that GT is not redundant wrt® and Ry, the
following hold:

1. For every inference €I =p C'-T'’, whereD stands forRef(o) or Para(l ~r,0)
with a parameter-free & r €. A, the clausgC-I")o is redundant wrt® and Ry
or the inference CI' = C' - T is redundant wrt® and R.

2. For every grounding substitutiopfor C-T, if C £ O and (C- I')y is productive wrt.
A and non-redundant wrtp and Ry, then j = Cy.

Referring back to our informal explanation of the calculus, and ignoring the redun-
dancy concepts in DefinitioA.2, ground instances of constrained clauses that are not
productive wrt.A are subject to the first condition. It requires a sufficient number of
applications of theref and Para rules to reduce (lifted versions of) such constrained
clauses to constrained clauses productive vriThe equality reasoning rules MEg,
which are based oRef and Para, together with thesplit rule, all defined in the next
section, make sure that both conditions will be met in the limit of a derivation.

The next proposition clarifies under what conditidﬁ% is a model for all con-
strained clause® in a sequenf + @ saturated up to redundancy.

Proposition 4.3. Let A F ® be a sequent saturated up to redundancy and supgose
is a constrained clause set without expansion constraints. Thep;R® if and only

if ® contains no constrained clause of the foiin I that is productive wrtA and
non-redundant wrte and Ry.

Notice that Propositiord.3 applies to astatically given sequent\ - ®. The connec-
tion to thedynamicderivation process of th&(Eg calculus will be given later, and
Proposition4.3 will be essential then in proving the correctness ofifi€g calculus.

5 ME&Eg Calculus

Like its predecessor, the(Eg calculus consists of a few basic derivation rules and a
number of optional ones meant to improve the performance of implementations of the
calculus. The basic derivation rules include rules for equality reasoning and two rules,
namelySplit andClose, which are not specific to the theory of equality. We start with a
description of the basic rules.

Derivation Rules for Equality Reasoning.The following rulesRefye andParayce,

the only mandatory ones for equational reasoning, extend the derivation rules of Sec-
tion 4 to sequents.

A - . /o
Reface (0) ®,C : {C [=pgei(e) C I, and

A-® C.T,C-T’ ® U {C-T'} contains no variant &’ - I"".

| ~r is a parameter-free fresh variant
AN-®C-T i of aZ-equation inA,
AFo®,C.I,C-T' C-T =para(i~re) C' - T, and
no variant ofC’ - isin® U {C-T'}.

Paraye (I = 1,0)

The purpose of both thRefye andParay¢ rules is to reduce the question of sat-
isfiability of a constrained clause in the intended E-interpretdﬂﬁ@ where/g is a
certain limit context (cf. Sectiofi), to deriving a smaller one and answering the ques-
tion wrt. that one. Notice that constraints have a rather pas8lean both derivation
rules. In particularPara is not applicable to constraints. The requiremenPanay ¢
thatl =~ r be aparameter-free variandf an equation in the context guarantees that all
constrained clause sets derivable by the calculus are parameter-free.

Basic Derivation Rules.The mandatory ruleSplit and Close below are taken with
only minor modifications from thé(& calculus without equality4]. This is possible
because the equality reasoning is damdy by the Refyce and Paray¢ rules above.
Both theSplit andClose rule are based on the concept afantext unifier

Definition 5.1 (Context Unifier). Let A be a context and G L;V---V Ly an or-
dinary clause. A substitutiog is a context unifier ofC againstA iff there are fresh
p-variants K, ...,Kn €~ A such thato is a most general simultaneous unifier of the
sets{K1,L1},...,{Km,Lm}.

Foreach i=1,...,m, we say that a literal Ke A is acontext literal ofo if K/ ~ K;,
and that Lo is aremainder literal ofy if (Par(K;))o € V. We say that is productive
iff K; producedjcin Aforalli=1,...,m.

A context unifiero of C against\ is admissible (foisplit) iff every remainder literal
L of o is parameter- or variable-free and for all distinct remainder litdraladK of o
Var(L) N Var(K) = 0.

C=A1V---VALhwithm>0
andforalli=1,...,mAjisa
positive non-trivial equationg
Split(L, o) A O, Cf if J is anadmissible context unifier
A LEO,C-T A, S - ®,C-T of (C-I")® against\ with

remainder literal, and neither
L norL°*°is contradictory with
.

A splitinference igproductiveiff o is aproductivecontext unifier of(C-)¢ againstA.

To obtain a complete calculuplit needs to be applied only wheéh- ' has an
Ra-irreducible ground instance that is falsified by the E—interpretaﬁﬁanTechnically,
these ground instances are approximated by the productive ones, in terms of Defini-
tion 4.1, and a productive context unifier is guaranteed to exist then. Apply®gia
inference then will modify the context so that it E-satisfies such a ground instance af-
terwards, which marks some progress in the derivation.

dA£0orC-T#£0-0,and
if ¢ ois acontext unifier ofC-I")¢ against\
with no remainder literals.

Close(0) AP DCT
A-DO-0

The purpose of th€lose rule is to detect a trivial inconsistency between the context
and a constrained clause.

Optional Derivation Rules. Like DPLL, theM¢ calculus includes an optional deriva-
tion rule, calledAssert, to insert a literal into a context without causing branching. In
ME this rule bears close resemblance to the unit-resulting resolution ruleMEge
calculus has a suitable version of thssert rule which is also more general than the
one inME. To define it we need some more preliminaries first.

Let us fix a constana from the signaturesk°\ ¥ and consider the substitution
a:={v—a|veV} Given a literalL, we denote byt ? the literalLa. Note thatL?
is ground if, and only ifL is variable-free. Similarly, given a conte&t we denote by
N2 the set olunit clauseobtained fron\ by removing the pseudo-literalv, replacing
each literal of A with L2, and considering it as a unit clause.

AL o N2 U @F =g L2,
Assert(L) ALro if < L is non-contradictory with\, and
’ there is ndK €. A such thak > L.

9 Here and belov® denotes the set of clausal forms of all constrained clausds in

As an exampleAssert is applicable to the sequent,P(u,b) ~ t,b~c F P(x,y) %
tVv f(x) = y-0to yield the new context equatidi{u) ~ c.

The third condition ofAssert avoids the introduction of superfluous literals in the
context. The first condition is needed for soundness. This condition is not decidable in
its full generality and so can only be approximated. This, however, is not a problem
given thatAssert is an optional rule ifV(Eg. See p] for an explanation of how the
Assert rule of ME (with its concrete preconditions) can be seen as a special case of
Assert above.

Simplification. The purpose of simplification is to replace a constrained clause by a
simplerone. The optionasimp rule below is general enough to accomodate the sim-
plification rules of M& ° and also various new simplification rules connected with
equality. To formulate it we need one more notion.

For any context\, a (ground) rewrite systelR without overlaps i€ompatible with
A iff there is nol — r € Rand no parameter-free% t € A such thas~t > | ~r.

(i) C'-T" € ®andC’ -’ non-properly subsumes. I, or

(ii) for every rewrite systenR compatible withA:
AN-®C-T i C-Tis redundant wrtb U {C' -’} andR,

P Ao C.T’ C’.T'is a constrained clause ovEwithout

expansion constraints, and

ABU (U {C-T})E =g (C'-T")C.

Sim

The last condition in the definition of tr&mp rule guarantees soundness.

As a simple instance of th8imp rule, any constrained clauge- I of the form
s~ sVvD-T can be simplified td ~ t- 0. This simplification step actually yields the
same effect as i€- I were deleted. Dually, any constrained claGsé€ of the forms=#
svD-T can be simplified t® - . Also, as observed previously, when the constraint
of a constrained claugg- I contains a rulé — r such that < r then this rule is trivially
redundant wrt. any rewrite system ordered>byand so the clause can be simplified to
t =~ t-0. As a simple example that takes the context into account, consider the sequent
f(x) #x F a=b-f(a) — a Now, no rewrite system compatible withf (x) % x}
can containf (a) — a. The constrained clause can therefore again be simplifiee:to
t- 0. Dually, in the sequent(x) ~ x - a= b- f(a) — athe constrained clause can be
simplified toa ~ b- 0. (Notice in particular that this simplification is indeed sound.)

As illustrated by the last two examples, the practically important unit-resolution like
rule of ME, Resolve, is covered by th&imp rule.

Derivation Example. The following excerpt from afV(Eg derivation demonstrates
Para, Simp andSplit in combination. It follows the example in Secti@rby taking the
same contexh = { f (u) = u, f(a) % a}. However, to be more instructive, it uses a lifted

10 Except for thesubsume rule.

versionf (x) ~ xV f(f(x)) ~ bV f(b) % b of the ground clause there.

v, f(uy~u,f(a)#at ..., f(x) =xVf(f(x))~bvVf(b)

) #b-0
f(x) ~xV f(f(x)~bVvib) #b-0,
W@ EAE g axy F b VD) #b- (X)) — f(x) BY P
f(x) &~ xVE(f(x)~bvf(b)#b-0,
v, f(uy~uf(@zak ... f(x)~xv f(x)~b vi(b)#b- f(f(x (%)
fx)=xv f(x)=b v bzb -{(f(x)— f(x),f(b)—b
(By Para)
f(x) &~ xVE(f(x)~bvf(b)%b-0,
v, f(uy~uf(a#atk ..., fx)=xv f(X)=b Vfi(b)Zb- f(f(x)) — f(x)
f(x)~xv f(x)~b f(f(x) — f(x),f(b)—b
(By simp)

Among the alternatives to proceed now we focus on posslie inferences. Con-
sider the last sequent with the constrained clatisg ~ xV f(x) ~ b- f(f(x)) —

f(x), f(b) — b and its clausal fornf (x) ~ xV f(x) ~ bV f(f(x)) % f(x)V f(b) % b.
Simultaneous unification of that clause literals with fresh variants of the context liter-
alsf(a) #a,~v, f(u) = u, f(u) = u, respectively, gives the (productive and admissible)
context unifiero = {x— a,...}. The remainder literals af are f(a) = b, f(f(a)) #

f(a) and f(b) % b (notice that the clause instance liteféh) ~ a is contradictory with

the context and hence is a non-remainder literal). Each of them can be sele@pgiit.for
The effect of selectind (a) ~ b or f(b) % b was already described in Sectign

6 Correctness of theMEg Calculus

Similarly to the M¢& calculus, derivations ifMEg are formally defined in terms of
derivation trees. The purpose of the calculus is to build for a given clause set a derivation
tree all of whose branches are failed iff the clause set is unsatisfiable. The soundness
argument for the calculus is relatively straightforward and analogous to the one for the
ME calculus. Therefore, in this section we concentrate just on completeness. A detailed
soundness proof can be found 8}.[

A derivation treeof a set{Cy,...,C} of Z-clauses is a finite tree over sequents in
which the root node is the sequemt - C; - 0,...,Cy - 0, and each non-root node is the
result of applying one of the derivation rules to the node’s parent.

Let T be a derivation tree presented as a PifE), whereN is the set of the nodes
of T andE is the set of the edges @f. A derivationD = (T)i<x in MEg is a possibly
infinite sequence of derivation trees defined in the obvious way. Bedhation D =
((Nj,Ej))i<k determines dimit tree T := (U<« Ni,Uj<« Ei)- It is easy to show that a
limit tree of a derivatior® is indeed a tree. But note that it will not be a derivation tree
unlessD is finite.

Now let T be the limit tree of some derivation, 1Bt= (Ni)i<x be a branch inm
with K nodes, and lef\; - ®; be the sequent labeling nodig, for all i < k. Define
Ng = Uik Ni<j<x Nj and®g = Ui« Ni<j<x Pj, the sets opersistent context literals

andpersistent clausesespectively. These two sets can be combined to obtailmtiite
sequenf\g - ®g (of T).
As usual, the completenessXf€g relies on a suitable notion of fairness.

Definition 6.1 (Exhausted Branch).Let T be a limit tree, and leB = (N;)i« be a
branch inT with k nodes. For all i< k, let Aj - @; be the sequent labeling node
Ni. The branchB is exhaustedff for each constrained clause @ € ®dg that is not
redundant wrt®; and Ry, for some j< K, all of the following hold, for all i< k such
thatC-T € &;:

(i) if Refyce is applicable to\; F ®; with selected constrained clauselCand under-
lying Ref inference GT =-gesq) C'- ', and (C-T")o is not redundant wri; and
Rag, then there is a k k such that the inference € =g C' - I is redundant
wrt. @ and Ry;.

(i) if Paraye is applicable to\; - @; with selected constrained clauselCand under-
lying Para inference GT =paa(iar,g) C' - T, Where I= 1 €. Ag and /g produces
(I =r)o, and(C-TI)a is not redundant wrtd; and Ry, then there is a K k such
that the inference @ =paa(1ar0) C - I is redundant wrt®; and Ry .

(iii) if Splitis applicable to\; - ®; with selected constrained clauselCand productive
context unifiero such that every context literal K af is a Z-literal'* and K e
Ag, and(C-T")o is productive wrtAg, then there is a K k such that(C-TI")o is
redundant wrt®; and Ry, or there is a remainder literal L off and a j> i with
j <k such that\j produces L but not..

(iv) Close is not applicable to\; - ®; with selected constrained clause Cand any
context unifieilo such that Ke. Ag for every context literal K of.

(v) & # {0-0}.

A limit tree of a derivation idair iff it is a refutation tree that is, a finite tree all of whose
leafs are conclusions of th@&ose rule, or it has an exhausted branch. A derivation is
fair iff its limit tree is fair.

It is not hard to see that actually carrying olRefy (e Or Parayce inference renders
the underlyingRef or Para inference redundantrt. any rewrite system ordered by.
ConcerningSplit, like in the ME calculus carrying out &plit inference also achieves
what fairness demands for. These considerations indicate that a fair proof procedure
indeed exists. It should not be too difficult to modify the proof procedure (and imple-
mentation) for the Model Evolution calculus described3dhdccordingly.

Definition 6.1 provides a framework for fair derivations based on redundant clauses
and redundant inferences. The redundancy criteria are formulate®aystan object
not available during a derivation. The redundancy tests are therefore impossible to ef-
fectively realize in their full strength. Nethertheless, there are some effective and inex-
pensive redundancy tests similar to those discussed in conjunction wisintheule.

Proposition 6.2 (Exhausted branches are saturated up to redundancy)f B is an
exhausted branch of a limit tree of some fair derivation them\§)- g is saturated

up to redundancy, (iidpg is a constrained clause set without expansion constraints, and
(iii) Pg contains no constrained clause of the fdrml™ that is productive wrtAg and

that is not redundant wribg and R

11 Note the restriction t@-literals; it isnot possible to restrict condition (iv) in the same way.

Propositions5.2 and4.3together entail our main result:

Theorem 6.3 (Completeness ofMEg). Let W be a parameter-freg-clause set, and
T be the limit tree of a fair derivation d¥. If T is not a refutation tree, thel’ is
satisfiable; more specifically, for every exhausted braBdi T, Ry, =g W.

7 Conclusions

We have presented tleEg calculus, an extension of the Model Evolution calculus by
paramodulation-based inference rules for equality. Our main result is its correctness,
in particular the completeness in combination with redundancy criteria. As for future
work, we will extend the implementation of the model evolution calculus, the Darwin
system 8] to the M &g calculus.

There are also some theoretical issues to be addressed. The perhaps most press-
ing theoretical question is if or when paramodulation into smaller sides of equations
can be avoided. It is clear that the current completeness proof breaks down when such
inferences are no longer subject to fairness. Other questions concern further, useful in-
stantiations of our simplification rule.

Acknowledgement8Ve would like to thank the reviewers for their valuable comments.

References

1. L. Bachmair and H. Ganzinger. Equational Reasoning in Saturation-Based Theorem Proving.
In W. Bibel and P. H. Schmitt, edAutomated Deduction. A Basis for Applicatiphlslume
I: Foundations. Calculi and Refinements, pp. 353-398. Kluwer, 1998.
2. P. Baumgartner. FDPLL — A First-Order Davis-Putnam-Logeman-Loveland Procedure. In
D. McAllester, ed., ProcCADE-17 LNAI 1831, pp. 200-219. Springer, 2000.
3. P. Baumgartner, A. Fuchs, and C. Tinelli. Implementing the Model Evolution Calculus.
International Journal on Atrtificial Intelligence Tools (IJALT2005. To appear.
4. P. Baumgartner and C. Tinelli. The Model Evolution Calculus. In F. Baader, ed., Proc.
CADE-19 LNAI 2741, pp. 350-364. Springer, 2003.
5. P. Baumgartner and C. Tinelli. The Model Evolution Calculus with Equality, 2005 :
//www.mpi-sb.mpg.de/ baumgart/publications/MEE.pdf.
6. J.-P. Billon. The Disconnection Method. In P. Miglioli, U. Moscato, D. Mundici, and M. Or-
naghi, eds., Pro@ABLEAUX LNAI 1071, pp. 110-126. Springer, 1996.
7. M. Davis, G. Logemann, and D. Loveland. A Machine Program for Theorem Pro@ioig-
munications of the ACMb(7):394-397, July 1962.
8. H. Ganzinger and K. Korovin. Integrating Equational Reasoning into Instantiation-Based
Theorem Proving. In Pro€SL'04 LNCS 3210, pp. 71-84. Springer, 2004.
9. H. Ganzinger and K. Korovin. New Directions in Instance-Based Theorem Proving. In Proc.
LICS 2003.
10. R. Letz and G. Stenz. Integration of Equality Reasoning into the Disconnection Calculus. In
U. Egly and C. G. Feriiller, eds.,TABLEAUX LNCS 2381, pp. 176—-190. Springer, 2002.
11. R. Nieuwenhuis and A. Rubio. Paramodulation-Based Theorem Proving. In J. A. Robinson
and A. Voronkov, edsHandbook of Automated Reasonjpg. 371-443. Elsevier, 2001.
12. D. A. Plaisted and Y. Zhu. Ordered Semantic Hyper Linkidgurnal of Automated Reason-
ing, 25(3):167-217, 2000.

http://www.mpi-sb.mpg.de/~baumgart/publications/MEE.pdf
http://www.mpi-sb.mpg.de/~baumgart/publications/MEE.pdf

	The Model Evolution Calculus with Equality
	Peter Baumgartner and Cesare Tinelli

