
The Model Evolution Calculus with Equality

Peter Baumgartner1 and Cesare Tinelli2

1 Max-Planck Institute for Computer Science, Saarbrücken,baumgart@mpi-sb.mpg.de
2 Department of Computer Science, The University of Iowa,tinelli@cs.uiowa.edu

Abstract. In many theorem proving applications, a proper treatment of equa-
tional theories or equality is mandatory. In this paper we show how to integrate
a modern treatment of equality in the Model Evolution calculus (ME), a first-
order version of the propositional DPLL procedure. The new calculus,MEE, is
a proper extension of theME calculus without equality. LikeME it maintains
an explicitcandidate model, which is searched for by DPLL-style splitting. For
equational reasoningMEE uses an adapted version of the ordered paramodu-
lation inference rule, where equations used for paramodulation are drawn (only)
from the candidate model. The calculus also features a generic, semantically justi-
fied simplification rule which covers many simplification techniques known from
superposition-style theorem proving. Our main result is the correctness of the
MEE calculus in the presence of very general redundancy elimination criteria.

1 Introduction

The Model Evolution (ME) Calculus [4] has recently been introduced by the authors of
this paper as a first-order version of the propositional DPLL procedure [7]. Compared
to its predecessor, the FDPLL calculus [2], it lifts to the first-order case not only the
core of the DPLL procedure, the splitting rule, but also DPLL’s simplification rules,
which are crucial for effectiveness in practice.

Our implementation of theME calculus, the Darwin system [3], performs well in
some domains, but, unsurprisingly, it generally performs poorly in domains with equal-
ity. In this paper we address this issue and propose an extension of theME calculus
with dedicated inference rules for equality reasoning. These rules are centered around
a version theordered paramodulationinference rule adapted to theME calculus. The
new calculus,MEE, is a proper extension of theME calculus without equality. Like
ME, it searches for a model of the input clause set by maintaining and incrementally
modifying a finite representation, called acontext, of acandidate modelfor the clause
set. InMEE, equations from the context, and only those, are used for ordered paramod-
ulation inferences into the current clause set. The used equations are kept together with
the clause paramodulated into and act as passive constraints in the search for a model.

In this paper we present the calculus and discuss its soundness and completeness.
The completeness proof is obtained as an extension of the completeness proof of the
ME calculus (without equality) by adapting techniques from the Bachmair/Ganzinger
framework developed for proving the completeness of the superposition calculus [1,11,
e.g.]. The underlying model construction technique allows us to justify a rather gen-
eral simplification rule on semantic grounds. The simplification rule is based on a

general redundancy criterion that covers many simplification techniques known from
superposition-style theorem proving.

Related Work. Like ME, theMEE calculus is related toinstance based methods (IMs),
a family of calculi and proof procedures developed over the last ten years. What has
been said in [4] aboutME in relation to IMs also applies toMEE when equality is not
an issue, and the points made there will not be repeated here in detail. Instead, we focus
on instance based methods that natively support equality reasoning.

Among them is Ordered Semantic Hyperlinking (OSHL) [12]. OSHL uses rewriting
and narrowing (paramodulation) with unit equations, but requires some other mecha-
nism such as Brand’s transformation to handle equations that appear in nonunit clauses.

To our knowledge there are only two instance-based methods that have been ex-
tended with dedicated equality inference rules for full equational clausal logic. One is
called disconnection tableaux, which is a successor of the disconnection method [6].3

The other is the IM described in [9]. Both methods are conceptually rather different
from ME in that the main derivation rules there are based on resolvingpairsof comple-
mentary literals (connections) fromtwo clauses, whereasME’s splitting rule is based
on evaluatingall literals of asingleclause against a current candidate model.

The article [10] discusses various ways of integrating equality reasoning in dis-
connection tableaux. It includes a variant based on ordered paramodulation, where
paramodulation inferences are determined by inspecting connections between literals
of two clauses. Only comparably weak redundancy criteria are available.

The instance based method in [9] has been extended with equality in [8]. Beyond
what has been said above there is one more conceptual difference, in that the inference
step for equality reasoning is based on refuting, as a subtask, a set of unit clauses (which
is obtained by picking clause literals).

Paper organization.We start with an informal explanation of the main ideas behind
the MEE calculus in Section 2, followed by a more formal treatment ofcontextsand
their associated interpretations in Section 3. Then, in Section 4, we present what we
call constrained clausesand a way to perform equality reasoning on them. We describe
theMEE calculus over constrained clauses in Section 6, and discuss its correctness in
Section 7. For space constraints we cannot provide proofs of the results presented in
this paper. Also, we must assume that the reader has already some familiarity with the
ME calculus. All proofs as well as a more detailed exposition the calculus can be found
in the paper’s extended version [5].

2 Main Ideas

The ME calculus of [4], and by extension theMEE calculus, is informally best de-
scribed with an eye to the propositional DPLL procedure, of whichME is a first-order
lifting. DPLL can be viewed as a procedure that searches the space of possible inter-
pretations for a given clause set until it finds one that satisfies the clause set, if it exists.
This can be done by keeping a current candidate model andrepairing it as needed until

3 Even in that early paper a paramodulation-like inference rule was considered, however a rather
weak one.

it satisfies every input clause. The repairs are done incrementally by changing the truth
value of one clause literal at a time, and involve a non-deterministic guess (a “split”) on
whether the value of a selected literal should be changed or kept as it is. The number of
guesses is limited by a constraint propagation process (“unit propagation”) that is able
to deduce deterministically the value of some input literals.

BothME andMEE lift this idea to first-order logic by maintaining afirst-ordercan-
didate model, by identifyinginstancesof input clauses that are falsified by the model,
and by repairing the model incrementally until it satisfies all of these instances. The
difference between the two calculi is thatMEE works with equationalmodels, orE-
interpretations, that is, Herbrand interpretations in which the equality symbol is the
only predicate symbols and always denotes a congruence relation.

The current E-interpretation is represented (or more precisely, induced) by acon-
text, a finite set of non-ground equations and disequations directly processed by the
calculus. Context literals can be built over two kinds of variables:universalandpara-
metricvariables. The difference between the two lies in how they constrain the possible
additions of further literals to a context and, as a consequence, the possible repairs to its
induced E-interpretation. As far as the induced E-interpretation is concerned, however,
the two types of variables are interchangeable. The construction of this E-interpretation
is best explained in two stages, each based on an ordering on terms/atoms: the usual
instantiation preordering& with its strict subset�, and an arbitrary reduction order-
ing � total on ground terms. Using the first we associate to a contextΛ, similarly to
the ME calculus, a (non-equational) interpretationIΛ. Roughly, and modulo symme-
try of ≈, this interpretation satisfies a ground equations′′ ≈ t ′′, over an underlying
signatureΣ, iff s′′ ≈ t ′′ is an instance of an equations≈ t in Λ without being an in-
stance of any equations′ ≈ t ′ such thats≈ t � s′ ≈ t ′ ands′ 6≈ t ′ ∈ Λ. For instance, if
Λ = { f (u) ≈ u, f (a) 6≈ a} whereu is a (parametric) variable and the signatureΣ con-
sists of the unary function symbolf and the constant symbolsa andb, thenIΛ is the
symmetric closure of{ f n+1(b)≈ f n(b) | n≥ 0} ∪ { f n+1(a)≈ f n(a) | n≥ 1}.

In generalIΛ is not an E-interpretation. Its purpose is merely to supply a set of
candidate equations that determine the final E-interpretation induced byΛ. This E-
interpretation, denoted byRE

Λ, is defined as the smallest congruence on groundΣ-terms
that includes a specific setRΛ of ordered equations selected fromIΛ. The setRΛ is con-
structed inductively on the reduction ordering� by adding to it an ordered equation
s→ t iff s≈ t or t ≈ s is in IΛ, s� t and boths andt are irreducible wrt. the equations
of RΛ that are smaller thans→ t. This construction guarantees thatRΛ is a convergent
rewrite system. In the example above,RΛ is { f (b) → b, f (f (a)) → f (a)} for any re-
duction ordering�; the E-interpretationRE

Λ induced byΛ is the congruence closure of
{ f (b)≈ b, f (f (a))≈ f (a)}. SinceRΛ is convergent by construction for any contextΛ,
any two groundΣ-terms are equal inRE

Λ iff they have the sameRΛ-normal form.

Now that we have sketched how the E-interpretation is constructed, we can ex-
plain how the calculus detects the need to repair the currentE-interpretation and how
it goes about repairing it. To simplify the exposition we consider here only ground in-
put clauses. A repair involves conceptually two steps: (i) determining whether a given
clauseC is false in the E-interpretationRE

Λ, and (ii) if so, modifyingΛ so that the new
RE

Λ satisfies it.

For step (i), by congruence it suffices to rewrite the literals ofC with the rewrite
rulesRΛ to normal form. IfC↓RΛ denotes that normal form, thenRE

Λ fasifiesC iff all
equations inC↓RΛ are of the forms≈ t with s 6= t, and all disequations are of the
form s 6≈ s. In the earlier example, ifC = f (a) ≈ a∨ f (f (a)) ≈ b∨ f (b) 6≈ b then
C↓RΛ = f (a)≈ a∨ f (a)≈ b∨b 6≈ b, meaning thatRE

Λ indeed falsifiesC.
For step (ii), we first point out that the actual repair needs to be carried out only on

the literals ofC↓RΛ , not on the literals ofC. More precisely, the calculus considers only
the positive equations ofC↓RΛ , as the trivial disequationss 6≈ s in it do not provide any
usable information. To repair the E-interpretation it is enough to modifyΛ so thatRΛ
contains one of the positive equationss≈ t of C ↓RΛ . Then, by congruence,RE

Λ will also
satisfyC, as desired. Concretely,Λ is modified by creating a choice point and adding
to Λ one of the literalsL of C↓RΛ or its complement. AddingL—which is possible only
provided that neitherL not its complement are contradictory, in a precise sense defined
later, with Λ—-will make sure that the newRE

Λ satisfiesC. Adding the complement
of L instead will not makeC satisfiable in the new candidate E-model. However, it is
necessary for soundness and marks some progress in the derivation because it will force
the calculus to consider other literals ofC ↓RΛ for addition to the context.

Referring again to our running example, of the two positive literals ofC↓RΛ =
f (a) ≈ a∨ f (a) ≈ b∨b 6≈ b, only f (a) ≈ b can be added to the contextΛ = { f (u) ≈
u, f (a) 6≈ a} because neither it nor its complement is contradictory withΛ (by con-
trast f (a)≈ a is contradictory withΛ). With Λ = { f (u)≈ u, f (a) 6≈ a, f (a)≈ b}, now
RΛ = { f (b) → b, f (a) → b} andC↓RΛ becomesb≈ a∨b≈ b∨b 6≈ b, which means
thatC is satisfied byRE

Λ.
We point out that adding positive equations to the context is not always enough.

Sometimes it is necessary to add negative equations, whose effect is to eliminate from
RΛ rewrite rules that cause the disequations ofC to rewrite to trivial disequations. The
calculus takes care of this possibility as well. To achieve that we found it convenient to
haveMEE work with a slightly generalized data structure. More precisely, instead of
clausesC we considerconstrained clauses C·Γ, whereΓ is a set of rewrite rules. The
constraintΓ consists just of those (instances of)equationsfrom a contextΛ that were
used to obtainC from some input clause (whose constraint is empty).

Reusing our example, the clauseC would be represented as the constraint clause
C·Γ = f (a)≈ a∨ f (f (a))≈ b∨ f (b) 6≈ b· /0, with itsRΛ-normal form beingC ↓RΛ ·Γ =
f (a)≈ a∨ f (a)≈ b∨b 6≈ b · f (f (a)→ f (a), f (b)→ b for Λ = { f (u)≈ u, f (a) 6≈ a}.
Now, the rewrite rulef (b) → b used to obtain the normal form is available in the
constraint part, as written. The calculus may add its negationf (b) 6≈ b to Λ, with
the effect of removingf (b) → b from RΛ. The resulting context and rewrite system
would be, respectively,Λ′′ = { f (u) ≈ u, f (a) 6≈ a, f (b) 6≈ b}, andRΛ′′ = { f (f (b)) →
f (b), f (f (a))→ f (a)}. It is easy to see that the newIE

RΛ
satisfiesC as well, as desired.

While the above informal description illustrates the main ideas behindMEE, it is
not entirely faithful to the actual calculus as defined later in the paper. Perhaps the most
significant differences to mention here are that (i) the calculus works with non-ground
clauses as well (by treating them, as usual in refutation-based calculi, as schematic for
their ground instances and relying heavily on unification), and (ii) the normal form of a
constrained clause is not derived in one sweep, as presented above. Instead the calculus,

when equipped with a fair strategy, derives all intermediate constrained clauses as well.
It does so by a suitably defined paramodulation rule, where the equations paramodulat-
ing (only) into the clause part of a constrained clause are drawn from the current context
Λ. The rationale is that the rewrite systemRΛ is in general not available to the calculus.
Hence rewriting (ground) clause literals with rules fromRΛ, which would theoretically
suffice to obtain a complete calculus at the ground level, is approximated by ordered
paramodulation with equations fromΛ instead.

3 Contexts and Induced Interpretations

We start with some formal preliminaries. We will use two disjoint, infinite sets of vari-
ables: a setX of universalvariables, which we will refer to just as variables, and another
setV, which we will always refer to asparameters. We will useu andv to denote el-
ements ofV andx andy to denote elements ofX. We fix a signatureΣ throughout the
paper and denote byΣsko the expansion ofΣ obtained by adding toΣ an infinite number
of fresh (Skolem) constants. Ift is a term we denote byV ar(t) the set oft ’s variables
and byPar(t) the set oft ’s parameters. A termt is groundiff V ar(t) = Par(t) = /0.

A substitutionρ is arenaming on W⊆ (V ∪ X) iff its restriction toW is a bijection
of W onto itself;ρ is simply arenamingif it is a renaming onV ∪ X. A substitution
σ is p-preserving(short for parameter preserving) if it is a renaming onV. If s andt
are two terms, we writes & t, iff there is a substitutionσ such thatsσ = t.4 We say
thats is a variant of t, and writes∼ t, iff s& t andt & s or, equivalently, iff there is a
renamingρ such thatsρ = t. We writes� t if s& t but s 6∼ t. We writes≥ t and say
thatt is a p-instance of siff there is a p-preserving substitutionσ such thatsσ = t. We
say thats is a p-variant of t, and writes' t, iff s≥ t andt ≥ s; equivalently, iff there
is a p-preserving renamingρ such thatsρ = t. The notations[t]p means that the termt
occurs in the terms at positionp, as usual.

All of the above is extended from terms to literals in the obvious way.
In this paper we restrict to equational clause logic. Therefore, and essentially with-

out loss of generality, we assume that the only predicate symbol inΣ is ≈. An atom
then is always an equation, and a literal then is always an equation or the negation of
an equation. Literals of the latter kind, i.e., literals of the form¬(s≈ t) are also called
negative equationsand generally writtens 6≈ t instead. We call a literaltrivial if it is
of the formt ≈ t or t 6≈ t. We denote literals by the lettersK andL. We denote byL
the complement of a literalL, and byLsko the result of replacing each variable ofL by
a fresh Skolem constant inΣsko\Σ. We denote clauses by the lettersC andD, and the
empty clause by�. We will write L∨C to denote a clause obtained as the disjunction
of a (possibly empty) clauseC and a literalL.

A (Herbrand) interpretation Iis a set of groundΣ-equations—those that are true in
the interpretation. Satisfiability/validity of groundΣ-literals,Σ-clauses, and clause sets
in a Herbrand interpretation is defined as usual. We writeI |= F to denote the fact that
I satisfiesF , whereF is a groundΣ-literal or aΣ-clause (set). AnE-interpretationis an
interpretation that is also a congruence relation on theΣ-terms. IfI is an interpretation,

4 Note that many authors would writes. t in this case.

we denote byIE the smallest congruence relation on theΣ-terms that includesI , which
is an E-interpretation. We say thatI E-satisfies Fiff IE |= F . Instead ofIE |= F we
generally writeI |=E F . We say thatF E-entails F′, written F |=E F ′, iff every E-
interpretation that satisfiesF also satisfiesF ′. We say thatF andF ′ areE-equivalentiff
F |=E F ′ andF ′ |=E F .

The Model Evolution calculus, with and without equality, works with sequents of
the form Λ ` Φ, whereΛ is a finite set of literals possibly with variables or with
parameters called a context, andΦ is a finite set of clauses possibly with variables.
As in [4], we impose for simplicity that literals in a context can contain parameters or
variables but not both, but this limitation can be overcome.

Definition 3.1 (Context [4]). A contextis a set of the form{¬v} ∪ S where v∈V and
S is a finite set of literals each of which is parameter-free or variable-free.

Differently from [4], we implicitly treat any contextΛ as if it contained the symmetric
version of each of its literals. For instance, ifΛ = {¬v, f (u) ≈ a, f (x) 6≈ x} thena≈
f (u), f (u) ≈ a,x 6≈ f (x), f (x) 6≈ x are all considered to be literals ofΛ, and we write,
for instance,a≈ f (u) ∈ Λ.

WhereL is a literal andΛ a context, we writeL ∈∼ Λ if L is a variant of a literal
in Λ, write L ∈' Λ if L is a p-variant of a literal inΛ, and writeL ∈≥ Λ if L is a p-
instance of a literal inΛ. A literal L is contradictory witha contextΛ iff Lσ = Kσ for
someK ∈' Λ and some p-preserving substitutionσ. A contextΛ is contradictoryiff it
contains a literal that is contradictory withΛ. Referring to the contextΛ above,f (v) 6≈a,
a 6≈ f (v),a≈ f (a), f (a)≈ a all are contradictory withΛ. Notice that an equations≈ t
is contradictory with a contextΛ if and only if t ≈ s is so. The same applies to negative
equations.

We will work only with non-contradictory contexts. Thanks to the next two notions,
such contexts can be used as finite denotations of (certain) Herbrand interpretations. Let
L be a literal andΛ a context. A literalK is a most specific generalization (msg) of L in
Λ iff K & L and there is noK′ ∈ Λ such thatK � K′ & L.

Definition 3.2 (Productivity [4]). Let L be a literal, C a clause, andΛ a context. A
literal K producesL in Λ iff (i) K is an msg of L inΛ, and (ii) there is no K′ ∈≥ Λ such
that K � K′ & L. The contextΛ producesL iff it contains a literal K that produces L in
Λ.

Notice that a literalK produces a literalL in a contextΛ if and only if K produces
the symmetric version ofL in Λ. For instance, the contextΛ above producesf (b) ≈ a
anda≈ f (b) but Λ produces neitherf (a) ≈ a nor a≈ f (a). Instead it produces both
a 6≈ f (a) and f (a) 6≈ a.

A non-contradictory contextΛ uniquely induces a (Herbrand)Σ-interpretationIΛ,
defined as follows:

IΛ := {l ≈ r | l ≈ r is a positive groundΣ-equation andΛ producesl ≈ r}

For instance, ifΛ = {x≈ f (x)} andΣ consists of a constanta and the unary function
symbol f thenIΛ = {a≈ f (a), f (a)≈ a, f (a)≈ f (f (a)), f (f (a))≈ f (a), . . .}.

A consequence of the presence of the pseudo-literal¬v in every contextΛ is thatΛ
producesL or L for every literalL. Moreover, it can be easily shown that wheneverIΛ |=
L thenΛ producesL, even whenL is a negative literal. This fact provides a “syntactic”
handle on literals satisfied byIΛ. The induced interpretationIΛ is not an E-interpretation
in general.5 But we will use it to define a uniqueE-interpretation associated toΛ.

4 Equality Reasoning on Constrained Clauses

The MEE calculus operates withconstrained clauses, defined below. In this section
we will introduce derivation rules for equality reasoning on constrained clauses. These
derivation rules will be used by theMEE calculus in a modular way. The section con-
cludes with a first soundness and completeness result, which will serve as a lemma for
the completeness proof of theMEE calculus.

As an important preliminary remark, whenever the choice of the signature makes
a difference in this section, e.g. in the definition of grounding substitution, we always
implicitly meant the signatureΣ, not the signatureΣsko.

Constrained Clauses.A (rewrite) rule is an expression of the forml → r wherel and
r areΣ-terms. Given a parameter-freeΣ-clauseC = L1∨·· ·∨Ln and a set of parameter-
freeΣ-rewrite rulesΓ = {A1, . . . ,Am}, the expressionC·Γ is called aconstrained clause
(with constraintΓ). Instead ofC · {A1, . . . ,Am} we generally writeC ·A1, . . . ,Am. The
notationC ·Γ,A meansC ·Γ ∪ {A}.

A constrained clauseC ·Γ is a constrained clause without expansion constraints
iff Γ contains noexpansion rules, i.e., rules of the formx→ t, wherex is a variable
andt is a term. Aconstrained clause set without expansion constraintsis a constrained
clause set that consists of constrained clauses without expansion constraints. TheMEE

calculus works only with such constrained clause sets.6

Applying a substitutionσ toC ·Γ, written as(C ·Γ)σ, means to applyσ toC and all
rewrite rules inΓ. A constrained clauseC ·Γ is ground iff both C andΓ are ground. If
γ is a substitution such that(C ·Γ)γ is ground, then(C ·Γ)γ is called aground instance
of C ·Γ, andγ is called agrounding substitutionfor C ·Γ. We say thatC ·Γ properly
subsumes C′ ·Γ′ iff there is a substitutionσ such thatCσ⊂C′ andΓσ⊆ Γ′ or Cσ⊆C′

andΓσ ⊂ Γ′. We say thatC ·Γ non-properly subsumes C′ ·Γ′ iff there is a substitution
σ such thatCσ = C′ andΓσ = Γ′. The constrained clausesC ·Γ andC′ ·Γ′ arevariants
iff C ·Γ non-properly subsumesC′ ·Γ′ and vice versa. For a set of constrained clauses
Φ, Φgr denotes the set of all groundΣ-instances of all constrained clauses inΦ.

In principle, a constraint clauseC·Γ = L1∨·· ·∨Lm· lm+1→ rm+1, . . . , ln→ rn could
be understood as standing for the ordinary clauseL1∨·· ·∨Lm∨ lm+1 6≈ rm+1∨·· ·∨ ln 6≈
rn, which we call theclausal form of C·Γ and denote by(C ·Γ)c. In effect, however,
constrained clauses and their clausal forms are rather different from an operational point
of view. The derivation rules for equality reasoning below, in particular paramodulation,
areneverapplied to constraints—as a consequence, the calculus cannot be said to be a
resolution calculus.
5 In fact, in the earlier examplea≈ f (f (a)) /∈ IΛ.
6 As will become clear later, disallowing expansion constraints comes from the fact that

paramodulation into variables is unnecessary inMEE as well.

Orderings. We suppose as given a reduction ordering� that is total on groundΣ-terms.
It has to be extended to rewrite rules, equations and constrained clauses. Following
usual techniques [1,11, e.g.], rewrite rules and equations are compared by comparing
the multisets of their top-level terms with the multiset extension of the base ordering
�. There is no need in our framework to distinguish between positive and negative
equations. It is important, though, that when comparing constrained clauses the clause
part is given precedence over the constraint part. This can be achieved by definingC ·
Γ�C′ ·Γ′ iff (C,Γ) is strictly greater than(C′,Γ′) in the lexicographical ordering over
the multiset extension of the above ordering on equations and rewrite rules. (See [5] for
an alternative definition.) This way, the calculus’ derivation rulesRefME andParaME

for equality reasoning defined in Section5 work in an order-decreasing way.

Derivation Rules.We first define two auxiliary derivation rules for equality reasoning
on constrained clauses. The rules will be used later in theMEE calculus.

Ref(σ)
s 6≈ t ∨C ·Γ

(C ·Γ)σ
if σ is a mgu ofs andt.

We writes 6≈ t ∨C ·Γ⇒Ref(σ) (C ·Γ)σ to denote aRef inference.7

Para(l ≈ r,σ)
L[t]p∨C ·Γ

(L[r]p∨C ·Γ, l → r)σ
if


t is not a variable,

σ is a mgu oft andl , and

lσ 6� rσ.

We writeL[t]p∨C ·Γ⇒Para(l≈r,σ) (L[r]p∨C ·Γ, l → r)σ to denote aPara inference.
A Ref or Para inference isgroundif both its premise and conclusion are ground and

as well as the equationl ≈ r in thePara case. If from a givenRef or Para inference a
ground inference results by applying a substitutionγ to the premise, the conclusion and
the used equationl ≈ r in case ofPara, we call the resulting ground inference aground
instance viaγ (of the inference).

As in the superposition calculus,model construction, redundancyandsaturation
are core concepts for the understanding of theMEE calculus.

Model Construction. A rewrite system is a set ofΣ-rewrite rules. A ground rewrite
systemR is ordered by� iff l � r, for every rulel → r ∈R. As a non-standard notion, we
define arewrite system without overlapsto be a ground rewrite systemR that is ordered
by �, and wheneverl → r ∈ R then there is no other rule inR of the forms[l] → t
or s→ t[l]. In other words, no rule can be reduced by another rule, neither the left
hand sidenor the right hand side. Any rewrite system without overlaps is a convergent
ground rewrite system. In the sequel, the letterR will always denote a (ground) rewrite
system without overlaps.

We show how every non-contradictory contextΛ induces a ground rewrite system
RΛ without overlaps. The general technique is taken from the completeness proof of the
superposition calculus [1,11] but adapted to our needs.

First, for a given non-contradictory contextΛ and positive groundΣ-equations≈ t
we define by induction on the literal ordering� sets of rewrite rulesεΛ

s≈t andRΛ
s≈t as

7 An inferenceis an instance of a derivation rule that satisfies the rule’s side condition.

follows. Assume thatεΛ
s′≈t ′ has already been defined for all groundΣ-equationss′ ≈ t ′

with s≈ t � s′ ≈ t ′. WhereRΛ
s≈t =

S
s≈t�s′≈t ′ εΛ

s′≈t ′ , define

εΛ
s≈t =

{
{s→ t} if IΛ |= s≈ t, s� t, ands andt are irreducible wrt.RΛ

s≈t

/0 otherwise

Then,RΛ =
S

s≈t εΛ
s≈t wheres andt range over all groundΣ-terms.

By construction,RΛ has no critical pairs, neither with left hand sides nor with right
hand sides, and thus is a rewrite system without overlaps. Since� is a well-founded
ordering,RΛ is a convergent rewrite system by construction. The given contextΛ comes
into play as stated in the first condition of the definition ofεΛ

s≈t , which says, in other
words, thatΛ must produces≈ t as a necessary condition fors→ t to be contained
in RΛ. An important detail is that wheneverΛ is non-contradictory and producess≈ t,
then it will also producet ≈ s. Thus, if s≺ t thens≈ t may still be turned into the
rewrite rulet → s in RΛ by means of its symmetric versiont ≈ s.

Where theME calculus would associate to a sequentΛ ` Φ the interpretationIΛ as a
candidate model ofΦ, theMEE calculus will instead associate to it the E-interpretation
RE

Λ, the congruence closure ofRΛ (or, more correctly, of the interpretation containing
the same equations asRΛ). There is an interesting connection between the two interpre-
tations: ifL is a ground literal andL↓RΛ is the normal form ofL wrt. RΛ thenRE

Λ |= L
(or, equivalently,RΛ |=E L) iff IΛ |= L↓RΛ or L↓RΛ is a trivial equation. This connection
is fundamental toMEE, as it makes it possible to reduce satisfiability in the intended
E-interpretationRE

Λ to satisfiability inIΛ.
For an example for the model construction letΛ = {a≈ u,b≈ c,a 6≈ c} a non-

contradictory context. With the orderinga� b� c the induced rewrite systemRΛ is
again{b→ c}. To see why, observe that the candidate rulea→ c is assigned false by
IΛ, asΛ does not producea≈ c, and that the other candidatea→ b is reducible by
the smaller ruleb→ c. Had we chosen to omit in the definition ofε the condition “t is
irreducible wrtRΛ

s≈t ”
8 the construction would have givenRΛ = {a→ b,b→ c}. This

leads to the undesirable situation that a constrained clause, say,a 6≈ c · /0 is falsified by
RE

Λ. But theMEE calculus cannot modifyΛ to revert this situation, and to detect the
inconsistency (ordered) paramodulation into variables would be needed.

Semantics of Constrained Clauses.Let C ·Γ be a ground constrained clause andR a
ground rewrite system. We say thatR is anE-modelof C ·Γ and writeR |=E C ·Γ iff
Γ 6⊆Ror R |=E C (in the sense of Section3, by treatingRas an interpretation). We write
R |=E Φ for a setΦ of constrained clauses iffR |=E C ·Γ for all C ·Γ ∈ Φ. If F is a
non-ground constrained clause (set) we writeR |=E F iff R |=E Fgr.

The general intuition for this notion of satisfiability for constrained clauses is that
ground constrained clauses whose constraint is not a subset of a rewrite systemR are
considered to be trivially satisfied byR, while the other constrained clauses are consid-
ered to be satisfied byRexactly when their non-constraint part isE-satisfied byR. Note
that for constrained clausesC · /0 with an empty constraint,R |=E C · /0 iff R |=E C.

8 This condition is absent in the model construction for the superposition calculus. Its presence
in the end explains why paramodulation into smaller sides of equations is necessary.

If Φ andΦ′ are sets of constrained clauses, we say thatΦ entailsΦ′ wrt. R, written
asΦ |=R Φ′, iff R |=E Φ impliesR |=E Φ′.

Redundancy.Let Φ be a set of constrained clauses andC · Γ a ground constrained
clause. DefineΦC·Γ = {C′ ·Γ′ ∈ Φgr |C′ ·Γ′ ≺C ·Γ} as the set of ground instances of
clauses fromΦ that are smaller thanC ·Γ.

Let R be a rewrite system without overlaps. We say that the ground constrained
clauseC ·Γ is redundant wrt.Φ and R iff ΦC·Γ |=R C ·Γ, that is, iff C ·Γ is entailed
wrt. Rby smaller ground instances of clauses fromΦ. Notice that ifΓ 6⊆ R thenC ·Γ is
trivially redundant wrt. every constrained clause set andR (asR is ordered by�). For
a (possibly non-ground) constrained clauseC ·Γ we say thatC ·Γ is redundant wrt.Φ
and Riff all ground instances ofC ·Γ are redundant wrt.Φ andR.

SupposeC ·Γ ⇒D C′ ·Γ′ is a ground inference, for some constrained clauseC′ ·Γ′,
whereD stands forRef(ε) or Para(l ≈ r,ε) (with l ≈ r ground). The ground inference is
calledredundant wrt.Φ and Riff ΦC·Γ |=R C′ ·Γ′. We say that aRef or Para inference
is redundant wrt.Φ and Riff every ground instance of it is redundant wrt.Φ andR.

Saturation. Let Λ be a context. LetRΛ
s≈t =

S
s≈t�s′≈t ′ εΛ

s′≈t ′ be the rewrite system de-
fined earlier and consisting of those ground rules true inIΛ that are smaller thans≈ t.

Definition 4.1 (Productive constrained clause).Let C· Γ = A1 ∨ ·· · ∨ Am · Γ be a
ground constrained clause, for some m≥ 0, where Ai is a positive non-trivial equa-
tion for all i = 1, . . . ,m. We say that C·Γ is productive wrt.Λ iff Γ ⊆ RΛ and Ai is
irreducible wrt. RΛ

Ai
for all i = 1, . . . ,m. A (possibly non-ground) constrained clause

C ·Γ is productive wrt.Λ iff some ground instance of C·Γ is productive wrt.Λ.

Intuitively, if C ·Γ is a productive ground constrained clauses wrt.Λ thenC provides
positive equations, all irreducible in the sense as stated, at least one of which must be
satisfied byIΛ, so that in consequenceRE

Λ satisfiesC ·Γ. The following definition turns
this intuition into a demand onΛ (in its second item).

Definition 4.2 (Saturation up to redundancy). A sequentΛ ` Φ is saturated up to
redundancyiff for all C ·Γ ∈ Φ such that C·Γ is not redundant wrt.Φ and RΛ, the
following hold:

1. For every inference C·Γ ⇒D C′ ·Γ′, whereD stands forRef(σ) or Para(l ≈ r,σ)
with a parameter-free l≈ r ∈∼ Λ, the clause(C ·Γ)σ is redundant wrt.Φ and RΛ
or the inference C·Γ⇒D C′ ·Γ′ is redundant wrt.Φ and RΛ.

2. For every grounding substitutionγ for C ·Γ, if C 6= � and(C ·Γ)γ is productive wrt.
Λ and non-redundant wrt.Φ and RΛ, then IΛ |= Cγ.

Referring back to our informal explanation of the calculus, and ignoring the redun-
dancy concepts in Definition4.2, ground instances of constrained clauses that are not
productive wrt.Λ are subject to the first condition. It requires a sufficient number of
applications of theRef andPara rules to reduce (lifted versions of) such constrained
clauses to constrained clauses productive wrt.Λ. The equality reasoning rules inMEE,
which are based onRef andPara, together with theSplit rule, all defined in the next
section, make sure that both conditions will be met in the limit of a derivation.

The next proposition clarifies under what conditionsRE
Λ is a model for all con-

strained clausesΦ in a sequentΛ ` Φ saturated up to redundancy.

Proposition 4.3. Let Λ ` Φ be a sequent saturated up to redundancy and supposeΦ
is a constrained clause set without expansion constraints. Then, RΛ |=E Φ if and only
if Φ contains no constrained clause of the form� · Γ that is productive wrt.Λ and
non-redundant wrt.Φ and RΛ.

Notice that Proposition4.3 applies to astatically given sequentΛ ` Φ. The connec-
tion to thedynamicderivation process of theMEE calculus will be given later, and
Proposition4.3will be essential then in proving the correctness of theMEE calculus.

5 MEE Calculus

Like its predecessor, theMEE calculus consists of a few basic derivation rules and a
number of optional ones meant to improve the performance of implementations of the
calculus. The basic derivation rules include rules for equality reasoning and two rules,
namelySplit andClose, which are not specific to the theory of equality. We start with a
description of the basic rules.

Derivation Rules for Equality Reasoning.The following rulesRefME andParaME,
the only mandatory ones for equational reasoning, extend the derivation rules of Sec-
tion 4 to sequents.

RefME(σ)
Λ ` Φ, C ·Γ

Λ ` Φ, C ·Γ, C′ ·Γ′
if

{
C ·Γ⇒Ref(σ) C′ ·Γ′, and

Φ ∪ {C ·Γ} contains no variant ofC′ ·Γ′.

ParaME(l ≈ r,σ)
Λ ` Φ, C ·Γ

Λ ` Φ, C ·Γ, C′ ·Γ′
if


l ≈ r is a parameter-free fresh variant

of a Σ-equation inΛ,

C ·Γ⇒Para(l≈r,σ) C′ ·Γ′, and

no variant ofC′ ·Γ′ is in Φ ∪ {C ·Γ}.

The purpose of both theRefME andParaME rules is to reduce the question of sat-
isfiability of a constrained clause in the intended E-interpretationRE

ΛB
, whereΛB is a

certain limit context (cf. Section6), to deriving a smaller one and answering the ques-
tion wrt. that one. Notice that constraints have a rather passive rôle in both derivation
rules. In particular,Para is not applicable to constraints. The requirement inParaME

that l ≈ r be aparameter-free variantof an equation in the context guarantees that all
constrained clause sets derivable by the calculus are parameter-free.

Basic Derivation Rules.The mandatory rulesSplit and Close below are taken with
only minor modifications from theME calculus without equality [4]. This is possible
because the equality reasoning is doneonly by theRefME andParaME rules above.
Both theSplit andClose rule are based on the concept of acontext unifier.

Definition 5.1 (Context Unifier). Let Λ be a context and C= L1∨ ·· · ∨ Lm an or-
dinary clause. A substitutionσ is a context unifier ofC againstΛ iff there are fresh
p-variants K1, . . . ,Km ∈' Λ such thatσ is a most general simultaneous unifier of the
sets{K1,L1}, . . . ,{Km,Lm}.

For each i= 1, . . . ,m, we say that a literal K′i ∈Λ is acontext literal ofσ if K ′
i ' Ki ,

and that Liσ is a remainder literal ofσ if (Par(Ki))σ 6⊆V. We say thatσ is productive
iff Ki producesLiσ in Λ for all i = 1, . . . ,m.

A context unifierσ of C againstΛ is admissible (forSplit) iff every remainder literal
L of σ is parameter- or variable-free and for all distinct remainder literalsL andK of σ
V ar(L) ∩ V ar(K) = /0.

Split(L,σ)
Λ ` Φ, C ·Γ

Λ, L ` Φ, C ·Γ Λ, L
sko ` Φ, C ·Γ

if



C = A1∨·· ·∨Am with m≥ 0
and for alli = 1, . . . ,m, Ai is a
positive non-trivial equation,σ
is an admissible context unifier
of (C ·Γ)c againstΛ with
remainder literalL, and neither
L norLsko is contradictory with
Λ.

A Split inference isproductiveiff σ is aproductivecontext unifier of(C ·Γ)c againstΛ.
To obtain a complete calculusSplit needs to be applied only whenC · Γ has an

RΛ-irreducible ground instance that is falsified by the E-interpretationRE
Λ. Technically,

these ground instances are approximated by the productive ones, in terms of Defini-
tion 4.1, and a productive context unifier is guaranteed to exist then. Applying aSplit
inference then will modify the context so that it E-satisfies such a ground instance af-
terwards, which marks some progress in the derivation.

Close(σ)
Λ ` Φ,C ·Γ

Λ ` � · /0
if


Φ 6= /0 or C ·Γ 6= � · /0, and

σ is a context unifier of(C ·Γ)c againstΛ
with no remainder literals.

The purpose of theClose rule is to detect a trivial inconsistency between the context
and a constrained clause.

Optional Derivation Rules. Like DPLL, theME calculus includes an optional deriva-
tion rule, calledAssert, to insert a literal into a context without causing branching. In
ME this rule bears close resemblance to the unit-resulting resolution rule. TheMEE

calculus has a suitable version of theAssert rule which is also more general than the
one inME. To define it we need some more preliminaries first.

Let us fix a constanta from the signatureΣsko\ Σ and consider the substitution
α := {v 7→ a | v ∈ V}. Given a literalL, we denote byLa the literalLα. Note thatLa

is ground if, and only if,L is variable-free. Similarly, given a contextΛ, we denote by
Λa the set ofunit clausesobtained fromΛ by removing the pseudo-literal¬v, replacing
each literalL of Λ with La, and considering it as a unit clause.9

Assert(L)
Λ ` Φ

Λ, L ` Φ
if


Λa ∪ Φc |=E La,

L is non-contradictory withΛ, and

there is noK ∈' Λ such thatK ≥ L.

9 Here and belowΦc denotes the set of clausal forms of all constrained clauses inΦ.

As an example,Assert is applicable to the sequent¬v,P(u,b) ≈ t,b≈ c ` P(x,y) 6≈
t∨ f (x)≈ y· /0 to yield the new context equationf (u)≈ c.

The third condition ofAssert avoids the introduction of superfluous literals in the
context. The first condition is needed for soundness. This condition is not decidable in
its full generality and so can only be approximated. This, however, is not a problem
given thatAssert is an optional rule inMEE. See [5] for an explanation of how the
Assert rule of ME (with its concrete preconditions) can be seen as a special case of
Assert above.

Simplification. The purpose of simplification is to replace a constrained clause by a
simplerone. The optionalSimp rule below is general enough to accomodate the sim-
plification rules ofME 10 and also various new simplification rules connected with
equality. To formulate it we need one more notion.

For any contextΛ, a (ground) rewrite systemRwithout overlaps iscompatible with
Λ iff there is nol → r ∈ Rand no parameter-frees 6≈ t ∈ Λ such thats≈ t & l ≈ r.

Simp
Λ ` Φ, C ·Γ

Λ ` Φ, C′ ·Γ′
if



(i) C′ ·Γ′ ∈Φ andC′ ·Γ′ non-properly subsumesC ·Γ, or

(ii) for every rewrite systemRcompatible withΛ:

C ·Γ is redundant wrt.Φ ∪ {C′ ·Γ′} andR,

C′ ·Γ′ is a constrained clause overΣ without

expansion constraints, and

Λa ∪ (Φ ∪ {C ·Γ})c |=E (C′ ·Γ′)c.

The last condition in the definition of theSimp rule guarantees soundness.

As a simple instance of theSimp rule, any constrained clauseC · Γ of the form
s≈ s∨D ·Γ can be simplified tot ≈ t · /0. This simplification step actually yields the
same effect as ifC ·Γ were deleted. Dually, any constrained clauseC ·Γ of the forms 6≈
s∨D ·Γ can be simplified toD ·Γ. Also, as observed previously, when the constraintΓ
of a constrained clauseC·Γ contains a rulel → r such thatl ≺ r then this rule is trivially
redundant wrt. any rewrite system ordered by� and so the clause can be simplified to
t ≈ t · /0. As a simple example that takes the context into account, consider the sequent
f (x) 6≈ x ` a ≈ b · f (a) → a. Now, no rewrite system compatible with{ f (x) 6≈ x}
can containf (a)→ a. The constrained clause can therefore again be simplified tot ≈
t · /0. Dually, in the sequentf (x) ≈ x ` a≈ b · f (a)→ a the constrained clause can be
simplified toa≈ b· /0. (Notice in particular that this simplification is indeed sound.)

As illustrated by the last two examples, the practically important unit-resolution like
rule ofME, Resolve, is covered by theSimp rule.

Derivation Example. The following excerpt from anMEE derivation demonstrates
Para, Simp andSplit in combination. It follows the example in Section2 by taking the
same contextΛ = { f (u)≈ u, f (a) 6≈ a}. However, to be more instructive, it uses a lifted

10 Except for theSubsume rule.

version f (x)≈ x∨ f (f (x))≈ b∨ f (b) 6≈ b of the ground clause there.

. . .

¬v, f (u)≈ u, f (a) 6≈ a ` . . . , f (x)≈ x∨ f (f (x))≈ b∨ f (b) 6≈ b· /0

¬v, f (u)≈ u, f (a) 6≈ a ` . . . ,
f (x)≈ x∨ f (f (x))≈ b∨ f (b) 6≈ b · /0,
f (x)≈ x∨ f (x)≈ b ∨ f (b) 6≈ b · f (f (x))→ f (x) (By Para)

¬v, f (u)≈ u, f (a) 6≈ a ` . . . ,
f (x)≈ x∨ f (f (x))≈ b∨ f (b) 6≈ b · /0,
f (x)≈ x∨ f (x)≈ b ∨ f (b) 6≈ b · f (f (x))→ f (x)
f (x)≈ x∨ f (x)≈ b ∨ b 6≈ b · f (f (x))→ f (x), f (b)→ b

(By Para)

¬v, f (u)≈ u, f (a) 6≈ a ` . . . ,
f (x)≈ x∨ f (f (x))≈ b∨ f (b) 6≈ b · /0,
f (x)≈ x∨ f (x)≈ b ∨ f (b) 6≈ b · f (f (x))→ f (x)
f (x)≈ x∨ f (x)≈ b · f (f (x))→ f (x), f (b)→ b

(By Simp)

Among the alternatives to proceed now we focus on possibleSplit inferences. Con-
sider the last sequent with the constrained clausef (x) ≈ x∨ f (x) ≈ b · f (f (x)) →
f (x), f (b)→ b and its clausal formf (x) ≈ x∨ f (x) ≈ b∨ f (f (x)) 6≈ f (x)∨ f (b) 6≈ b.
Simultaneous unification of that clause literals with fresh variants of the context liter-
als f (a) 6≈ a,¬v, f (u)≈ u, f (u)≈ u, respectively, gives the (productive and admissible)
context unifierσ = {x 7→ a, . . .}. The remainder literals ofσ are f (a) ≈ b, f (f (a)) 6≈
f (a) and f (b) 6≈ b (notice that the clause instance literalf (a)≈ a is contradictory with
the context and hence is a non-remainder literal). Each of them can be selected forSplit.
The effect of selectingf (a)≈ b or f (b) 6≈ b was already described in Section2.

6 Correctness of theMEE Calculus

Similarly to theME calculus, derivations inMEE are formally defined in terms of
derivation trees. The purpose of the calculus is to build for a given clause set a derivation
tree all of whose branches are failed iff the clause set is unsatisfiable. The soundness
argument for the calculus is relatively straightforward and analogous to the one for the
ME calculus. Therefore, in this section we concentrate just on completeness. A detailed
soundness proof can be found in [5].

A derivation treeof a set{C1, . . . ,Cn} of Σ-clauses is a finite tree over sequents in
which the root node is the sequent¬v ` C1 · /0, . . . ,Cn · /0, and each non-root node is the
result of applying one of the derivation rules to the node’s parent.

Let T be a derivation tree presented as a pair(N,E), whereN is the set of the nodes
of T andE is the set of the edges ofT. A derivationD = (T i)i<κ in MEE is a possibly
infinite sequence of derivation trees defined in the obvious way. EachderivationD =
((Ni ,Ei))i<κ determines alimit tree T := (

S
i<κ Ni ,

S
i<κ Ei). It is easy to show that a

limit tree of a derivationD is indeed a tree. But note that it will not be a derivation tree
unlessD is finite.

Now let T be the limit tree of some derivation, letB = (Ni)i<κ be a branch inT
with κ nodes, and letΛi ` Φi be the sequent labeling nodeNi , for all i < κ. Define
ΛB =

S
i<κ

T
i≤ j<κ Λ j andΦB =

S
i<κ

T
i≤ j<κ Φ j , the sets ofpersistent context literals

andpersistent clauses, respectively. These two sets can be combined to obtain thelimit
sequentΛB ` ΦB (of T).

As usual, the completeness ofMEE relies on a suitable notion of fairness.

Definition 6.1 (Exhausted Branch).Let T be a limit tree, and letB = (Ni)i<κ be a
branch in T with κ nodes. For all i< κ, let Λi ` Φi be the sequent labeling node
Ni . The branchB is exhaustediff for each constrained clause C·Γ ∈ ΦB that is not
redundant wrt.Φ j and RΛB , for some j< κ, all of the following hold, for all i< κ such
that C·Γ ∈Φi :

(i) if RefME is applicable toΛi ` Φi with selected constrained clause C·Γ and under-
lying Ref inference C·Γ ⇒Ref(σ) C′ ·Γ′, and(C ·Γ)σ is not redundant wrt.Φi and
RΛB , then there is a j< κ such that the inference C·Γ ⇒Ref(σ) C′ ·Γ′ is redundant
wrt. Φ j and RΛB .

(ii) if ParaME is applicable toΛi ` Φi with selected constrained clause C·Γ and under-
lying Para inference C·Γ ⇒Para(l≈r,σ) C′ ·Γ′, where l≈ r ∈∼ ΛB andΛB produces
(l ≈ r)σ, and(C ·Γ)σ is not redundant wrt.Φi and RΛB , then there is a j< κ such
that the inference C·Γ⇒Para(l≈r,σ) C′ ·Γ′ is redundant wrt.Φ j and RΛB .

(iii) if Split is applicable toΛi ` Φi with selected constrained clause C·Γ and productive
context unifierσ such that every context literal K ofσ is a Σ-literal11 and K∈'
ΛB, and(C ·Γ)σ is productive wrt.ΛB, then there is a j< κ such that(C ·Γ)σ is
redundant wrt.Φ j and RΛB or there is a remainder literal L ofσ and a j≥ i with
j < κ such thatΛ j produces L but notL.

(iv) Close is not applicable toΛi ` Φi with selected constrained clause C·Γ and any
context unifierσ such that K∈' ΛB for every context literal K ofσ.

(v) Φi 6= {� · /0}.

A limit tree of a derivation isfair iff it is a refutation tree that is, a finite tree all of whose
leafs are conclusions of theClose rule, or it has an exhausted branch. A derivation is
fair iff its limit tree is fair.

It is not hard to see that actually carrying out aRefME or ParaME inference renders
the underlyingRef or Para inference redundantwrt. any rewrite system ordered by�.
ConcerningSplit, like in theME calculus carrying out aSplit inference also achieves
what fairness demands for. These considerations indicate that a fair proof procedure
indeed exists. It should not be too difficult to modify the proof procedure (and imple-
mentation) for the Model Evolution calculus described in [3] accordingly.

Definition6.1provides a framework for fair derivations based on redundant clauses
and redundant inferences. The redundancy criteria are formulated wrt.RΛB , an object
not available during a derivation. The redundancy tests are therefore impossible to ef-
fectively realize in their full strength. Nethertheless, there are some effective and inex-
pensive redundancy tests similar to those discussed in conjunction with theSimp rule.

Proposition 6.2 (Exhausted branches are saturated up to redundancy).If B is an
exhausted branch of a limit tree of some fair derivation then (i)ΛB ` ΦB is saturated
up to redundancy, (ii)ΦB is a constrained clause set without expansion constraints, and
(iii) ΦB contains no constrained clause of the form� ·Γ that is productive wrt.ΛB and
that is not redundant wrt.ΦB and RΛB .

11 Note the restriction toΣ-literals; it isnot possible to restrict condition (iv) in the same way.

Propositions6.2and4.3together entail our main result:

Theorem 6.3 (Completeness ofMEE). Let Ψ be a parameter-freeΣ-clause set, and
T be the limit tree of a fair derivation ofΨ. If T is not a refutation tree, thenΨ is
satisfiable; more specifically, for every exhausted branchB of T, RΛB |=E Ψ.

7 Conclusions

We have presented theMEE calculus, an extension of the Model Evolution calculus by
paramodulation-based inference rules for equality. Our main result is its correctness,
in particular the completeness in combination with redundancy criteria. As for future
work, we will extend the implementation of the model evolution calculus, the Darwin
system [3] to theMEE calculus.

There are also some theoretical issues to be addressed. The perhaps most press-
ing theoretical question is if or when paramodulation into smaller sides of equations
can be avoided. It is clear that the current completeness proof breaks down when such
inferences are no longer subject to fairness. Other questions concern further, useful in-
stantiations of our simplification rule.

Acknowledgements.We would like to thank the reviewers for their valuable comments.

References

1. L. Bachmair and H. Ganzinger. Equational Reasoning in Saturation-Based Theorem Proving.
In W. Bibel and P. H. Schmitt, ed.,Automated Deduction. A Basis for Applications, Volume
I: Foundations. Calculi and Refinements, pp. 353–398. Kluwer, 1998.

2. P. Baumgartner. FDPLL – A First-Order Davis-Putnam-Logeman-Loveland Procedure. In
D. McAllester, ed., Proc.CADE-17, LNAI 1831, pp. 200–219. Springer, 2000.

3. P. Baumgartner, A. Fuchs, and C. Tinelli. Implementing the Model Evolution Calculus.
International Journal on Artificial Intelligence Tools (IJAIT), 2005. To appear.

4. P. Baumgartner and C. Tinelli. The Model Evolution Calculus. In F. Baader, ed., Proc.
CADE-19, LNAI 2741, pp. 350–364. Springer, 2003.

5. P. Baumgartner and C. Tinelli. The Model Evolution Calculus with Equality, 2005.http:
//www.mpi-sb.mpg.de/˜baumgart/publications/MEE.pdf.

6. J.-P. Billon. The Disconnection Method. In P. Miglioli, U. Moscato, D. Mundici, and M. Or-
naghi, eds., Proc.TABLEAUX, LNAI 1071, pp. 110–126. Springer, 1996.

7. M. Davis, G. Logemann, and D. Loveland. A Machine Program for Theorem Proving.Com-
munications of the ACM, 5(7):394–397, July 1962.

8. H. Ganzinger and K. Korovin. Integrating Equational Reasoning into Instantiation-Based
Theorem Proving. In Proc.CSL’04, LNCS 3210, pp. 71–84. Springer, 2004.

9. H. Ganzinger and K. Korovin. New Directions in Instance-Based Theorem Proving. In Proc.
LICS, 2003.

10. R. Letz and G. Stenz. Integration of Equality Reasoning into the Disconnection Calculus. In
U. Egly and C. G. Ferm̈uller, eds.,TABLEAUX, LNCS 2381, pp. 176–190. Springer, 2002.

11. R. Nieuwenhuis and A. Rubio. Paramodulation-Based Theorem Proving. In J. A. Robinson
and A. Voronkov, eds.,Handbook of Automated Reasoning, pp. 371–443. Elsevier, 2001.

12. D. A. Plaisted and Y. Zhu. Ordered Semantic Hyper Linking.Journal of Automated Reason-
ing, 25(3):167–217, 2000.

http://www.mpi-sb.mpg.de/~baumgart/publications/MEE.pdf
http://www.mpi-sb.mpg.de/~baumgart/publications/MEE.pdf

	The Model Evolution Calculus with Equality
	Peter Baumgartner and Cesare Tinelli

