
Handbook of Satisfiability

Clark Barrett1 Roberto Sebastiani2 Sanjit A.

Seshia3 Cesare Tinelli4

1New York University, barrett@cs.nyu.edu
2Università di Trento, rseba@disi.unitn.it

3University of California, Berkeley,

sseshia@eecs.berkeley.edu
4The University of Iowa, tinelli@cs.uiowa.edu

IOS Press

barrett@cs.nyu.edu
rseba@disi.unitn.it
sseshia@eecs.berkeley.edu
tinelli@cs.uiowa.edu

Contents

Part I. Extensions

Chapter 1. Satisfiability Modulo Theories 1

1.1 Introduction 1
1.2 Background 3

1.2.1 Formal preliminaries 3
1.2.1.1 Syntax 3
1.2.1.2 Semantics 4
1.2.1.3 Combined Theories 5
1.2.1.4 Abstraction 6

1.2.2 Some theories of interest 6
1.2.2.1 Equality 6
1.2.2.2 Arithmetic 7
1.2.2.3 Arrays 8
1.2.2.4 Fixed-width bit-vectors 8
1.2.2.5 Inductive data types 8

1.3 Eager Encodings to SAT 9
1.3.1 Overview 9

1.3.1.1 Operation 10
1.3.1.2 Eliminating Lambdas 10
1.3.1.3 Eliminating Function Applications 11
1.3.1.4 Summary 12

1.3.2 Small-domain encodings 13
1.3.2.1 Equalities 14
1.3.2.2 Difference Logic 14
1.3.2.3 UTVPI Constraints 15
1.3.2.4 Sparse, Mostly-Difference Constraints 16
1.3.2.5 Summary 16

1.3.3 Direct encoding of theory axioms 17
1.3.4 Hybrid eager approaches 18

1.4 Integrating Theory Solvers into SAT Engines 18
1.4.1 Theory Solvers and their desirable features 19
1.4.2 A generalized DPLL schema 19
1.4.3 Enhancements to the schema 22

1.4.3.1 Normalizing T -atoms. 22

1.4.3.2 Static learning 23
1.4.3.3 Early pruning 23
1.4.3.4 T -propagation 24
1.4.3.5 T -backjumping and T -learning 24
1.4.3.6 Generating partial assignments 25
1.4.3.7 Pure-literal filtering 26

1.4.4 An abstract framework 26
1.5 Theory Solvers 30

1.5.1 Shostak’s method 30
1.5.1.1 Combining Shostak theories 32

1.5.2 Splitting on demand 33
1.5.3 Layered theory solvers 35
1.5.4 Rewriting-based theory solvers 35

1.6 Combining Theories 36
1.6.1 A Logical Framework for Nelson-Oppen Combination 37
1.6.2 The Nelson-Oppen Procedure 40
1.6.3 Delayed Theory Combination 40
1.6.4 Ackermann’s expansion 42

1.7 Extensions and Enhancements 43
1.7.1 Combining eager and lazy approaches 43
1.7.2 Handling quantifiers 44
1.7.3 Producing models 46
1.7.4 Producing proofs 46
1.7.5 Identifying unsatisfiable cores 46
1.7.6 Computing interpolants 47

Bibliography 49

Part I

Extensions

Chapter 1

Satisfiability Modulo Theories

1.1. Introduction

Applications in artificial intelligence and formal methods for hardware and soft-
ware development have greatly benefited from the recent advances in SAT. Often,
however, applications in these fields require determining the satisfiability of for-
mulas in more expressive logics such as first-order logic. Despite the great progress
made in the last twenty years, general-purpose first-order theorem provers (such
as provers based on the resolution calculus) are typically not able to solve such
formulas directly. The main reason for this is that many applications require not
general first-order satisfiability, but rather satisfiability with respect to some back-
ground theory, which fixes the interpretations of certain predicate and function
symbols. For instance, applications using integer arithmetic are not interested
in whether there exists a nonstandard interpretation of the symbols <, +, and 0
that makes the formula

x < y ∧ ¬(x < y + 0)

satisfiable. Instead, they are interested in whether the formula is satisfiable in an
interpretation in which < is the usual ordering over the integers, + is the inte-
ger addition function, and 0 is the additive identity. General-purpose reasoning
methods can be forced to consider only interpretations consistent with a back-
ground theory T , but only by explicitly incorporating the axioms for T into their
input formulas. Even when this is possible,1 the performance of such provers is
often unacceptable. For some background theories, a more viable alternative is
to use reasoning methods tailored to the theory in question. This is particularly
the case for quantifier-free formulas, first-order formulas with no quantifiers but
possibly with variables, such as the formula above.

For many theories, specialized methods actually yield decision procedures for
the satisfiability of quantifier-free formulas or some subclass thereof. This is the
case, thanks to classical results in mathematics, for the theory of real numbers
and the theory of integer arithmetic (without multiplication). In the last two
decades, however, specialized decision procedures have also been discovered for

1 Some background theories such as the theory of real numbers or the theory of finite trees,
cannot be captured by a finite set of first-order formulas, or, as in the case of the theory of
integer arithmetic (with multiplication), by any decidable set of first-order formulas.

a long and still growing list of other theories with practical applications. These
include certain theories of arrays and of strings, several variants of the theory of
finite sets or multisets, the theories of several classes of lattices, the theories of
finite, regular and infinite trees, of lists, tuples, records, queues, hash tables, and
bit-vectors of a fixed or arbitrary finite size.

The research field concerned with the satisfiability of formulas with respect
to some background theory is called Satisfiability Modulo Theories, or SMT, for
short. In analogy with SAT, SMT procedures (whether they are decision pro-
cedures or not) are usually referred to as SMT solvers. The roots of SMT can
be traced back to early work in the late 1970s and early 1980s on using decision
procedures in formal methods by such pioneers as Nelson and Oppen [108, 107],
Shostak [139, 140, 138], and Boyer and Moore [33, 32].2 Modern SMT research
started in the late 1990s with various independent attempts [6, 79, 4, 121, 41] to
build more scalable SMT solvers by exploiting advances in SAT technology. The
last few years have seen a great deal of interest and research on the foundational
and practical aspects of SMT. SMT solvers have been developed in academia and
industry with increasing scope and performance. SMT solvers or techniques have
been integrated into: interactive theorem provers for high-order logic (such as
HOL, Isabelle, and PVS); extended static checkers (such as Boogie and ESC/Java
2); verification systems (such as ACL2, Caduceus, SAL, UCLID, and Why); for-
mal CASE environments (such as KeY); model checkers (such as BLAST, Eureka,
MAGIC and SLAM); certifying compilers (such as Touchstone and TVOC); unit
test generators (such as DART, EXE, CUTE and PEX).

This chapter provides a brief overview of SMT and its main approaches,
together with references to the relevant literature for a deeper study. In particular,
it focuses on the two most successful major approaches so far for implementing
SMT solvers, usually referred to as the “eager” and the “lazy” approach.

The eager approach is based on devising efficient, specialized translations
to convert an input formula into an equisatisfiable propositional formula using
enough relevant consequences of the theory T . The approach applies in principle
to any theory with a decidable ground satisfiability problem, possibly however
at the cost of a significant blow-up in the translation. Its main allure is that
the translation imposes upfront all theory-specific constraints on the SAT solver’s
search space, potentially solving the input formula quickly; in addition, the trans-
lated formula can be given to any off-the-shelf SAT solver. Its viability depends
on the ability of modern SAT solvers to quickly process relevant theory-specific
information encoded into large SAT formulas.

The lazy approach consists in building ad-hoc procedures implementing, in
essence, an inference system specialized on a background theory T . The main
advantage of theory-specific solvers is that one can use whatever specialized al-
gorithms and data structures are best for the theory in question, which typically
leads to better performance. The common practice is to write theory solvers
just for conjunctions of literals—i.e., atomic formulas and their negations. These
pared down solvers are then embedded as separate submodules into an efficient
SAT solver, allowing the joint system to accept quantifier-free formulas with an

2 Notable early systems building on this work are the Boyer-Moore prover, PVS, Simplify,
SteP, and SVC.

t ::= c where c ∈ ΣF with arity 0
| f(t1, . . . , tn) where f ∈ ΣF with arity n > 0
| ite(ϕ, t1, t2)

ϕ ::= A where A ∈ ΣP with arity 0
| p(t1, . . . , tn) where p ∈ ΣP with arity n > 0
| t1 = t2 | ⊥ | ⊤ | ¬ϕ1

| ϕ1 → ϕ2 | ϕ1 ↔ ϕ2

| ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2

Figure 1.1. Ground terms and formulas

arbitrary Boolean structure.
The rest of this chapter is structured as follows. Section 1.2 provides back-

ground information, with formal preliminaries and a brief description of a few
theories popular in SMT applications. The next two sections respectively de-
scribe the eager and the lazy approach in some detail. Section 1.5 describes some
general methods for building theory solvers for the lazy approach. Section 1.6
focuses on techniques for combining solvers for different theories into a solvers
for a combination of these theories. Finally, Section 1.7, describes some impor-
tant extension and enhancements on the methods and techniques described in the
previous sections.

1.2. Background

1.2.1. Formal preliminaries

In this chapter we will work in the context of (classical) first-order logic with
equality (see, e.g., [63, 65]). To make the chapter more self-contained, however,
we introduce here all the relevant basic concepts and notation.

1.2.1.1. Syntax

A signature Σ is set of predicate and function symbols, each with an associated
arity, a non-negative number. For any signature Σ, we denote by ΣF and ΣP

respectively the set of function and of predicate symbols in Σ. We call the 0-
arity symbols of ΣF constant symbols, and usually denote them by the letters a, b
possibly with subscripts. We call the 0-arity symbols of ΣP propositional symbols,
and usually denote them by the letters A,B, possibly with subscripts. Also, we
use f, g and p, q, possibly with subscripts, to denote respectively the non-constant
symbols of ΣF and the non-propositional symbols of ΣP.

In this chapter, we are mostly interested in quantifier-free terms and formulas
built with the symbols of a given signature Σ. As a technical convenience, we treat
the (free) variables of a quantifier-formula as constants in a suitable expansion of
Σ. For example, if Σ is the signature of integer arithmetic we consider the formula
x < y+ 1 as a ground (i.e., variable-free) formula in which x and y are additional
constant symbols. Formally, a ground (Σ-)term t and a ground (Σ-)formula ϕ are
expressions in the language defined by the abstract grammar in Figure 1.1. As

usual, we call atomic formula (or atom) a formula of the form A, p(t1, . . . , tn),
t1 = t2, ⊥, or ⊤.3 A (Σ-)literal is an atomic Σ-formula or the negation of one. We
will use the letter l possibly with subscripts, to denote literals. The complement of
a literal l, written ¬l for simplicity, is ¬α if l is an atomic formula α, and is α if l is
¬α. A (Σ-)clause is a disjunction l1∨· · ·∨ln of literals. We will sometimes write a
clause in the form of an implication:

∧

i li →
∨

j lj for
∨

i ¬li∨
∨

j lj and
∧

i li → ⊥
for

∨

i ¬li where each li and lj is a positive literal. We denote clauses with the
letter c, possibly with subscripts, and identify the empty clause, i.e., the empty
disjunction of literals, with the formula ⊥. A unit clause is a clause consisting
of a single literal (not containing ⊥ or ⊤). When µ is a finite set of literals
l1, . . . , ln, we may denote by ¬µ the clause ¬l1∨· · ·∨¬ln. Correspondingly, if c is
a clause l1 ∨ · · · ∨ ln, we denote by ¬c the set {¬l1, . . . ,¬ln}. A CNF formula is a
conjunction c1∧· · ·∧ cn of zero or more clauses. When it leads to no ambiguities,
we will sometimes also write CNF formulas in set notation {c1, . . . , cn}, or simply
replace the ∧ connectives by commas.

1.2.1.2. Semantics

Formulas are given a meaning, that is, a truth value from the set {true, false},
by means of (first-order) models. A model A for a signature Σ, or Σ-model,
is a pair consisting of a non-empty set A, the universe of the model, and a
mapping ()

A
assigning to each constant symbol a ∈ ΣF an element aA ∈ A,

to each function symbol f ∈ ΣF of arity n > 0 a total function fA : An → A,
to each propositional symbol B ∈ ΣP an element BA ∈ {true, false}, and to
each p ∈ ΣP of arity n > 0 a total function pA : An → {true, false}. This

mapping uniquely determines a homomorphic extension, also denoted as ()
A

,
that maps each Σ-term t to an element tA ∈ A, and each Σ-formula ϕ to an
element ϕA ∈ {true, false}. The extension, which we call an interpretation of
the terms and the formulas, is defined as expected. In particular, for any A:
f(t1, . . . , tn)A = fA(t1

A, . . . , tn
A); ite(ϕ, t1, t2)A equals t1

A if ϕA = true and

t2
A otherwise; p(t1, . . . , tn)

A
= pA(t1

A, . . . , tn
A); ⊥A = false; ⊤A = true; and

(t1 = t2)A = true iff tA1 = tA2 .4

We say that a Σ-model A satisfies (resp. falsifies) a Σ-formula ϕ iff ϕA is true

(resp. false). In SMT, one is not interested in arbitrary models but in models
belonging to a given theory T constraining the interpretation of the symbols of
Σ. Following the more recent SMT literature, we define Σ-theories most generally
as just sets of one or more (possibly infinitely many) Σ-models. Then, we say
that a ground Σ-formula is satisfiable in a Σ-theory T , or T -satisfiable, iff there
is an element of the set T that satisfies ϕ. Similarly, a set Γ of ground Σ-formulas
T -entails a ground formula ϕ, written Γ |=T ϕ, iff every model of T that satisfies
all formulas in Γ satisfies ϕ as well. We say that Γ is T -consistent iff Γ 6|=T ⊥,
and that ϕ is T -valid iff ∅ |=T ϕ. We call a clause c a theory lemma if c is T -valid
(i.e., ∅ |=T c). All these notions reduce exactly to the corresponding notions in

3 Note that, by allowing propositional symbols in signatures this language properly includes
the language of propositional logic.

4 Note that we are using the symbol = both as a symbol of the logic and as the usual
meta-symbol for equality. The difference, however, should be always clear from context.

standard first-order logic by choosing as T the set of all Σ-models; for that case,
we drop T from the notation (and for instance write just Γ |= ϕ).

Typically, given a Σ-theory T , one is actually interested in the T -satisfiability
of ground formulas containing additional, uninterpreted symbols, i.e., predicate
or function symbols not in Σ. This is particularly the case for uninterpreted
constant symbols—which, as we have seen, play the role of free variables—and
uninterpreted propositional symbols—which can be used as abstractions of other
formulas. Formally, uninterpreted symbols are accommodated in the definitions
above by considering instead of T , the theory T ′ defined as follows. Let Σ′ be
any signature including Σ. An expansion A′ to Σ′ of a Σ-model A is a Σ′-model
that has the same universe as A and agrees with A on the interpretation of the
symbols in Σ. The theory T ′ is the set of all possible expansions of the models
of T to Σ′. To keep the terminology and notation simple, we will still talk about
T -satisfiability, T -entailment and so on when dealing with formulas containing
uninterpreted symbols, but with the understanding that we actually mean the
Σ′-theory T ′ where Σ′ is a suitable expansion of T ’s original signature.

Then, the ground T -satisfiability problem is the problem of determining, given
a Σ-theory T , the T -satisfiability of ground formulas over an arbitrary expansion
of Σ with uninterpreted constant symbols. Since a formula ϕ is T -satisfiable iff
¬ϕ is T -valid, the ground T -satisfiability problem has a dual ground T -validity
problem. The literature in the field (especially the older literature) sometimes
adopts this dual view.5 Finally, a theory T is convex if for all sets µ of ground
Σ′-literals (where Σ′ is an expansion of Σ with uninterpreted constant symbols)
and all sets E of equalities between uninterpreted constant symbols in Σ′, µ |=T∨

e∈E e iff µ |=T e for some e ∈ E.

1.2.1.3. Combined Theories

Several applications of SMT deal with formulas involving two or more theories at
once. In that case, satisfiability is understood as being modulo some combination
of the various theories. If two theories T 1 and T 2 are both defined axiomatically,
their combination can simply be defined as the theory axiomatized by the union
of the axioms of the two theories, T 1 and T 2. This is adequate if the signatures
of the two theories are disjoint. If, instead, T 1 and T 2 have symbols in common,
one has to consider whether a shared function (resp. predicate) symbol is meant
to stand for the same function (resp. relation) in each theory or not. In the latter
case, a proper signature renaming must be applied to the theories before taking
the union of their axioms.

With theories specified as sets of first order models, as done here, a suitable
notion of theory combination is defined as follows. Let us say that a Σ-model
A is the Σ-reduct of a Σ′-model B with Σ′ ⊇ Σ if A has the same universe as
B and interprets the symbols of Σ exactly as B does. Then, the combination
T 1 ⊕ T 2 of T 1 and T 2 is the set of all (Σ1 ∪ Σ2)-models B whose Σ1-reduct is
isomorphic to a model of T 1 and whose Σ2-reduct is isomorphic to a model of

5 In T -validity problems, any uninterpreted constant symbols behave like universally quan-
tified variables, so it is also common to see ground T -validity being described in the literature
as T -validity of universal Σ-formulas.

T 2.6 The correspondence with the axiomatic case is given by the following fact
(see, e.g., [148]): when each T i is the set of all Σi-models that satisfy some set
Γi of first-order axioms, T 1 ⊕T 2 is precisely the set of all (Σ1 ∪Σ2)-models that
satisfy Γ1 ∪ Γ2.

1.2.1.4. Abstraction

For abstraction purposes, we associate with every signature Σ (possibly contain-
ing uninterpreted symbols in the sense above) a signature Ω consisting of the
propositional symbols of Σ plus a set of new propositional symbols having the
same cardinality as the set of ground Σ-atoms. We then fix a bijection T 2B,
called propositional abstraction, between the set of ground Σ-formulas without
ite expressions and the propositional formulas over Ω. This bijection maps each
propositional symbol of Σ to itself and each non-propositional Σ-atom to one of
the additional propositional symbols of Ω, and is homomorphic with respect to
the logical operators.7 The restriction to formulas with no ite’s is without loss of
generality because ite constructs can be eliminated in advance by a satisfiability-
preserving transformation that repeatedly applies the following rule to comple-
tion: let ite(ψ, t1, t2) be a subterm appearing in a formula ϕ; we replace this term
in ϕ by some new uninterpreted constant a and return the conjunction of the
result with the formula ite(ψ, a = t1, a = t2). 8 We denote by B2T the inverse of
T 2B, and call it refinement.

To streamline the notation we will often write ϕp to denote T 2B(ϕ). Also,
if µ is a set of Σ-formulas, we will write µp to denote the set {ϕp | ϕ ∈ µ}; if
µp is a set of Boolean literals, then µ will denote B2T (µp). A Σ-formula ϕ is
propositionally unsatisfiable if ϕp |= ⊥. We will often write µ |=p ϕ to mean
µp |= ϕp. We point out that for any theory T , µ |=p ϕ implies µ |=T ϕ, but not
vice versa.

1.2.2. Some theories of interest

In order to provide some motivation and connection to applications, we here give
several examples of theories of interest and how they are used in applications.9

1.2.2.1. Equality

As described above, a theory usually imposes some restrictions on how function
or predicate symbols may be interpreted. However, the most general case is a
theory which imposes no such restrictions, in other words, a theory that includes
all possible models for a given signature.

Given any signature, we denote the theory that includes all possible models of
that theory as TE . It is also sometimes called the empty theory because its finite

6 We refer the reader to, e.g., [63] for a definition of isomorphic models. Intuitively, two
models A and B are isomorphic if they are identical with the possible exception that the universe
of B is a renaming of the universe of A.

7 That is, T 2B(⊥) = ⊥, T 2B(ϕ1 ∧ ϕ2) = T 2B(ϕ1) ∧ T 2B(ϕ2), and so on.
8The newly-introduced ite can be thought of as syntactic sugar for ψ → a = t1∧¬ψ → a = t2.

Alternatively, to avoid potential blowup of the formula, a formula-level if-then-else operator can
be introduced into the language syntax.

9See [96] for an earlier related survey.

axiomatization is just ∅ (the empty set). Because no constraints are imposed
on the way the symbols in the signature may be interpreted, it is also sometimes
called the theory of equality with uninterpreted functions (EUF). The satisfiability
problem for conjunctions of ground formulas modulo TE is decidable in polynomial
time using a procedure known as congruence closure [10, 60, 112].

Some of the first applications that combined Boolean reasoning with theory
reasoning used this simple theory [108]. Uninterpreted functions are often used
as an abstraction technique to remove unnecessarily complex or irrelevant details
of a system being modeled. For example, suppose we want to prove that the
following set of literals is unsatisfiable: {a ∗ (f(b) + f(c)) = d, b ∗ (f(a) + f(c)) 6=
d, a = b}. At first, it may appear that this requires reasoning in the theory of
arithmetic. However, if we abstract + and ∗ by replacing them with uninterpreted
functions g and h respectively, we get a new set of literals: {h(a, g(f(b), f(c))) =
d, h(b, g(f(a), f(c))) 6= d, a = b}. This set of literals can be proved unsatisfiable
using only congruence closure.

1.2.2.2. Arithmetic

Let ΣZ be the signature (0, 1,+,−,≤). Let the theory TZ consist of the model
that interprets these symbols in the usual way over the integers.10 This theory is
also known as Presburger arithmetic.11 We can define the theory TR to consist
of the model that interprets these same symbols in the usual way over the reals.

Let T ′
Z be the extension of TZ with an arbitrary number of uninterpreted

constants (and similarly for T ′
R). The question of satisfiability for conjunctions

of ground formulas in either of these theories is decidable. Ground satisfiability
in T ′

R is actually decidable in polynomial time [86], though exponential methods
such as those based on simplex often perform best in practice (see, e.g. [61]). On
the other hand, ground T ′

Z-satisfiability is NP-complete [119].
Two important related problems have to do with restricting the syntax of

arithmetic formulas in these theories. Difference logic formulas require that every
atom be of the form a − b ⊲⊳ t where a and b are uninterpreted constants, ⊲⊳ is
either = or ≤, and t is an integer (i.e. either a sum of 1’s or the negation of a sum
of 1’s). Fast algorithms for difference logic formulas have been studied in [111]. A
slight variation on difference logic is UTVPI (“unit two variable per inequality”)
formulas which in addition to the above pattern also allow a+ b ⊲⊳ t. Algorithms
for UTVPI formulas have been explored in [93, 136].

An obvious extension of the basic arithmetic theories discussed so far is to
add multiplication. Unfortunately, this dramatically increases the complexity
of the problem, and so is often avoided in practice. In fact, the integer case
becomes undecidable even for conjunctions of ground formulas [99]. The real case
is decidable but is doubly-exponential [54].

There are obviously many practical uses of decision procedures for arithmetic
and solvers for these or closely related theories have been around for a long time.

10Of course, additional symbols can be included for numerals besides 0 and 1 or for <, >, and
≥, but these add no expressive power to the theory, so we omit them for the sake of simplicity.

11In Presburger arithmetic, the domain is typically taken to be the natural numbers rather
than the integers, but it is straightforward to translate a formula with integer variables to one
where variables are interpreted over N and vice-versa by adding (linearly many) additional
variables or constraints.

In particular, when modeling and reasoning about systems, arithmetic is useful for
modeling finite sets, program arithmetic, manipulation of pointers and memory,
real-time constraints, physical properties of the environment, etc.

1.2.2.3. Arrays

Let ΣA be the signature (read ,write). Let ΛA be the following axioms:

∀ a ∀ i ∀ v (read (write (a, i, v), i) = v)
∀ a ∀ i ∀ j ∀ v (i 6= j → read (write (a, i, v), j) = read (a, j))

Then the theory TA of arrays is the set of all models of these axioms. It is
common also to include the following axiom of extensionality:

∀ a ∀ b ((∀ i (read (a, i) = read (b, i))) → a = b

We will denote the resulting theory TAex. The satisfiability of ground formulas
over T ′

A or T ′
Aex is NP-complete [145]. Theories of arrays are commonly used to

model actual array data structures in programs. They are also often used as an
abstraction for memory. The advantage of modeling memory with arrays is that
the size of the model depends on the number of accesses to memory rather than
the size of the memory being modeled. In many cases, this leads to significant
efficiency gains.

1.2.2.4. Fixed-width bit-vectors

A natural theory for high-level reasoning about circuits and programs is a the-
ory of bit-vectors. Various theories of bit-vectors have been proposed and stud-
ied [53, 104, 19, 24, 64, 16]. Typically, constant symbols are used to represent
vectors of bits, and each constant symbol has an associated bit-width that is
fixed for that symbol. The function and predicate symbols in these theories may
include extraction, concatenation, bit-wise Boolean operations, and arithmetic
operations. For non-trivial theories of bit-vectors, it is easy to see that the satisfi-
ability problem is NP-complete by a simple reduction to SAT. Bit-vectors provide
a more compact representation and often allow problems to be solved more effi-
ciently than if they were represented at the bit level [43, 38, 70].

1.2.2.5. Inductive data types

An inductive data type (IDT) defines one or more constructors, and possibly
also selectors and testers. A simple example is the IDT list, with constructors
cons and null, selectors car and cdr, and testers is cons and is null. The first
order signature of an IDT associates a function symbol with each constructor
and selector and a predicate symbol with each tester. The standard model for
such a signature is a term model built using only the constructors. For IDTs
with a single constructor, a conjunction of literals is decidable in polynomial time
using an algorithm by Oppen [118]. For more general IDTs, the problem is NP
complete, but reasonbly efficient algorithms exist in practice [17]. IDTs are very
general and can be used to model a variety of things, e.g., enumerations, records,
tuples, program data types, and type systems.

t ::= c where c ∈ ΣF with arity 0
| int-var

| function-expr(t1, . . . , tn)
| ite(ϕ, t1, t2)

ϕ ::= A where A ∈ ΣP with arity 0
| predicate-expr(t1, . . . , tn)
| t1 = t2 | ⊥ | ⊤ | ¬ϕ1

| ϕ1 → ϕ2 | ϕ1 ↔ ϕ2

| ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2

int-var ::= v where v ∈ V

function-expr ::= f where f ∈ ΣF with arity n > 0
| λ int-var, . . . , int-var . t

predicate-expr ::= p where p ∈ ΣP with arity n > 0
| λ int-var, . . . , int-var . ϕ

Figure 1.2. Extended syntax with restricted lambda expressions.

1.3. Eager Encodings to SAT

The eager approach to SMT solving involves translating the original formula to
an equisatisfiable Boolean formula in a single step. In order to generate a small
SAT problem, several optimizations are performed in this translation. As one
might expect, some optimizations are computationally expensive and thus there
is a trade-off between the degree of optimization performed and the amount of
time spent therein. In fact, the translation procedure is much like an optimizing
compiler, with the “high-level program” being the original SMT problem and the
“low-level object code” being the generated SAT problem. This section describes
the main ideas in the eager approach and surveys the state of the art.

1.3.1. Overview

The translations used in the eager approach are, by their very nature, theory-
specific. We survey here the transformations for a combination of two theories: TE

and TZ . These theories, plus an extension of the basic syntax to include restricted
lambda expressions (see below), form the core logic of the original UCLID decision
procedure [94, 131], which is the main tool implementing the eager approach. The
UCLID logic has sufficed for a range of applications, from microprocessor design
verification [91] to analyzing software for security vulnerabilities [131].

As mentioned, the theories of interest for this section are TE and TZ , with
signatures as given in §1.2.2. In particular, we assume a signature Σ containing
0, 1, +, −, ≤, and any number of uninterpreted functions and predicates.
Lambda expressions. For additional expressiveness, in this section we consider
an extension of the core logical syntax (as given in Figure 1.1) to include lambda
expressions. Assuming an infinite set V of integer variables, the extended syntax
is given in Figure 1.2.

Notice that the use of lambda expressions is quite restricted. In particular,
there is no way in the logic to express any form of iteration or recursion. An

integer variable x is said to be bound in expression E when it occurs inside a
lambda expression for which x is one of the argument variables. We say that an
expression is well-formed when it contains no unbound variables.

Satisfiability and entailment are defined for well-formed formulas just as
in §1.2.1 for formulas without lambdas. Well-formed formulas containing lamb-
das are considered to be semantically equivalent to their beta-reduced forms
(see §1.3.1.2, below), which do not contain lambdas.

Lambda notation allows us to model the effect of a sequence of read and write
operations on a memory (the select and update operations on an array) without the
added complexity of the theory of arrays (TA). At any point of system operation,
a memory can be represented by a function expression M denoting a mapping
from addresses to values (for an array, the mapping is from indices to values).
The initial state of the memory is given by an uninterpreted function symbol m0

indicating an arbitrary memory state. The effect of a write operation with terms
A and D denoting the address and data values yields a function expression M ′:

M ′ = λ addr . ITE(addr =A, D, M (addr))

Reading from array M at address A simply yields the function application M(A).
Multi-dimensional memories or arrays are easily expressed in the same way.

Moreover, lambda expressions can express parallel-update operations, which up-
date multiple memory locations in a single step. The details are outside the scope
of this chapter, and can be found elsewhere [131].

1.3.1.1. Operation

Suppose that we are given a formula Forig in the syntax of Figure 1.2 We de-
cide the satisfiability of Forig by performing a three-stage satisfiability-preserving
translation to a Boolean formula Fbool , and then invoking a SAT solver on Fbool .

The three stages of translation are as follows:

1. All lambda expressions are eliminated, resulting in a formula Fnorm . This
stage is described in §1.3.1.2.

2. Function and predicate applications of non-zero arity are eliminated to get
a formula Farith . This stage is described in §1.3.1.3.

3. Formula Farith is a quantifier-free linear integer arithmetic (ΣZ -) formula.
There is more than one way to translate Farith to an equisatisfiable Boolean
formula Fbool . We describe these techniques in §1.3.2–§1.3.4.

In addition to preserving satisfiability, the mapping between the eliminated
symbols of a theory and the new symbols that replace them is maintained. For
satisfiable problems, this facilitates model generation from a satisfying assignment
generated by the SAT solver. For unsatisfiable problems, it permits the generation
of higher level proof information from a Boolean proof of unsatisfiability.

1.3.1.2. Eliminating Lambdas

Recall that the syntax of lambda expressions does not permit recursion or it-
eration. Therefore, each lambda application in Forig can be expanded by beta-
substitution, i.e., by replacing each argument variable with the corresponding
argument term. Denote the resulting formula by Fnorm .

This step can result in an exponential blow-up in formula size. Suppose that
all expressions in our logic are represented as directed acyclic graphs (DAGs) so
as to share common sub-expressions. Then, the following example shows how
we can get an exponential-sized DAG representation of Fnorm starting from a
linear-sized DAG representation of Forig .

Example 1.3.1. Let Forig be defined recursively by the following set of expres-
sions:

Forig
.
= P (L1(b))

L1
.
= λx . f1(L2(x), L2(g1(x)))

L2
.
= λx . f2(L3(x), L3(g2(x)))

...
...

Ln−1
.
= λx . fn−1(Ln(x), Ln(gn−1(x)))

Ln
.
= gn

Notice that the representation of Forig is linear in n. Suppose we perform beta-
substitution on L1. As a result, the sub-expression L1(b) gets transformed to
f1(L2(b), L2(g1(b))). Next, if we expand L2, we get four applications of L3, viz.,
L3(b), L3(g1(b)), L3(g2(b)), and L3(g2(g1(b))). Notice that there were originally
only two applications of L3.

Continuing the elimination process, after k − 1 elimination steps, we will get
2k−1 distinct applications of Lk. This can be formalized by observing that after
k − 1 steps each argument to Lk is comprised of applications of functions from a
distinct subset of P({g1, g2, . . . , gk−1}). Thus, after all lambda elimination steps,
Fnorm will contain 2n−1 distinct applications of gn, and hence is exponential in
the size of Forig .

In practice, however, this exponential blow-up is rarely encountered. This is
because the recursive structure in most lambda expressions, including those for
memory (array) operations, tends to be linear. For example, here is the lambda
expression corresponding to the result of the memory write (store) operation:

λ addr . ITE(addr =A, D, M (addr))

Notice that the “recursive” use of M occurs only in one branch of the ITE ex-
pression.

1.3.1.3. Eliminating Function Applications

The second step in the transformation to a Boolean formula is to eliminate appli-
cations of function and predicate symbols of non-zero arity. These applications
are replaced by symbolic constants, but only after encoding enough information
to maintain functional consistency (the congruence property).

There are two different techniques of eliminating function (and predicate)
applications. The first is a classic method due to Ackermann [1] that involves
creating sufficient instances of the congruence axiom to preserve satisfiability. The
second is a technique introduced by Bryant et al. [42] that exploits the polarity

of equations and is based on the use of ITE expressions. We briefly review each
of these methods.
Ackermann’s method. We illustrate Ackermann’s method using an example.
Suppose that function symbol f has three occurrences: f(a1), f(a2), and f(a3).
First, we generate three fresh symbolic constants xf 1, xf 2, and xf 3 to replace all
instances of these applications in Fnorm .

Then, the following set of functional consistency constraints for f is generated:

{

a1 = a2 =⇒ xf 1 = xf 2, a1 = a3 =⇒ xf 1 = xf 3, a2 = a3 =⇒ xf 2 = xf 3

}

In a similar fashion, functional consistency constraints are generated for each
function and predicate symbol in Fnorm . Denote the conjunction of all these
constraints by Fcong . Then, Farith is the formula Fcong ∧ Fnorm .
The Bryant-German-Velev method. The function elimination method pro-
posed by Bryant, German, and Velev exploits a property of function applications
called positive equality [42]. (This discussion assumes that we are working with
the concept of validity rather than satisfiability, but the ideas remain unchanged
except for a flipping of polarities.) The general idea is to determine the polarity
of each equation in the formula, i.e., whether it appears under an even (positive)
or odd (negative) number of negations. Applications of uninterpreted functions
can then be classified as either p-function applications, i.e., used only under pos-
itive equalities, or g-function applications, i.e., general function applications that
appear under other equalities or under inequalities. The p-function applications
can be encoded in propositional logic with fewer Boolean variables than the g-
function applications, thus greatly simplifying the resulting SAT problem. We
omit the details.

In order to exploit positive equality, Bryant et al. eliminate function applica-
tions using a nested series of ITE expressions. As an example, if function symbol
f has three occurrences: f(a1), f(a2), and f(a3), then we would generate three
new symbolic constants xf 1, xf 2, and xf 3. We would then replace all instances of
f(a1) by xf 1, all instances of f(a2) by ITE(a2 = a1, xf 1, xf 2), and all instances
of f(a3) by ITE(a3 = a1, xf 1, ITE(a3 = a2, xf 2, xf 3)). It is easy to see that this
preserves functional consistency.

Predicate applications can be removed by a similar process. In eliminat-
ing applications of some predicate p, we introduce symbolic Boolean constants
xp1, xp2, Function and predicate applications in the resulting formula Farith

are all of zero arity.
Lahiri et al. [92] have generalized the notion of positive equality to apply to

both polarities and demonstrate that further optimization is possible, albeit at
the cost of incurring a time overhead.

1.3.1.4. Summary

We conclude this section with observations on the worst-case blow-up in formula
size in going from the starting formula Forig to the quantifier-free arithmetic
formula Farith . The lambda elimination step can result in a worst-case exponential
blow-up, but is typically only linear. In going from the lambda-free formula Fnorm

to Farith , the worst-case blow-up is only quadratic. Thus, if the result of lambda
expansion is linear in the size of Forig , Farith is at most quadratic in the size of
Forig .

We next consider the two main classes of methods for transforming Farith to
an equisatisfiable Boolean formula Fbool : the small-domain encoding method and
the direct encoding method.

1.3.2. Small-domain encodings

The formula Farith is a quantifier-free ΣZ -formula, and so, we are concerned with
TZ-satisfiability of quantifier-free ΣZ -formulas. Recall that this problem is NP-
complete (as discussed in 1.2.2). In the remainder of this section, we assume
satisfiability is with respect to TZ and that all formulas are quantifier-free ΣZ -
formulas.

A formula is constructed by combining linear constraints with Boolean oper-
ators (such as ∧, ∨, ¬). Formally, the ith constraint is of the form

n∑

j=1

ai,jxj ≥ bi

where the coefficients and the constant terms are integer constants and the vari-
ables12 x1, x2, . . . , xn are integer-valued.

If there is a satisfying solution to a formula, there is one whose size, measured
in bits, is polynomially bounded in the problem size [31, 151, 84, 119]. Problem
size is traditionally measured in terms of the parameters m, n, log amax, and
log bmax, where m is the total number of constraints in the formula, n is the
number of variables (integer-valued symbolic constants), and amax = max(i,j) |ai,j |
and bmax = maxi |bi| are the maximums of the absolute values of coefficients and
constant terms respectively.

The above result implies that we can use an enumerative approach to deciding
the satisfiability of a formula, where we restrict our search for satisfying solutions
to within the bound on the problem size mentioned above. This approach is
referred to as the small-domain encoding (SD) method.

In this method, given a formula FZ , we first compute the polynomial bound
S on solution size, and then search for a satisfying solution to FZ in the bounded
space {0, 1, . . . , 2S − 1}n. However, a näıve implementation of a SD-based deci-
sion procedure fails for formulas encountered in practice. The problem is that
the bound on solution size, S, is O(logm + log bmax + m[logm + log amax]). In
particular, the presence of the m logm term means that, for problems involving
thousands of constraints and variables, as often arises in practice, the Boolean
formulas generated are beyond the capacity of even the best current SAT solvers.

In this section, we describe how the small-domain encoding method can be
made practical by considering special cases of formulas. Since we consider arbi-
trary Boolean combinations of these constraints, the decision problems are NP-
complete no matter how simple the form of the linear constraint.

12The word “variable” is used in this section instead of “symbolic constant” as it is the more
common term used in literature on solving integer linear arithmetic constraints.

1.3.2.1. Equalities

When all linear constraints are equalities (or disequalities) over integer variables,
the fragment of TZ is called equality logic. For this fragment, we have the following
“folk theorem” that is easily obtained:

Theorem 1.3.2. For an equality logic formula with n variables, S = logn.

The key proof argument is that any satisfying assignment can be translated
to the range {0, 1, 2, . . . , n − 1}, since we can only tell whether variable values
differ, not by how much.

This bound yields a search space of size O(nn), which can be far too large
in many cases. Several optimizations are possible. The most obvious is to divide
the set of variables into equivalence classes so that two variables that appear in
the same equality fall into the same class. Then a separate bound on solution size
can be derived for each equivalence class. This optimization is clearly applicable
for arbitrary linear constraints, not just equalities.

The range allocation method [122] is another effective technique for reducing
the size of the search space. This method operates by first building a constraint
graph representing equalities and disequalities between variables in the formula,
with separate types of edges representing equalities and disequalities in the nega-
tion normal form. Connected components of this graph correspond to equivalence
classes mentioned above. Furthermore, the only major restriction on satisfying
solutions comes from cycles that contain exactly one disequality edge. Pnueli et
al. [122] give a graph-based algorithm that assigns, to each variable that partic-
ipates in both equality and disequality constraints, a set of values large enough
to consider all possible legal truth assignments to the constraints containing it.
The resulting set of values assigned to each variable can be of cardinality smaller
than n, thus often resulting in a more compact search space than nn. However,
the worst case solution size is still n, and the search space can still be Θ(nn).

1.3.2.2. Difference Logic

Recall that difference logic requires every atom to be of the form xi − xj ⊲⊳ bt
where xi and xj are variables, ⊲⊳ is either = or ≤, and bt is an integer. Note that
a constraint of the form xi ⊲⊳ bt can be written as xi − x0 ⊲⊳ bt where x0 is a
special “variable” denoting zero. Also note that an equality can be written as a
conjunction of two inequalities, while a strict inequality < can be rewritten as a
le inequality by rounding the constant term down.

We will refer to such atoms as difference constraints. They are also referred
to in the literature as difference-bound constraints or separation predicates, and
difference logic has also been termed as separation logic. We will use DL as an
acronym for difference logic.

A fundamental construct used in the SAT-encoding of difference logic is the
constraint graph. This graph is a weighted, directed multigraph built from the
set of m difference constraints involving n variables as follows:

1. A vertex vi is introduced for each variable xi, including for x0.
2. For each difference constraint of the form xi − xj ≥ bt, we add a directed

edge from vi to vj of weight bt.

The resulting structure has m edges and n + 1 vertices. It is, in general, a
multigraph since there can be multiple constant (right-hand side) terms for a
given left-hand side expression xi − xj .

The following theorem states the bound on solution size for difference logic.

Theorem 1.3.3. Let Fdiff be a DL formula with n variables, excluding x0. Let
bmax be the maximum over the absolute values of all difference constraints in
Fdiff . Then, Fdiff is satisfiable if and only if it has a solution in {0, 1, 2, . . . , d}n

where d = n · (bmax + 1).

The proof can be obtained by an analysis of the constraint graph G. The
main insight is that any satisfying assignment for a formula with constraints
represented by G can have a spread in values that is at most the weight of the
longest path in G. This path weight is at most n · (bmax + 1). The bound is tight,
the “+1” in the second term arising from a “rounding” of inequalities from strict
to non-strict.

The above bound can also be further optimized. Equivalence classes can be
computed just as before. The range allocation approach has also been extended
to apply to difference logic, although the analysis involved in computing ranges
can take worst-case exponential time [146]. On the plus side, the range allocation
approach can, in some cases, exponentially reduce the size of the search space.

1.3.2.3. UTVPI Constraints

UTVPI constraints include difference constraints as well as sum constraints of
the form xi + xj ⊲⊳ bt. UTVPI constraints over integer variables are also called
generalized 2SAT constraints. Useful optimization problems, such as the mini-
mum vertex cover and the maximum independent set problems, can be modeled
using UTVPI constraints [80], and some applications of constraint logic program-
ming and automated theorem proving also generate UTVPI constraints (e.g.,
see [83, 11]).

The bound on solution size for UTVPI constraints is only a slight increase
over that for difference logic.

Theorem 1.3.4. Let Futvpi be a UTVPI formula with n variables. Let bmax

be the maximum over the absolute values of all constraints in Futvpi . Then,
Futvpi is satisfiable if and only if it has a solution in {0, 1, 2, . . . , d}n where d =
2 · n · (bmax + 1).

The theorem can be proved using results from polyhedral theory [131, 134].
A UTVPI formula can be viewed as a union of polyhedra defined by UTVPI
hyperplanes. The vertices of these polyhedra are half-integral. The main step in
the proof is to show that if a satisfying solution exists (i.e., there is an integer
point inside some polyhedron in the union), then there is a solution that can be
obtained by rounding some vertex of a polyhedron in the union. Since the above
bound works for the vertices of the UTVPI polyhedra, it suffices for searching for
integer solutions also.

1.3.2.4. Sparse, Mostly-Difference Constraints

The most general case is when no restricting assumptions can be made on the
structure of linear constraints. In this case, we can still improve the “typical-
case” complexity of SAT-encoding by exploiting the structure of constraints that
appear in practical problems of interest.

It has been observed [131, 123, 59] that formulas arising in software verifica-
tion have:

1. Mainly Difference Constraints: Of the m constraints, m− k are difference
constraints, where k ≪ m.

2. Sparse Structure: The k non-difference constraints are sparse, with at most
w variables per constraint, where w is “small”. The parameter w is termed
the width of the constraint.

Seshia and Bryant [132] exploited above special structure to obtain a bound on
solution size that is parameterized in terms of k and w in addition to m, n, amax

and bmax. Their main result is stated in the following theorem.

Theorem 1.3.5. Let FZ be a quantifier-free ΣZ-formula. If FZ is satisfiable,
there is a solution to FZ whose l∞ norm is bounded by d = (n + 2)∆, where
∆ = s (bmax + 1) (amaxw)k and s = min(n+ 1,m).

The proof of the above theorem is based on a theorem given by Borosh,
Treybig, and Flahive [30] bounding integer solutions of linear systems of the form
Ax ≥ b, where x is of length n. Their result is as follows. Consider the augmented
matrix [A|b]. Let ∆ be the maximum of the absolute values of all minors of this
augmented matrix. Then, the linear system has a satisfying solution if and only
if it has one with all entries bounded by (n + 2)∆. Seshia and Bryant used the
special structure of sparse, mostly-difference constraints to obtain a bound on the
value of ∆.

Several optimizations are possible to reduce the size of the bound given in
Theorem 1.3.5, including computing equivalence classes of variables, rewriting
constraints to reduce the size and number of non-zero coefficients, a “shift-of-
origin” transformation to deal with large constant terms, etc. For brevity, these
are omitted here and can be found elsewhere [131].

1.3.2.5. Summary

Table 1.1 summarizes the value of d for all the classes of linear constraints explored
in this section. We can clearly see that the solution bound for arbitrary formulas
is conservative. For example, if all constraints are difference constraints, the
expression for d simplifies to (n+2) ·min(n+1,m) · (bmax +1). This is n+2 times
as big as the bound obtainable for difference logic in isolation; however, the slack
in the bound is a carry-over from the result of Borosh, Treybig, and Flahive [30].
For UTVPI constraints too, the bound derived for arbitrary formulas is much
looser. In the worst case, it is looser by an exponential factor: if k is O(m), amax

is 1, and w is 2, then the bound is O((n + 2) · min(n + 1,m) · (bmax + 1) · 2m),
whereas the results of §1.3.2.3 tell us that the solution bound d = 2 ·n · (bmax + 1)
suffices.

Table 1.1. Solution bounds for classes of linear constraints. The classes are listed top

to bottom in increasing order of expressiveness.

Class of Linear Constraints Solution Bound d

Equality constraints n

Difference constraints n · (bmax + 1)
UTVPI constraints 2 · n · (bmax + 1)

Arbitrary linear constraints (n+ 2) · min(n+ 1,m) · (bmax + 1) · (w · amax)k

1.3.3. Direct encoding of theory axioms

A decision procedure based on the direct encoding method operates in three
steps:

1. Replace each unique constraint in the linear arithmetic formula Farith with
a fresh Boolean variable to get a Boolean formula Fbvar .

2. Generate a Boolean formula Fcons that constrains values of the introduced
Boolean variables so as to preserve the arithmetic information in Farith .

3. Invoke a SAT solver on the Boolean formula Fbvar ∧ Fcons .

The direct encoding approach has also been termed as per-constraint encoding.

For integer linear arithmetic, the formula Fcons expresses so-called transitivity
constraints. For equality logic, Bryant and Velev [44] showed how to generate
transitivity constraints efficiently so that the size of Fcons is in the worst-case
only cubic in the size of the number of equalities in Farith . Their transitivity
constraint generation algorithm operates on the constraint graph (as introduced
in §1.3.2.1). It avoids enumeration of cycles by introducing chordal edges, thereby
avoiding an exponential blow-up in the number of transitivity constraints.

Strichman et al. [143] generalized the above graph-based approach to differ-
ence logic. In this case, the constraint graph is just as in §1.3.2.2. Again, cycle
enumeration is avoided by the introduction of new edges. However, in the case
of difference logic, the number of added edges can be exponential in the original
constraint graph, in the worst case [131]. Even so, in many practical instances,
the number of transitivity constraints is small and the resulting SAT problem is
easily solved. Various heuristic optimizations are possible based on the Boolean
structure of the formula [142].

Strichman [141] also extended the above scheme to operate on an arbitrary
linear arithmetic formula (over the integers or the rationals). The “transitivity
constraints” are generated using the Fourier-Motzkin variable elimination pro-
cedure (the Omega test variant [125], in the case of integers). It is well-known
that Fourier-Motzkin can generate doubly-exponentially many new constraints in
the worst case [45]. Thus, the worst-case size of Fcons is doubly-exponential in
the size of Farith . This worst-case behavior does seem to occur in practice, as
evidenced by the results in Strichman’s paper [141] and subsequent work.

We summarize the complexity of the direct encoding method for the three
classes of linear arithmetic formulas in Table 1.2.

Table 1.2. Worst-case size of direct encoding. The classes are listed top to bottom in

increasing order of expressiveness.

Class of Linear Constraints Worst-case size of Fcons

Equality constraints Cubic
Difference constraints Exponential

Arbitrary linear constraints Doubly exponential

1.3.4. Hybrid eager approaches

In §1.3.2 and §1.3.3, we have introduced two very distinct methods of deciding a
linear arithmetic formula via translation to SAT. This naturally gives rise to the
following question: Given a formula, which encoding technique should one use to
decide that formula the fastest? This question is an instance of the automated
algorithm selection problem.

On first glance, it might seem that the small-domain encoding would be best,
since it avoids the potential exponential or doubly-exponential blowup in SAT
problem size that the direct encoding can suffer in the worst case. However, this
blowup is not always a problem because of the special structure of the generated
SAT instance. The form of a transitivity constraint is b1 ∧ b2 =⇒ b3 where
b1, b2, b3 are Boolean variables encoding linear constraints. If the polarities of
these variables are chosen appropriately, the resulting constraint is either a Horn
constraint or can be transformed into one by variable renaming. Thus, the overall
SAT encoding is a “mostly-HornSAT” problem: i.e., the vast majority of clauses
are Horn clauses. It has been observed for difference logic that the generated SAT
problems are solved quickly in practice in spite of their large size [131].

The question on the choice of encoding has been studied in the context of
difference logic [131]. It has been found that this question cannot be resolved
entirely in favor of either method. One can select an encoding method based
on formula characteristics using a rule generated by machine learning from past
examples (formulas) [133, 131]. Moreover, parts of a single formula corresponding
to different variable classes can be encoded using different encoding methods.
The resulting hybrid encoding algorithm has been empirically shown to be more
robust to variation in formula characteristics than either of the two techniques
in isolation [131]. This hybrid algorithm is the first successful use of automated
algorithm selection based on machine learning in SMT solvers.

1.4. Integrating Theory Solvers into SAT Engines

The alternative to the eager approach, as described above, is the lazy approach
in which efficient SAT solvers are integrated with decision procedures for first-
order theories (also called Theory Solvers or T -solvers) [6, 153, 4, 57, 8, 20, 72,
111, 155]). Systems based on this approach are called lazy SMT solvers, and
include ArgoLib [98], Ario [136], Barcelogic [110], CVC3 [18], Fx7 [105], ICS [66],
MathSAT [34], Simplify [59], TSAT++ [5], Verifun [67], Yices [62], and Z3 [56].

1.4.1. Theory Solvers and their desirable features

In its simplest form, a theory solver for a theory T (T -solver) is a procedure which
takes as input a collection of T -literals µ and decides whether µ is T -satisfiable. In
order for a T -solver to be effectively used within a lazy SMT solver, the following
features are often important or even essential. In the following, we assume an
SMT solver has been called on a T -formula ϕ.

Model generation: when the T -solver is invoked on a T -consistent set µ, it is
able to produce a T -model I witnessing the consistency of µ, i.e., I |=T µ.

Conflict set generation: when the T -solver is invoked on a T -inconsistent set
µ, it is able to produce the (possibly minimal) subset η of µ which has
caused its inconsistency. η is called a theory conflict set of µ.D

Incrementality: the T -solver “remembers” its computation status from one
call to the next, so that, whenever it is given as input a set µ1∪µ2 such that
µ1 has just been proved T -satisfiable, it avoids restarting the computation
from scratch.

Backtrackability: it is possible for the T -solver to undo steps and return to a
previous state in an efficient manner.

Deduction of unassigned literals: when the T -solver is invoked on a T -con-
sistent set µ, it can also perform deductions of the form η |=T l, where
η ⊆ µ and l is a literal on a not-yet-assigned atom in ϕ.13

Deduction of interface equalities: when returning Sat, the T -solver can also
perform deductions of the form µ |=T e (if T is convex) or µ |=T

∨

j ej

(if T is not convex) where e, e1, ..., en are equalities between variables or
terms occurring in atoms in µ. We call such equalities interface equalities
and denote the interface equality (vi = vj) by eij . Deductions of inter-
face equalities are also called eij-deductions. Notice that here the deduced
equalities need not occur in the input formula ϕ.

T -solvers will be discussed in more detail in §1.5.

1.4.2. A generalized DPLL schema

Different variants of lazy SMT procedures have been presented. Here we consider
variants in which the Boolean abstraction ϕp of the input formula ϕ is fed into
a DPLL-based SAT solver (henceforth referred to as a DPLL solver). Note that
since most DPLL solvers accept only CNF, if ϕp has arbitrary Boolean structure,
it is first converted into an equisatisfiable CNF formula using standard techniques
(see §??).

In its simplest integration schema [20, 57], called “offline” [67], 14 the Boolean
abstraction ϕp of the input formula is fed to a DPLL solver, which either decides
that ϕp is unsatisfiable, and hence ϕ is T -unsatisfiable, or it returns a satisfying
assignment µp; in the latter case, the set of literals µ corresponding to µp is given
as input to the T -solver. If µ is found to be T -consistent, then ϕ is T -consistent.

13 Notice that, in principle, every T -solver has deduction capabilities, as it is always possible
to call T -solver(µ∪{¬l}) for every unassigned literal l [4]. We call this technique plunging [59].
In practice, plunging is very inefficient.

14The offline approach is also called the “lemmas on demand” approach in [57].

1. SatValue T -DPLL (T -formula ϕ, T -assignment & µ) {
2. if (T -preprocess(ϕ, µ) == Conflict);

3. return Unsat;

4. ϕp = T 2B(ϕ); µp = T 2B(µ);
5. while (1) {
6. T -decide next branch(ϕp , µp);

7. while (1) {
8. status = T -deduce(ϕp , µp);

9. if (status == Sat) {
10. µ = B2T (µp);

11. return Sat; }
12. else if (status == Conflict) {
13. blevel = T -analyze conflict(ϕp , µp);

14. if (blevel == 0)

15. return Unsat;

16. else T -backtrack(blevel,ϕp , µp);

17. }
18. else break;

19. } } }

Figure 1.3. An online schema for T -DPLL based on modern DPLL.

If not, ¬µp is added as a clause to ϕp, and the SAT solver is restarted from scratch
on the resulting formula. Notice that here DPLL is used as a black-box.

In a more sophisticated schema [6, 79, 4, 153, 8, 67, 72, 37], called “online”
[67], DPLL is modified to work directly as an enumerator of truth assignments,
whose T -satisfiability is checked by a T -solver. This schema evolved from that
of the DPLL-based procedures for modal logics (see §?? and §??). Figure 1.3
shows an online T -DPLL procedure based on a modern DPLL engine [157, 158].
The inputs ϕ and µ are a T -formula and a reference to an (initially empty) set of
T -literals respectively. The DPLL solver embedded in T -DPLL reasons on and
updates ϕp and µp, and T -DPLL maintains some data structure encoding the
set Lits(ϕ) and the bijective mapping T 2B/B2T on literals.15

T -preprocess simplifies ϕ into a simpler formula, and updates µ if necessary,
so as to preserve the T -satisfiability of ϕ ∧ µ. If this process produces some
conflict, then T -DPLL returns Unsat. T -preprocess combines most or all of
the Boolean preprocessing steps of DPLL with some theory-dependent rewriting
steps on the T -literals of ϕ. (The latter are described in §1.4.3.1. and §1.4.3.2.)

T -decide next branch selects the next literal to split on as in standard
DPLL (but it may also take into consideration the semantics in T of the literals
being selected.)

T -deduce, in its simplest version, behaves similarly to standard BCP in
DPLL: it iteratively deduces Boolean literals lp implied by the current assignment
(i.e., s.t. ϕp ∧ µp |=p l

p, “|=p” being propositional entailment) and updates ϕp

and µp accordingly, until one of the following conditions occur:

(i) µp propositionally violates ϕp (µp ∧ ϕp |=p ⊥). If so, T -deduce behaves like

15We implicitly assume that all functions called in T -DPLL have direct access to Lits(ϕ) and
to T 2B/B2T , and that both T 2B and B2T require constant time for mapping each literal.

deduce in DPLL, returning Conflict.
(ii) µp propositionally satisfies ϕp (µp |=p ϕp). If so, T -deduce invokes the

T -solver on µ: if the latter returns Sat, then T -deduce returns Sat; other-
wise, T -deduce returns Conflict.

(iii) no more literals can be deduced. If so, T -deduce returns Unknown. A slightly
more elaborate version of T -deduce can invoke the T -solver on µ also at this
intermediate stage: if the T -solver returns Unsat, then T -deduce returns
Conflict. (This enhancement, called early pruning, is discussed in §1.4.3.3.)

A much more elaborate version of T -deduce can be implemented if the T -solver
is able to perform deductions of unassigned literals. (This enhancement, called
T -propagation, is discussed in §1.4.3.4.)

T -analyze conflict is an extension of analyze conflict of DPLL [157,
158]: if the conflict produced by T -deduce is caused by a Boolean failure (case
(i) above), then T -analyze conflict produces a Boolean conflict set ηp and
the corresponding value of blevel [157, 158]; if instead the conflict is caused by
a T -inconsistency revealed by T -solver (case (ii) or (iii) above), then the result
of T -analyze conflict is the Boolean abstraction ηp of the theory conflict set
η ⊆ µ produced by the T -solver, or a mixed Boolean+theory conflict set computed
by a backward-traversal of the implication graph starting from the conflicting
clause ¬ηp (see §1.4.3.5). If the T -solver is not able to return a theory conflict
set, the whole assignment µ may be used, after removing all Boolean literals
from µ. Once the conflict set ηp and blevel have been computed, T -backtrack

behaves analogously to backtrack in DPLL: it adds the clause ¬ηp to ϕp, either
temporarily or permanently, and backtracks up to blevel. (These features, called
T -backjumping and T -learning, are discussed in §1.4.3.5.)

T -DPLL differs from the DPLL schema of [157, 158] because it exploits:

• an extended notion of deduction of literals: not only Boolean deduction
(µp ∧ ϕp |=p l

p), but also theory deduction (µ |=T l);
• an extended notion of conflict: not only Boolean conflicts (µp ∧ ϕp |=p ⊥),

but also theory conflicts (µ |=T ⊥), or even mixed Boolean+theory conflicts
((µ ∧ ϕ) |=T ⊥). See §1.4.3.5.

Example 1.4.1. Consider the formulas ϕ and ϕp shown in Figure 1.4. Suppose
T -decide next branch selects, in order, µp := {¬B5, B8, B6,¬B1} (in c4, c7, c6,
and c1). T -deduce cannot unit-propagate any literal. Assuming the enhanced
version of step (iii), it invokes the T -solver on µ := {¬(3x1 − x3 ≤ 6), (x3 =
3x5 +4), (x2−x4 ≤ 6),¬(2x2−x3 > 2)}. Suppose the enhanced T -solver not only
returns Sat, but also deduces ¬(3x1−2x2 ≤ 3) (c3 and c5) as a consequence of the
first and last literals. The corresponding Boolean literal ¬B3, is then added to µp

and propagated (T -propagation). As a result, A1, A2 and B2 are unit-propagated
from c5, c3 and c2.

Let µ′p be the resulting assignment {¬B5, B8, B6,¬B1,¬B3, A1, A2, B2}).
By step (iii), T -deduce invokes the T -solver on µ′: {¬(3x1 − x3 ≤ 6), (x3 =
3x5 + 4), (x2 − x4 ≤ 6),¬(2x2 − x3 > 2),¬(3x1 − 2x2 ≤ 3), (x1 − x5 ≤ 1)} which
is inconsistent because of the 1st, 2nd, and 6th literals. As a result, the T -solver

ϕ = ϕp =
c1 : {¬(2x2 − x3 > 2) ∨ A1}
c2 : {¬A2 ∨ (x1 − x5 ≤ 1)}
c3 : {(3x1 − 2x2 ≤ 3) ∨A2}
c4 : {¬(2x3 + x4 ≥ 5) ∨ ¬(3x1 − x3 ≤ 6) ∨ ¬A1}
c5 : {A1 ∨ (3x1 − 2x2 ≤ 3)}
c6 : {(x2 − x4 ≤ 6) ∨ (x5 = 5 − 3x4) ∨ ¬A1}
c7 : {A1 ∨ (x3 = 3x5 + 4) ∨ A2}

{¬B1 ∨ A1}
{¬A2 ∨ B2}
{B3 ∨ A2}
{¬B4 ∨ ¬B5 ∨ ¬A1}
{A1 ∨ B3}
{B6 ∨ B7 ∨ ¬A1}
{A1 ∨ B8 ∨ A2}

¬B3

A1

A2

B2

¬B2

¬A2

B3

c8 : B5 ∨ ¬B8 ∨ ¬B2

T

¬B5

B8

B6

¬B1

Figure 1.4. Boolean search (sub)tree in the scenario of Example 1.4.1. (A diagonal line, a

vertical line and a vertical line tagged with “T ” denote literal selection, unit propagation and

T -propagation respectively; a bullet “•” denotes a call to the T -solver.)

returns Unsat, and hence T -deduce returns Conflict. Next, T -analyze conflict

and T -backtrack learn the corresponding Boolean conflict clause

c8 =def B5 ∨ ¬B8 ∨ ¬B2

and backtrack, popping from µp all literals up to {¬B5, B8}, and then unit-
propagating ¬B2 on c8 (T -backjumping and T -learning). Then, starting from
{¬B5, B8,¬B2}, ¬A2 and B3 are also unit-propagated (on c2 and c3 respectively).

As in standard DPLL, an excessive number of T -learned clauses may cause
an explosion in the size of ϕ. Thus, many lazy SMT tools introduce techniques
for deleting T -learned clauses when necessary. Moreover, like in standard DPLL,
T -DPLL can be restarted from scratch in order to avoid dead-end portions of the
search space. The learned clauses prevent T -DPLL from repeating the same steps
twice. Most lazy SMT tools implement restarting mechanisms as well.

1.4.3. Enhancements to the schema

We describe some of the most effective techniques which have been proposed in
order to optimize the interaction between the DPLL solver and the T -solver. (We
refer the reader to [130] for a much more extensive and detailed survey.) Some of
them derive from those developed in the context of DPLL-based procedures for
modal logics (see §??).

1.4.3.1. Normalizing T -atoms.

As discussed in §??, in order to avoid the generation of many trivially-unsatisfiable
assignments, it is wise to preprocess T -atoms so as to map as many as possible

T -equivalent literals into syntactically-identical ones. This can be achieved by
applying some rewriting rules, like, e.g.:

• Drop dual operators: (x1 < x2), (x1 ≥ x2) =⇒ ¬(x1 ≥ x2), (x1 ≥ x2).
• Exploit associativity: (x1 + (x2 + x3) = 1), ((x1 + x2) + x3) = 1) =⇒

(x1 + x2 + x3 = 1).
• Sort: (x1 + x2 − x3 ≤ 1), (x2 + x1 − 1 ≤ x3) =⇒ (x1 + x2 − x3 ≤ 1)).
• Exploit T -specific properties: (x1 ≤ 3), (x1 < 4) =⇒ (x1 ≤ 3) if x1 repre-

sents an integer.

The applicability and effectiveness of these mappings depends on the theory T .

1.4.3.2. Static learning

On some specific kinds of problems, it is possible to quickly detect a priori small
and “obviously T -inconsistent” sets of T -atoms in ϕ (typically pairs or triplets).
Some examples are:

• incompatible values (e.g., {x = 0, x = 1}),
• congruence constraints (e.g., {(x1 = y1), (x2 = y2), f(x1, x2) 6= f(y1, y2)}),
• transitivity constraints (e.g., {(x− y ≤ 2), (y − z ≤ 4),¬(x− z ≤ 7)}),
• equivalence constraints (e.g., {(x = y), (2x− 3z ≤ 3),¬(2y − 3z ≤ 3)}).

If so, the clauses obtained by negating the literals in such sets (e.g., ¬(x =
0) ∨ ¬(x = 1)) can be added to the formula before the search starts. Then,
whenever all but one of the literals in the set are assigned to true, the negation
of the remaining literal is assigned deterministically by unit propagation. This
prevents the solver from generating any assignment which include the inconsistent
set. This technique may significantly reduce the Boolean search space, and hence
the number of calls to the T -solver, producing significant speed-ups [4, 9, 34, 155].

Intuitively, one can think of static learning as suggesting some small and
“obvious” T -valid lemmas relating some T -atoms of ϕ, which drive DPLL in its
Boolean search. Notice that, unlike the extra clauses added in “per-constraint”
eager approaches [143, 133] (see §1.3), the clauses added by static learning refer
only to atoms which already occur in the original formula, so that the Boolean
search space is not enlarged. Notice also that these clauses are not needed for
correctness or completeness: rather, they are used only for pruning the Boolean
search space.

1.4.3.3. Early pruning

Another optimization, here generically called early pruning – EP,16 is to introduce
intermediate calls to the T -solver while an assignment µ is still under construction
(in the T -DPLL scheme of §1.4.2, this corresponds to the “slightly more elaborate
version” of step (iii) of T -deduce). If T -solver(µ) returns Unsat, then all possible
extensions of µ are unsatisfiable, so T -DPLL can immediately return Unsat and
backtrack, possibly avoiding a very large amount of useless search.

In general, EP may dramatically reduce the Boolean search space, and hence
of the number of calls to the T -solver. Unfortunately, as EP may cause useless

16Also called intermediate assignment checking in [79] and eager notification in [20].

calls to the T -solver, the benefits of the pruning effect may be partly counter-
balanced by the overhead introduced by the extra calls. Many different improve-
ments to EP and strategies for interleaving calls to the T -solver with Boolean
reasoning steps have been proposed [153, 144, 72, 8, 5, 111, 35, 49].

1.4.3.4. T -propagation

As discussed in §1.4.1, for some theories it is possible to implement the T -solver so
that a call to T -solver(µ) returning Sat can also perform one or more deduction(s)
of the form η |=T l, where η ⊆ µ and l is a literal on an unassigned atom
in ϕ. If this is the case, then the T -solver can return l to T -DPLL, so that
lp is added to µp and unit-propagated [4, 8, 72, 111]. This process, which is
called T -propagation,17 may result in new literals being assigned, leading to new
calls to the T -solver, followed by additional new assignments being deduced,
and so on, so that together, T -propagation and unit propagation may produce
a much larger benefit than either of them alone. As with early-pruning, there
are different strategies by which T -propagation can be interleaved with unit-
propagation [4, 8, 72, 34, 111, 49, 114].

Notice that when the T -solver deduces η |=T l, it can return this deduction
to T -DPLL, which can then add the T -deduction clause (ηp → lp) to ϕp, either
temporarily or permanently. The T -deduction clause can be used during the rest
of the search, with benefits analogous to those of T -learning (see §1.4.3.5).

1.4.3.5. T -backjumping and T -learning

As hinted in §1.4.2, we assume that, when the T -solver is invoked on a T -
inconsistent assignment µ, it is able to return also the conflict set η ⊆ µ causing
the T -unsatisfiability of µ (see §1.4.1). If so, T -DPLL can use ηp as if it were a
Boolean conflict set to drive the backjumping and learning mechanism of DPLL:
the conflict clause ¬ηp is added to ϕp either temporarily or permanently (T -
learning) and the procedure backtracks to the branching point suggested by ηp

(T -backjumping) [81, 120, 153, 57, 144, 8, 72, 34]. Modern implementations in-
herit the backjumping mechanism of current DPLL tools: T -DPLL learns the
conflict clause ¬ηp and backtracks to the highest point in the stack where one
lp ∈ ηp is not assigned, and unit propagates ¬lp on ¬ηp. Intuitively, DPLL back-
tracks to the highest point where it would have done something different if it had
known in advance the conflict clause ¬ηp from the T -solver.

As hinted in §1.4.2, it is possible to use either a theory conflict set η (i.e.,
¬η is a T -valid clause) or a mixed Boolean+theory conflict set η′, i.e., a set η′

s.t. an inconsistency can be derived from η′ ∧ ϕ by means of a combination of
Boolean and theory reasoning (η′ ∧ ϕ |=T ⊥). Such conflict sets/clauses can be
obtained starting from the theory conflict clause ¬ηp by backward-traversal of the
implication graph, until one of the standard conditions (e.g., 1UIP) is achieved.
Notice that it is possible to learn both clauses ¬η and ¬η′.

Example 1.4.2. The scenario depicted in Example 1.4.1 represents a form of
T -backjumping and T -learning, in which the conflict clause c8 is a TR-conflict

17Also called forward reasoning in [4], enhanced early pruning in [8], theory propagation in
[113, 111], and theory-driven deduction or T -deduction in [34].

clause (i.e., B2T (c8) is TR-valid). However, T -analyze conflict could instead
look for a mixed Boolean+theory conflict clause by treating c8 as a conflicting
clause and backward-traversing the implication graph. This is done by starting
with c8 and performing resolution with each of the clauses that triggered the
assignments leading to the conflict, but in the reverse order that the assignments
occurred (in this case, clauses c2 and c3, the antecedent clauses of B2 and A2

respectively, and the T -deduction clause c9 which “caused” the propagation of
¬B3):

c8: theory conflicting clause
︷ ︸︸ ︷

B5 ∨ ¬B8 ∨ ¬B2

c2

︷ ︸︸ ︷

¬A2 ∨B2

B5 ∨ ¬B8 ∨ ¬A2

c3

︷ ︸︸ ︷

B3 ∨A2

B5 ∨ ¬B8 ∨B3

c9

︷ ︸︸ ︷

B5 ∨B1 ∨ ¬B3

B5 ∨ ¬B8 ∨B1
︸ ︷︷ ︸

c′
8
: mixed Boolean+theory conflict clause

The result is the mixed Boolean+theory conflict clause c′8 : B5 ∨ ¬B8 ∨ B1.
(Notice that, B2T (c′8) = (3x1 − x3 ≤ 6) ∨ ¬(x3 = 3x5 + 4) ∨ (2x2 − x3 > 2) is
not TR-valid.) If c′8 is chosen, then T -backtrack pops from µp all literals up to
{¬B5, B8}, and then unit-propagates B1 on c′8, and hence A1 on c1.

As with static learning, the clauses added by T -learning refer only to atoms
which already occur in the original formula, so that no new atom is added. [67]
proposed an interesting generalization of T -learning, in which learned clause may
contain also new atoms. [36, 37] used a similar idea to improve the efficiency
of Delayed Theory Combination (see §1.6.3). [152] proposed similar ideas for a
SMT tool for difference logic, in which new atoms can be generated selectively
according to an ad-hoc heuristic.

1.4.3.6. Generating partial assignments

Due to the two-watched-literal scheme [106], in modern implementations, DPLL

returns Sat only when all variables are assigned truth values, thus returning total
assignments. Thus, when a partial assignment µ is found which satisfies ϕ, this
causes an unnecessary sequence of decisions and unit-propagations for assigning
the remaining variables. In SAT, this scenario causes no extra Boolean search,
because every extension of µ propositionally satisfies ϕ, so the overhead intro-
duced is negligible. In SMT, however, many total assignments extending µ may
be T -inconsistent even though µ is T -consistent, so that many useless Boolean
branches and calls to T -solvers may be required.

In order to overcome these problems, it is sufficient to implement some device
monitoring the satisfaction of all original clauses in ϕ. Although this may cause
some overhead in handling the Boolean component of reasoning, it may also
reduce the overall Boolean search space and hence the number of subsequent
calls to the T -solver.

1.4.3.7. Pure-literal filtering

If we have non-Boolean T -atoms occurring only positively [resp. negatively] in
the input formula, we can safely drop every negative [resp. positive] occurrence
of them from an assignment µ whenever µ is to be checked by the T -solver
[153, 78, 8, 35, 130].18 We call this technique pure-literal filtering.19

There are a couple of potential benefits of this behavior. Let µ′ be the filtered
version of µ. First, µ′ might be T -satisfiable despite µ being T -unsatisfiable. If
so, and if µ (and hence µ′) propositionally satisfies ϕ, then T -DPLL can stop,
potentially saving a lot of search. Second, if µ′ (and hence µ) is T -unsatisfiable,
then checking the consistency of µ′ rather than that of µ can be faster and result
in smaller conflict sets, improving the effectiveness of T -backjumping and T -
learning.

Moreover, this technique is particularly useful in some situations. For in-
stance, many T -solvers for TZ and its difference logic fragment cannot efficiently
handle disequalities, so that they are forced to split them into a disjunction of
strict inequalities. For example, the disequality (x1 − x2 6= 3) would be replaced
by (x1−x2 > 3)∨(x1−x2 < 3). This causes an enlargement of the search, because
the two disjuncts must be investigated separately. In many problems, however, it
is common for most equalities to (t1 = t2) occur with positive polarity only. For
such equalities, pure-literal filtering avoids adding (t1 6= t2) to µ when (t1 = t2)p

is assigned to false by T -DPLL, so that no split is needed [8].

1.4.4. An abstract framework

The DPLL procedure and its variants and extensions, including T -DPLL, can
also be described more abstractly as transition systems. This allows one to ignore
unimportant control and implementation details and provide the essence of each
variant in terms of a set of state transition rules and a rule application strategy.

Following the Abstract DPLL Modulo Theories framework first introduced
in [113], the variants of T -DPLL discussed in the previous subsection can be
described abstractly as a transition relation over states of the form Fail or µ || ϕ,
where ϕ is a (ground) CNF formula, or, equivalently, a finite set of clauses, and
µ is a sequence of (ground) literals, each marked as a decision or a non-decision
literal. As in §1.4.1, the set µ represents a partial assignment of truth values to
the atoms of ϕ. The transition relation is specified by a set of transition rules,
given below. In the rules, we denote the concatenation of sequences of literals
by simple juxtaposition (e.g., µ µ′ µ′′), treating single literals as one element
sequences and denoting the empty sequence with ∅. To denote that a literal l
is annotated as a decision literal in a sequence we write it as l•. A literal l is
undefined in µ if neither l nor ¬l occurs in µ. We write S =⇒ S′ as usual to
mean that two states S and S′ are related by the transition relation =⇒ and say
that there is a transition from S to S′. We call any sequence of transitions of the
form S0 =⇒ S1 =⇒ S2 =⇒ . . . a derivation.

18If both T -propagation and pure-literal filtering are implemented, then the filtered literals
must be dropped not only from the assignment, but also from the list of literals which can be
T -deduced, so that to avoid the T -propagation of literals which have been filtered away.

19Also called triggering in [153, 8].

Definition 1.4.3 (Transition Rules). The following is a set of rules for Abstract
T -DPLL. Except for Decide, all the rules that introduce new literals annotate
them as non-decision literals.

Propagate : µ || ϕ, c ∨ l =⇒ µ l || ϕ, c ∨ l if

{
µ |=p ¬c
l is undefined in µ

Decide : µ || ϕ =⇒ µ l• || ϕ if

{
l or ¬l occurs in ϕ
l is undefined in µ

Fail : µ || ϕ, c =⇒ Fail if

{
µ |=p ¬c
µ contains no decision literals

Restart : µ || ϕ =⇒ ∅ || ϕ

T -Propagate : µ || ϕ =⇒ µ l || ϕ if







µ |=T l
l or ¬l occurs in ϕ
l is undefined in µ

T -Learn : µ || ϕ =⇒ µ || ϕ, c if

{
each atom of c occurs in µ || ϕ
ϕ |=T c

T -Forget : µ || ϕ, c =⇒ µ || ϕ if
{
ϕ |=T c

T -Backjump :

µ l• µ′ || ϕ, c =⇒ µ k || ϕ, c if







µ l• µ′ |=p ¬c, and there is
some clause c′ ∨ l′ such that:
ϕ, c |=T c′ ∨ l′ and µ |=p ¬c′,
l′ is undefined in µ, and
l or ¬l occurs in µ l• µ′ || ϕ

The clauses c and c′∨l′ in the T -Backjump rule are respectively the conflicting
clause and the backjump clause of the rule.

The rules Propagate, Decide, Fail and Restart, operate at the propositional
level. The other rules involve the theory T and have rather general preconditions.
While all of these preconditions are decidable whenever the T -satisfiability of
sets of ground literals is decidable, they might be expensive to check in their full
generality.20 However, there exist restricted applications of these rules that are
both efficient and enough for completeness [114]. Given a ground CNF formula
ϕ, the purpose of the rules above is to extend and modify an originally empty
sequence until it determines a total, satisfying assignment for ϕ or the Fail rule
becomes applicable.

Example 1.4.4. The computation discussed in Example 1.4.2 can be described
by the following derivation in Abstract T -DPLL, where ϕ is again the formula
consisting of the TR-clauses c1, . . . , c7 in Figure 1.4 and c8 is the clause abstracted
by B5 ∨ ¬B8 ∨ ¬B2. For space constraints, instead of ϕ’s literals we use their

20 In particular, the precondition of T -Backjump seems problematic on a first look because it
relies on the computability of the backjump clause c′ ∨ l′.

propositional abstraction here, and use =⇒+ to denote multiple transitions.

1−4. ∅ || ϕ =⇒+ ¬B5
• B8

• B6
• ¬B1

• || ϕ (by Decide)
5. =⇒ ¬B5

• B8
• B6

• ¬B1
• ¬B3 || ϕ (by T -Propagate)

6−8. =⇒+ ¬B5
• B8

• B6
• ¬B1

• ¬B3 A1 A2 B2 || ϕ (by Propagate)
9. =⇒ ¬B5

• B8
• B6

• ¬B1
• ¬B3 A1 A2 B2 || ϕ, c8 (by T -Learn)

10. =⇒ ¬B5
• B8

• B1 || ϕ, c8 (by T -Backjump)
11. =⇒ ¬B5

• B8
• B1 A1 || ϕ, c8 (by Propagate)

Recall that clause c8 in Step 9 is a theory lemma added in response to the T -
inconsistency of the assignment produced by Step 8. In step 10, T -Backjump is
applied with conflicting clause c = c8 and backjump clause c′∨ l′ = B5∨¬B8∨B1

with l′ = B1. The backjump clause is derived as explained in Example 1.4.2.

Let us say that a state is T -compatible if it is Fail or has the form µ || ϕ where
µ is T -consistent. The transition rules can be used to decide the T -satisfiability
of an input formula ϕ0 by generating a derivation

∅ || ϕ0 =⇒B S1 =⇒B · · · =⇒B Sn, (1.1)

where Sn is a T -compatible state to which none of the rules Propagate, Decide,
Fail, or T -Backjump applies. We call such a derivation exhausted.

To generate from ∅ || ϕ0 only derivations like (1.1) above it is enough to
impose a few, rather weak, restrictions on a rule application strategy. Roughly
speaking, these restrictions rule out only derivations with subderivations consist-
ing exclusively of T -Learn and T -Forget steps, and derivations that do not apply
Restart with increased periodicity.21

A rule application strategy is fair it it conforms to these restrictions and
stops (extending) a derivation only when the derivation is exhausted. Every fair
strategy is terminating, sound, and complete in the following sense (see [114] for
details).

Termination: Starting from a state ∅ || ϕ0, the strategy generates only finite
derivations.

Soundness: If ϕ0 is T -satisfiable, every exhausted derivation of ∅ || ϕ0 generated
by the strategy ends with a state of the form µ || ϕ where µ is a (T -consistent)
total, satisfying assignment for ϕ.

Completeness: If ϕ0 is not T -satisfiable, every exhausted derivation of ∅ || ϕ0

generated by the strategy ends with Fail .

In the setting above, fair strategies stop a derivation for a T -satisfiable ϕ0 only
once they compute a total assignment for ϕ0’s atoms. A more general setting can
be obtained, with similar results, by defining a finite derivation to be exhausted
if its last state is T -compatible and, when the state is µ || ϕ, the assignment
µ propositionally satisfies ϕ. We refer back to the discussion in §1.4.3.6 for why
this can be more convenient computationally.

The rule set in Definition 1.4.3 is not minimal. For instance, there are fair
strategies that use only T -Propagate or only T -Learn in addition to Decide, Fail,

21 In fact, the actual restrictions are even weaker. See Theorem 3.7 of [114] for details.

Propagate and T -Backjump. The rule set is not exhaustive either because it
models only the most common (and experimentally most useful) operations found
in lazy SMT solvers. We explain how below, focusing on the less trivial rules.

Decide. This rule represents a case split by adding an undefined literal of ϕ, or
its negation, to µ. The added literal l is annotated as a decision literal, to denote
that if µ l cannot be extended to a model of ϕ then an alternative extension of µ
must be considered—something done with the T -Backjump rule.22

T -Propagate. This rule performs the kind of theory propagation described in
§1.4.3.4 by adding to the current assignment µ any undefined literal l that is
T -entailed by µ. The rule’s precondition maintains the invariant that every atom
in an assignment occurs in the initial formula of the derivation. This invariant is
crucial for termination.

T -Backjump. This rule models the kind of conflict-driven backjumping described
in §1.4.3.5. As defined, the rule is only triggered by a propositional conflict with
one of the current clauses (µ |=p ¬c). This is for simplicity and uniformity, and
without loss of generality thanks to the T -Propagate and T -Learn rules. Using
those rules, any conflict involving the theory T is reducible to a propositional
conflict. For instance, if the current assignment µ has a T -inconsistent subset η,
then ∅ |=T ¬η. The theory lemma ¬η can then be added to the current clause set
ϕ by one application of T -Learn and then play the role of clause c in T -Backjump.

T -Backjump is triggered by the existence of a conflicting clause, but in order
to undo (the effect of) an earlier decision step it needs a backjump clause c′ ∨ l′,
which synthesizes the reason of the conflict, indicating the level to backjump to
and the literal to put in place of the decision literal for that level. This clause is
the dual of the conflict set η discussed in §1.4.3.5; that is, c′ ∨ l′ = ¬η.

T -Learn. This rule allows the addition to the current formula ϕ of an arbitrary
clause c that is T -entailed by ϕ and consists of atoms in the current state. It can
be used to model the static learning techniques described in §1.4.3.2 as well as
the usual conflict-driven lemma learning that adds backjump clauses, or any other
technique that takes advantage of theory consequences of ϕ. In particular, it can
be used to model uniformly all the early pruning techniques described in §1.4.3.3.
This is because any backjumping motivated by the T -inconsistency of the current
assignment µ can be modeled as the discovery and learning of a theory lemma c
that is propositionally falsified by µ, followed by an application of T -Backjump

with c as the conflicting clause. The rule does not model the learning of clauses
containing new literals, which is done by some SMT solvers, as seen in §1.4.3.5.
An extension of Abstract T -DPLL that allows that is dicussed later in §1.5.2.

We can now describe some of the approaches for implementing T -DPLL solvers
discussed in §1.4.2 in terms of Abstract T -DPLL. (See [114] for more details.)

22 Note that the precondition of Decide does not include a check on whether Propagate, say,
applies to l or its negation. This is intentional since such control considerations are best left to
a rule application strategy.

Offline integrations of a theory solver and a DPLL solver are modeled by a
class of rule application strategies that do not use the T -Propagate rule. Whenever
a strategy in this class produces a state µ || ϕ irreducible by Decide, Fail, Propagate,
or T -Backjump, the sequence µ is a satisfying assignment for the formula ϕ0 in
the initial state ∅ || ϕ0, but it may not be T -consistent. If it is not, there exists
a η ⊆ µ such that ∅ |=T ¬η. The strategy then adds the theory lemma ¬η
(the blocking clause) with one T -Learn step and applies Restart, repeating the
same cycle above until a T -compatible state is generated. With an incremental
T -solver it might be more convenient to check the T -consistency of µ in a state
µ || ϕ even if the state is reducible by one of the four rules above. In that case,
it is possible to learn a blocking clause and restart earlier. Strategies like these
are sound and complete. To be fair, and so terminating, they must not remove
(with T -Forget) any blocking clause.

A strategy can take advantage of an online SAT-solver by preferring back-
jumping to systematic restarting after µ is found T -inconsistent. This is done by
first learning a lemma ¬η for some η ⊆ µ, and then repairing µ using that lemma.
In fact, since ¬η is a conflicting clause by construction, either T -Backjump or Fail

applies—depending respectively on whether µ contains decision literals or not. To
be fair, strategies that apply T -Backjump/Fail instead of Restart do not need to
keep the blocking clause once they use it as the conflicting clause for backjumping.

Any fair strategy above remains fair if it is modified to interleave arbitrary
applications of T -Propagate. Stronger results are possible if T -Propagate is ap-
plied eagerly (in concrete, if it has higher priority than Decide). In that case, it
is impossible to generate T -inconsistent assignments, and so it is unnecessary for
correctness to learn any blocking clauses, or any theory lemmas at all.

1.5. Theory Solvers

The lazy approach to SMT as described above relies on combining a SAT solver
with a theory solver for some theory T . The role of the theory solver is to accept
a set of literals and report whether the set is T -satisfiable or not. Typically,
theory solvers are ad hoc, with specialized decision procedure tailored to the
theory in question. For details on such procedures for some common theories,
we refer the reader to the references given in §1.2.2. Because different theories
often share some charactaristics, a natural question is whether there exist general
or parameterized methods that have broader applicability. This section discusses
several such approaches that have been developed: Shostak’s method (§1.5.1),
splitting on demand (§1.5.2), layered theory solvers (§1.5.3), and rewriting-based
theory solvers (§1.5.4).

1.5.1. Shostak’s method

Shostak’s method was introduced in a 1984 paper [138] as a general method for
combining the theory of equality with one or more additional theories that satisfy
certain specific criteria. The original paper lacks rigor and contains serious errors,
but work since then has shed considerable light on the original claims [52, 128,
135, 89, 21, 71]. We summarize some of the most signifiant results here. We start
with some definitions.

Definition 1.5.1. A set S of equations is said to be in solved form iff the left-
hand side of each equation in S is a ground constant which appears only once
in S. We will refer to these constants appearing only on the left-hand sides as
solitary constants.

A set S of equations in solved form defines an idempotent substitution: the one
which replaces each solitary constant with its corresponding right-hand side. If
S is a term or set of terms, we denote the result of applying this substitution to
S by S(S).

Definition 1.5.2. Given a formula F and a formula G, we define γF (G) as
follows:

1. Let G′ be the formula obtained by replacing each free constant symbol in
G that does not appear in F with a fresh variable.

2. Let v be the set of all fresh variables introduced in the previous step.
3. Then, γF (G) = ∃ v.G′.

Definition 1.5.3. A consistent theory T with signature Σ is a Shostak theory if
the following conditions hold.

1. Σ does not contain any predicate symbols.
2. There exists a canonizer canon, a computable function from Σ-terms to

Σ-terms, with the property that |=T s = t iff canon(s) ≡ canon(t).
3. There exists a solver solve, a computable function from Σ-equations to sets

of formulas defined as follows:

(a) If |=T s 6= t, then solve(s = t) ≡ {⊥}.
(b) Otherwise, solve(s = t) returns a set S of equations in solved form

such that |=T (s = t) ↔ γs=t(S).

The main result in Shostak’s paper is that given a Shostak theory T , a simple
algorithm can be used to determine the satisfiability of conjunctions of Σ-literals.
Algorithm S1 (shown in Figure 1.5) makes use of the properties of a Shostak
theory to check the joint satisfiability of an arbitrary set of equalities, Γ, and an
arbitrary set of disequalities, ∆, in a Shostak theory with canonizer canon and
solver solve.

Algorithm S1 is sound and complete whenever ∆ contains at most one dis-
equality or if T satisfies the additional requirement of being convex (as defined
in §1.2.1.2).

Example 1.5.4. Perhaps the most obvious example of a Shostak theory is T ′
R.

A simple canonizer for this theory can be obtained by imposing an order on all
ground constants and combining like terms. For example, canon(c+3b−a−5c) ≡
−a + 3b + (−4c). Similarly, a solver can be obtained simply by solving for one
of the constants in an equation (returning ⊥ if no solution exists). For this
theory, Algorithm S1 corresponds to Gaussian elimination with back-substitution.
Consider the following set of literals: {a+3b−2c = 1, a−b−6c = 1, b+a 6= a−c}.
The following table shows the values of Γ, S, s∗ = t∗, and S∗ on each iteration
of Algorithm S1 starting with Γ = {a+ 3b− 2c = 1, a− b− 6c = 1}:

S1(Γ, ∆, canon, solve)

1. S := ∅;
2. WHILE Γ 6= ∅ DO BEGIN

3. Remove some equality s = t from Γ;
4. s∗ := S(s); t∗ := S(t);
5. S∗ := solve(s∗ = t∗);
6. IF S∗ = { ⊥ } THEN RETURN FALSE;

7. S := S∗(S) ∪ S∗;

8. END

9. IF canon(S(s)) ≡ canon(S(t)) for some s 6= t ∈ ∆ THEN RETURN FALSE;

10. RETURN TRUE;

Figure 1.5. Algorithm S1: A simple satisfiability checker based on Shostak’s algorithm

Γ S s∗ = t∗ S∗

a+ 3b− 2c = 1 ∅ a+ 3b− 2c = 1 a = 1 − 3b+ 2c
a− b− 6c = 1

a− b− 6c = 1 a = 1 − 3b+ 2c 1 − 3b+ 2c− b− 6c = 1 b = −c
∅ a = 1 + 5c

b = −c

Now, notice that canon(S(b+a)) ≡ canon(−c+1+5c) ≡ 1+4c and canon(S(a−
c)) ≡ canon(1 + 5c− c) ≡ 1 + 4c. Since b+ a 6= a− c ∈ ∆, the algorithm returns
FALSE indicating that the orginal set of literals is unsatisfiable in T .

1.5.1.1. Combining Shostak theories

Besides providing a satisfiability procedure for a single Shostak theory T , the
original paper makes several additional claims. The first is that a variation of
Algorithm S1 can be used to decide the satisfiability of any theory T ′, where T ′

is the extension of T after adding an arbitrary number of constant and function
symbols. In other words, there is an algorithm for the combination of T with the
theory of equality. This claim has been clarified and proved to be correct in later
work [128, 71], and we do not elaborate on it here.

The second claim regarding combinations of theories is that given any two
Shostak theories, their canonizers and solvers can be combined to obtain a deci-
sion procedure for the combined theories. While it is true that canonizers can be
combined (see [89, 135]), it was shown in [89] that solvers can almost never be
combined, and thus Shostak’s method as orignially presented does not provide a
way to combine theories (beyond simple combinations of a single Shostak theory
with the theory of equality). In [135], a correct method for combining Shostak
theories is given. However, the method does not combine theory solvers as pro-
posed by Shostak, but relies, instead, on the Nelson-Oppen framework covered
in §1.6.1.

1.5.2. Splitting on demand

Thus far, we have assumed that a theory solver T -solver for a theory T takes as
input a set of literals and outputs true if the set is T -consistent and false otherwise.
For some important theories, determining the T -consistency of a conjunction of
literals requires internal case splitting (i.e. case splitting within the T -solver).

Example 1.5.5. In the theory TA of arrays introduced in §1.2.2, consider the
following set of literals: read (write (A, i, v), j) = x, read (A, j) = y, x 6= v, x 6= y.
To see that this set is unsatisfiable, notice that if i = j, then x = v because the
value read should match the value written in the first equation. On the other
hand, if i 6= j, then x = read (A, j) and thus x = y. Deciding the TA-consistency
of larger sets of literals may require a significant amount of such reasoning by
cases.

Because theories like TA require internal case splits, solving problems with general
Boolean structure over such theories using the framework developed in §1.4 results
in a system where case splitting occurs in two places: in the Boolean DPLL (SAT)
engine as well as inside the theory solver. In order to simplify the implementation
of theory solvers for such theories, and to centralize the case splitting in a single
part of the system, it is desirable to allow a theory solver T -solver to demand that
the DPLL engine do additional case splits before determining the T -consistency of
a partial assignment. For flexibility—and because it is needed by actual theories
of interest—the theory solver should be able to demand case splits on literals
that may be unfamiliar to the DPLL engine and may possibly even contain fresh
constant symbols. Here, we give a brief explanation of how this can be done in the
context of the abstract framework given in §1.4.4. Details can be found in [14].

Recall that in the abstract framework, the T -Learn rule allows the theory
solver to add an arbitrary clause to those being processed by the DPLL engine,
so long as all the atoms in that clause are already known to the DPLL engine. Our
approach will be to relax this restriction. It is not hard to see, however, that this
poses a potential termination problem. We can overcome this difficulty so long as
for any input formula φ, the set of all literals needed to check the T -consistency
of φ is finite. We formalize this notion by introducing the following definition.

Definition 1.5.6. L is a suitable literal-generating function if for every finite set
of literals L:

1. L maps L to a new finite set of literals L′ such that L ⊆ L′.
2. For each atomic formula α, α ∈ L(L) iff ¬α ∈ L(L).
3. If L′ is a set of literals and L ⊆ L′, then, L(L) ⊆ L(L′) (monotonicity).
4. L(L(L)) = L(L) (idempotence).

For convenience, given a formula φ, we denote by L(φ) the result of applying L to
the set of all literals appearing in φ. In order to be able to safely use splitting on
demand for a theory solver T -solver, we must be able to show the existence of a
suitable literal-generating function L such that: for every input formula φ, the set
of all literals on which the T -solver may demand case splits when starting with
a conjunction of literals from φ is contained in L(φ). For example, for TA, L(φ)

could contain atoms of the form i = j, where i and j are array indices occurring
in φ. Note that there is no need to explicitly construct L(φ). It is enough to
know that it exists.

As mentioned above, it is sometimes useful to demand case splits on literals
containing new constant symbols. The introduction of new constant symbols
poses potential problems not only for termination, but also for soundness. This
is because the abstract framework relies on the fact that whenever ∅ || φ reduces
in one or more steps to µ || φ′, the formulas φ and φ′ are T -equivalent. This is
no longer true if we allow the introduction of new constant symbols. Fortunately,
it is sufficient to ensure T -equisatisfiability of φ and φ′. With this in mind, we
can give a new transition rule called Extended T-Learn which replaces T -Learn and
allows for the desired additional flexibility.

Definition 1.5.7. The Extended DPLL Modulo Theories system, consists of the
rules of §1.4.4 except that the T -Learn rule is replaced by the following23 rule:

Extended T-Learn

µ || φ =⇒ µ || φ, c if

{
each atom of c occurs in φ or in L(µ)
φ |=T γφ(c)

The key observation is that an implementation using Extended T-Learn has more
flexibility when a state µ || φ is reached that is final with respect to the basic
rules Propagate, Decide, Fail, and T -Backjump. Whereas before it would have been
necessary to determine the T -consistency of µ when such a state was reached, the
Extended T-Learn rule allows the possibility of delaying a response by demanding
that additional case splits be done first. As shown in [14], the extended framework
retains soundness and completeness. Furthermore, the properties of L ensure that
a delayed response cannot be delayed indefinitely, and thus the framework also
ensures termination under similar conditions as the original framework.

Example 1.5.8. A careful examination of the decision procedure for TA given
in [145] reveals the following:

1. Each term can be categorized as an array term, an index term, a value
term, or a set term.

2. No new array terms are ever introduced by the inference rules.
3. At most one new index term for every pair of array terms is introduced.
4. Set terms are made up of some finite number of index terms.
5. The only new value terms introduced are of the form read(a, i) where a is

an array term and i is an index term.

It follows that the total number of possible terms that can be generated by the
procedure starting with any finite set of literals is finite. Because there are only a
finite number of predicates, it then follows that this set of rules is literal-bounded.

In general, a similar analysis must be done for every theory before it can be inte-
grated with the Extended DPLL Modulo Theories framework as described above.
It should also be pointed out that the extended framework requires a DPLL engine
that is capable of dealing with a dynamically expanding set of literals. However,

23The definition of γ was given in §1.5.1.

because the splitting on demand approach can result in drastically simpler theory
solvers, it remains an attractive and useful implementation strategy.

The approach can be refined to work with several theory solvers when the
background theory T is a combination of the solver’s theories [15, 14]. Then, the
lemma generation mechanism is also used to achieve a sound and complete coop-
eration among the theory solvers, in the spirit of the Nelson-Oppen combination
method described in §1.6. In this form, splitting on demand is implemented in
the CVC, CVC Lite and CVC3 systems [144, 13, 18]. A major requirement of
the refinement is that each theory solver must be aware that it is being combined
with others so that it can generate suitable lemmas necessary for the cooperation.
An alternative approach to achieving inter-solver cooperation through the DPLL
engine that does not have this requirement is described in some detail in §1.6.3.

1.5.3. Layered theory solvers

Sometimes, a theory T has the property that a fully general solver for T is
not always needed: rather, the unsatisfiability of an assignment µ can often be
established in less expressive, but much easier, sub-theories. Thus, the T -solver
may be organized in a layered hierarchy of solvers of increasing solving capabilities
[8, 34, 136, 50, 38]. The general idea consists of stratifying the problem over N
layers L0, L1, . . . , LN−1 of increasing complexity, and searching for a solution “at
as simple a level as possible”. If one of the simpler solvers finds a conflict, then
this conflict is used to prune the search at the Boolean level; if it does not, the
next solver in the sequence is activated.

Since Ln+1 refines Ln, if the set of literals is not satisfiable at level Ln, then it
is not at Ln+1, . . . , LN−1. If indeed a model S exists at Ln, either n equals N−1,
in which case S solves the problem, or a refinement of S must be searched for
at Ln+1. In this way, much of the reasoning can be performed at a high level of
abstraction. This results in increased efficiency during the search for a solution,
since the later solvers, which are often responsible for most of the complexity, are
avoided whenever possible.

The schema can be further enhanced by allowing each layer Li to infer novel
equalities and inequalities and to pass them down to the next layer Li+1, so as
to better drive its search [136, 137, 50].

1.5.4. Rewriting-based theory solvers

Another approach for building theory solvers relies on the power and flexibility
of modern automated theorem provers, in particular, provers based on the super-
position calculus [115], a modern version of the resolution calculus for first-order
logic with equality. This calculus is based on term rewriting techniques and comes
equipped with powerful redundancy criteria that allow one to build very effective
control strategies for reducing the search space.

The superposition-based approach to SMT, first proposed in [7] and then
further elaborated upon in [3, 27, 25, 26], applies to theories T that are axiom-
atizable by a finite (and relatively small) set of first-order clauses, such as for

instance the theory of arrays in §1.2.2. The main idea is to instrument a superpo-
sition prover with specialized control strategies which, together with the axioms of
T , effectively turn the prover into a decision procedure for ground T -satisfiability.

An advantage of the approach is a simplified proof of correctness, even in the
case of combined theories, which reduces to a routine proof of termination of the
application of the various superposition rules (see, e.g., [7] for details). Another
potential advantage is the reuse of efficient data structures and algorithms for
automated deduction implemented in state-of-the-art theorem provers. The main
disadvantage is that to get additional features typically required in SMT such as
model generation, incrementality, and so on, one may need to modify the theorem
prover in ways not foreseen by the original implementors, possibly at the cost of
a considerable (re)implementation effort. While this approach has generated an
active stream of interesting theoretical work, its practical impact has been limited
so far by a scarcity of robust and competitive implementations.

1.6. Combining Theories

We mentioned that in SMT one is often faced with formulas involving several
theories at once. This is particularly true in software verification, where proof
obligations are formulas talking about several datatypes, each modeled by its
own theory. We have seen that for many of these theories the ground satisfiabil-
ity problem is decidable, and often by efficient theory solvers. Hence, a natural
question is whether it is possible to combine theory solvers for several component
theories T 1, . . . , T n modularly into a theory solver that decides ground satisfia-
bility modulo their combination T 1 ⊕ · · · ⊕ T n.

In general, the answer is negative, simply because there exist theories with
a decidable ground satisfiability problem whose combination has an undecid-
able ground satisfiability problem (see, e.g., [28]). Positive results are however
possible by imposing restrictions on the component theories and their combi-
nation. A successful combination method for theory solvers is due to Nelson
and Oppen [107]. The success of the method is based on the fact that its re-
strictions on the theories are not very strong in practice, and lead to efficient
implementations. It is fair to say that most work in theory combination in
SMT is based on extensions and refinements of Nelson and Oppen’s work (see,
e.g., [147, 127, 22, 148, 149, 75, 150, 126, 77, 37, 76, 48, 14, 90]).

In this section, we present a declarative non-deterministic combination frame-
work, first presented in [117], that captures the essence of the original combination
procedure by Nelson and Oppen in [107], and briefly discuss a few variants and
extensions. Then we describe how an efficient implementation of this framework
can be incorporated into the lazy approach to SMT.

For simplicity, we consider just the case of combining two theories and their
solvers since the case of more theories is analogous. Therefore, let Σ1,Σ2 be two
signatures and let T i be a Σi theory for i = 1, 2. The combination of T 1 and T2

will be the theory T 1 ⊕ T 2 as defined in §1.2.1.3.

1.6.1. A Logical Framework for Nelson-Oppen Combination

The original Nelson-Oppen method applies to theories T 1 and T 2 with dis-
joint signatures and each equipped with a theory solver deciding a ground T i-
satisfiability problem. The gist of the method is to take a ground formula of
signature Σ1 ∪Σ2 ∪C, where C is a set of constant symbols not in Σ1 ∪Σ2, con-
vert it into an equisatisfiable conjunction ϕ1∧ϕ2 with each ϕi of signature Σi∪C,
and feed each ϕi to T i’s theory solver. The two solvers cooperate by exchanging
entailed constraints about their respective formulas until one of them has enough
information to decide the satisfiability in T 1 ⊕ T 2 of the original formula.

Any version of the Nelson-Oppen method is more conveniently described by
considering only (Σ1 ∪ Σ2 ∪ C)-formulas ϕ that are just conjunctions of literals.
This restriction is without loss of generality both in theory, via a preliminary
conversion to disjunctive normal form, and in practice, as we will see in §1.6.3.
Now, queries like ϕ cannot be processed directly by either theory solver unless
they have the pure form ϕ1∧ϕ2 where each ϕi is a (Σi ∪C)-formula—possibly ⊤.
Even then, however, using the theory solvers in isolation is not enough because it
is possible for ϕ1∧ϕ2 to be T 1⊕T 2-unsatisfiable while each ϕi is T i-satisfiable. By
a simple application of Craig’s interpolation lemma [51] this situation happens
precisely when there is a first-order formula ψ over the signature C such that
ϕ1 |=T 1

ψ and ϕ2 ∧ ψ |=T 2
⊥. Note that Craig’s lemma tells us here that = is

the only predicate symbol and the elements of C are the only function symbols
occurring in ψ. But it does not provide any indication of whether ψ has quantifiers
or not, and which ones. One of the main theoretical contributions of Nelson and
Oppen’s work was to show that, under the right conditions, ψ is actually ground.
Moreover, it is also computable.

The Nelson-Oppen method is not limited to formulas in pure form because any
ground formula can be (efficiently) turned into an equisatisfiable pure form by a
suitable purification procedure. indexpurification The procedure most commonly
used (and its correctness proof) is straightforward but to describe it we need some
definitions and notation first.

Let Σ = Σ1 ∪ Σ2 ∪ C and fix i ∈ {1, 2}. A Σ-term t is an i-term if its top
function symbol is in Σi ∪C. A Σ-literal α is an i-literal if its predicate symbol is
in Σi ∪ C or if it is of the form (¬)s = t and both s and t are i-terms or i = 1.24

A subterm of an i-atom α is an alien subterm of α if it is a j-term, with j 6= i,
and all of its superterms in t are i-terms. An i-term or i-literal is pure (or also,
i-pure) if it only contains symbols from Σi ∪C. Note that the constants in C are
the only terms that are both a 1-term and a 2-term, and that an equation is pure
whenever one of its members is a constant of C and the other is a pure term. The
purification procedure consists of the following steps.

Purification Procedure. Let ϕ be a conjunction of Σ-literals.

1. Abstract alien subterms. Apply to completion the following trans-
formation to ϕ: replace an alien subterm t of a literal of ϕ with a fresh
constant c from C and add (conjunctively) the equation c = t to ϕ.

24 This means that any literal (¬)s = t where s and t are not both i-terms for some i is
considered to be a 1-term. This choice is arbitrary and immaterial.

2. Separate. For i = 1, 2, let ϕi be the conjunctions of all the i-literals in
(the new) ϕ.25

It is not hard to see that this procedure always terminates, runs in time linear
in the size of ϕ, and produces a formula ϕ1 ∧ ϕ2 that is equisatisfiable with ϕ.
More precisely, every model of ϕ1∧ϕ2 is also a model of ϕ, and for every model A
of ϕ there is a model of ϕ1 ∧ϕ2 that differs from A at most in the interpretation
of the new constants introduced in the abstraction step above.

The constraint propagation mechanism of the original Nelson-Oppen pro-
cedure can be abstracted by a preliminary non-deterministic guess of a truth
assignment for all possible interface equalities, that is, equations between the
(uninterpreted) constants shared by ϕ1 and ϕ2. To describe that, it is convenient
to introduce the following notion [147].

Let R be any equivalence relation over a finite set S of terms. The arrange-
ment of S induced by R is the formula

arR(S) :=
∧

(s,t)∈R

(s = t) ∧
∧

(s,t)/∈R

s 6= t

containing all equations between R-equivalent terms and all disequations between
non-R-equivalent terms of S.

The combination procedure below just guesses an arrangement of the shared
constants in a pure form ϕ1 ∧ ϕ2 of ϕ, adds it to each ϕi, and then asks the
corresponding theory solver to check the satifiability of the extended ϕi.

The Combination Procedure. Let ϕ be a conjunction of Σ-literals.

1. Purify input. For i = 1, 2, let ϕi be the i-pure part of ϕ’s pure form.

2. Guess an arrangement. Where C0 is the set of all the constant symbols
occurring in both ϕ1 and ϕ2, choose an arrangement arR(C0).

3. Check pure formulas. Return “satisfiable” if ϕi ∧ arR(C0) is T i-satis-
fiable for i = 1 and i = 2; return “unsatisfiable” otherwise.

We call any arrangement guessed in Step 2 of the procedure above an ar-
rangement for ϕ. The procedure is trivially terminating, even if all possible
arrangements are considered in step 2.26 It is also refutationally sound for any
signature-disjoint theories T 1 and T 2: for such theories, ϕ is T 1⊕T 2-unsatisfiable
if the procedure returns “unsatisfiable” for every possible arrangement for ϕ. The
procedure, however, is not complete without further assumptions on T 1 and T 2;
that is, in general there could be arrangements for which it returns “satisfiable”
even if ϕ is in fact T 1 ⊕T 2-unsatisfiable. A sufficient condition for completeness
is that both theories be stably infinite [117].

Definition 1.6.1. Let Σ be a signature and C an infinite set of constants not
in Σ. A Σ-theory T is stably infinite if every T -satisfiable ground formula of
signature Σ ∪ C is satisfiable in a model of T with an infinite universe.

25 Note that (dis)equations between constants of C end up in both ϕ1 and ϕ2.
26Observe that there is always a finite, albeit possibly very large, set of arrangements for any

finite set of terms.

Proposition 1.6.2 (Soundness and completeness). If T 1 and T 2 are signature-
disjoint and both stably infinite, then the combination procedure returns “unsat-
isfiable” for an input ϕ and every possible arrangement for ϕ iff ϕ is T 1 ⊕ T 2-
unsatisfiable.

The first (correct) proof of the result above was given in [117]. More recent
proofs based on model-theoretic arguments can be found in [147, 97, 75], among
others.27 The completeness result in the original paper by Nelson and Oppen [107]
is incorrect as stated because it imposes no restrictions on the component theories
other than that they should be signature-disjoint. The completeness proof how-
ever is incorrect only because it implicitly assumes there is no loss of generality in
considering only infinite models, which is however not the case unless the theories
are stably infinite.

We remark that the stable infiniteness requirement is not an artifice of a par-
ticular completeness proof. The combination method is really incomplete without
it, as shown for instance in [150]. This is a concern because non-stably infinite
theories of practical relevance do exist. For instance, all the theories of a single
finite model, such as the theory of bit-vectors (or of strings) with some maximum
size, are not stably infinite.

Current practice and recent theoretical work have shown that it is possi-
ble to lift the stable infiniteness requirement in a number of ways provided
that the combination method is modified to include the propagation of cer-
tain cardinality constraints, in addition to equality constraints between shared
constants [68, 150, 69, 126, 90]. More importantly, recent research has shown
(see [69, 126, 90]) that the vexation of the requirement is greatly reduced or dis-
appears in practice if one frames SMT problems within a sorted (i.e., typed) logic,
a more natural kind of logic for SMT applications than the classical, unsorted logic
traditionally used. The main idea is that, in SMT, combined theories are usually
obtained by combining the theory of some parametric data type T (α1, . . . , αn)
with the theories of particular instances of the type parameters α1, . . . , αn. A
simple example would be the combined theory of lists of real numbers, say, where
the type List(Real) is obtained by instantiating with the type Real the parameter
α in the parametric type List(α).

With combined theories obtained by type parameter instantiation, the theo-
ries of the instantiated parameters can be arbitrary, as long as entailed cardinal-
ity constraints on the parameter types are propagated properly between theory
solvers. For instance, in the theory of lists of Booleans, say, a pure formula ϕ1 of
the form

l1 6= l2 ∧ l1 6= l3 ∧ l2 6= l3 ∧ tail (l1) = nil ∧ tail(l2) = nil ∧ tail(l3) = nil ,

stating that l1, l2, l3 are distinct lists of length 1, entails the existence of at least
3 distinct values for the element type Bool. If ϕ1 above is part of the formula
sent to the list solver, its entailed minimal cardinality constraint on the Bool

type must be communicated to the theory solver for that type. Otherwise, the
unsatisfiability of ϕ1 in the combined theory of List(Bool) will go undetected. A

27 While those papers consider only theories specified by a set of axioms, their proofs also
apply to theories specified as sets of models.

description of how it is possible to propagate cardinality constraints conveniently
for theories of typical parametric datatypes, such as lists, tuples, arrays and so
on, can be found in [126]. A discussion on why in a typed setting parametricity
and not stable infiniteness is the key notion to consider for Nelson-Oppen style
combination is provided in [90].

1.6.2. The Nelson-Oppen Procedure

The original Nelson-Oppen procedure can be seen as a concrete, and improved,
implementation of the non-deterministic procedure in the previous subsection.

The first concrete improvement concerns the initial purification step on the
input formula. Actually purifying the input formula is unnecessary in practice
provided that each theory solver accepts literals containing alien subterms, and
treats the latter as if they were free constants. In that case, interface equalities
are actually equalities between certain alien subterms.28 A description of the
Nelson-Oppen procedure without the purification step is provided in [21].

A more interesting improvement is possible when each component theory T i

is convex—as defined in §1.2.1.2. Then, it is enough for each theory solver to
propagate recursively and to completion all the interface equalities entailed by its
current pure half of the input formula. In concrete, this requires each solver to be
able to infer entailed interface equalities and to pass them to the other solver (for
addition to its pure half) until one of the two detects an unsatisfiability, or neither
has any new equalities to propagate. In the latter case, it is safe to conclude that
the input formula is satisfiable in the combined theory.

When one of the two theories, or both, are non-convex, exchanging just en-
tailed interface equalities is no longer enough for completeness. The solver for the
non-convex theory must be able to infer, and must propagate, also any disjunction
of interface equality entailed by its pure half of the formula. Correspondingly, the
other solver must be able to process such disjunctions, perhaps by case splits, in
addition to the conjunction of literals in the original input.

For convex theories—such as, for instance TE—computing the interface equal-
ities entailed by a conjunction ϕ of literals can be done very efficiently, typically
as a by-product of checking ϕ’s satisfiability (see, e.g., [109, 112]). For non-convex
theories, on the other hand, computing entailed disjunctions of equalities can be
rather expensive both in practice and in theory. For instance, for the difference
logic fragment of TZ , this entailment problem is NP-complete even if the satisfi-
ability of conjunctions of literals can be decided in polynomial time [93].

1.6.3. Delayed Theory Combination

Delayed Theory Combination(Dtc) is a general method for tackling the problem
of theory combination within the context of lazy SMT [36, 37]. As in §1.6.1, we
assume that T1, T2 are two signature-disjoint stably-infinite theories with their
respective Ti-solvers. Importantly, no assumption is made about the capability
of the Ti-solvers of deducing (disjunctions of) interface equalities from the input

28 While this simple fact was well understood by earlier implementors of the Nelson-Oppen
procedure—including its authors—it was (and still is) often overlooked by casual readers.

set of literals (eij -deduction capabilities, see §1.4.1): for each Ti-solver, every
intermediate situation from complete eij-deduction (like in deterministic Nelson-
Oppen) to no eij-deduction capabilities (like in non-deterministic Nelson-Oppen)
is admitted.

In a nutshell, in Dtc the embedded DPLL engine not only enumerates truth-
assignments for the atoms of the input formula, but also “nondeterministically
guesses” truth values for the equalities that the T -solvers are not capable of
inferring, and handles the case-split induced by the entailment of disjunctions of
interface equalities in non-convex theories. The rationale is to exploit the full
power of a modern DPLL engine by delegating to it part of the heavy reasoning
effort previously assigned to the Ti-solvers.

An implementation of Dtc [37, 40] is based on the online integration schema
of Figure 1.3, exploiting early pruning, T -propagation, T -backjumping and T -
learning. Each of the two Ti-solvers interacts only with the DPLL engine by
exchanging literals via the truth assignment µ in a stack-based manner, so that
there is no direct exchange of information between the Ti-solvers. Let T be T1∪T2.
The T -DPLL algorithm is modified in the following ways [37, 40]:29

• T -DPLL must be instructed to assign truth values not only to the atoms in
ϕ, but also to the interface equalities not occurring in ϕ. B2T and T 2B are
modified accordingly. In particular, T -decide next branch is modified to
select also new interface equalities not occurring in the original formula.

• µp is partitioned into three components µp
T1

, µp
T2

and µp
e, s.t. µTi

is the set
of i-pure literals and µe is the set of interface (dis)equalities in µ.

• T -deduce is modified to work as follows: for each Ti, µ
p
T i

∪ µp
e , is fed to

the respective Ti-solver. If both return Sat, then T -deduce returns Sat,
otherwise it returns Conflict.

• Early-pruning is performed; if some Ti-solver can deduce atoms or single
interface equalities, then T -propagation is performed. If one Ti-solver per-
forms the deduction µ∗ |=Ti

∨k
j=1 ej , s.t. µ∗ ⊆ µT i

∪ µe, each ej being an

interface equality, then the deduction clause T 2B(µ∗ →
∨k

j=1 ej) is learned.
• T -analyze conflict and T -backtrack are modified so as to use the con-

flict set returned by one Ti-solver for T -backjumping and T -learning. Im-
portantly, such conflict sets may contain interface equalities.

In order to achieve efficiency, other heuristics and strategies have been further
suggested in [36, 37, 40, 62, 55].

Example 1.6.3. [40] Consider the set of TE ∪ TZ-literals µ =def µE ∧ µZ of
Figure 1.6. We assume that both the TE and TZ solvers have no eij-deduction
capabilities. For simplicity, we also assume that both Ti-solvers always return
conflict sets which do not contain redundant interface disequalities ¬eij . (We
adopt here a strategy for Dtc which is described in detail in [40].) In short,
T -DPLL performs a Boolean search on the eij ’s, backjumping on the conflicting
clauses C13, C56, C23, C24 and C14, which in the end causes the unit-propagation
of (v1 = v4). Then, T -DPLL selects a sequence of ¬eij ’s without generating
conflicts, and concludes that the formula is T1 ∪ T2-satisfiable. Notice that the

29For simplicity, we assume ϕ is pure, although this condition is not necessary, as in [21].

f(v1) = v6

¬(f(v1) = f(v2))
¬(f(v2) = f(v4))

f(v3) = v5

¬(v1 = v4)

¬(v1 = v3)

v2 = v3

¬(v2 = v3)

¬(v2 = v4)

v1 = v3

v5 = v6

v2 = v4

v1 = v4

¬(v5 = v6)

v1 ≥ 0
v1 ≤ 1
v2 ≥ v6

v2 ≤ v6 + 1

v5 = v4 − 1
v3 = 0
v4 = 1

µE : µZ :

TZ-unsat, C13

TE-unsat, C56

TZ-unsat, C23

TE-unsat, C14

TE-unsat, C24

C13 : (µ′
Z) → ((v1 = v3) ∨ (v1 = v4))

C56 : (µ′
E ∧ (v1 = v3)) → (v5 = v6)

C14 : (µ′′′
E ∧ (v1 = v3) ∧ (v2 = v4)) → ⊥

C24 : (µ′′
E ∧ (v1 = v3) ∧ (v2 = v3)) → ⊥

C23 : (µ′′
Z ∧ (v5 = v6)) → ((v2 = v3) ∨ (v2 = v4))

Figure 1.6. The Dtc search tree for Example 1.6.3 on TZ ∪ TE , with no eij -deduction.

v1, . . . , v6 are interface terms. µ′
T i

, µ′′
T i

, µ′′′
T i

denote appropriate subsets of µT i
, Ti ∈ {TE ,TZ}.

backjumping steps on the clauses C13, C56, and C23 mimic the effects of perform-
ing eij-deductions.

By adopting T -solvers with different eij -deduction power, one can trade part
or all the eij-deduction effort for extra Boolean search. [40] shows that, if the
T -solvers have full eij-deduction capabilities, then no extra Boolean search on the
eij ’s is required; otherwise, the Boolean search is controlled by the quality of the
conflict sets returned by the T -solvers: the more redundant interface disequalities
are removed from the conflict sets, the more Boolean branches are pruned. If the
conflict sets do not contain redundant interface disequalities, the extra effort is
reduced to one branch for each deduction saved, as in Example 1.6.3.

As seen in §1.5.2, the idea from Dtc of delegating to the DPLL engine part
or most of the, possibly very expensive, reasoning effort normally assigned to the
Ti-solvers (eij-deduction, case-splits) is pushed even further in the splitting on
demand approach. As far as multiple theories are concerned, the latter approach
differs from Dtc in the fact that the interaction is controlled by the Ti-solvers,
not by the DPLL engine. Other improvements of Dtc are currently implemented
in the MathSAT [37], Yices [62], and Z3 [55] lazy SMT tools. In particular,
[62] introduced the idea of generating eij ’s on-demand, and [55] that of having
the Boolean search on eij ’s driven by a model under construction.

1.6.4. Ackermann’s expansion

When combining one or more theories with TE , one possible approach is to elimi-
nate uninterpreted function symbols by means of Ackermann’s expansion [1]. The

method works as described in §1.3.1.3 by replacing every function application oc-
curring in the input formula ϕ with a fresh variable and then adding to ϕ all the
needed functional congruence constraints. The formula ϕ′ obtained is equisatis-
fiable with ϕ, and contains no uninterpreted function symbols. [39] presents a
comparison between Dtc and Ackermann’s expansion.

Example 1.6.4. Consider the TE ∪ TZ conjunction µ of Example 1.6.3 [40].
Applying Ackermann’s expansion we obtain the conjunction of TZ -literals:

µE : ¬(vf(v1) = vf(v2)) ∧ ¬(vf(v2) = vf(v4)) ∧ (vf(v3) = v5) ∧ (vf(v1) = v6)∧
µZ : (v1 ≥ 0) ∧ (v1 ≤ 1) ∧ (v5 = v4 − 1) ∧ (v3 = 0) ∧ (v4 = 1)∧

(v2 ≥ v6) ∧ (v2 ≤ v6 + 1)∧
Ack : ((v1 = v2) → (vf(v1) = vf(v2))) ∧ ((v1 = v3) → (vf(v1) = vf(v3)))∧

((v1 = v4) → (vf(v1) = vf(v4))) ∧ ((v2 = v3) → (vf(v2) = vf(v3)))∧
((v2 = v4) → (vf(v2) = vf(v4))) ∧ ((v3 = v4) → (vf(v3) = vf(v4))),

(1.2)
which every TZ-solver finds TZ -satisfiable. (E.g., the TZ-model v2 = 2, v3 =
v5 = v6 = vf(v1) = vf(v3) = 0, v1 = v4 = vf(v2) = vf(v4) = 1 satisfies it.)

1.7. Extensions and Enhancements

1.7.1. Combining eager and lazy approaches

The Ackermann expansion described above is one way to combine eager and
lazy approaches. Other hybrids of eager and lazy encoding methods can also be
effective.

For instance, consider the satisfiability problem for integer linear arithmetic
and the small-domain encoding technique presented in §1.3.2. Due to the con-
servative nature of the bound derived, and in spite of the many optimizations
possible, the computed solution bound can generate a SAT problem beyond the
reach of current solvers. For example, this situation can arise for problem domains
that do not generate sparse linear constraints.

One can observe that the derived bounds are dependent only on the “bag of
constraints”, rather than on their specific Boolean combination in the input for-
mula. Thus, there is hope that a smaller solution bound might suffice. Kroening et
al. [87] have presented an approach to compute the solution bound incrementally,
starting with a small bound and increasing it “on demand”. Figure 1.7 outlines
this lazy approach to computing the solution bound. Given a TZ -formula FZ ,
we start with an encoding size for each integer variable that is smaller than that
prescribed by the conservative bound (say, for example, 1 bit per variable).

If the resulting Boolean formula is satisfiable, so is FZ . If not, the proof of
unsatisfiability generated by the SAT solver is used to generate a sound abstraction
F ′
Z of FZ . A sound abstraction is a formula, usually much smaller than the

original, such that if it is unsatisfiable, so is the original formula. A sound and
complete decision procedure for quantifier-free formulas in TZ is then used on F ′

Z .
If this decision procedure concludes that F ′

Z is unsatisfiable, so is FZ . If not, it
provides a counterexample which indicates the necessary increase in the encoding
size. A new SAT-encoding is generated, and the procedure repeats.

solution bound

Select small

Encoding
 SAT

Generate

Generate

Sound

Abstraction

YES NO

YES

Increase solution bound to cover satisfying solution

NO

Proof

d

Satisfiable?
Formula
Boolean Is

Abstraction
Satisfiable?

Formula Satisfiable Formula Unsatisfiable

Figure 1.7. Lazy approach to computing solution bound

The bound S on solution size that is derived in §1.3.2 implies an upper bound
nS on the number of iterations of this lazy encoding procedure; thus the lazy
encoding procedure needs only polynomially many iterations before it terminates
with the correct answer. Of course, each iteration involves a call to a SAT solver
as well as to the TZ-solver.

A key component of this lazy approach is the generation of the sound ab-
straction. While the details are outside the scope of this chapter, we sketch one
approach here. (Details can be found in [87].) Assume that FZ is in conjunctive
normal form (CNF); thus, FZ can be viewed as a set of clauses, each of which
is a disjunction of linear constraints and Boolean literals. A subset of this set of
clauses is a sound abstraction of FZ . This subset is computed by retaining only
those clauses from the original set that contribute to the proof of unsatisfiability
of the SAT-encoding.

If the generated abstractions are small, the sound and complete decision pro-
cedure used by this approach will run much faster than if it were fed the original
formula. Thus, one can view this approach as an “accelerator” that can speed up
any SMT solver. The approach is also applicable to other theories; for instance,
it has been successfully extended to finite-precision bit-vector arithmetic [43].

1.7.2. Handling quantifiers

Because the Nelson-Oppen framework (§1.6.1) only works for quantifier-free for-
mulas, SMT solvers have traditionally been rather limited in their ability to rea-

son about quantifiers. A notable exception is the prover Simplify [59] which uses
quantifier instantiation on top of a Nelson-Oppen style prover. Several modern
SMT solvers have adopted and extended these techniques [73, 23, 105].

The basic idea can be understood by extending the abstract framework de-
scribed in §1.4.4 to include rules for quantifier instantiation. The main modifi-
cation is to also allow closed quantified formulas wherever atomic formulas are
allowed. Define a generalized atomic formula as either an atomic formula or a
closed quantified formula. A generalized literal is either a generalized atomic
formula or its negation; a generalized clause is a disjunction of generalized liter-
als. The modified abstract framework is obtained simply by allowing literals and
clauses to be replaced by their generalized counterparts. For instance, non-fail
states become pairs M || F , where M is a sequence of generalized literals and
F is a conjunction of generalized clauses. With this understanding, the two rules
below can be used to model quantifier instantiation. For simplicity and without
loss of generality, we assume here that quantified literals in M appear only posi-
tively and that the bodies of quantified formulas are themselves in abstract CNF.

∃-Inst : M || F =⇒ M || F, ¬∃x.ϕ ∨ ϕ[x/a] if

{
∃x.ϕ is in M
a are fresh constants

∀-Inst : M || F =⇒ M || F, ¬∀x.ϕ ∨ ϕ[x/s] if

{
∀x.ϕ is in M
s are ground terms

The ∃-Inst rule essentially models skolemization and the ∀-Inst rule models in-
stantiation. It is also clear that termination can only be guaranteed by limiting
the number of times the rules are applied. For a given existentially quantified
formula, there is no benefit to applying ∃-Inst more than once, but a universally
quantified formula may need to be instantiated several times with different ground
terms before unsatisfiability is detected. The main challenge then, in applying
these rules, is to come up with an effective strategy for applying ∀-Inst. For some
background theories (e.g., universal theories) completeness can be shown for ex-
haustive and fair instantiation strategies. In practice, however, the most effective
techniques are incomplete and heuristic.

The most common approach is to select for instantiation only ground terms
that are relevant to the quantified formula in question, according to some heuristic
relevance criteria. The idea is as follows: given a state M || F and an abstract
literal ∀x.ϕ in M , try to find a subterm t of ∀x.ϕ properly containing x, a ground
term g in M , and a subterm s of g, such that t[x/s] is equivalent to g modulo
the background theory T (written t[x/s] =T g). In this case, we expect that
instantiating x with s is more likely to be helpful than instantiating with other
candidate terms. Following Simplify’s terminology, the term t is called a trigger

(for ∀x.ϕ). In terms of unification theory, the case in which t[x/s] =T g is a
special case of T -matching between t and g.

In general, in the context of SMT, given the complexity of the background
theory T , it may be very difficult if not impossible to determine whether a trigger
and a ground term T -match. As a result, most implementations use some form
of TE -matching. For details on effective implementation strategies, we refer the

reader to [59, 73, 23, 105].

1.7.3. Producing models

For some applications, it is desirable not only to know whether a formula is
satisfiable, but if so, what a satisfying model is. In general, it may be challenging
to capture all of the structure of an arbitrary first-order model. However, it is
often sufficient to know how to assign values from some “standard” model to the
ground terms in a formula. Several SMT solvers have implemented support for
“models” of this kind.

One approach is to do additional work guessing values for ground terms and
then to double-check that the formula is indeed satisfied. This is the approach
followed by CVC3 [18].

An alternative approach is to instrument the T -solver to continually maintain
a value for every ground term associated with the theory. This is the strategy
followed by the solvers Yices and Z3 [61, 55].

1.7.4. Producing proofs

In both SAT and SMT communities, the importance of having tools able to
produce proofs of the (T -)unsatisfiability of the input formulas has been recently
stressed, due to the need for independently verifiable results, and as a starting
point for the production of unsatisfiable cores (§1.7.5) and interpolants (§1.7.6).

A DPLL solver can be easily modified to generate a resolution proof of un-
satisfiability for an input CNF formula, by keeping track of all resolution steps
performed when generating each conflict clause, and by combining these subproofs
iteratively into a proof of unsatisfiability whose leaves are original clauses. Tech-
niques for translating a Boolean resolution proof into a more human-readable and
verifiable format have been proposed, e.g., in [12, 2].

Similarly, a lazy SMT solver can be modified to generate a resolution proof of
unsatisfiability for an input CNF formula, whose leaves are either clauses from the
original formula or T -lemmas (i.e. negations of T -conflict sets and T -deduction
clauses returned by the T -solver, see §1.4.3), which are T -valid clauses. Such a
resolution proof can be further refined by providing a proof for each T -lemma in
some theory-specific deductive framework (like, e.g. that in [102] for inequalities
in TR).

1.7.5. Identifying unsatisfiable cores

An unsatisfiable core(UC) of an unsatisfiable CNF formula ϕ is an unsatisfiable
subset of the clauses in ϕ.

In SAT, the problem of finding small unsatisfiable cores has been addressed
by many authors in recent years [95, 103, 159, 116, 82, 58, 29, 74, 156] due to
its importance in formal verification [100]. In particular, lots of techniques and
optimizations have been introduced with the aim of producing small [159, 74],
minimal [116, 82, 58], or even minimum unsat cores [95, 103, 156].

In SMT, despite the fact that finding unsatisfiable cores has been addressed
explicitly in the literature only recently [46], at least three SMT solvers (i.e.

CVC3, MathSAT, and Yices) support UC generation.30 We distinguish three
main approaches.

In the approach implemented in CVC3 and MathSAT (proof-based approach
hereafter), the UC is produced as a byproduct of the generation of resolution
proofs. As in [159], the idea is to return the set of clauses from the original
problem which appear as leaves in the resolution proof of unsatisfiability. (T -
lemmas are not included as they are T -valid clauses, so they play no role in the
T -unsatisfiability of the core.)

The approach used by Yices (assumption-based approach hereafter) is an
adaptation of a method used in SAT [95]: for each clause Ci in the problem,
a new Boolean “selector” variable Si is created; then, each Ci is replaced by
(Si → Ci); finally, before starting the search each Si is forced to true. In this
way, when a conflict at decision level zero is found by the DPLL solver, the conflict
clause C contains only selector variables, and the UC returned is the union of the
clauses whose selectors appear in C. Neither approach aims at producing minimal
or minimum unsatisfiable cores, nor does anything to reduce their size.

In the lemma-lifting approach [46] implemented in MathSAT, a lazy SMT
solver is combined with an external (and possibly highly-optimized) propositional
core extractor. The SMT solver stores and returns the T -lemmas it had to prove
in order to refute the input formula; the external core extractor is then called
on the Boolean abstraction of the original SMT problem and of the T -lemmas.
Clauses corresponding to T -lemmas are removed from the resulting UC, and the
remaining abstract clauses are refined back into their original form. The result
is an unsatisfiable core of the original SMT problem. This technique is able
to benefit from any size-reduction techniques implemented in the Boolean core
extractor used.

1.7.6. Computing interpolants

A Craig interpolant (“interpolant” hereafter) of a pair of formulas (ψ, φ) s.t.
ψ ∧ φ |=T ⊥ is a formula ψ′ s.t.:

• ψ |=T ψ′,
• ψ′ ∧ φ |=T ⊥, and
• ψ′ � ψ and ψ′ � φ,

where α � β denotes that all uninterpreted (in the signature of T) symbols of α
appear in β. Note that a quantifier-free interpolant exists if T admits quantifier
elimination [85] (e.g., in TZ a quantifier-free interpolant for (ψ, φ) may not exist).

The use of interpolation in formal verification was introduced by McMillan
in [101] for purely-propositional formulas, and it was subsequently extended to
handle TE ∪ TR-formulas in [102]. The technique, which is based on earlier work
by Pudlák [124], works as follows. (We assume w.l.o.g. that the formulas are in
CNF.) An interpolant for (ψ, φ) is constructed from a resolution proof P of the
unsatisfiability of ψ ∧ φ, according to the following steps:

30Apart from [46], the information reported here on the computation of unsatisfiable cores
in these tools comes from personal knowledge of the tools (CVC3 and MathSAT) and from
private communications from the authors (Yices).

1. for every clause C occurring as a leaf in P , set IC ≡ C ↓ φ if C ∈ ψ, and
IC ≡ ⊤ if C ∈ φ;

2. for every T -lemma ¬η occurring as a leaf in P , generate an interpolant
I¬η for (η \ φ, η ↓ φ);

3. for every node C of P obtained by resolving C1 ≡ p∨φ1 and C2 ≡ ¬p∨φ2,
set IC ≡ IC1

∨ IC2
if p does not occur in φ, and IC ≡ IC1

∧ IC2
otherwise;

4. return I⊥ as an interpolant for (ψ, φ);

where C ↓ φ is the clause obtained by removing all the literals in C whose atoms
do not occur in φ, and C\φ that obtained by removing all the literals whose atoms
do occur in φ. In the purely-Boolean case the algorithm reduces to steps 1., 3.
and 4. only. Notice that step 2 of the algorithm is the only part which depends
on the theory T , so that the problem reduces to that of finding interpolants for
(negated) T -lemmas.

A number of techniques exist for theory-specific interpolation generation. For
example, [102] provides a set of rules for constructing interpolants for T -lemmas
in TE , for weak linear inequalities (0 ≤ t) in TR, and their combination. [154]
uses a variant of the Nelson-Oppen procedure (§1.6.2) for generating interpolants
for T 1 ∪ T 2 using the interpolant-generation procedures of T 1 and T 2 as black-
boxes. The combination TE ∪ TR can also be used to compute interpolants for
other theories, such as those of lists, arrays, sets and multisets [85]. [129] computes
interpolants for T -lemmas in TE ∪TR by solving a system of Linear Programming
(LP) constraints. [88] extends the eager SMT approach to the generation of
interpolants. (The approach is currently limited to the theory of equality only,
without uninterpreted functions).) [47] presents some extensions to the work in
[102], including an optimized interpolant generator for the full theory TR, an
ad hoc interpolant generator for difference logic, and an interpolant combination
method based on Delayed Theory Combination (§1.6.3).

Bibliography

[1] W. Ackermann. Solvable Cases of the Decision Problem. North-Holland,
Amsterdam, 1954.

[2] H. Amjad. A Compressing Translation from Propositional Resolution to
Natural Deduction. In Proc. FroCoS, volume 4720 of Lecture Notes in
Computer Science, pages 88–102. Springer, 2007.

[3] A. Armando, M. P. Bonacina, S. Ranise, and S. Schulz. On a rewriting ap-
proach to satisfiability procedures: Extension, combination of theories and
an experimental appraisal. In B. Gramlich, editor, Frontiers of Combin-
ing Systems, 5th International Workshop, FroCoS 2005, Vienna, Austria,
September 19-21, 2005, Proceedings, volume 3717 of Lecture Notes in Com-
puter Science, pages 65–80. Springer, 2005.

[4] A. Armando, C. Castellini, and E. Giunchiglia. SAT-based procedures for
temporal reasoning. In Proc. European Conference on Planning, ECP-99,
1999.

[5] A. Armando, C. Castellini, E. Giunchiglia, and M. Maratea. A SAT-based
Decision Procedure for the Boolean Combination of Difference Constraints.
In Proc. SAT’04, 2004.

[6] A. Armando and E. Giunchiglia. Embedding Complex Decision Procedures
inside an Interactive Theorem Prover. Annals of Mathematics and Artificial
Intelligence, 8(3–4):475–502, 1993.

[7] A. Armando, S. Ranise, and M. Rusinowitch. A Rewriting Approach to
Satisfiability Procedures. Information and Computation, 183(2):140–164,
June 2003.

[8] G. Audemard, P. Bertoli, A. Cimatti, A. Korni lowicz, and R. Sebastiani.
A SAT Based Approach for Solving Formulas over Boolean and Linear
Mathematical Propositions. In Proc. CADE’2002., volume 2392 of LNAI.
Springer, July 2002.

[9] G. Audemard, A. Cimatti, A. Korni lowicz, and R. Sebastiani. SAT-Based
Bounded Model Checking for Timed Systems. In Proc. FORTE’02., volume
2529 of LNCS. Springer, November 2002.

[10] L. Bachmair, A. Tiwari, and L. Vigneron. Abstract congruence closure.
Journal of Automated Reasoning, 31(2):129–168, 2003.

[11] T. Ball, B. Cook, S. Lahiri, and L. Zhang. Zapato: Automatic theorem
proving for predicate abstraction refinement. In Proc. Computer-Aided Ver-
ification (CAV), volume 3114 of Lecture Notes in Computer Science, pages
457–461, 2004.

[12] C. Barrett and S. Berezin. A proof-producing boolean search engine. In
Proceedings of the 1st International Workshop on Pragmatics of Decision
Procedures in Automated Reasoning (PDPAR ’03), July 2003.

[13] C. Barrett and S. Berezin. CVC Lite: A new implementation of the coop-
erating validity checker. In R. Alur and D. A. Peled, editors, Proceedings
of the 16th International Conference on Computer Aided Verification (CAV
’04), volume 3114 of Lecture Notes in Computer Science, pages 515–518.
Springer, July 2004.

[14] C. Barrett, R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Splitting on de-
mand in SAT modulo theories. In M. Hermann and A. Voronkov, editors,
Proceedings of the 13th International Conference on Logic for Programming,
Artificial Intelligence, and Reasoning (LPAR ’06), volume 4246 of Lecture
Notes in Computer Science, pages 512–526. Springer, Nov. 2006.

[15] C. Barrett, R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Splitting on de-
mand in SAT Modulo Theories. Technical Report 06-05, Department of
Computer Science, University of Iowa, Aug. 2006.

[16] C. Barrett, S. Ranise, C. Tinelli, and A. Stump. The SMT-LIB web site,
2008.

[17] C. Barrett, I. Shikanian, and C. Tinelli. An abstract decision procedure for
a theory of inductive data types. Journal on Satisfiability, Boolean Modeling
and Computation, 3:21–46, 2007.

[18] C. Barrett and C. Tinelli. CVC3. In W. Damm and H. Hermanns, editors,
Proceedings of the 19th International Conference on Computer Aided Ver-
ification (CAV ’07), volume 4590 of Lecture Notes in Computer Science,
pages 298–302. Springer, July 2007.

[19] C. W. Barrett, D. L. Dill, and J. R. Levitt. A decision procedure for bit-
vector arithmetic. In Proceedings of the 35th Design Automation Conference
(DAC ’98), pages 522–527. Association for Computing Machinery, June
1998.

[20] C. W. Barrett, D. L. Dill, and A. Stump. Checking satisfiability of first-
order formulas by incremental translation to SAT. In E. Brinksma and
K. G. Larsen, editors, Proceedings of the 14th International Conference on
Computer Aided Verification (CAV ’02), volume 2404 of Lecture Notes in
Computer Science, pages 236–249. Springer-Verlag, July 2002.

[21] C. W. Barrett, D. L. Dill, and A. Stump. A generalization of Shostak’s
method for combining decision procedures. In A. Armando, editor, Proceed-
ings of the 4th International Workshop on Frontiers of Combining Systems
(FroCoS ’02), volume 2309 of Lecture Notes in Artificial Intelligence, pages
132–146. Springer, Apr. 2002.

[22] C. W. Barrett, D. L. Dill, and A. Stump. A generalization of Shostak’s
method for combining decision procedures. In A. Armando, editor, Pro-
ceedings of the 4th International Workshop on Frontiers of Combining Sys-
tems, FroCoS’2002 (Santa Margherita Ligure, Italy), volume 2309 of Lecture
Notes in Computer Science, pages 132–147, apr 2002.

[23] N. Bjørner and L. de Moura. Efficient E-matching for SMT solvers. In
F. Pfenning, editor, Proceedings of the 21st International Conference on
Automated Deduction (CADE ’07), volume 4603 of Lecture Notes in Arti-

ficial Intelligence, pages 183–198. Springer-Verlag, July 2007.
[24] N. Bjørner and M. C. Pichora. Deciding fixed and non-fixed size bit-vectors.

In TACAS ’98: Proceedings of the 4th International Conference on Tools
and Algorithms for Construction and Analysis of Systems, pages 376–392.
Springer-Verlag, 1998.

[25] M. P. Bonacina and M. Echenim. Rewrite-based decision procedures. In
M. Archer, T. B. de la Tour, and C. Munoz, editors, Proceedings of the Sixth
Workshop on Strategies in Automated Deduction (STRATEGIES), volume
174(11) of Electronic Notes in Theoretical Computer Science, pages 27–45.
Elsevier, July 2007.

[26] M. P. Bonacina and M. Echenim. T-decision by decomposition. In F. Pfen-
ning, editor, Proceedings of the Twenty-first International Conference on
Automated Deduction (CADE), volume 4603 of Lecture Notes in Artificial
Intelligence, pages 199–214. Springer, July 2007.

[27] M. P. Bonacina, S. Ghilardi, E. Nicolini, S. Ranise, and D. Zucchelli. De-
cidability and undecidability results for Nelson-Oppen and rewrite-based
decision procedures. In U. Furbach and N. Shankar, editors, Automated Rea-
soning, Third International Joint Conference, IJCAR 2006, Seattle, WA,
USA, August 17-20, 2006, Proceedings, volume 4130 of Lecture Notes in
Computer Science, pages 513–527. Springer, 2006.

[28] M. P. Bonacina, S. Ghilardi, E. Nicolini, S. Ranise, and D. Zucchelli. De-
cidability and undecidability results for Nelson-Oppen and rewrite-based
decision procedures. In U. Furbach and N. Shankar, editors, Proceedings of
the 3rd International Joint Conference on Auto mated Reasoning (IJCAR
2006), volume 4130 of Lecture Notes in Computer Science, pages 513–527,
Seattle (WA, USA), 2006. Springer.

[29] Booleforce, http://fmv.jku.at/booleforce/.
[30] I. Borosh, M. Flahive, and L. B. Treybig. Small solutions of linear Dio-

phantine equations. Discrete Mathematics, 58:215–220, 1986.
[31] I. Borosh and L. B. Treybig. Bounds on positive integral solutions of linear

Diophantine equations. Proceedings of the American Mathematical Society,
55(2):299–304, March 1976.

[32] R. S. Boyer and J. Moore. Integrating decision procedures into heuristic
theorem provers: A case study of linear arithmetic. Machine Intelligence,
11:83–124, 1988.

[33] R. S. Boyer and J. S. Moore. A theorem prover for a computational logic.
In M. E. Stickel, editor, 10th International Conference on Automated De-
duction (CADE), LNAI 449, pages 1–15, Kaiserslautern, FRG, July 24–27,
1990. Springer-Verlag.

[34] M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, P. Rossum, S. Schulz,
and R. Sebastiani. An incremental and Layered Procedure for the Satis-
fiability of Linear Arithmetic Logic. In Proc. TACAS’05, volume 3440 of
LNCS. Springer, 2005.

[35] M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, P. Rossum, S. Schulz,
and R. Sebastiani. MathSAT: A Tight Integration of SAT and Mathematical
Decision Procedure. Journal of Automated Reasoning, 35(1-3), October
2005.

[36] M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, P. van Rossum,
S. Ranise, and R. Sebastiani. Efficient Satisfiability Modulo Theories via
Delayed Theory Combination. In Proc. CAV 2005, volume 3576 of LNCS.
Springer, 2005.

[37] M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, P. van Rossum,
S. Ranise, and R. Sebastiani. Efficient Theory Combination via Boolean
Search. Information and Computation, 204(10), 2006.

[38] R. Bruttomesso, A. Cimatti, A. Franzén, A. Griggio, Z. Hanna, A. Nadel,
A. Palti, and R. Sebastiani. A lazy and layered SMT(BV) solver for hard
industrial verification problems. In W. Damm and H. Hermanns, editors,
Proceedings of the 19th International Conference on Computer Aided Ver-
ification (CAV ’07), volume 4590 of Lecture Notes in Computer Science,
pages 547–560. Springer-Verlag, July 2007.

[39] R. Bruttomesso, A. Cimatti, A. Franzén, A. Griggio, A. Santuari, and
R. Sebastiani. To Ackermann-ize or not to Ackermann-ize? On Efficiently
Handling Uninterpreted Function Symbols in SMT (EUF ∪ T). In Proc.
LPAR’06, volume 4246 of LNAI. Springer, 2006.

[40] R. Bruttomesso, A. Cimatti, A. Franzén, A. Griggio, and R. Sebastiani.
Delayed Theory Combination vs. Nelson-Oppen for Satisfiability Modulo
Theories: a Comparative Analysis. In Proc. LPAR’06, volume 4246 of
LNAI. Springer, 2006.

[41] R. Bryant, S. German, and M. Velev. Exploiting Positive Equality in a
Logic of Equality with Uninterpreted Functions. In Proc. CAV’99, volume
1633 of LNCS. Springer, 1999.

[42] R. E. Bryant, S. German, and M. N. Velev. Processor verification using
efficient reductions of the logic of uninterpreted functions to propositional
logic. ACM Transactions on Computational Logic, 2(1):1–41, January 2001.

[43] R. E. Bryant, D. Kroening, J. Ouaknine, S. A. Seshia, O. Strichman, and
B. Brady. Deciding bit-vector arithmetic with abstraction. In Proceed-
ings of Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), volume 4424 of Lecture Notes in Computer Science, pages 358–
372. Springer, 2007.

[44] R. E. Bryant and M. N. Velev. Boolean satisfiability with transitivity con-
straints. In A. Emerson and P. Sistla, editors, Computer-Aided Verification
(CAV 2000), LNCS 1855. Springer-Verlag, July 2000.

[45] V. Chandru. Variable elimination in linear constraints. The Computer
Journal, 36(5):463–472, Aug. 1993.

[46] A. Cimatti, A. Griggio, and R. Sebastiani. A Simple and Flexible Way of
Computing Small Unsatisfiable Cores in SAT Modulo Theories. In Proc.
SAT’07, volume 4501 of LNCS. Springer, 2007.

[47] A. Cimatti, A. Griggio, and R. Sebastiani. Efficient Interpolant Generation
in Satisfiability Modulo Theories. In Proc. TACAS’08, volume 4963 of
LNCS. Springer, 2008.

[48] Conchon and Krstic. Strategies for combining decision procedures. Theo-
retical Computer Science, 354, 2006.

[49] S. Cotton and O. Maler. Fast and Flexible Difference Logic Propagation
for DPLL(T). In Proc. SAT’06, volume 4121 of LNCS. Springer, 2006.

[50] S. Cotton and O. Maler. Satisfiability modulo theory chains with DPLL(T).
Unpublished. Available from http://www-verimag.imag.fr/̃ maler/, 2006.

[51] W. Craig. Linear reasoning: A new form of the Herbrand-Gentzen theorem.
Journal of Symbolic Logic, 22(3):250–268, 1957.

[52] D. Cyrluk, P. Lincoln, and N. Shankar. On Shostak’s decision procedure
for combinations of theories. In M. McRobbie and J. Slaney, editors, 13th
International Conference on Computer Aided Deduction, volume 1104 of
Lecture Notes in Computer Science, pages 463–477. Springer, 1996.

[53] D. Cyrluk, M. O. Möller, and H. Ruess. An efficient decision procedure
for the theory of fixed-size bit-vectors. In Proceedings of the 9th Interna-
tional Conference on Computer Aided Verification (CAV ’97), pages 60–71.
Springer, 1997.

[54] J. H. Davenport and J. Heintz. Real quantifier elimination is doubly expo-
nential. Journal of Symbolic Computation, 5:29–35, 1988.

[55] L. de Moura and N. Bjorner. Model-based Theory Combination. In Proc.
5th workshop on Satisfiability Modulo Theories, SMT’07, 2007.

[56] L. de Moura and N. Bjørner. Z3: An efficient SMT solver. In Confer-
ence on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS ’08), 2008.

[57] L. de Moura, H. Rueß, and M. Sorea. Lemmas on Demand for Satisfiability
Solvers. Proc. SAT’02, 2002.

[58] N. Dershowitz, Z. Hanna, and A. Nadel. A Scalable Algorithm for Minimal
Unsatisfiable Core Extraction. In Proc. SAT’06, volume 4121 of LNCS.
Springer, 2006.

[59] D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: A theorem prover for
program checking. Technical Report HPL-2003-148, HP Laboratories Palo
Alto, 2003.

[60] P. J. Downey, R. Sethi, and R. E. Tarjan. Variations on the common subex-
pression problem. Journal of the Association for Computing Machinery,
27(4):758–771, Oct. 1980.

[61] B. Dutertre and L. de Moura. A fast linear-arithmetic solver for DPLL(T).
In T. Ball and R. B. Jones, editors, Proceedings of the 18th International
Conference on Computer Aided Verification (CAV ’06), volume 4144 of
Lecture Notes in Computer Science, pages 81–94. Springer, Aug. 2006.

[62] B. Dutertre and L. de Moura. System Description: Yices
1.0. Proc. on 2nd SMT competition, SMT-COMP’06. Available at
yices.csl.sri.com/yices-smtcomp06.pdf, 2006.

[63] H.-D. Ebbinghaus, J. Flum, and W. Thomas. Mathematical logic. Under-
graduate Texts in Mathematics. Springer, New York, second edition edition,
1994.

[64] J. Elgaard, N. Klarlund, and A. Möller. Mona 1.x: New techniques for
WS1S and WS2S. In Proceedings of the 10th International Conference on
Computer Aided Verification (CAV ’98), volume 1427 of Lecture Notes in
Computer Science. Springer, 1998.

[65] H. B. Enderton. A Mathematical Introduction to Logic. Undergraduate
Texts in Mathematics. Academic Press, second edition edition, 2000.

[66] J.-C. Filliâtre, S. Owre, H. Rueß, and N. Shankar. ICS: integrated can-

yices.csl.sri.com/yices-smtcomp06.pdf

onizer and solver. In Proceedings of the 13th International Conference on
Computer Aided Verification (CAV’01), 2001.

[67] C. Flanagan, R. Joshi, X. Ou, and J. B. Saxe. Theorem Proving Using Lazy
Proof Explication. In Proc. CAV 2003, LNCS. Springer, 2003.

[68] P. Fontaine and E. P. Gribomont. Combining non-stably infinite, non-first
order theories. In C. Tinelli and S. Ranise, editors, Proceedings of the IJCAR
Workshop on Pragmatics of Decision Procedures in Automated Deduction,
PDPAR, July 2004.

[69] P. Fontaine, S. Ranise, and C. G. Zarba. Combining lists with non-stably
infinite theories. In F. Baader and A. Voronkov, editors, Logic for Pro-
gramming, Artificial Intelligence, and Reasoning (LPAR), volume 3452 of
Lecture Notes in Computer Science, pages 51–66. Springer-Verlag, 2005.

[70] V. Ganesh and D. L. Dill. A decision procedure for bit-vectors and arrays. In
W. Damm and H. Hermanns, editors, Proceedings of the 19th International
Conference on Computer Aided Verification (CAV ’07), volume 4590 of
Lecture Notes in Computer Science, pages 519–531. Springer-Verlag, July
2007.

[71] H. Ganzinger. Shostak light. In A. Voronkov, editor, Proceedings of the
18th International Conference on Computer-Aided Deduction (CADE ’02),
volume 2392 of Lecture Notes in Artificial Intelligence, pages 332–346.
Springer, July 2002.

[72] H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras, and C. Tinelli.
DPLL(T): Fast Decision Procedures. In Proc. CAV’04, volume 3114 of
LNCS. Springer, 2004.

[73] Y. Ge, C. Barrett, and C. Tinelli. Solving quantified verification condi-
tions using satisfiability modulo theories. In F. Pfenning, editor, Proceed-
ings of the 21st International Conference on Automated Deduction (CADE
’07), volume 4603 of Lecture Notes in Artificial Intelligence, pages 167–182.
Springer-Verlag, July 2007.

[74] R. Gershman, M. Koifman, and O. Strichman. Deriving Small Unsatisfiable
Cores with Dominators. In Proc. CAV’06, volume 4144 of LNCS. Springer,
2006.

[75] S. Ghilardi. Model theoretic methods in combined constraint satisfiability.
Journal of Automated Reasoning, 3(3–4):221–249, 2004.

[76] S. Ghilardi, E. Nicolini, S. Ranise, and D. Zucchelli. Deciding extensions
of the theory of arrays by integrating decision procedures and instantiation
strategies. In M. Fisher, W. van der Hoek, B. Konev, and A. Lisitsa,
editors, Logics in Artificial Intelligence, 10th European Conference, JELIA
2006, Liverpool, UK, September 13-15, 2006, Proceedings, volume 4160 of
Lecture Notes in Computer Science, pages 177–189. Springer, 2006.

[77] S. Ghilardi, E. Nicolini, and D. Zucchelli. A comprehensive framework for
combined decision procedures. In B. Gramlich, editor, Frontiers of Combin-
ing Systems, 5th International Workshop, FroCoS 2005, Vienna, Austria,
September 19-21, 2005, Proceedings, volume 3717 of Lecture Notes in Com-
puter Science, pages 1–30. Springer, 2005.

[78] E. Giunchiglia, F. Giunchiglia, and A. Tacchella. SAT Based Decision Pro-
cedures for Classical Modal Logics. Journal of Automated Reasoning. Spe-

cial Issue: Satisfiability at the start of the year 2000, 2001.
[79] F. Giunchiglia and R. Sebastiani. Building decision procedures for modal

logics from propositional decision procedures - the case study of modal K.
In Proc. CADE’13, number 1104 in LNAI. Springer, 1996.

[80] D. Hochbaum, N. Megiddo, J. Naor, and A. Tamir. Tight bounds and
2-approximation algorithms for integer programs with two variables per
inequality. Mathematical Programming, 62:63–92, 1993.

[81] I. Horrocks. The FaCT system. In H. de Swart, editor, Proc. TABLEAUX-
98, volume 1397 of LNAI, pages 307–312. Springer, 1998.

[82] J. Huang. MUP: a minimal unsatisfiability prover. In Proc. ASP-DAC ’05.
ACM Press, 2005.

[83] J. Jaffar, M. J. Maher, P. J. Stuckey, and R. H. C. Yap. Beyond finite
domains. In 2nd International Workshop on Principles and Practice of
Constraint Programming (PPCP’94), volume 874 of Lecture Notes in Com-
puter Science, pages 86–94, 1994.

[84] R. Kannan and C. L. Monma. On the computational complexity of integer
programming problems. In Optimisation and Operations Research, volume
157 of Lecture Notes in Economics and Mathematical Systems, pages 161–
172. Springer-Verlag, 1978.

[85] D. Kapur, R. Majumdar, and C. G. Zarba. Interpolation for data structures.
In Proc. SIGSOFT FSE. ACM, 2006.

[86] N. Karmakar. A new polynomial-time algorithm for linear programming.
Combinatorica, 4(4):373–395, 1984.

[87] D. Kroening, J. Ouaknine, S. A. Seshia, and O. Strichman. Abstraction-
based satisfiability solving of Presburger arithmetic. In Proc. 16th Interna-
tional Conference on Computer-Aided Verification (CAV), pages 308–320,
July 2004.

[88] D. Kroening and G. Weissenbacher. Lifting propositional interpolants to
the word-level. In Proceedings of FMCAD, pages 85–89. IEEE, 2007.

[89] S. Krstic and S. Conchon. Canonization for disjoint unions of theories.
In F. Baader, editor, Proceedings of the 19th International Conference on
Computer-Aided Deduction (CADE ’03), volume 2741 of Lecture Notes in
Artificial Intelligence, pages 197–211. Springer, Aug. 2003. Miami Beach,
FL.

[90] S. Krstić, A. Goel, J. Grundy, and C. Tinelli. Combined satisfiability mod-
ulo parametric theories. In O. Grumberg and M. Huth, editors, Proceedings
of the 13th International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems (Braga, Portugal), volume 4424 of Lecture
Notes in Computer Science, pages 618–631. Springer, 2007.

[91] S. K. Lahiri and R. E. Bryant. Deductive verification of advanced
out-of-order microprocessors. In Proc. 15th International Conference on
Computer-Aided Verification (CAV), volume 2725 of LNCS, pages 341–354,
2003.

[92] S. K. Lahiri, R. E. Bryant, A. Goel, and M. Talupur. Revisiting positive
equality. In Proc. Tools and Algoriths for the Construction and Analysis of
Systems (TACAS), LNCS 2988, pages 1–15, 2004.

[93] S. K. Lahiri and M. Musuvathi. An efficient decision procedure for UTVPI

constraints. In J. G. Carbonell and J. Siekmann, editors, Proceedings of the
5th International Workshop on Frontiers of Combining Systems (FroCos
’05), volume 3717 of Lecture Notes in Artificial Intelligence, pages 168–183.
Springer, Sept. 2005.

[94] S. K. Lahiri and S. A. Seshia. The UCLID decision procedure. In Proc. 16th
International Conference on Computer-Aided Verification (CAV), pages
475–478, July 2004.

[95] I. Lynce and J. P. M. Silva. On computing minimum unsatisfiable cores. In
SAT, 2004.

[96] Z. Manna and C. Zarba. Combining decision procedures. In Formal Methods
at the Crossroads: from Panacea to Foundational Support, volume 2787 of
Lecture Notes in Computer Science, pages 381–422. Springer, Nov. 2003.

[97] Z. Manna and C. G. Zarba. Combining decision procedures. In Formal
Methods at the Cross Roads: From Panacea to Foundational Support, vol-
ume 2757 of Lecture Notes in Computer Science, pages 381–422. Springer,
2003.

[98] F. Maric and P. Janicic. ARGO-Lib: A generic platform for decision pro-
cedures. In Proceedings of IJCAR ’04, volume 3097 of Lecture Notes in
Artificial Intelligence, pages 213–217. Springer, 2004.

[99] Y. V. Matiyasevich. Diophantine representation of recursively enumerable
predicates. In J. E. Fenstad, editor, Second Scandinavian Logic Symposium,
volume 63 of Studies in Logic and the Foundations of Mathematics, pages
171–177. North-Holland Publishing Company, 1971.

[100] K. McMillan. Applying SAT Methods in Unbounded Symbolic Model
Checking. In Proc. CAV ’02, number 2404 in LNCS. Springer, 2002.

[101] K. McMillan. Interpolation and SAT-based model checking. In Proc. CAV,
2003.

[102] K. L. McMillan. An interpolating theorem prover. Theor. Comput. Sci.,
345(1), 2005.

[103] M. N. Mneimneh, I. Lynce, Z. S. Andraus, J. P. M. Silva, and K. A. Sakallah.
A Branch-and-Bound Algorithm for Extracting Smallest Minimal Unsatis-
fiable Formulas. In Proc. SAT’05, volume 3569 of LNCS. Springer, 2005.

[104] M. O. Möller. Solving Bit-Vector Equations – a Decision Procedure for
Hardware Verification. PhD thesis, University of Ulm, 1997.

[105] M. Moska land J. Lopuszański. Fast quantifier reasoning with lazy proof
explication. Technical report, Institute of Computer Science, University of
Wroc law, May 2006.

[106] M. W. Moskewicz, C. F. Madigan, Y. Z., L. Zhang, and S. Malik. Chaff:
Engineering an efficient SAT solver. In Design Automation Conference,
2001.

[107] G. Nelson and D. C. Oppen. Simplification by cooperating decision proce-
dures. ACM Trans. on Programming Languages and Systems, 1(2):245–257,
Oct. 1979.

[108] G. Nelson and D. C. Oppen. Fast decision procedures based on congruence
closure. Journal of the Association for Computing Machinery, 27(2):356–
364, Apr. 1980.

[109] R. Nieuwenhuis and A. Oliveras. Congruence closure with integer offsets.

In In 10th Int. Conf. Logic for Programming, Artif. Intell. and Reasoning
(LPAR), volume 2850 of LNAI, pages 78–90. Springer, 2003.

[110] R. Nieuwenhuis and A. Oliveras. Decision Procedures for SAT, SAT Modulo
Theories and Beyond. The BarcelogicTools. (Invited Paper). In G. Sutcliffe
and A. Voronkov, editors, 12h International Conference on Logic for Pro-
gramming, Artificial Intelligence and Reasoning, LPAR’05, volume 3835 of
Lecture Notes in Computer Science, pages 23–46. Springer, 2005.

[111] R. Nieuwenhuis and A. Oliveras. DPLL(T) with exhaustive theory propa-
gation and its application to difference logic. In K. Etessami and S. K.
Rajamani, editors, Proceedings of the 17th International Conference on
Computer Aided Verification (CAV ’05), volume 3576 of Lecture Notes in
Computer Science, pages 321–334. Springer, July 2005.

[112] R. Nieuwenhuis and A. Oliveras. Proof-Producing Congruence Closure. In
Proceedings of the 16th International Conference on Term Rewriting and
Applications, RTA’05, volume 3467 of LNCS. Springer, 2005.

[113] R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Abstract DPLL and abstract
DPLL modulo theories. In F. Baader and A. Voronkov, editors, Proceedings
of the 11th International Conference on Logic for Programming, Artificial
Intelligence and Reasoning (LPAR’04), Montevideo, Uruguay, volume 3452
of Lecture Notes in Computer Science, pages 36–50. Springer, 2005.

[114] R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT and SAT Modulo
Theories: from an Abstract Davis-Putnam-Logemann-Loveland Procedure
to DPLL(T). Journal of the ACM, 53(6):937–977, Nov. 2006.

[115] R. Nieuwenhuis and A. Rubio. Paramodulation-based theorem proving. In
J. A. Robinson and A. Voronkov, editors, Handbook of Automated Reason-
ing, pages 371–443. Elsevier and MIT Press, 2001.

[116] Y. Oh, M. N. Mneimneh, Z. S. Andraus, K. A. Sakallah, and I. L. Markov.
Amuse: A Minimally-Unsatisfiable Subformula Extractor. In Proc. DAC’04.
ACM/IEEE, 2004.

[117] D. C. Oppen. Complexity, convexity and combinations of theories. Theo-
retical Computer Science, 12:291–302, 1980.

[118] D. C. Oppen. Reasoning about recursively defined data structures. Journal
of the Association for Computing Machinery, 27(3):403–411, July 1980.

[119] C. H. Papadimitriou. On the complexity of integer programming. Journal
of the Association for Computing Machinery, 28(4):765–768, 1981.

[120] P. F. Patel-Schneider. DLP system description. In Proc. DL-98, pages
87–89, 1998.

[121] A. Pnueli, Y. Rodeh, O. Shtrichman, and M. Siegel. Deciding equality
formulas by small domains instantiations. In Proceedings of the 11th In-
ternational Conference on Computer Aided Verification, volume 1633 of
Lecture Notes in Computer Science, pages 455–469. Springer, 1999.

[122] A. Pnueli, Y. Rodeh, M. Siegel, and O. Strichman. The small model prop-
erty: How small can it be? Journal of Information and Computation,
178(1):279–293, Oct. 2002.

[123] V. Pratt. Two easy theories whose combination is hard. Technical report,
Massachusetts Institute of Technology, 1977. Cambridge, MA.

[124] P. Pudlák. Lower bounds for resolution and cutting planes proofs and

monotone computations. J. of Symbolic Logic, 62(3), 1997.
[125] W. Pugh. The omega test: A fast and practical integer programming algo-

rithm for dependence analysis. In Supercomputing, pages 4–13, 1991.
[126] S. Ranise, C. Ringeissen, and C. G. Zarba. Combining data structures with

nonstably infinite theories using many-sorted logic. In B. Gramlich, editor,
Proceedings of the Workshop on Frontiers of Combining Systems, volume
3717 of Lecture Notes in Computer Science, pages 48–64. Springer, 2005.

[127] C. Ringeissen. Cooperation of decision procedures for the satisfiability prob-
lem. In F. Baader and K. Schulz, editors, Frontiers of Combining Systems:
Proceedings of the 1st International Workshop, Munich (Germany), Applied
Logic, pages 121–140. Kluwer Academic Publishers, Mar. 1996.

[128] H. Ruess and N. Shankar. Deconstructing Shostak. In 16th Annual IEEE
Symposium on Logic in Computer Science, pages 19–28. IEEE Computer
Society, June 2001. Boston, MA.

[129] A. Rybalchenko and V. Sofronie-Stokkermans. Constraint Solving for In-
terpolation. In VMCAI, LNCS. Springer, 2007.

[130] R. Sebastiani. Lazy Satisfiability Modulo Theories. Journal on Satisfiability,
Boolean Modeling and Computation – JSAT., 3, 2007.

[131] S. A. Seshia. Adaptive Eager Boolean Encoding for Arithmetic Reasoning
in Verification. PhD thesis, Carnegie Mellon University, 2005.

[132] S. A. Seshia and R. E. Bryant. Deciding quantifier-free Presburger formulas
using parameterized solution bounds. Logical Methods in Computer Science,
1(2):1–26, December 2005.

[133] S. A. Seshia, S. K. Lahiri, and R. E. Bryant. A hybrid SAT-based decision
procedure for separation logic with uninterpreted functions. In 40th Design
Automation Conference (DAC ’03), pages 425–430, June 2003.

[134] S. A. Seshia, K. Subramani, and R. E. Bryant. On solving boolean combi-
nations of UTVPI constraints. Journal of Satisfiability, Boolean Modeling,
and Computation (JSAT), 3:67–90, 2007.

[135] N. Shankar and H. Rueß. Combining Shostak theories. In S. Tison, editor,
Int’l Conf. Rewriting Techniques and Applications (RTA ’02), volume 2378
of LNCS, pages 1–18. Springer, 2002.

[136] H. M. Sheini and K. A. Sakallah. A scalable method for solving satisfiability
of integer linear arithmetic logic. In F. Bacchus and T. Walsh, editors, Pro-
ceedings of the 8th International Conference on Theory and Applications of
Satisfiability Testing (SAT ’05), volume 3569 of Lecture Notes in Computer
Science, pages 241–256. Springer, June 2005.

[137] H. M. Sheini and K. A. Sakallah. A Progressive Simplifier for Satisfiability
Modulo Theories. In Proc. SAT’06, volume 4121 of LNCS. Springer, 2006.

[138] R. Shostak. Deciding combinations of theories. Journal of the Association
for Computing Machinery, 31(1):1–12, 1984.

[139] R. E. Shostak. An algorithm for reasoning about equality. Communications
of the ACM, 21(7), 1978.

[140] R. E. Shostak. A practical decision procedure for arithmetic with function
symbols. Journal of the ACM, 26(2):351–360, Apr. 1979.

[141] O. Strichman. On solving Presburger and linear arithmetic with SAT. In
Formal Methods in Computer-Aided Design (FMCAD ’02), LNCS 2517,

pages 160–170. Springer-Verlag, November 2002.
[142] O. Strichman. Optimizations in decision procedures for propositional linear

inequalities. Technical Report CMU-CS-02-133, Carnegie Mellon Univer-
sity, 2002.

[143] O. Strichman, S. A. Seshia, and R. E. Bryant. Deciding separation formulas
with SAT. In E. Brinksma and K. G. Larsen, editors, Proc. 14th Intl.
Conference on Computer-Aided Verification (CAV’02), LNCS 2404, pages
209–222. Springer-Verlag, July 2002.

[144] A. Stump, C. W. Barrett, and D. L. Dill. CVC: A cooperating validity
checker. In E. Brinksma and K. G. Larsen, editors, Proceedings of the 14th

International Conference on Computer Aided Verification (CAV ’02), vol-
ume 2404 of Lecture Notes in Computer Science, pages 500–504. Springer,
July 2002.

[145] A. Stump, D. L. Dill, C. W. Barrett, and J. Levitt. A decision procedure for
an extensional theory of arrays. In Proceedings of the 16th IEEE Symposium
on Logic in Computer Science (LICS ’01), pages 29–37. IEEE Computer
Society, June 2001.

[146] M. Talupur, N. Sinha, O. Strichman, and A. Pnueli. Range allocation for
separation logic. In Proc. Computer-Aided Verification (CAV), volume 3114
of Lecture Notes in Computer Science, pages 148–161, 2004.

[147] C. Tinelli and M. T. Harandi. A new correctness proof of the Nelson–Oppen
combination procedure. In F. Baader and K. Schulz, editors, Frontiers of
Combining Systems: Proceedings of the 1st International Workshop (Mu-
nich, Germany), Applied Logic, pages 103–120. Kluwer Academic Publish-
ers, Mar. 1996.

[148] C. Tinelli and C. Ringeissen. Unions of non-disjoint theories and combina-
tions of satisfiability procedures. Theoretical Computer Science, 290(1):291–
353, Jan. 2003.

[149] C. Tinelli and C. Zarba. Combining decision procedures for sorted theo-
ries. In J. Alferes and J. Leite, editors, Proceedings of the 9th European
Conference on Logic in Artificial Intelligence (JELIA’04), Lisbon, Portu-
gal, volume 3229 of Lecture Notes in Artificial Intelligence, pages 641–653.
Springer, 2004.

[150] C. Tinelli and C. Zarba. Combining nonstably infinite theories. Journal of
Automated Reasoning, 34(3):209–238, Apr. 2005.

[151] J. von zur Gathen and M. Sieveking. A bound on solutions of linear inte-
ger equalities and inequalities. Proceedings of the American Mathematical
Society, 72(1):155–158, October 1978.

[152] C. Wang, A. Gupta, and M. Ganai. Predicate learning and selective theory
deduction for a difference logic solver. In DAC ’06: Proceedings of the 43rd
annual conference on Design automation. ACM Press, 2006.

[153] S. Wolfman and D. Weld. The LPSAT Engine & its Application to Resource
Planning. In Proc. IJCAI, 1999.

[154] G. Yorsh and M. Musuvathi. A combination method for generating inter-
polants. In CADE, volume 3632 of LNCS. Springer, 2005.

[155] Y. Yu and S. Malik. Lemma Learning in SMT on Linear Constraints. In
Proc. SAT’06, volume 4121 of LNCS. Springer, 2006.

[156] J. Zhang, S. Li, and S. Shen. Extracting Minimum Unsatisfiable Cores
with a Greedy Genetic Algorithm. In Proc. ACAI, volume 4304 of LNCS.
Springer, 2006.

[157] L. Zhang, C. F. Madigan, M. W. Moskewicz, and S. Malik. Efficient conflict
driven learning in boolean satisfiability solver. In ICCAD, pages 279–285,
2001.

[158] L. Zhang and S. Malik. The quest for efficient boolean satisfiability solvers.
In Proc. CAV’02, number 2404 in LNCS, pages 17–36. Springer, 2002.

[159] L. Zhang and S. Malik. Extracting small unsatisfiable cores from unsatisfi-
able boolean formula. In Proc. of SAT, 2003.

	Extensions
	Satisfiability Modulo Theories
	Introduction
	Background
	Formal preliminaries
	Syntax
	Semantics
	Combined Theories
	Abstraction

	Some theories of interest
	Equality
	Arithmetic
	Arrays
	Fixed-width bit-vectors
	Inductive data types

	Eager Encodings to SAT
	Overview
	Operation
	Eliminating Lambdas
	Eliminating Function Applications
	Summary

	Small-domain encodings
	Equalities
	Difference Logic
	UTVPI Constraints
	Sparse, Mostly-Difference Constraints
	Summary

	Direct encoding of theory axioms
	Hybrid eager approaches

	Integrating Theory Solvers into SAT Engines
	Theory Solvers and their desirable features
	A generalized DPLL schema
	Enhancements to the schema
	Normalizing T-atoms.
	Static learning
	Early pruning
	T-propagation
	T-backjumping and T-learning
	Generating partial assignments
	Pure-literal filtering

	An abstract framework

	Theory Solvers
	Shostak's method
	Combining Shostak theories

	Splitting on demand
	Layered theory solvers
	Rewriting-based theory solvers

	Combining Theories
	A Logical Framework for Nelson-Oppen Combination
	The Nelson-Oppen Procedure
	Delayed Theory Combination
	Ackermann's expansion

	Extensions and Enhancements
	Combining eager and lazy approaches
	Handling quantifiers
	Producing models
	Producing proofs
	Identifying unsatisfiable cores
	Computing interpolants

	Bibliography

