
Introduction to Formal Methods 1

CS 599: Formal Methods in Software Architectures September 7, 2000

Formal Specification

Q Requirements specification
R notational statement of system services

Q Software specification
R formal abstract depiction of system services

Q Architectural specification
R graphical representation of system structure
R formal abstract depiction of key system properties

Q Module specification
R formal module interface, behavior, interaction specifications

Q Two different concepts
!! Formal Methods
!! Formal Specification Languages

Introduction to Formal Methods 2

CS 599: Formal Methods in Software Architectures September 7, 2000

What Are Formal Methods? (1)

Q Formal Method (FM) =
specification language + formal reasoning

Q Body of techniques supported by
R precise mathematics
R powerful analysis tools

Q Rigorous, effective mechanisms for system
R modeling
R synthesis
R analysis

Specification Realization

synthesis

analysis

modeling

Introduction to Formal Methods 3

CS 599: Formal Methods in Software Architectures September 7, 2000

What Are Formal Methods? (2)

Q Use of formalisms
R e.g., logic, finite state machines, discrete mathematics

Q in system descriptions
R e.g., system models, constraints, specifications, designs

Q for a broad range of effects
R e.g., highly reliable, safe, secure systems
R e.g., more effective production

Q and varying levels of use
R guidance: structuring what to say
R documentation: unambiguous communication
R rigor: formal specification and proofs
R mechanisms: proof assistance, testing

Introduction to Formal Methods 4

CS 599: Formal Methods in Software Architectures September 7, 2000

Objectives of Formal Methods (1)

Q Requirements specification
R clarify customer’s requirements
R reveal ambiguity, inconsistency, incompleteness

Q System/Software design
R decomposition

R structural specifications of component relations

R behavioral specification of components

R refinement
R demonstrating that next level of abstraction satisfies higher level

!! includes architecture-level design



Introduction to Formal Methods 5

CS 599: Formal Methods in Software Architectures September 7, 2000

Objectives of Formal Methods (2)

Q Verification
R “are we building the system right?”
R proving that a specificand (realization) satisfies its 

specification

Q Validation
R “are we building the right system?”
R testing and debugging
R e.g., use specification to determine test cases

Q Documentation
R communication among stakeholders

Introduction to Formal Methods 6

CS 599: Formal Methods in Software Architectures September 7, 2000

Using Formal Methods in Software Development

Requirements Specification

Formal Requirements Specification

Formal Architectural Specification

Formal Module Specifications

Implementation

User
Needs

Informally verify
consistency between
needs and requirements

Analyze properties
of requirements

Analyze properties
of modules

Verify consistency
between
specifications

Verify consistency
between specification
and implementation

Introduction to Formal Methods 7

CS 599: Formal Methods in Software Architectures September 7, 2000

Why Use Formal Methods? (1)

Q Formal methods have the potential to improve both 
quality and productivity in software development

R to circumvent expensive problems in traditional development 
practices

R to promote insight and understanding
R to enhance early error detection
R to develop safe, reliable, secure software-intensive systems
R to enable formal modeling and analysis
R to facilitate verifiability of implementation
R to enable

R simulation, animation, proof, execution, transformation*

£ to maintain competitive advantage by more effective software 
development process

*  depending on method used

Introduction to Formal Methods 8

CS 599: Formal Methods in Software Architectures September 7, 2000

Why Use Formal Methods (2)

Q Formal methods are on the verge of becoming best 
practice and/or required practice for developing safety-
critical and mission-critical software systems

Q To avoid legal liability repercussions
R reduce risks associated with software development
R increase safety, security, reliability

Q To ensure that systems meet regulations and standards
R increasing concern with safety by government
R stay in front of legal and regulatory agencies



Introduction to Formal Methods 9

CS 599: Formal Methods in Software Architectures September 7, 2000

Why Not?

Q Emerging technology with unclear payoff

Q Lack of experience and evidence of success

Q Lack of automated support

Q Existing tools are user unfriendly

Q Ignorance of advances

Q High learning curve

Q Perfection and mathematical sophistication required

Q Techniques not widely applicable

Q Techniques not scalable

Q Too many in-place techniques and tools

Introduction to Formal Methods 10

CS 599: Formal Methods in Software Architectures September 7, 2000

Myths of Formal Methods

Q Formal methods can guarantee that software is perfect
!! how do you make sure the spec you build is perfect?

Q Formal methods are all about program proving
!! they are about modeling, communicating, demonstrating

Q Formal methods are only useful for safety-critical systems
!!may be useful in any system (e.g., highly reusable modules)

Q Formal methods require highly trained mathematicians
!!many methods involve no more than set theory and logic

Q Formal methods increase the cost of development
!! the opposite is often the case

Q Formal methods are unacceptable to users
!! users will find them very helpful if properly presented

Q Formal methods are not used on real, large-scale software
!! they are used daily in many branches of industry

Introduction to Formal Methods 11

CS 599: Formal Methods in Software Architectures September 7, 2000

Integrating Formal Methods into Development

Q Option 1: business as usual with after-the-fact verification
R formal specification constructed after system implementation
R implementation checked for consistency against the spec
R increases confidence in the system
R time- and money-consuming

Q Option 2: verification in parallel
R two teams — development team and formal verification team
R requires constant communication between the two teams
R may degenerate into option 1 due to poor communication
R less time consuming but as expensive as option 1

Q Option 3: integrated verification
R one team that does development and formal verification
R single integrated development process
R better, cheaper, and faster than options 1 and 2

Introduction to Formal Methods 12

CS 599: Formal Methods in Software Architectures September 7, 2000

Formal Specifications

Q Intended to remedy the seven sins of the specifier
!! noise / redundancy / remorse
!! silence
!! overspecification
!! contradiction
!! ambiguity
!! forward reference
!!wishful thinking



Introduction to Formal Methods 13

CS 599: Formal Methods in Software Architectures September 7, 2000

Desirable Properties of Formal Specifications

Q Unambiguous
R exactly one specificand (set) satisfies it
R e.g., “Component X has a single port on its top and bottom”

Q Consistency
R a specificand exists that satisfies it
R e.g., interfaces of interacting components must match

Q Completeness
R all aspects of specificands are specified
R e.g., interfaces of all components must be specified
R may be achieved incrementally

Q Inference
R consequence relation used to prove properties about the 

specificands that satisfy a specification

Introduction to Formal Methods 14

CS 599: Formal Methods in Software Architectures September 7, 2000

Formal Specification in Software Development

Q Formal specifications ground the software development 
process in the well-defined basis of computer science

Q Orientation goes from customer to developer

Q Formal specifications are expressed in languages with 
formally defined syntax and semantics

R hierarchical decomposition
R mathematical foundation
R graphical presentation
R accompanied by informal description

Introduction to Formal Methods 15

CS 599: Formal Methods in Software Architectures September 7, 2000

Formal Specification Languages

Q A formal specification language consists of
R syntax — the notation
R semantics — the specifiable objects
R satisfies — relation defining

which objects satisfy which notations

Q A formal specification defines
R syntax — signature of the mapping
R semantics — meaning of the mapping
R exceptions — undefined/erroneous mappings

Q If sat(syn,sem) then
R syn is a specification of sem
R sem is a specificand of syn

Introduction to Formal Methods 16

CS 599: Formal Methods in Software Architectures September 7, 2000

Characteristics of Specification Languages

Q Model-oriented specifications
R specify system behavior by constructing a model in terms of 

well-defined mathematical constructs

Q Property-oriented specifications
R specify system behavior in terms of properties that must be 

satisfied

Q Visual specifications
R specify system structure and behavior by graphical 

depictions

Q Executable specifications
R specify system behavior completely enough that 

specifications can run on a computer
!! this is not programming



Introduction to Formal Methods 17

CS 599: Formal Methods in Software Architectures September 7, 2000

Tool Support for Specification Languages

Q Modeling
R editors
R word processors
R editor / word processor plug-ins

Q Analysis
R syntactic checking
R model checking
R proof checking

Q Synthesis
R refinement
R code generation
R test case generation
R test oracle generation

Introduction to Formal Methods 18

CS 599: Formal Methods in Software Architectures September 7, 2000

Types of Formal Specifications

Q Behavioral specifications describe constraints on the 
behavior of a specificand

R functionality
R safety & security
R performance

Q Structural specifications describe constraints on the 
internal composition of a specificand

R module interconnection
R uses and is-composed-of
R dependence relations

Q Interaction specifications describe constraints on the 
interactions between two or more specificands

R interface matching
R protocol matching

Introduction to Formal Methods 19

CS 599: Formal Methods in Software Architectures September 7, 2000

Basic Specification Language Types

Q Axiomatic specifications
R defines operations by logical assertions

Q State transition specifications
R defines operations in terms of states and transitions

Q Abstract model specifications
R defines operations in terms of a well-defined math model

Q Algebraic specifications
R defines operations by collections of equivalence relations

Q Temporal logic specifications
R defines operations in terms of order of execution and timing

Q Concurrent specifications
R defines operations in terms of simultaneously occuring 

events

Introduction to Formal Methods 20

CS 599: Formal Methods in Software Architectures September 7, 2000

Axiomatic Specifications

Q Implicitly defines behavior
!! in terms of (first-order) logic formulas
!! specifying input/output assertions
!! and possibly intermediate assertions

Q Specification includes
R operation interfaces with input/output parameters
R operation axioms with pre/post assertions on input/output

Q Pros and cons
R fairly easy to understand
R widely applicable
R hard to scale up
R widely used technique in proofs (inductive assertion method)
R foundation of mathematics in software development

Q Languages: VDM, Anna, Z



Introduction to Formal Methods 21

CS 599: Formal Methods in Software Architectures September 7, 2000

Example Problem: Clock

Q Initially, the time is midnight, the bell is 
off, and the alarm is disabled

Q Whenever the current time is the same 
as the alarm time and the alarm is 
enabled, the bell starts ringing
!! this is the only condition under which 

the bell begins to ring

Q The alarm time can be set at any time
Q Only when the alarm is enabled can it 

be disabled
Q If the alarm is disabled while the bell is 

ringing, the bell stops ringing
Q Resetting the clock and enabling or 

disabling the alarm are considered to 
be done instantaneously

Introduction to Formal Methods 22

CS 599: Formal Methods in Software Architectures September 7, 2000

Axiomatic Specifications — VDM Clock

INIT()
ext wr time:N, bell:{quiet, ringing}, 

 alarm:{disabled, enabled}
pre true
post (time’ = midnight) /\ (bell’ = quiet) /\ 

(alarm’ = disabled)

TICK()
ext wr time:N, bell:{quiet, ringing}

rd alarm_time:N, alarm:{disabled, enabled}
pre true
post (time’ = succ(time)) /\

 (if (alarm_time’ = time’) /\ (alarm’ = enabled) 
 then (bell’ = ringing) else (bell’ = bell))

Introduction to Formal Methods 23

CS 599: Formal Methods in Software Architectures September 7, 2000

Abstract Model Specifications

Q Explicitly describes behavior in terms of a model using 
well-defined types (sets, sequences, relations, functions) 
and defines operations by showing effects on model

Q Specification includes
R type — syntax of object being specified
R model — underlying structure
R invariant — properties of modeled object
R pre/post conditions — semantics of operations

Q Pros and cons
R state is made explicit in model
R suggests an implementation
R widely applicable because of modeling orientation

Q Notations: VDM, Z, RAISE

Introduction to Formal Methods 24

CS 599: Formal Methods in Software Architectures September 7, 2000

Abstract Model Specifications — Z Clock

BellStatus : {quiet,ringing}
AlarmStatus : {disabled,enabled}

Clock
time, alarm_time : N
bell : BellStatus
alarm : AlarmStatus

InitClock
'Clock

(time’ = midnight) /\ (bell’ = quiet) /\
(alarm’ = disabled)



Introduction to Formal Methods 25

CS 599: Formal Methods in Software Architectures September 7, 2000

Algebraic Specifications

Q Implicitly defines behavior by set of equivalence relations 
describing properties possessed by the objects and their 
operations

Q Specification includes
R functionality — syntax and legal constructions
R relations — semantics by equivalence classes

Q Pros and cons
R only pure functions described (no side effects)
R supports extensibility of data abstractions
R often hard to comprehend and construct
R particularly applicable to ADTs

Q Notations: OBJ, Larch, Clear, Anna

Introduction to Formal Methods 26

CS 599: Formal Methods in Software Architectures September 7, 2000

Algebraic Specifications — Clock

functionality
init: -> CLOCK
tick, enable, disable: CLOCK -> CLOCK
setalarm: CLOCK x TIME -> CLOCK
time, alarm_time: CLOCK -> TIME
bell: CLOCK -> {ringing, quiet}
alarm: CLOCK -> {on, off}

relations
time(init) -> midnight
time(tick(C)) -> time(C) + 1
time(setalarm(C,T)) -> time(C)

alarm_time(init) -> midnight
alarm_time(tick(C)) -> alarm_time(C)
alarm_time(setalarm(C,T)) -> T

Introduction to Formal Methods 27

CS 599: Formal Methods in Software Architectures September 7, 2000

Concurrent and Temporal Specifications

Q Explicitly define behavior by descriptions of system states 
and sets of (timed and/or ordered) events with guards 
that cause (simultaneous) state transitions

Q Specification includes
R states — possible values
R transitions — value changes
R events — causes of transitions
R ordering and timing — constraints on transitions

Q Pros and cons
R powerful specification mechanism
R applicable to a large class of existing systems
R often hard to comprehend and construct
R spec-level timing is hard to ensure in the implementation

Q Notations: CSP, GIL, Petri nets, statecharts, posets

Introduction to Formal Methods 28

CS 599: Formal Methods in Software Architectures September 7, 2000

Concurrent & Temporal Specs — GIL Clock

—enabled
—BellRing
Time = midnightTime = midnight

Time = AlarmTime

enabled

BellRing

-enabled

-enabled

Time = AlarmTime

-BellRing

enabled

}
}



Introduction to Formal Methods 29

CS 599: Formal Methods in Software Architectures September 7, 2000

State Transition Specifications

Q Explicitly describes system behavior by a set of states 
and defines operations as transitions between states or 
observations on state

Q Specification includes
R states — possible values
R transitions — semantics by state transformations and 

observations

Q Pros and cons
R free of representational details
R state explosion is common
R extensions to minimize states and modularize
R particularly applicable to control systems and hardware

Q Textual and graphical notations
R StateCharts, ASLAN, Paisley, InaJo, Special

Introduction to Formal Methods 30

CS 599: Formal Methods in Software Architectures September 7, 2000

State Transition Specifications — Clock


