Introduction to Formal Methods 1

([ Formal Specification A
« Requirements specification
a notational statement of system services
« Software specification
. formal abstract depiction of system services
= Architectural specification
o graphical representation of system structure
o formal abstract depiction of key system properties
= Module specification
o formal module interface, behavior, interaction specifications
« Two different concepts
>> Formal Methods
>> Formal Specification Languages
. J

CS 599: Formal Methods in Software Architectures September 7, 2000

Introduction to Formal Methods 3

7

.

What Are Formal Methods? (2)

» Use of formalisms

o e.g., logic, finite state machines, discrete mathematics
in system descriptions

o  e.g., system models, constraints, specifications, designs
« for a broad range of effects

a e.g., highly reliable, safe, secure systems

a e.g., more effective production
and varying levels of use

2 guidance: structuring what to say

o documentation: unambiguous communication

o rigor: formal specification and proofs

a2 mechanisms: proof assistance, testing

J

CS 599: Formal Methods in Software Architectures September 7, 2000

Introduction to Formal Methods 2
( )
What Are Formal Methods? (1)

=« Formal Method (FM) =
specification language + formal reasoning
= Body of techniques supported by
a precise mathematics
o powerful analysis tools
» Rigorous, effective mechanisms for system
o modeling
a synthesis
o analysis
modeling synthesis
» Specification = . Realization
r — analysis
L J
CS 599: Formal Methods in Software Architectures September 7, 2000
Introduction to Formal Methods 4
4 . - \
Objectives of Formal Methods (1)
» Requirements specification
o clarify customer’s requirements
o reveal ambiguity, inconsistency, incompleteness
» System/Software design
2 decomposition
a structural specifications of component relations
a behavioral specification of components
o refinement
o demonstrating that next level of abstraction satisfies higher level
>> includes architecture-level design
\ J

CS 599: Formal Methods in Software Architectures September 7, 2000



Introduction to Formal Methods 5

([ Objectives of Formal Methods (2)
« Verification
o “are we building the system right?”
a proving that a specificand (realization) satisfies its
specification
» Validation
o “are we building the right system?”
a testing and debugging
2 e.g., use specification to determine test cases
» Documentation
a communication among stakeholders

.

J

CS 599: Formal Methods in Software Architectures September 7, 2000

Introduction to Formal Methods 7

( Why Use Formal Methods? (1)

=« Formal methods have the potential to improve both
quality and productivity in software development

to circumvent expensive problems in traditional development
practices

2 to promote insight and understanding
2 to enhance early error detection
o to develop safe, reliable, secure software-intensive systems
a to enable formal modeling and analysis
o to facilitate verifiability of implementation
2 to enable
o simulation, animation, proof, execution, transformation”

=> to maintain competitive advantage by more effective software
development process

o

* depending on method used

.

Introduction to Formal Methods

6

J

CS 599: Formal Methods in Software Architectures September 7, 2000

\.

(Using Formal Methods in Software Development A

- N
/
- User
‘ Needs
Informally verify \\ e
consistency between T
needs and requirements

Requirements Specification ‘
Verify consistency

between * » ~ "\ Analyze properties

specifications . . | of requirements
)z :‘ Formal Requirements Specification ‘ |
/
/S / * p———i
‘ Formal Architectural Specification ‘
| \ + ya "\ Analyze properties

| AN
\ J Formal Module Specifications

, * - /

\ /
o

\ N .

) N Implementation

Verify consistency |

between specification

and implementation

‘ | of modules
|

J

CS 599: Formal Methods in Software Architectures

Introduction to Formal Methods

September 7, 2000

'

.

Why Use Formal Methods (2)

« Formal methods are on the verge of becoming best
practice and/or required practice for developing safety-
critical and mission-critical software systems

= To avoid legal liability repercussions

o reduce risks associated with software development
2 increase safety, security, reliability
= T0 ensure that systems meet regulations and standards
a increasing concern with safety by government
2 stay in front of legal and regulatory agencies

J

CS 599: Formal Methods in Software Architectures

September 7, 2000



Introduction to Formal Methods 9

7

.

Why Not?

« Emerging technology with unclear payoff

« Lack of experience and evidence of success

« Lack of automated support

« EXisting tools are user unfriendly

« Ignorance of advances

« High learning curve

= Perfection and mathematical sophistication required
« Techniques not widely applicable

« Techniques not scalable

=« ToO many in-place technigues and tools

J

CS 599: Formal Methods in Software Architectures September 7, 2000

Introduction to Formal Methods 11

.

Integrating Formal Methods into Development

= Option 1: business as usual with after-the-fact verification
o formal specification constructed after system implementation
o implementation checked for consistency against the spec
o increases confidence in the system
2 time- and money-consuming

« Option 2: verification in parallel
a two teams — development team and formal verification team
a requires constant communication between the two teams
a2 may degenerate into option 1 due to poor communication
2 less time consuming but as expensive as option 1
« Option 3: integrated verification
o one team that does development and formal verification
2 single integrated development process
o better, cheaper, and faster than options 1 and 2

Introduction to Formal Methods 10

s

J

CS 599: Formal Methods in Software Architectures September 7, 2000

\.

Myths of Formal Methods

= Formal methods can guarantee that software is perfect
>>how do you make sure the spec you build is perfect?

=« Formal methods are all about program proving
>>they are about modeling, communicating, demonstrating

=« Formal methods are only useful for safety-critical systems
>>may be useful in any system (e.g., highly reusable modules)

=« Formal methods require highly trained mathematicians
>>many methods involve no more than set theory and logic

=« Formal methods increase the cost of development
>>the opposite is often the case

= Formal methods are unacceptable to users
>> users will find them very helpful if properly presented

= Formal methods are not used on real, large-scale software
>>they are used daily in many branches of industry

J

CS 599: Formal Methods in Software Architectures September 7, 2000

Introduction to Formal Methods 12

'

.

Formal Specifications

= Intended to remedy the seven sins of the specifier
>>noise / redundancy / remorse
>>silence
>> overspecification
>>contradiction
>>ambiguity
>>forward reference
>>wishful thinking

J

CS 599: Formal Methods in Software Architectures September 7, 2000



Introduction to Formal Methods 13

Desirable Properties of Formal Specifications

« Unambiguous

o exactly one specificand (set) satisfies it

2 e.g., “Component X has a single port on its top and bottom”
= Consistency

o aspecificand exists that satisfies it

a  e.g., interfaces of interacting components must match
= Completeness

o all aspects of specificands are specified

a  e.g., interfaces of all components must be specified

2 may be achieved incrementally
» Inference

2 consequence relation used to prove properties about the
specificands that satisfy a specification

.

J

CS 599: Formal Methods in Software Architectures September 7, 2000

Introduction to Formal Methods 15

( Formal Specification Languages
= A formal specification language consists of

2 syntax — the notation

o semantics — the specifiable objects

o satisfies — relation defining

which objects satisfy which notations

« A formal specification defines

2 syntax — signature of the mapping

a semantics — meaning of the mapping

a exceptions — undefined/erroneous mappings

« If sat(syn,sem) then
2 synis a specification of sem
a sem is a specificand of syn

.

Introduction to Formal Methods 14

J

CS 599: Formal Methods in Software Architectures September 7, 2000

\.

Formal Specification in Software Development

« Formal specifications ground the software development
process in the well-defined basis of computer science

« Orientation goes from customer to developer
« Formal specifications are expressed in languages with
formally defined syntax and semantics
o hierarchical decomposition
o mathematical foundation
2 graphical presentation
a2 accompanied by informal description

\

J

CS 599: Formal Methods in Software Architectures September 7, 2000

Introduction to Formal Methods 16

.

Characteristics of Specification Languages

= Model-oriented specifications

2 specify system behavior by constructing a model in terms of
well-defined mathematical constructs

Property-oriented specifications

2 specify system behavior in terms of properties that must be
satisfied

« Visual specifications
o specify system structure and behavior by graphical
depictions
= Executable specifications

2 specify system behavior completely enough that
specifications can run on a computer

>> this is not programming

\

J

CS 599: Formal Methods in Software Architectures September 7, 2000



Introduction to Formal Methods 17

7

.

Tool Support for Specification Languages

« Modeling
o editors
o word processors
2 editor / word processor plug-ins

« Analysis
a syntactic checking
2 model checking
o proof checking

« Synthesis
2 refinement
a code generation
2 test case generation
o test oracle generation

Introduction to Formal Methods 18

Types of Formal Specifications

« Behavioral specifications describe constraints on the
behavior of a specificand
o functionality
o safety & security
o performance
= Structural specifications describe constraints on the
internal composition of a specificand
2 module interconnection
2 uses and is-composed-of
2 dependence relations
» Interaction specifications describe constraints on the
interactions between two or more specificands
o interface matching
a protocol matching

J

CS 599: Formal Methods in Software Architectures September 7, 2000

Introduction to Formal Methods 19
( Basic Specification Language Types )
= Axiomatic specifications
2 defines operations by logical assertions
« State transition specifications
2 defines operations in terms of states and transitions
» Abstract model specifications
o defines operations in terms of a well-defined math model
« Algebraic specifications
2 defines operations by collections of equivalence relations
« Temporal logic specifications
o defines operations in terms of order of execution and timing
= Concurrent specifications
o defines operations in terms of simultaneously occuring
events
. J

\ J

September 7, 2000

CS 599: Formal Methods in Software Architectures

Introduction to Formal Methods 20

([ Axiomatic Specifications
Implicitly defines behavior
>>in terms of (first-order) logic formulas
>> specifying input/output assertions
>>and possibly intermediate assertions
Specification includes
2 operation interfaces with input/output parameters
o operation axioms with pre/post assertions on input/output

» Pros and cons

o fairly easy to understand

2 widely applicable

o hard to scale up

o widely used technique in proofs (inductive assertion method)
foundation of mathematics in software development

« Languages: VDM, Anna, Z

o

CS 599: Formal Methods in Software Architectures September 7, 2000

. J

September 7, 2000

CS 599: Formal Methods in Software Architectures



Introduction to Formal Methods 21

7

.

Example Problem: Clock

= Initially, the time is midnight, the bell is
off, and the alarm is disabled

= Whenever the current time is the same
as the alarm time and the alarm is
enabled, the bell starts ringing

>> this is the only condition under which
the bell begins to ring

= The alarm time can be set at any time

= Only when the alarm is enabled can it
be disabled

« Ifthe alarm is disabled while the bell is
ringing, the bell stops ringing

= Resetting the clock and enabling or
disabling the alarm are considered to
be done instantaneously

J

CS 599: Formal Methods in Software Architectures September 7, 2000

Introduction to Formal Methods 23

7

.

Abstract Model Specifications

= Explicitly describes behavior in terms of a model using
well-defined types (sets, sequences, relations, functions)
and defines operations by showing effects on model
« Specification includes
2 type — syntax of object being specified
2 model — underlying structure
o invariant — properties of modeled object
o pre/post conditions — semantics of operations
« Pros and cons
o State is made explicit in model
2 suggests an implementation
2 widely applicable because of modeling orientation

= Notations: VDM, Z, RAISE

Introduction to Formal Methods 22

Axiomatic Specifications — VDM Clock

INT()
ext w time:N bell:{quiet, ringing},
al arm {di sabl ed, enabl ed}
pre true
post (time’ = mdnight) /\ (bell’ = quiet) /\
(alarm = disabl ed)

THaK()
ext w time:N bell:{quiet, ringing}
rd alarmtine:N al arm{di sabl ed, enabl ed}
pre true
post (time’ = succ(tine)) /\
(if (alarmtime’ =tine’) /\ (alarm = enabl ed)
then (bell’ =ringing) else (bell’ = bell))

J

CS 599: Formal Methods in Software Architectures September 7, 2000

\ J

September 7, 2000

CS 599: Formal Methods in Software Architectures

Introduction to Formal Methods 24

Abstract Model Specifications — Z Clock

Bel | St atus :
Al arnt at us :

{qui et, ringing}
{di sabl ed, enabl ed}

~C ock
time, alarmtime : N
bell : Bell Status

alarm: Al arntt at us

~lni tCl ock
ACl ock

(tinme’ = mdnight) /\ (bell’
(alarm = di sabl ed)

= quiet) /\

. J

September 7, 2000

CS 599: Formal Methods in Software Architectures



Introduction to Formal Methods 25

7

.

Algebraic Specifications

« Implicitly defines behavior by set of equivalence relations
describing properties possessed by the objects and their
operations

» Specification includes

o functionality — syntax and legal constructions

2 relations — semantics by equivalence classes
» Pros and cons

o only pure functions described (no side effects)

2 supports extensibility of data abstractions

o often hard to comprehend and construct

o particularly applicable to ADTs

= Notations: OBJ, Larch, Clear, Anna

J

CS 599: Formal Methods in Software Architectures September 7, 2000

Introduction to Formal Methods 27

7

.

Concurrent and Temporal Specifications

= Explicitly define behavior by descriptions of system states
and sets of (timed and/or ordered) events with guards
that cause (simultaneous) state transitions
« Specification includes
2 states — possible values
2 transitions — value changes
o events — causes of transitions
o ordering and timing — constraints on transitions
» Pros and cons
2 powerful specification mechanism
o applicable to a large class of existing systems
o often hard to comprehend and construct
a spec-level timing is hard to ensure in the implementation

= Notations: CSP, GIL, Petri nets, statecharts, posets

Introduction to Formal Methods 26

( Algebraic Specifications — Clock

functionality

init: -> CLOCK

tick, enable, disable: CLOCK -> CLOCK
setalarm CLOCK x TIMe -> CLOCK

time, alarmtinme: CLOCK -> TI M

bell: CLOCK -> {ringing, quiet}
alarm CLOCK -> {on, off}

relations

time(init) -> mdnight
time(tick(Q) ->tinme(CQ + 1
time(setalarm(C T)) -> tinme(C
alarmtime(init) -> m dnight

alarmtinme(tick(Q) -> alarmtine(C
alarmtine(setalarm(C, T)) -> T

J

CS 599: Formal Methods in Software Architectures September 7, 2000

\.

J

CS 599: Formal Methods in Software Architectures September 7, 2000

Introduction to Formal Methods 28

Concurrent & Temporal Specs — GIL Clock

r

L—enabl ed
—Bel | Ri ng
Ti me = m dni ght

\ )
"""" >Ti nme = Al arnili ne
enabl ed
d

—l

11

"""""""""""" " enabl e

. enabl e

“Time = Al arnili
enabl ed

-Bel | Ri ng

.

J

CS 599: Formal Methods in Software Architectures September 7, 2000



Introduction to Formal Methods

29

( State Transition Specifications A
« Explicitly describes system behavior by a set of states
and defines operations as transitions between states or
observations on state
« Specification includes
2 states — possible values
o transitions — semantics by state transformations and
observations
» Pros and cons
2 free of representational details
2 State explosion is common
o extensions to minimize states and modularize
o particularly applicable to control systems and hardware
= Textual and graphical notations
2 StateCharts, ASLAN, Paisley, InaJo, Special
. J

CS 599: Formal Methods in Software Architectures

September 7, 2000

Introduction to Formal Methods

30

\.

State Transition Specifications — Clock

J

CS 599: Formal Methods in Software Architectures

September 7, 2000



