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Abstract

We investigate the benefits of using a synchronous data-flow language for programming
critical real-time systems. These benefits concern ergonomy — since the dataflow approach
meets traditional description tools used in this domain —, and ability to support formal design
and verification methods. We show, on a simple example, how the language LUSTRE and its
associated verification tool LESAR, can be used to design a program, to specify its critical
properties, and to verify these properties. As the language LUSTRE and its use have been
already published in several papers (e.g., [11, 18]), we put particular emphasis on program
verification. A preliminary version of this paper has been published in [28§].

1 Introduction

It is useless to repeat why real-time programs are among those in which errors can have the most
dramatic consequences. Thus, these programs constitute a domain where there is a special need
of rigorous design methods. We advocate a “language approach” to this problem, arguing that
the programming language used has a direct influence in the quality of the software, from several

points of view:

(i) The language should allow a natural description of the problem to be solved. In particular,
it should be close to the traditional tools used in its application field.

(ii) The language should be formally sound, in order to support formal verification methods.

(7ii) The language should be simple enough to minimize the risk of misunderstanding about
program meanings.

These were our main goals in designing the language LUSTRE [11, 18]. To meet the criterion (i),
we started from the traditional description tools used in the design of process control systems:
At a higher level, these tools consist of mathematical formalisms (differential equations, boolean
equations, ...) while at a lower level, people often use data-flow nets (block-diagrams, analog
schemas, switch or gate networks, . ..). These two classes of tools are closely related: Forinstance,
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differential equations, finite difference equations, boolean equations can be straightforwardly
translated, respectively, into analog schemas, block-diagrams and gate networks. At least the
class of high level tools also meets our criterion (ii), since they are derived from the mathematical
language. Other authors (e.g., [23, 2]) claimed that such declarative formalisms are simpler and
cleaner than usual imperative languages, where assignments, side-effects, aliasing, parameter
passing mechanisms, are unnatural phenomena which are difficult to understand and manage.
We agree with this claim, and therefore consider that these declarative formalisms constitute a
good basis for designing a programming language meeting the criterion (iii).

LUsSTRE is a synchronous data-flow language, initially inspired from Lucip. Asin Lucip, any
LusTRE variable or expression is considered to represent the sequence of values it takes during
the whole execution of the program, and LUSTRE operators are considered to operate globally
over these sequences. The synchronous nature of the language consists in assuming that all the
variables and expressions in a program take the n-th value of their respective sequences at the
same time. More concretely, a program is intended to have a cyclic behavior, an execution cycle
consisting in computing the n-th value of each variable or expression. Basically, a program is a set
of equations. When we write an equation “X=E”, where X is a variable and E is an expression, we
mean that the sequences of values associated with X and E are identical (it is an actual equation,
in the mathematical sense), or equivalently, that at any cycle of the program, X and E take the
same value.

Time and synchrony

The “real time” capabilities of the language are derived from this synchronous interpretation,
like in other synchronous languages [6, 8, 13, 21, 24]: We consider the following logical notion
of time: As soon as we can specify the order or simultaneity relations between events occurring
both inside and outside the program, we can express time constraints about the behavior of the
program. For instance, a constraint like

“any occurrence of a dangerous situation must be followed by the emission of an alarm
within a delay of 2 seconds”

will be expressed as

“after any occurrence of the event dangerous_situation there must be an occurrence
of the event alarm before the 2nd next occurrence of the event second”

This example shows that, in synchronous programming, the “real”, physical time is considered
as an external event (here second), which has no privileged nature. This is the multiform time
point of view: Time may be counted in “seconds” as well as in “meters”, since there is no
conceptual difference between the two following requirements:

the train must stop within 10 seconds and the train must stop within 100 meters

In a synchronous language, these constraints are expressed in similar ways, in contrast with
languages like ADA, where “real” time is handled by special statements.

In LUSTRE, an event will be modeled by a boolean variable, whose value is true whenever
the event occurs.

The synchronous interpretation is an abstract point of view which consider the program reac-
tion time to be negligible with respect to the reaction time of its environment. The advantages of
this abstraction have been pointed out [5, 4, 3] concerning the semantics cleanness and the fact



that it reconciles concurrency and determinism. In particular [4] argues that synchronous lan-
guages are particularly well-suited for programming reactive kernels of real-time systems, while
complex systems generally require the combination of asynchronous and synchronous modules.
We do not claim, therefore, that synchronous languages are general purpose languages, but rather
specialized tools to design such kernels.

One may wonder about the realism of the synchronous hypothesis, since it assumes that
the machine instantly reacts to input events. In fact, it only assumes that the reaction time
is short enough to accurately distinguish and order the incoming events. In practice, it can be
checked by measuring the maximum reaction time of the program. Synchronous languages can
be implemented in a particularly efficient and measurable way, following a technique developed
for EsTEREL [6]. Two versions of LUSTRE compilers have been written [11, 20], which use this
technique. The object code is structured as a finite automaton, a transition of which corresponds
to a reaction of the program®. The code corresponding to such a transition is linear (loop-free),
and its maximal execution time can be accurately bounded, on a given machine. Therefore, the
validity of the synchrony hypothesis can be checked, and it is the only “real-time” issue in the
synchronous approach. All the design and verification we will perform rely on that checking.

In Section 2, we briefly present the language, whose use is illustrated in Section 3 on a small
example adapted from an actual subway device.

Specification and verification

The remainder of the paper is devoted to program verification. As said before, the synchronous
approach limits the “timing” verification to checking the validity of the synchrony hypothesis.
So, the kind of verification we have in mind is similar to standard verification on transition
systems. It has nothing to do with methods and models (like, e.g., [16, 26]) taking into account
the program execution time — which is always assumed to be zero in the synchronous model.
Moreover, our goal is not to prove the correctness of a program with respect to some com-
plete specifications, but rather to express and verify some critical properties. For instance, in
an aircraft flight control system, an error in the speed computation can have only slight conse-
quences, whereas it is critical that the undercarriage be locked when landing. Our claim is that
these critical properties are usually simple, and can be verified by means of available automatic
techniques. The main reason for this claim is that experience shows that most of these properties
are “safety” properties which state that a given situation should never occur, or that a given
statement should always hold, in contrast with “liveness” properties which state that a given
situation should eventually occur in the future?. For instance, a relevant question is not that a
train will eventually stop, but that it never crosses a red light. This is an important remark as
proof techniques for safety properties are known to be much simpler than for liveness properties:

o Safety properties can be checked on program abstractions: Intuitively, one can simplify
a given program P into an abstract program P’, having “more behaviors” than P. If P’
satisfies a safety property, so does P. This abstraction technique is valuable all the more
as experience shows that the considered critical properties seldom depend on numerical

!This compiling technique is specific to synchronous languages, since, in an asynchronous language, the non
deterministic interleaving of asynchronous actions would involve immediately a combinatorial explosion of the
automaton size.

2As a matter of fact, liveness properties are often introduced to “abstract” response time constraints, which
must be taken fully into account in a real-time system.



relations and computations, but more often on logical dependencies over events. So their
proof can often be handled on finite state abstractions of programs.

o Safety properties can be checked on program states, rather than on ezecution paths. In the
approach we will propose, any verification problem amounts at proving that some program
never outputs the value false. In the finite state case, such a verification can be done by a
simple traversal of the state graph, without keeping track of any path in that graph. Very
efficient methods [22] have been proposed for such a traversal.

o Safety properties can be modularly verified: With any process composition operator x, one
can easily associate an operator x such that, for any two processes P, and P, respectively
satisfying safety properties ¢ and ¢, their composition P; x Py satisfies ¢1 x ¢2. So, a
verification problem can be decomposed into simpler ones.

So, our ambition is rather modest — since we restrict ourselves to checking safety properties on
finite state (abstractions of ) programs — with the hope of getting efficient tools tackling many
real-life cases.

In view of this discussion, we propose a method for specifying and checking simple safety
properties about LUSTRE programs. In Section 4, we show that we can take advantage of the
declarative nature of LUSTRE, to express the properties in the same language: It has been
shown [7] that any safety property about a program can be expressed by the invariance of
some boolean LUSTRE expression. This is due to the fact that LUSTRE can be viewed as an
executable temporal logic. Concerning ergonomics, there is an obvious advantage of using a full
programming language instead of a temporal logic. In particular, the user can define its own
temporal operators®, thus reducing the complexity of property expression.

Moreover, LUSTRE provides a means of expressing assumptions about the program environ-
ment. This is an essential feature, since the interaction of a real-time program with its environ-
ment is particularly important. In general, the properties of a real-time program are intended to
hold only under some assumptions about the behavior of its environment, and these assumptions
can be quite complex. So, the verification process deals with three entities: The program, the
property (expressed by an invariant) and the assumptions under which the property is intended
to hold (also expressed by an invariant).

Sections 5 and 6 illustrates the proposed approach on our example. The verification (Sec-
tion 7) is performed on a finite state abstraction of the program, which models only the behavior
of boolean variables. A verification tool, called LESAR, is available, which can apply two verifi-
cation techniques:

o the former is an exhaustive enumeration of the states of the (abstraction of the) program,
similar to standard model checking [12, 27].

o the later is a symbolic construction of the set of states which satisfy the property, analogous
to “symbolic model checking” [10, 14, 15].

These techniques will be applied to the example introduced in Section 3.

Finally, Section 8 outlines a method for modular verification: taking advantage of the fact
that the program and its properties are expressed in the same language, we can use the proved
properties of a subprogram in the verification of a full program. This technique can reduce the
complexity of the verification.

®This is a more powerful mechanism than the macro-notation offered by some specification languages [12, 29].



2 The language Lustre

We do not give here a detailed presentation of the language LUSTRE, which can be found else-
where [11, 18]. We only recall the elements which are necessary for understanding the paper.

A LUsTRE program specifies a relation between input and output variables. Any variable or
expression is intended to be a function of time. Time is assimilated to the set of natural numbers.
Variables are defined by means of equations (one and only one equation for each variable which
is not an input): As said before, an equation “X=E”, where E is a LUSTRE expression, specifies
that the variable X is always equal to E.

Expressions are made of variable identifiers, constants (considered as constant functions),
usual arithmetic, boolean and conditional operators (considered as pointwisely applying to func-
tions) and only two specific operators: the “previous” operator and the “followed-by” operator:

e IfEis an expression denoting the function An.e(n), then “pre(E)” is an expression denoting
the function

3 nel ifn=0
- e(n—1) ifn>0

where nil is an undefined value.

¢ IfE and F are two expressions of the same type, respectively denoting the functions An.e(n)
and An.f(n), then “E -> F” is an expression denoting the function

e(n) ifn=0
A"'{ f(n) ifn>0

In addition to equations, a LUSTRE program can contain assertions, of the form “assert E”,
where E is any boolean expression. This means that E is assumed to be always true during
the execution of the program. For instance, “assert not(0ON and OFF)” expresses that the
input events ON and OFF never occur at the same time. Assertions were introduced in order to
express some known properties of the environment, for optimization purposes. They will play
an important role in program verification.

A LUsTRE program is structured into nodes: a node is a subprogram specifying a relation
between its input and output parameters. This relation is expressed by an unordered set of
equations and assertions, possibly involving local variables. Once declared, a node may be
functionally used in any expression, as a basic operator.

For instance the following declaration defines a node, of general usage, which returns true
whenever its boolean parameter raises from false to true:

node edge(X: bool) returns (EDGE: bool);
let

EDGE = X -> X and not pre(X);
tel

Now, the expression edge(not C) is true whenever the variable C has a falling edge.



3 Example of program

Let us introduce an example adapted from a subway device. At each end of a subway line, a
special “U-turn” section allows trains to switch from one track to the other, and to go back in
the opposite direction (see Fiig. 1). A U-turn section is composed of three tracks A, B, C, and a
switch S. Assuming the entering track is A and the exiting track is C, trains switching from A to
C must first wait for S to connect A with B, then transit on B and wait again for S to connect
B with C before going back on C.

Considering that several trains move along the tracks and that the switch is not a safe device,
two kinds of accidents may occur within the section:

o if several trains are allowed to access the section together, they may collide.
o if the switch is not well positioned, trains will derail.

It is therefore clear that controlling a U-turn section is a highly critical task. Any automatic U-
turn section management system (later on called UMS) must both drive the switch and manage
train movements along the section so as to avoid accidents.

Such a system is typically reactive: upon receipt of information about the switch status and
about the train position inside the section, it should deliver positioning requests to the switch
and access grants to trains. These four kinds of events can be modeled by the following signals:

e ack AB and ack BC indicate whether the switch actually connects A with B or B with C.
If none of these signals is active, trains must not take the switch.

e on_A, on B and on_C are three sensors, one on each track of the section. They are active as
long as there is a train on the track they observe.

e do_AB and do_BC are the requests for the switch to connect A with B or B with C.

e grant_access and grant_exit are grants for trains to move along the section. They
correspond to traffic lights. The first one will allow trains to access the section only if it
is empty and if the switch connects A with B. The second one will allow trains to exit B
only if the switch connects B with C.

An overview of the system and its environment is given in Fig. 2. Let us now implement the
UMS in LusTRE. In the sequel, it is assumed that initially, there is no train in the section. Let us
define the equations for the switch positioning requests. The switch will be requested to connect
A with B each time the section is empty and to connect B with C each time a train has arrived
on B. These requests will remain active until the switch is in the right position. In LUSTRE, we
directly get the equations:

Figure 1: A subway U-turn section



Figure 2: The UMS system and its environment

do_AB = not ack_AB and empty_section;
do_BC = not ack_BC and only_on_B;

Here, empty_section states that no train is in the section, while only_on B states that the only
trains in the section are on B. The equations for these variables are the followings:

empty_section = not(on_A or on_B or on_C);
only_on_B = on_B and not(on_A or on_C);

Now, we have to write the equations defining the movement grants. As mentioned before, access
to the section will be granted only if it is empty and if the switch connects A with B. We therefore
get the following equation:

grant_access = empty_section and ack_AB;

Trains will be granted to exit the section when the switch connects B with C and when the only
trains in the section are on B. So, we get:

grant_exit = only_on_B and ack_BC;

We finally get the whole LusTrRE program for the UMS system, shown by Fig. 3. This sim-
ple example intends to show that LUsTRE is well-suited for programming such systems, as all
the equations written in the program are straightforwardly deduced from the informal specifi-
cations of the U-turn section. The fact that equations can be written in any order encourages
a progressive translation of the specifications: each requirement is expressed in turn, possibly
involving the introduction of auxiliary variables. Notice that introducing an auxiliary variable
(like empty_section), for naming an expression, has no influence on the program semantics, but
can increase its readability.



node UMS(on_A,onB,on_C,ack_AB,ack BC: bool)
returns (grant_access,grant_exit, do_AB,do BC: bool);
var empty_section, only_on B: bool;
let
grant_access = empty_section and ack_AB;
grant_exit = only_on B and ack_BC;
do_AB = not ack_AB and empty_section;
do BC = not ack BC and only_on_B;
empty_section = not(on A or onB or onC);
only on B = on B and not(on A or on(C);
tel

Figure 3: The LUSTRE program for the UMS system

4 Expressing critical properties

Let us now consider the expression of the critical properties of a program. Many formalisms have
been proposed for that, most of them being inspired either from temporal logics or from process
algebras. However, in order to reduce the user’s effort, we have been looking for a formalism
being as close as possible to the programming language. So, we propose to express a property
as the invariance of some boolean LUSTRE expression. Having to express a property P about
a program I, we will write a boolean expression B such that P is satisfied if and only if B is
always true during any execution of II. It has been shown elsewhere [7] that LUSTRE can be
viewed as a subset of linear temporal logic [25], and that any safety property can be expressed
in that way. From our experience, the critical properties required for a real-time system almost
always fall into this class: as a matter of fact, nobody cares whether an alarm eventually follows
a dangerous situation, but rather whether it occurs within a given delay!

Let us show how some useful non trivial temporal operators can be expressed as LUSTRE
nodes. Consider the following property:

“Any occurrence of a critical situation causes an alarm, which must be sustained
within a five seconds delay”

Such a property relates three events: the occurrence of the critical situation, the alarm, and the
deadline. A general pattern for this property is the following one:

“Any occurrence of the event A must cause the condition B to be true until the next
occurrence of the event C'”

However, this formulation is not directly translatable into LUSTRE as it refers to what hap-
pens in the future following an A occurrence, while LUSTRE only allows references to the past
with respect to the current instant. That is why we first translate it into the equivalent past
expression:

“Any time A has occurred in the past, either B has been continuously true, or C' has
occurred at least once, since the last occurrence of A”



Let us define a node, taking three boolean input parameters A, B, C, and returning a boolean
output X such that X is always true if and only if the property holds:

node always_from_to(B,A,C: bool) returns (X: bool);
let

X = implies(after(A), always_since(B,A) or once_since(C,A));
tel

The equation defining X uses four auxiliary nodes:

e The nodes implies implements the ordinary logical implication:

node implies(A, B: bool) returns (AimpliesB: bool);
let

AimpliesB = not A or B;
tel

e The node after returns the value false until the first time its input is ¢true. Then it returns
true for ever:

node after(A: bool) returns (afteriA: bool);
let

afterA = false -> pre(A or afterh);
tel

e The node always_since has two inputs and returns true if and only if its first input has
been continuously true since the last time its second input was true:

node always_since(B,A: bool) returns (alwaysBsinceA: bool);
let

alwaysBsinceA = if A then B

else if after(A) then B and pre(alwaysBsincel)
else true;
tel

e Finally, the node once_since has two inputs and returns true if and only if its first input
has been at least once true since the last time its second input was true:

node once_since(C,A: bool) returns (onceCsinced: bool);
let
onceCsinceld = if A then C
else if after(A) then C or pre(onceCsinceAl)
else true;
tel

These nodes will be used in our example. Of course, other operators could be defined in the
same way (see [19]).



5 Critical properties of the example

Let us express in LUSTRE the set of safety properties required from our U-turn management
system. As mentioned before, this system must always avoid the occurrence of two dangerous
situations.

The first one concerns train collisions. We have to check that a train may enter the section
only if this one is empty. In LUSTRE, this property will be expressed by the invariance of a
boolean variable no_collision, defined as follows:

no_collision = implies(grant_access,empty_section);

From the equation defining grant_access, this property is obviously true. So, assuming that no
train enters the section by track C, it is possible to consider by now that no more than one train
is in the section at any time.

We only have to check now that a train entering the section by track A will always leave it
by track C, and that no derailment is possible. This leads to verify how the switch is driven.
First, it is clear that the switch positioning requests should never be both active at the same
time. This is simply expressed by the invariance of the following LUSTRE expression:

exclusive_req = not(do_AB and do_BC);

The switch should also connect A to B from the instant when a train is allowed to enter the
section until it has arrived on track B. This leads to the following property:

no_derail_AB = always_from_to(ack_AB, grant_access, only_on_B);

Similarly, the switch should always connect B to C from the instant when a train is allowed to
leave the section until it has actually left it:

no_derail_BC = always_from_to(ack_BC, grant_exit, empty_section);
Notice that if the above property is true, a train cannot leave the section by track A.
Finally, the global property to prove is expressed by the following LUSTRE equation:

property = no_collision and exclusive_req and no_derail_AB and no_derail_BC;

6 Modeling the environment

The next step in the verification process should consist in running the verification tool and check
whether the safety properties above are preserved by the UMS. However, at that point, an impor-
tant and crucial task is to provide a description of how the environment of the system behaves.
Actually, the environment obeys some rules which restrict its possible behaviors. For instance,
in a U-turn section, trains are assumed to stop when traffic lights are red. The verification tool
would certainly not achieve checking the system without being aware of such an information.
It is therefore necessary to define some assumptions about the behavior of the environment. In
LusTRrE, this is done using the assertion mechanism. As said before, LUSTRE assertions express
that some boolean expressions can be assumed to be always true.

Let us describe in that way some important features of the U-turn section environment. We
can make the following assumptions about the switch:
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e the switch cannot both connect A with B and B with C:
assert not(ack_AB and ack_BC);

e Once in a given position, the switch remains stable unless it is requested to move to the
opposite position:

assert always_from_to(ack_AB,ack_AB,do_BC)
and always_from_to(ack_BC,ack_BC,do_AB);

About train movements inside the section, we make the following assumptions:

e Initially, there is no train in the section.
assert empty_section -> true;

(Remember that “empty_section -> true” is equal to “empty_section” at the initial
instant, and then is true forever; so the above assertion only restricts the initial value of
“empty_section”)

e Trains obey traffic lights. So, if a train enters or leaves the section, then the corresponding
traffic light was green at the instant before. Therefore, we get (using the node edge defined
in Section 2):

assert true -> implies(edge(not empty_section), pre grant_access);
assert true -> implies(edge(on_C), pre grant_exit);

o When a train leaves A, it is on B. When a train leaves B, it is either on A or on C.

assert implies(edge(not on_A4),on_B);
assert implies(edge(not on_B), on_A or on_C);

This example and our experience show that specifying the environment behavior of a program
requires important efforts. Such a work undoubtly adds some complexity to the verification
task. However, giving such a precise specification of the assumptions made on the environment
behavior is certainly a useful task in designing a critical system. Moreover, notice that these
assumptions can be dynamically checked, during the execution of the program (a compiler option
produces the corresponding code). They can be used also in a testing phase, for choosing valid
testcases.

7 Program verification

We consider now the verification problem. Given a program II, a property P expressed by a
boolean expression B which must be invariantly true under some assumptions expressed by an
assertion A, we can build a new program II' by putting together II, the computation of B and
the assertion assert A, considering the result of B to be the only output of II’ (see Fig. 4). The
problem thus reduces to proving that the only boolean output of II' is always true during any
execution of the program which permanently satisfies the assertion assert A.

11
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Figure 4: Building a verification program

The verification is performed on a finite state abstraction of the program. Any numerical
computation is deliberately ignored, and boolean expressions depending on numerical variables
(e.g., comparisons) are considered non deterministic. However, assertions can be used again to
restrict this non determinism: For instance, if tests on conditions “X<Y”, “Y<Z” and “X<Z” appear
in the program, the assertion “implies(X<Y and Y<Z, X<Z)” will prevent the prover to consider
absurd cases corresponding to “X<Y<Z” and “X>Z”.

So, we consider a purely boolean, non deterministic program II”, which approximates II’ in
the sense that “it has more behaviors”: Any execution trace of II’ is also an execution trace of II"”.
Therefore, if the output of II” is always true so is the output of II’ (Notice that, if the property
depends on the values of numerical variables, our tool may fail in proving it). Now, since 11"
only contains boolean variables, it represents a finite state machine, on which any verification
problem is decidable: proving that its output is always true amounts to enumerate its finite set
of states, checking that, in each state — belonging to a path starting from the initial state and
on which the assertions are always true — and for each input vector, the output evaluates to
true. Two “verification engines” have been implemented and integrated into a verification tool,
called LESAR:

e The first one explicitly enumerates the reachable states, as done by standard “model check-
ers” [12, 27]. The main limitation of such an approach is obviously the number of states
that can be considered. The present version of the tool deals with programs of about
1,000,000 states in reasonable time (less than 1 hour).

e The second engine proceeds symbolically: starting from a boolean formula Fy, character-
izing the set of states where the output is true (in LUSTRE this formula is the expression
of the property), it iteratively computes a sequence Fi, Fy, ..., F,, of formulas, where Fjq
characterizes the set of states, belonging to F; and necessarily leading (in one execution
step) into F;. As soon as the initial state doesn’t satisfy F;, one can conclude that the
property is not satisfied, since there exists an execution path leading to a state where the
output is false. Otherwise, since the state space is finite, the sequence of formulas con-
verges after a finite number of steps to a formula F' which characterizes the set of states
from which it is not possible to reach a state violating the property. Our tool performs
symbolic computations over formulas using binary decision diagrams (“BDDs” [9]), a com-
pact canonical encoding of boolean formulas. This approach is sometimes called “symbolic
model checking” [10, 14, 15].

The two approaches are complementary: in some cases, the enumerative method is cheaper
than the symbolic one, and conversely. The main limitation of the enumerative method is the
number of reachable states which must be considered, whereas the symbolic method is limited by
the complexity of boolean formulas (the size of the BDDs encoding it). Now, the complexity of
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node UMS_verif(on_A,on B,on._C, ack AB,ack BC: bool)
returns(property: bool);

var
grant_access,grant_exit: bool;
do_AB,do BC: bool;
no_collision,exclusivereq: bool;
no_derail _AB,no_derail BC: bool;
empty_section, only. on B: bool;

let
empty_section = not(on A or onB or onC);
only on B = onB and not(on A or on(C);

-- ASSERTIONS
assert not(ack_AB and ack_BC);
assert always from to(ack AB,ack AB,do BC)
and always from to(ack BC,ack BC,do_AB);
assert empty section -> true;
assert true -> implies(edge(not empty_section), pre grant_access);
assert true -> implies(edge(on.C), pre grant_exit);
assert implies(edge(not on_A),onB);
assert implies(edge(not onB), on A or onC);

-- UMS CALL
(grant_access,grant_exit,do_AB,doBC) =
UMS(on_A,on B,on_C,ack_AB,ack BC);

-- PROPERTIES
no_collision = implies(grant_access,empty_section);
exclusive req = not(do AB and do BC);
no_derail AB = always from to(ack_AB, grant_access, only on B);
no_derail BC = always_from to(ack BC, grant_exit, empty._section);
property = no_collision and exclusive req and no_derail AB
and no_derail BC;
tel

Figure 5: The verification program
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a boolean formula is not related with the number of states it characterizes: The formula “true”
can represent billions states!.

The program provided to LESAR for dealing with our example is listed in Fig. 5. The times
(in sec., on SUN4) needed for proving its properties (separately and globally) using each method
are gathered in the table below:

Property States | Enum | Symb
no_collision 27 0.7 0.3
exclusive req 27 0.7 0.4
no_derail AB 37 1.0 0.5
no_derail BC 39 1.0 0.5
property 54 1.2 1.3

Of course, the example is so simple that these results are hardly meaningful. However, we
have treated more significant programs: In particular, the experience driven in [17] deals with
a real nuclear plant control system; all the critical properties required of this system have been
expressed (so, they were all safety properties) and verified using LESAR, in spite of the fact that
this example involves a lot of real-valued variables. As a matter of fact, these variables only
appeared in the properties by means of threshold comparisons, which have been handled using
assertions.

8 Modular verification

The fact that program and properties are expressed in the same language, together with the
assertion mechanism provide also a method for modular verification: Informally, given a program
II compound of n subprograms Ily,1l5,...,1,,, and once each II; has been proved to satisfy a
safety property P; (i = 1...n), one can prove that II satisfies a safety property P by proving
that the combination of the P; implies P. More formally, if we note “Il = P” the fact that the
program II satisfies the safety property P, and if || denotes the parallel composition, we have

Hl |:P1 } H2 |:P2
(I || M) E PN Py

This can be done in LUSTRE in the following way: Let II be a program using some node II’
(Fig. 6.a). Assume that II' has been proved to satisfy a property P’, expressed by the invariance

]

Figure 6: Modular verification
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A

Figure 7: A full subway track

of the boolean expression B. Now, for proving that II satisfies a property P, one can consider II’
as a part of the environment of I, replacing it by the assertion that B is always true (Fig. 6.b).
Formally, if we note “OB” the property that B is always true,

I"=0B , (I;assert B)|= P
(L[ ) =P

Of course, the property P’ (which must be found by intuition) may be too weak to allow the
proof of P, but such a decomposition may drastically reduce the complexity of the verification.

For instance, the proved properties of the UMS system could be used for verifying the control
of a whole subway track (Fig. 7): Informally, let LINEAR_TRACKx be a LUSTRE program control-
ling a single track X, and UMSx y be the controller of a UMS with input track X and output
track Y, the structure of the whole program would be

LINEAR TRACK,4 || UMS ¢ || LINEAR_TRACK: || UMS( 4

Instead of considering this whole program, one could try to verify the following (hopefully)
simpler one

LINEAR TRACK, || assert B, ¢ || LINEAR_TRACKc || assert Bg 4

where By y denotes the boolean expression which has been proved to be invariantly true in the
program UMSx y.

Moreover, this approach has been extended in [19] to allow the inductive verification of regular
networks of identical processes. Modular verification also allows the verification of partially
developed programs: Using the same approach in a slightly different way, you can verify the
properties of a program II before writing a sub-program II’, using a specification of II'.

9 Conclusion and future work

We have tried to highlight the advantages of using a synchronous data-flow language in design-
ing a real-time program. These advantages are twofold: On one hand, such a language meets
traditional tools used in this field, and on the other hand, since it can be viewed as an executable
temporal logic, it allows the expression of specifications and the smooth merging of programs
and properties.

The synchronous hypothesis relegates “real-time” problems to the evaluation of program
reaction time. Under this hypothesis, a program can be modeled by standard transition systems.
As a consequence, our approach to program verification is quite standard, and even rather
restricted, since it only deals with checking safety properties on finite state program abstractions.
These restrictions have been introduced in order to tackle real-life problems, and we have argued
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that they meet many practical cases. Notice that, in contrast with many verification tools which
deal with models of programs, our tools apply directly to programs themselves, thus meeting
G. Berry’s “WYPIWYE” principle [4]: What you prove is what you execute! There is no manual
transformation between the program which is verified and the code which is executed.

Of course, both programming and verification rely on the synchronous hypothesis. This

hypothesis must be checked in fine for the results to be valid. However, this checking only
consists in evaluating the maximum execution time of linear pieces of code (the reactions), and
is therefore easy.

This work will be pursued, at least in two directions:

e The restriction to boolean abstractions is a strong limitation. Dealing with some properties

about bounded integers would certainly be worthwhile. In particular, integer variables are
often used in LUSTRE to count delays. Up to now, our tools are not aware that a delay of
3 seconds is shorter that one of 10 seconds! Recent works on timed graph analysis [1, 16]
could be adapted for that.

A lot of work remains to be done around modular verification and program synthesis.
In the approach proposed in §8, the specification of a subprogram must be provided by
intuition. It would be appealing to synthesize automatically this specification, using our
symbolic verification tool: Assume a program II, calling a sub-program II’, is required to
satisfy a property P, i.e., the invariance of some boolean expression B. We can first remove
I’ from II, considering it as an unknown part of II’s environment. If the resulting program
satisfies P, then II’ has nothing to do with P. Otherwise, the symbolic verifier exhibits
a formula F which characterizes the set of states of the program in which B is false. The
role of II' is then to avoid these states. The idea is to extract from F' a specification of
II'. Moreover, since in our approach, specifications are programs, one can wonder if it is
possible to synthesize I’ from this specification.
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