
Programming and verifying real-time systems by means of thesynchronous data-
ow language LUSTRE �Nicolas HALBWACHS, Fabienne LAGNIERIMAG / LGIGrenoble, France Christophe RATELMerlin-Gerin / SESand IMAG / LGIJune 10, 1994AbstractWe investigate the bene�ts of using a synchronous data-
ow language for programmingcritical real-time systems. These bene�ts concern ergonomy | since the data
ow approachmeets traditional description tools used in this domain|, and ability to support formal designand veri�cation methods. We show, on a simple example, how the language Lustre and itsassociated veri�cation tool Lesar, can be used to design a program, to specify its criticalproperties, and to verify these properties. As the language Lustre and its use have beenalready published in several papers (e.g., [11, 18]), we put particular emphasis on programveri�cation. A preliminary version of this paper has been published in [28].1 IntroductionIt is useless to repeat why real-time programs are among those in which errors can have the mostdramatic consequences. Thus, these programs constitute a domain where there is a special needof rigorous design methods. We advocate a \language approach" to this problem, arguing thatthe programming language used has a direct in
uence in the quality of the software, from severalpoints of view:(i) The language should allow a natural description of the problem to be solved. In particular,it should be close to the traditional tools used in its application �eld.(ii) The language should be formally sound, in order to support formal veri�cation methods.(iii) The language should be simple enough to minimize the risk of misunderstanding aboutprogram meanings.These were our main goals in designing the language Lustre [11, 18]. To meet the criterion (i),we started from the traditional description tools used in the design of process control systems:At a higher level, these tools consist of mathematical formalisms (di�erential equations, booleanequations, : : :) while at a lower level, people often use data-
ow nets (block-diagrams, analogschemas, switch or gate networks, : : :). These two classes of tools are closely related: For instance,�This work was partially supported by ESPRIT Basic Research Action \SPEC" and by a contract from MerlinGerin 1



di�erential equations, �nite di�erence equations, boolean equations can be straightforwardlytranslated, respectively, into analog schemas, block-diagrams and gate networks. At least theclass of high level tools also meets our criterion (ii), since they are derived from the mathematicallanguage. Other authors (e.g., [23, 2]) claimed that such declarative formalisms are simpler andcleaner than usual imperative languages, where assignments, side-e�ects, aliasing, parameterpassing mechanisms, are unnatural phenomena which are di�cult to understand and manage.We agree with this claim, and therefore consider that these declarative formalisms constitute agood basis for designing a programming language meeting the criterion (iii).Lustre is a synchronous data-
ow language, initially inspired from Lucid. As in Lucid, anyLustre variable or expression is considered to represent the sequence of values it takes duringthe whole execution of the program, and Lustre operators are considered to operate globallyover these sequences. The synchronous nature of the language consists in assuming that all thevariables and expressions in a program take the n-th value of their respective sequences at thesame time. More concretely, a program is intended to have a cyclic behavior, an execution cycleconsisting in computing the n-th value of each variable or expression. Basically, a program is a setof equations. When we write an equation \X=E", where X is a variable and E is an expression, wemean that the sequences of values associated with X and E are identical (it is an actual equation,in the mathematical sense), or equivalently, that at any cycle of the program, X and E take thesame value.Time and synchronyThe \real time" capabilities of the language are derived from this synchronous interpretation,like in other synchronous languages [6, 8, 13, 21, 24]: We consider the following logical notionof time: As soon as we can specify the order or simultaneity relations between events occurringboth inside and outside the program, we can express time constraints about the behavior of theprogram. For instance, a constraint like\any occurrence of a dangerous situation must be followed by the emission of an alarmwithin a delay of 2 seconds"will be expressed as\after any occurrence of the event dangerous situation there must be an occurrenceof the event alarm before the 2nd next occurrence of the event second"This example shows that, in synchronous programming, the \real", physical time is consideredas an external event (here second), which has no privileged nature. This is the multiform timepoint of view: Time may be counted in \seconds" as well as in \meters", since there is noconceptual di�erence between the two following requirements:the train must stop within 10 seconds and the train must stop within 100 metersIn a synchronous language, these constraints are expressed in similar ways, in contrast withlanguages like ADA, where \real" time is handled by special statements.In Lustre, an event will be modeled by a boolean variable, whose value is true wheneverthe event occurs.The synchronous interpretation is an abstract point of view which consider the program reac-tion time to be negligible with respect to the reaction time of its environment. The advantages ofthis abstraction have been pointed out [5, 4, 3] concerning the semantics cleanness and the fact2



that it reconciles concurrency and determinism. In particular [4] argues that synchronous lan-guages are particularly well-suited for programming reactive kernels of real-time systems, whilecomplex systems generally require the combination of asynchronous and synchronous modules.We do not claim, therefore, that synchronous languages are general purpose languages, but ratherspecialized tools to design such kernels.One may wonder about the realism of the synchronous hypothesis, since it assumes thatthe machine instantly reacts to input events. In fact, it only assumes that the reaction timeis short enough to accurately distinguish and order the incoming events. In practice, it can bechecked by measuring the maximum reaction time of the program. Synchronous languages canbe implemented in a particularly e�cient and measurable way, following a technique developedfor Esterel [6]. Two versions of Lustre compilers have been written [11, 20], which use thistechnique. The object code is structured as a �nite automaton, a transition of which correspondsto a reaction of the program1. The code corresponding to such a transition is linear (loop-free),and its maximal execution time can be accurately bounded, on a given machine. Therefore, thevalidity of the synchrony hypothesis can be checked, and it is the only \real-time" issue in thesynchronous approach. All the design and veri�cation we will perform rely on that checking.In Section 2, we brie
y present the language, whose use is illustrated in Section 3 on a smallexample adapted from an actual subway device.Speci�cation and veri�cationThe remainder of the paper is devoted to program veri�cation. As said before, the synchronousapproach limits the \timing" veri�cation to checking the validity of the synchrony hypothesis.So, the kind of veri�cation we have in mind is similar to standard veri�cation on transitionsystems. It has nothing to do with methods and models (like, e.g., [16, 26]) taking into accountthe program execution time | which is always assumed to be zero in the synchronous model.Moreover, our goal is not to prove the correctness of a program with respect to some com-plete speci�cations, but rather to express and verify some critical properties. For instance, inan aircraft 
ight control system, an error in the speed computation can have only slight conse-quences, whereas it is critical that the undercarriage be locked when landing. Our claim is thatthese critical properties are usually simple, and can be veri�ed by means of available automatictechniques. The main reason for this claim is that experience shows that most of these propertiesare \safety" properties which state that a given situation should never occur, or that a givenstatement should always hold, in contrast with \liveness" properties which state that a givensituation should eventually occur in the future2. For instance, a relevant question is not that atrain will eventually stop, but that it never crosses a red light. This is an important remark asproof techniques for safety properties are known to be much simpler than for liveness properties:� Safety properties can be checked on program abstractions: Intuitively, one can simplifya given program P into an abstract program P 0, having \more behaviors" than P . If P 0satis�es a safety property, so does P . This abstraction technique is valuable all the moreas experience shows that the considered critical properties seldom depend on numerical1This compiling technique is speci�c to synchronous languages, since, in an asynchronous language, the nondeterministic interleaving of asynchronous actions would involve immediately a combinatorial explosion of theautomaton size.2As a matter of fact, liveness properties are often introduced to \abstract" response time constraints, whichmust be taken fully into account in a real-time system. 3



relations and computations, but more often on logical dependencies over events. So theirproof can often be handled on �nite state abstractions of programs.� Safety properties can be checked on program states, rather than on execution paths. In theapproach we will propose, any veri�cation problem amounts at proving that some programnever outputs the value false. In the �nite state case, such a veri�cation can be done by asimple traversal of the state graph, without keeping track of any path in that graph. Verye�cient methods [22] have been proposed for such a traversal.� Safety properties can be modularly veri�ed: With any process composition operator ?, onecan easily associate an operator ? such that, for any two processes P1 and P2, respectivelysatisfying safety properties �1 and �2, their composition P1 ? P2 satis�es �1 ? �2. So, averi�cation problem can be decomposed into simpler ones.So, our ambition is rather modest | since we restrict ourselves to checking safety properties on�nite state (abstractions of) programs | with the hope of getting e�cient tools tackling manyreal-life cases.In view of this discussion, we propose a method for specifying and checking simple safetyproperties about Lustre programs. In Section 4, we show that we can take advantage of thedeclarative nature of Lustre, to express the properties in the same language: It has beenshown [7] that any safety property about a program can be expressed by the invariance ofsome boolean Lustre expression. This is due to the fact that Lustre can be viewed as anexecutable temporal logic. Concerning ergonomics, there is an obvious advantage of using a fullprogramming language instead of a temporal logic. In particular, the user can de�ne its owntemporal operators3, thus reducing the complexity of property expression.Moreover, Lustre provides a means of expressing assumptions about the program environ-ment. This is an essential feature, since the interaction of a real-time program with its environ-ment is particularly important. In general, the properties of a real-time program are intended tohold only under some assumptions about the behavior of its environment, and these assumptionscan be quite complex. So, the veri�cation process deals with three entities: The program, theproperty (expressed by an invariant) and the assumptions under which the property is intendedto hold (also expressed by an invariant).Sections 5 and 6 illustrates the proposed approach on our example. The veri�cation (Sec-tion 7) is performed on a �nite state abstraction of the program, which models only the behaviorof boolean variables. A veri�cation tool, called Lesar, is available, which can apply two veri�-cation techniques:� the former is an exhaustive enumeration of the states of the (abstraction of the) program,similar to standard model checking [12, 27].� the later is a symbolic construction of the set of states which satisfy the property, analogousto \symbolic model checking" [10, 14, 15].These techniques will be applied to the example introduced in Section 3.Finally, Section 8 outlines a method for modular veri�cation: taking advantage of the factthat the program and its properties are expressed in the same language, we can use the provedproperties of a subprogram in the veri�cation of a full program. This technique can reduce thecomplexity of the veri�cation.3This is a more powerful mechanism than the macro-notation o�ered by some speci�cation languages [12, 29].4



2 The language LustreWe do not give here a detailed presentation of the language Lustre, which can be found else-where [11, 18]. We only recall the elements which are necessary for understanding the paper.A Lustre program speci�es a relation between input and output variables. Any variable orexpression is intended to be a function of time. Time is assimilated to the set of natural numbers.Variables are de�ned by means of equations (one and only one equation for each variable whichis not an input): As said before, an equation \X=E", where E is a Lustre expression, speci�esthat the variable X is always equal to E.Expressions are made of variable identi�ers, constants (considered as constant functions),usual arithmetic, boolean and conditional operators (considered as pointwisely applying to func-tions) and only two speci�c operators: the \previous" operator and the \followed-by" operator:� If E is an expression denoting the function �n:e(n), then \pre(E)" is an expression denotingthe function�n:( nil if n = 0e(n � 1) if n > 0where nil is an unde�ned value.� If E and F are two expressions of the same type, respectively denoting the functions �n:e(n)and �n:f(n), then \E -> F" is an expression denoting the function�n:( e(n) if n = 0f(n) if n > 0In addition to equations, a Lustre program can contain assertions, of the form \assert E",where E is any boolean expression. This means that E is assumed to be always true duringthe execution of the program. For instance, \assert not(ON and OFF)" expresses that theinput events ON and OFF never occur at the same time. Assertions were introduced in order toexpress some known properties of the environment, for optimization purposes. They will playan important role in program veri�cation.A Lustre program is structured into nodes : a node is a subprogram specifying a relationbetween its input and output parameters. This relation is expressed by an unordered set ofequations and assertions, possibly involving local variables. Once declared, a node may befunctionally used in any expression, as a basic operator.For instance the following declaration de�nes a node, of general usage, which returns truewhenever its boolean parameter raises from false to true:node edge(X: bool) returns (EDGE: bool);letEDGE = X -> X and not pre(X);telNow, the expression edge(not C) is true whenever the variable C has a falling edge.5



3 Example of programLet us introduce an example adapted from a subway device. At each end of a subway line, aspecial \U-turn" section allows trains to switch from one track to the other, and to go back inthe opposite direction (see Fig. 1). A U-turn section is composed of three tracks A, B, C, and aswitch S. Assuming the entering track is A and the exiting track is C, trains switching from A toC must �rst wait for S to connect A with B, then transit on B and wait again for S to connectB with C before going back on C.Considering that several trains move along the tracks and that the switch is not a safe device,two kinds of accidents may occur within the section:� if several trains are allowed to access the section together, they may collide.� if the switch is not well positioned, trains will derail.It is therefore clear that controlling a U-turn section is a highly critical task. Any automatic U-turn section management system (later on called UMS) must both drive the switch and managetrain movements along the section so as to avoid accidents.Such a system is typically reactive: upon receipt of information about the switch status andabout the train position inside the section, it should deliver positioning requests to the switchand access grants to trains. These four kinds of events can be modeled by the following signals:� ack AB and ack BC indicate whether the switch actually connects A with B or B with C.If none of these signals is active, trains must not take the switch.� on A, on B and on C are three sensors, one on each track of the section. They are active aslong as there is a train on the track they observe.� do AB and do BC are the requests for the switch to connect A with B or B with C.� grant access and grant exit are grants for trains to move along the section. Theycorrespond to tra�c lights. The �rst one will allow trains to access the section only if itis empty and if the switch connects A with B. The second one will allow trains to exit Bonly if the switch connects B with C.An overview of the system and its environment is given in Fig. 2. Let us now implement theUMS in Lustre. In the sequel, it is assumed that initially, there is no train in the section. Let usde�ne the equations for the switch positioning requests. The switch will be requested to connectA with B each time the section is empty and to connect B with C each time a train has arrivedon B. These requests will remain active until the switch is in the right position. In Lustre, wedirectly get the equations: A BSCFigure 1: A subway U-turn section6



ack ABack BCon BUMSon Aon Cgrant access grant exitdo BCdo ABAC BS
Figure 2: The UMS system and its environmentdo_AB = not ack_AB and empty_section;do_BC = not ack_BC and only_on_B;Here, empty section states that no train is in the section, while only on B states that the onlytrains in the section are on B. The equations for these variables are the followings:empty_section = not(on_A or on_B or on_C);only_on_B = on_B and not(on_A or on_C);Now, we have to write the equations de�ning the movement grants. As mentioned before, accessto the section will be granted only if it is empty and if the switch connects A with B. We thereforeget the following equation:grant_access = empty_section and ack_AB;Trains will be granted to exit the section when the switch connects B with C and when the onlytrains in the section are on B. So, we get:grant_exit = only_on_B and ack_BC;We �nally get the whole Lustre program for the UMS system, shown by Fig. 3. This sim-ple example intends to show that Lustre is well-suited for programming such systems, as allthe equations written in the program are straightforwardly deduced from the informal speci�-cations of the U-turn section. The fact that equations can be written in any order encouragesa progressive translation of the speci�cations: each requirement is expressed in turn, possiblyinvolving the introduction of auxiliary variables. Notice that introducing an auxiliary variable(like empty section), for naming an expression, has no in
uence on the program semantics, butcan increase its readability. 7



node UMS(on A,on B,on C,ack AB,ack BC: bool)returns (grant access,grant exit, do AB,do BC: bool);var empty section, only on B: bool;letgrant access = empty section and ack AB;grant exit = only on B and ack BC;do AB = not ack AB and empty section;do BC = not ack BC and only on B;empty section = not(on A or on B or on C);only on B = on B and not(on A or on C);tel Figure 3: The Lustre program for the UMS system4 Expressing critical propertiesLet us now consider the expression of the critical properties of a program. Many formalisms havebeen proposed for that, most of them being inspired either from temporal logics or from processalgebras. However, in order to reduce the user's e�ort, we have been looking for a formalismbeing as close as possible to the programming language. So, we propose to express a propertyas the invariance of some boolean Lustre expression. Having to express a property P abouta program �, we will write a boolean expression B such that P is satis�ed if and only if B isalways true during any execution of �. It has been shown elsewhere [7] that Lustre can beviewed as a subset of linear temporal logic [25], and that any safety property can be expressedin that way. From our experience, the critical properties required for a real-time system almostalways fall into this class: as a matter of fact, nobody cares whether an alarm eventually followsa dangerous situation, but rather whether it occurs within a given delay!Let us show how some useful non trivial temporal operators can be expressed as Lustrenodes. Consider the following property:\Any occurrence of a critical situation causes an alarm, which must be sustainedwithin a �ve seconds delay"Such a property relates three events: the occurrence of the critical situation, the alarm, and thedeadline. A general pattern for this property is the following one:\Any occurrence of the event A must cause the condition B to be true until the nextoccurrence of the event C"However, this formulation is not directly translatable into Lustre as it refers to what hap-pens in the future following an A occurrence, while Lustre only allows references to the pastwith respect to the current instant. That is why we �rst translate it into the equivalent pastexpression:\Any time A has occurred in the past, either B has been continuously true, or C hasoccurred at least once, since the last occurrence of A"8



Let us de�ne a node, taking three boolean input parameters A, B, C, and returning a booleanoutput X such that X is always true if and only if the property holds:node always_from_to(B,A,C: bool) returns (X: bool);letX = implies(after(A), always_since(B,A) or once_since(C,A));telThe equation de�ning X uses four auxiliary nodes:� The nodes implies implements the ordinary logical implication:node implies(A, B: bool) returns (AimpliesB: bool);letAimpliesB = not A or B;tel� The node after returns the value false until the �rst time its input is true. Then it returnstrue for ever:node after(A: bool) returns (afterA: bool);letafterA = false -> pre(A or afterA);tel� The node always since has two inputs and returns true if and only if its �rst input hasbeen continuously true since the last time its second input was true:node always_since(B,A: bool) returns (alwaysBsinceA: bool);letalwaysBsinceA = if A then Belse if after(A) then B and pre(alwaysBsinceA)else true;tel� Finally, the node once since has two inputs and returns true if and only if its �rst inputhas been at least once true since the last time its second input was true:node once_since(C,A: bool) returns (onceCsinceA: bool);letonceCsinceA = if A then Celse if after(A) then C or pre(onceCsinceA)else true;telThese nodes will be used in our example. Of course, other operators could be de�ned in thesame way (see [19]). 9



5 Critical properties of the exampleLet us express in Lustre the set of safety properties required from our U-turn managementsystem. As mentioned before, this system must always avoid the occurrence of two dangeroussituations.The �rst one concerns train collisions. We have to check that a train may enter the sectiononly if this one is empty. In Lustre, this property will be expressed by the invariance of aboolean variable no collision, de�ned as follows:no_collision = implies(grant_access,empty_section);From the equation de�ning grant access, this property is obviously true. So, assuming that notrain enters the section by track C, it is possible to consider by now that no more than one trainis in the section at any time.We only have to check now that a train entering the section by track A will always leave itby track C, and that no derailment is possible. This leads to verify how the switch is driven.First, it is clear that the switch positioning requests should never be both active at the sametime. This is simply expressed by the invariance of the following Lustre expression:exclusive_req = not(do_AB and do_BC);The switch should also connect A to B from the instant when a train is allowed to enter thesection until it has arrived on track B. This leads to the following property:no_derail_AB = always_from_to(ack_AB, grant_access, only_on_B);Similarly, the switch should always connect B to C from the instant when a train is allowed toleave the section until it has actually left it:no_derail_BC = always_from_to(ack_BC, grant_exit, empty_section);Notice that if the above property is true, a train cannot leave the section by track A.Finally, the global property to prove is expressed by the following Lustre equation:property = no_collision and exclusive_req and no_derail_AB and no_derail_BC;6 Modeling the environmentThe next step in the veri�cation process should consist in running the veri�cation tool and checkwhether the safety properties above are preserved by the UMS. However, at that point, an impor-tant and crucial task is to provide a description of how the environment of the system behaves.Actually, the environment obeys some rules which restrict its possible behaviors. For instance,in a U-turn section, trains are assumed to stop when tra�c lights are red. The veri�cation toolwould certainly not achieve checking the system without being aware of such an information.It is therefore necessary to de�ne some assumptions about the behavior of the environment. InLustre, this is done using the assertion mechanism. As said before, Lustre assertions expressthat some boolean expressions can be assumed to be always true.Let us describe in that way some important features of the U-turn section environment. Wecan make the following assumptions about the switch:10



� the switch cannot both connect A with B and B with C:assert not(ack_AB and ack_BC);� Once in a given position, the switch remains stable unless it is requested to move to theopposite position:assert always_from_to(ack_AB,ack_AB,do_BC)and always_from_to(ack_BC,ack_BC,do_AB);About train movements inside the section, we make the following assumptions:� Initially, there is no train in the section.assert empty_section -> true;(Remember that \empty section -> true" is equal to \empty section" at the initialinstant, and then is true forever; so the above assertion only restricts the initial value of\empty section")� Trains obey tra�c lights. So, if a train enters or leaves the section, then the correspondingtra�c light was green at the instant before. Therefore, we get (using the node edge de�nedin Section 2):assert true -> implies(edge(not empty_section), pre grant_access);assert true -> implies(edge(on_C), pre grant_exit);� When a train leaves A, it is on B. When a train leaves B, it is either on A or on C.assert implies(edge(not on_A),on_B);assert implies(edge(not on_B), on_A or on_C);This example and our experience show that specifying the environment behavior of a programrequires important e�orts. Such a work undoubtly adds some complexity to the veri�cationtask. However, giving such a precise speci�cation of the assumptions made on the environmentbehavior is certainly a useful task in designing a critical system. Moreover, notice that theseassumptions can be dynamically checked, during the execution of the program (a compiler optionproduces the corresponding code). They can be used also in a testing phase, for choosing validtestcases.7 Program veri�cationWe consider now the veri�cation problem. Given a program �, a property P expressed by aboolean expression B which must be invariantly true under some assumptions expressed by anassertion A, we can build a new program �0 by putting together �, the computation of B andthe assertion assert A, considering the result of B to be the only output of �0 (see Fig. 4). Theproblem thus reduces to proving that the only boolean output of �0 is always true during anyexecution of the program which permanently satis�es the assertion assert A.11



Bassert A�0 ok�Figure 4: Building a veri�cation programThe veri�cation is performed on a �nite state abstraction of the program. Any numericalcomputation is deliberately ignored, and boolean expressions depending on numerical variables(e.g., comparisons) are considered non deterministic. However, assertions can be used again torestrict this non determinism: For instance, if tests on conditions \X<Y", \Y<Z" and \X<Z" appearin the program, the assertion \implies(X<Y and Y<Z, X<Z)" will prevent the prover to considerabsurd cases corresponding to \X<Y<Z" and \X�Z".So, we consider a purely boolean, non deterministic program �00, which approximates �0 inthe sense that \it has more behaviors": Any execution trace of �0 is also an execution trace of �00.Therefore, if the output of �00 is always true so is the output of �0 (Notice that, if the propertydepends on the values of numerical variables, our tool may fail in proving it). Now, since �00only contains boolean variables, it represents a �nite state machine, on which any veri�cationproblem is decidable: proving that its output is always true amounts to enumerate its �nite setof states, checking that, in each state | belonging to a path starting from the initial state andon which the assertions are always true | and for each input vector, the output evaluates totrue. Two \veri�cation engines" have been implemented and integrated into a veri�cation tool,called Lesar:� The �rst one explicitly enumerates the reachable states, as done by standard \model check-ers" [12, 27]. The main limitation of such an approach is obviously the number of statesthat can be considered. The present version of the tool deals with programs of about1,000,000 states in reasonable time (less than 1 hour).� The second engine proceeds symbolically: starting from a boolean formula F0, character-izing the set of states where the output is true (in Lustre this formula is the expressionof the property), it iteratively computes a sequence F1; F2; : : : ; Fn of formulas, where Fi+1characterizes the set of states, belonging to Fi and necessarily leading (in one executionstep) into Fi. As soon as the initial state doesn't satisfy Fi, one can conclude that theproperty is not satis�ed, since there exists an execution path leading to a state where theoutput is false. Otherwise, since the state space is �nite, the sequence of formulas con-verges after a �nite number of steps to a formula F which characterizes the set of statesfrom which it is not possible to reach a state violating the property. Our tool performssymbolic computations over formulas using binary decision diagrams (\BDDs" [9]), a com-pact canonical encoding of boolean formulas. This approach is sometimes called \symbolicmodel checking" [10, 14, 15].The two approaches are complementary: in some cases, the enumerative method is cheaperthan the symbolic one, and conversely. The main limitation of the enumerative method is thenumber of reachable states which must be considered, whereas the symbolic method is limited bythe complexity of boolean formulas (the size of the BDDs encoding it). Now, the complexity of12



node UMS verif(on A,on B,on C, ack AB,ack BC: bool)returns(property: bool);vargrant access,grant exit: bool;do AB,do BC: bool;no collision,exclusive req: bool;no derail AB,no derail BC: bool;empty section, only on B: bool;letempty section = not(on A or on B or on C);only on B = on B and not(on A or on C);-- ASSERTIONSassert not(ack AB and ack BC);assert always from to(ack AB,ack AB,do BC)and always from to(ack BC,ack BC,do AB);assert empty section -> true;assert true -> implies(edge(not empty section), pre grant access);assert true -> implies(edge(on C), pre grant exit);assert implies(edge(not on A),on B);assert implies(edge(not on B), on A or on C);-- UMS CALL(grant access,grant exit,do AB,do BC) =UMS(on A,on B,on C,ack AB,ack BC);-- PROPERTIESno collision = implies(grant access,empty section);exclusive req = not(do AB and do BC);no derail AB = always from to(ack AB, grant access, only on B);no derail BC = always from to(ack BC, grant exit, empty section);property = no collision and exclusive req and no derail ABand no derail BC;tel Figure 5: The veri�cation program13



a boolean formula is not related with the number of states it characterizes: The formula \true"can represent billions states!.The program provided to Lesar for dealing with our example is listed in Fig. 5. The times(in sec., on SUN4) needed for proving its properties (separately and globally) using each methodare gathered in the table below:Property States Enum Symbno collision 27 0.7 0.3exclusive req 27 0.7 0.4no derail AB 37 1.0 0.5no derail BC 39 1.0 0.5property 54 1.2 1.3Of course, the example is so simple that these results are hardly meaningful. However, wehave treated more signi�cant programs: In particular, the experience driven in [17] deals witha real nuclear plant control system; all the critical properties required of this system have beenexpressed (so, they were all safety properties) and veri�ed using Lesar, in spite of the fact thatthis example involves a lot of real-valued variables. As a matter of fact, these variables onlyappeared in the properties by means of threshold comparisons, which have been handled usingassertions.8 Modular veri�cationThe fact that program and properties are expressed in the same language, together with theassertion mechanism provide also a method for modular veri�cation: Informally, given a program� compound of n subprograms �1;�2; : : : ;�n, and once each �i has been proved to satisfy asafety property Pi (i = 1 : : :n), one can prove that � satis�es a safety property P by provingthat the combination of the Pi implies P . More formally, if we note \� j= P" the fact that theprogram � satis�es the safety property P , and if jj denotes the parallel composition, we have�1 j= P1 ; �2 j= P2(�1 jj �2) j= P1 ^ P2This can be done in Lustre in the following way: Let � be a program using some node �0(Fig. 6.a). Assume that �0 has been proved to satisfy a property P 0, expressed by the invariance� �0(a) (b)assert B� �0
Figure 6: Modular veri�cation14



D C BAFigure 7: A full subway trackof the boolean expression B. Now, for proving that � satis�es a property P , one can consider �0as a part of the environment of �, replacing it by the assertion that B is always true (Fig. 6.b).Formally, if we note \2B" the property that B is always true,�0 j= 2B ; (�;assert B) j= P(� jj �0) j= POf course, the property P 0 (which must be found by intuition) may be too weak to allow theproof of P , but such a decomposition may drastically reduce the complexity of the veri�cation.For instance, the proved properties of the UMS system could be used for verifying the controlof a whole subway track (Fig. 7): Informally, let LINEAR TRACKX be a Lustre program control-ling a single track X , and UMSX;Y be the controller of a UMS with input track X and outputtrack Y , the structure of the whole program would beLINEAR TRACKA jj UMSA;C jj LINEAR TRACKC jj UMSC;AInstead of considering this whole program, one could try to verify the following (hopefully)simpler oneLINEAR TRACKA jj assert BA;C jj LINEAR TRACKC jj assert BC;Awhere BX;Y denotes the boolean expression which has been proved to be invariantly true in theprogram UMSX;Y .Moreover, this approach has been extended in [19] to allow the inductive veri�cation of regularnetworks of identical processes. Modular veri�cation also allows the veri�cation of partiallydeveloped programs: Using the same approach in a slightly di�erent way, you can verify theproperties of a program � before writing a sub-program �0, using a speci�cation of �0.9 Conclusion and future workWe have tried to highlight the advantages of using a synchronous data-
ow language in design-ing a real-time program. These advantages are twofold: On one hand, such a language meetstraditional tools used in this �eld, and on the other hand, since it can be viewed as an executabletemporal logic, it allows the expression of speci�cations and the smooth merging of programsand properties.The synchronous hypothesis relegates \real-time" problems to the evaluation of programreaction time. Under this hypothesis, a program can be modeled by standard transition systems.As a consequence, our approach to program veri�cation is quite standard, and even ratherrestricted, since it only deals with checking safety properties on �nite state program abstractions.These restrictions have been introduced in order to tackle real-life problems, and we have argued15



that they meet many practical cases. Notice that, in contrast with many veri�cation tools whichdeal with models of programs, our tools apply directly to programs themselves, thus meetingG. Berry's \WYPIWYE" principle [4]: What you prove is what you execute! There is no manualtransformation between the program which is veri�ed and the code which is executed.Of course, both programming and veri�cation rely on the synchronous hypothesis. Thishypothesis must be checked in �ne for the results to be valid. However, this checking onlyconsists in evaluating the maximum execution time of linear pieces of code (the reactions), andis therefore easy.This work will be pursued, at least in two directions:� The restriction to boolean abstractions is a strong limitation. Dealing with some propertiesabout bounded integers would certainly be worthwhile. In particular, integer variables areoften used in Lustre to count delays. Up to now, our tools are not aware that a delay of3 seconds is shorter that one of 10 seconds! Recent works on timed graph analysis [1, 16]could be adapted for that.� A lot of work remains to be done around modular veri�cation and program synthesis.In the approach proposed in x8, the speci�cation of a subprogram must be provided byintuition. It would be appealing to synthesize automatically this speci�cation, using oursymbolic veri�cation tool: Assume a program �, calling a sub-program �0, is required tosatisfy a property P , i.e., the invariance of some boolean expression B. We can �rst remove�0 from �, considering it as an unknown part of �'s environment. If the resulting programsatis�es P , then �0 has nothing to do with P . Otherwise, the symbolic veri�er exhibitsa formula F which characterizes the set of states of the program in which B is false. Therole of �0 is then to avoid these states. The idea is to extract from F a speci�cation of�0. Moreover, since in our approach, speci�cations are programs, one can wonder if it ispossible to synthesize �0 from this speci�cation.References[1] R. Alur, C. Courcoubetis, and D. Dill. Model checking of real-time systems. In Fifth IEEESymposium on Logic in Computer Science, Philadelphia, 1990.[2] E. A. Ashcroft and W. W. Wadge. Lucid, the data-
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