
CS:5810 Formal Methods in Software Engineering

Reasoning about Programs with Objects in Dafny

Copyright 2020-22, Graeme Smith and Cesare Tinelli.
Produced by Cesare Tinelli at the University of Iowa from notes originally developed by Graeme Smith at the University of Queensland. These notes
are copyrighted materials and may not be used in other course settings outside of the University of Iowa in their current form or modified form without
the express written permission of one of the copyright holders. During this course, students are prohibited from selling notes to or being paid for taking
notes by any person or commercial firm without the express written permission of one of the copyright holders.

Checksum Objects
An object is an instance of a class, and like arrays, has a reference type

class ChecksumMachine {
var data: string

constructor ()
ensures data == ""

method Append(d: string)
modifies this
ensures data == old(data) + d

function method Checksum(): int
reads this
ensures Checksum() == Hash(data)

…

string is shorthand
for seq<char>

Checksum Objects
…

function method Hash(s: string): int {
SumChars(s) % 137

}

function method SumChars(s: string): int {
if |s| == 0 then 0 else

var last := |s| - 1;
SumChars(s[..last]) + s[last] as int

}
}

converts char to int

Test client
method Main() {

var m := new ChecksumMachine();
m.Append("green ");
m.Append("grass");
var c := m.Checksum();
print "Checksum is ", c, "\n";

}

A method is allowed to allocate new arrays and objects and change
their state (that is, the elements of the arrays and the fields of the
objects) without mentioning these arrays and objects in the modifies
clause

Class Invariant
To write efficient implementation, want to keep track of checksum so
far:

var cs: int

We want to use data in specifications, but not in compiled program:

ghost var data: string

predicate Valid() A predicate is a
reads this Boolean function

{ cs == Hash(data) }

If a function accesses the fields of an object o, its specification must
include reads o

Class Invariant
class ChecksumMachine {
ghost var data: string

predicate Valid()
reads this

constructor ()
ensures Valid() && data == ""

method Append(d: string)
requires Valid()
modifies this
ensures Valid() && data == old(data) + d

function method Checksum(): int
requires Valid()
reads this
ensures Checksum() == Hash(data)

}

Implementation
constructor ()

ensures Valid() && data == ""
{ cs := 0;

data := ""
}

A constructor is allowed to assign to the fields of the object being
constructed, this, without mentioning this in the modifies clause

function method Checksum(): int
requires Valid()
reads this
ensures CheckSum() == Hash(data)

{ cs }

Implementation
method Append(d: string)
requires Valid()
modifies this
ensures Valid()
ensures data == old(data) + d

{
var i := 0;
while i != |d|
invariant 0 <= i <= |d|
invariant Valid()
invariant data == old(data) + d[..i]

{
cs := (cs + d[i] as int) % 137;
data := data + [d[i]];
i := i + 1;

}
}

Coffee maker components
class Grinder {
var HasBeans: bool

predicate Valid()
reads this

constructor ()
ensures Valid()

method AddBeans()
requires Valid()
modifies this
ensures Valid() && HasBeans

method Grind()
requires Valid() && HasBeans
modifies this
ensures Valid()

}

class WaterTank { class Cup {
var Level: nat constructor ()

predicate Valid() }
reads this

constructor () }
ensures Valid()

method Fill()
requires Valid()
modifies this
ensures Valid() && Level == 10

method Use()
requires Valid() && Level != 0
modifies this
ensures Valid() && Level == old(Level) - 1

}

Coffee maker version 0
class CoffeeMaker {
predicate Valid() reads this

constructor () ensures Valid()

predicate method Ready()
requires Valid()
reads this

method Restock()
requires Valid()
modifies this
ensures Valid() && Ready()

method Dispense(double: bool) returns (c: Cup)
requires Valid() && Ready()
modifies this
ensures Valid()

}

Coffee maker version 0
State:

var g: Grinder
var w: WaterTank

predicate Valid()
reads this

{ g.Valid() && w.Valid() } // error: insufficient
// reads clause

Require:
predicate Valid()
reads this, g, w

Similar change also needed for reads of Ready() and modifies
clauses of Restock and Dispense

Representation sets
The expanded modifies and reads clauses violate the principles of
information hiding.

Therefore, we abstract the state of an object to a representation set.

For this implementation of the coffee maker, the representation set is

{o, o.g, o.w}

but the coffee maker may also be implemented in terms of different
objects.

Coffee maker version 1
Add new variable to state:

ghost var Repr: set<object>

Change modifies clauses of Restock and Dispense to
modifies Repr

Change read clauses of Valid and Ready to
reads Repr

Add the following to the body of Valid
this in Repr &&
g in Repr && g.Valid() &&
w in Repr && w.Valid()

Typically specify
lower bound on
objects in Repr

Coffee maker version 1
In Valid:

reads Repr // error: insufficient reads clause

This is because this is not in Repr unless Valid's predicate holds
(and Valid may return true or false).

We require:
predicate Valid()

reads this, Repr
{

this in Repr &&
g in Repr && g.Valid() &&
w in Repr && w.Valid()

}

Class implementation
constructor ()

ensures Valid()
{

g := new Grinder();
w := new WaterTank();
Repr := {this, g, w};

}

predicate method Ready()
requires Valid()
reads Repr

{
g.HasBeans && 2 <= w.Level

}

Class implementation
method Restock()
requires Valid()
modifies Repr
ensures Valid() && Ready()

{ g.AddBeans(); w.Fill();
}

method Dispense(double: bool) returns (c: Cup)
requires Valid() && Ready()
modifies Repr
ensures Valid()

{
g.Grind();
if double { w.Use(); w.Use(); } else { w.Use(); }
c := new Cup();

}

Test harness
method CoffeeTestHarness() {

var cm := new CoffeeMaker();
cm.Restock(); // modifies clause violated
var c := cm.Dispense(true); // modifies clause violated

}

The test harness has no modifies clause and so is only allowed to
modify the fields of fresh objects

Our specification of the coffee maker didn't specify that created
objects were fresh

Coffee maker version 2
Add to constructor:

ensures fresh(Repr)

This removes error with Restock, but not Dispense.

Add to Restock and Dispense:
ensures Repr == old(Repr)

Alternatively, make Repr immutable by declaring it as
ghost const Repr: set<object>

Changing Repr
What if implementation needs to change Repr, e.g., a method of the
coffee maker needs to change the grinder?

Third (and preferred) alternative for ensures clauses of methods which
mutate Repr:

ensures fresh(Repr - old(Repr))

That is, any new objects added to Repr are fresh

Less common situations
method ChangeGrinder()

requires Valid()
modifies Repr
ensures Valid() && fresh(Repr - old(Repr))

{
g := new Grinder();
Repr := Repr + {g};

}

Old grinder is still in Repr, but is no longer referenced

The run-time system will eventually reclaim the storage for
this object

Less common situations
method InstallCustomGrinder(grinder: Grinder)

requires Valid() && grinder.Valid()
modifies Repr
ensures Valid()
ensures fresh(Repr - old(Repr) - {grinder})

{
g := grinder;
Repr := Repr + {g};

}

Less common situations
method InstallCustomGrinder(grinder: Grinder)

requires Valid() && grinder.Valid()
modifies Repr
ensures Valid() && fresh(Repr - old(Repr) - {grinder})

{
g := grinder;
Repr := Repr + {g};

}

Since Repr can dynamically change, this approach to specification is
referred to as dynamic frames

Dafny is a permutation of certain letters in Dynamic frames

Grinder as an aggregate
class Grinder {

var HasBeans: bool
ghost var Repr: set<object>
predicate Valid()

reads this, Repr
constructor ()

ensures Valid() && fresh(Repr)
method AddBeans()

requires Valid()
modifies Repr
ensures Valid() && HasBeans && fresh(Repr - old(Repr))

method Grind()
requires Valid() && HasBeans
modifies Repr
ensures Valid() && fresh(Repr - old(Repr))

}

WaterTank as an aggregate
class WaterTank {

var Level: nat
ghost var Repr: set<object>
predicate Valid() reads this, Repr
constructor () ensures Valid() && fresh(Repr)
method Fill()

requires Valid()
modifies Repr
ensures Valid() && fresh(Repr - old(Repr)) && Level == 10

method Use()
requires Valid() && Level != 0
modifies Repr
ensures Valid() && fresh(Repr - old(Repr))

&& Level == old(Level) - 1
}

Coffee Maker
Invariant (in Valid):

this in Repr &&
g in Repr && g.Repr <= Repr && g.Valid() &&
w in Repr && w.Repr <= Repr && w.Valid()

Constructor:

constructor ()
ensures Valid() && fresh(Repr)

{
g := new Grinder();
w := new WaterTank();
Repr := {this, g, w} + g.Repr + w.Repr;

} // illegal first-phase use of fields

Constructor
First phase set objects fields and define immutable values

– objects are still being constructed
– so, this.g.Repr is not allowed for example

Avoid use of uninitialized fields:
var gg := new Grinder();
var ww := new WaterTank();
g, w := gg, ww;
Repr := {this, g, w} + gg.Repr + ww.Repr;

Update Repr in second phase:
g := new Grinder(); w := new WaterTank();
new;
Repr := {this, g, w} + g.Repr + w.Repr;

Restock
method Restock()

requires Valid()
modifies Repr
ensures Valid() && fresh(Repr - old(Repr)) && Ready()

{

g.AddBeans();

w.Fill(); // precondition violation; modifies violation
} // postcondition violation

Restock
method Restock()

requires Valid()
modifies Repr
ensures Valid() && fresh(Repr - old(Repr)) && Ready()

{

g.AddBeans();
assert w.Valid(); // assertion violation
w.Fill(); // modifies violation

} // postcondition violation Precondition of
w.Fill() not violated
if w.Valid() holds

Restock
method Restock()

requires Valid()
modifies Repr
ensures Valid() && fresh(Repr - old(Repr)) && Ready()

{
assert w.Valid();

g.AddBeans();
assert w.Valid(); // assertion violation
w.Fill(); // modifies violation

} // postcondition violation

Call to AddBeans
affects w.Valid()

Restock
method Restock()

requires Valid()
modifies Repr
ensures Valid() && fresh(Repr - old(Repr)) && Ready()

{
assert w.Valid();

g.AddBeans();
assert w.Valid(); // assertion violation
w.Fill(); // modifies violation

} // postcondition violation

g.AddBeans only modifies g.Repr, and w.Valid only reads w.Repr
This suggests there is an overlap between g.Repr and w.Repr

Call to AddBeans
affects w.Valid()

Restock
method Restock()

requires Valid()
modifies Repr
ensures Valid() && fresh(Repr - old(Repr)) && Ready()

{
assert w.Valid();
assert g.Repr !! w.Repr; // assertion violation
g.AddBeans();
assert w.Valid(); // assertion violation
w.Fill(); // modifies violation

} // postcondition violation

(A !! B) states that sets A and B are disjoint (A * B == {})

Restock
method Restock()

requires Valid()
modifies Repr
ensures Valid() && fresh(Repr - old(Repr)) && Ready()

{
assert this !in g.Repr; // assertion violation
assert g in g.Repr; // assertion violation
assert w !in g.Repr; // assertion violation
assert w.Valid();
assert g.Repr !! w.Repr; // assertion violation
g.AddBeans();
assert w.Valid(); // assertion violation
w.Fill(); // modifies violation

} // postcondition violation

Coffee Maker invariant
Valid:

this in Repr && g in Repr &&
g.Repr <= Repr &&
this !in g.Repr && g.Valid() &&
w in Repr && w.Repr <= Repr &&
this !in w.Repr && w.Valid() &&
g.Repr !! w.Repr

If body of Valid() is hidden from clients then they can't see this in
Repr. Hence, update postcondition of all validity predicates as follows

predicate Valid()
reads this, Repr
ensures Valid() ==> this in Repr

Back to Restock
method Restock()

requires Valid()
modifies Repr
ensures Valid() && fresh(Repr - old(Repr)) && Ready()

{
g.AddBeans();
w.Fill();

} // postcondition violation

Calls to AddBeans and Fill may expand g.Repr and w.Repr

Back to Restock
method Restock()

requires Valid()
modifies Repr
ensures Valid() && fresh(Repr - old(Repr)) && Ready()

{
g.AddBeans();
w.Fill();
Repr := Repr + g.Repr + w.Repr;

} // postcondition violation

Back to Restock
method Restock()

requires Valid()
modifies Repr
ensures Valid() && fresh(Repr - old(Repr)) && Ready()

{
g.AddBeans();
w.Fill();
Repr := Repr + g.Repr + w.Repr;

} // postcondition violation

What we did on the relationships between frames holds for Dispense
too. We just need to add the following to its body:

Repr := Repr + g.Repr + w.Repr;

Summary
Representation set:

ghost var Repr: set<object>

Invariant:
predicate Valid()

reads this, Repr
ensures Valid() ==> this in Repr
{ this in Repr && ... }

a in Repr && a.Valid()

b in Repr && b.Repr <= Repr &&
this !in b.Repr && b.Valid()

a0 != a1 &&
{a0, a1} !! b0.Repr !! b1.Repr

a, a0, a1 are objects with
simple frames

b, b0, b1 are objects
with dynamic frames

Summary
Constructor:

constructor ()
ensures Valid() && fresh(Repr)

{ ... ; Repr := {this, a, b} + b.Repr; }

Functions:
function F(x: X): Y

requires Valid()
reads Repr

(Mutating) method:
method M(x: X) returns (y: Y)

requires Valid()
modifies Repr
ensures Valid() && fresh(Repr - old(Repr))

