
CS:5810 Formal Methods in Software Engineering

Case Study: Hotel Lock System

Copyright 2001-22, Matt Dwyer, John Hatcliff, Rod Howell, Laurence Pilard, and Cesare Tinelli.
Created by Cesare Tinelli and Laurence Pilard at the University of Iowa from notes originally developed by Matt Dwyer, John Hatcliff, Rod Howell at Kansas
State University. These notes are copyrighted materials and may not be used in other course settings outside of the University of Iowa in their current form
or modified form without the express written permission of one of the copyright holders. During this course, students are prohibited from selling notes to or
being paid for taking notes by any person or commercial firm without the express written permission of one of the copyright holders.

Acknowledgments

These notes are based on an Alloy example in the book:

[Jack06] Daniel Jackson. Software abstractions – Logic, Language, and
Analysis. The MIT press, 2006

2

The Task

• Model in Alloy the disposable card key system used in most
hotels for locking and unlocking guest rooms

• The system uses recordable locks, which prevent previous
guests from entering a room once its has been re-assigned

• We will model both static and dynamic aspects of the system

3

Problem Description [Jack06]

“[…] the hotel issues a new key to the next occupant, which
recodes the lock, so that previous keys will no longer
work.

The lock is a simple, stand-alone unit […] with a memory
holding the current key combination.

A hardware device […] [within the lock] generates a
sequence of pseudorandom numbers.”

4

Problem Description [Jack06]

“The lock is opened either by the current key combination,
or by its successor;

If a key with the successor is inserted, the successor is
made to be the current combination, so that the old
combination will no longer be accepted.

This scheme requires no communication between the front
desk and the door lock.”

5

Problem Description [Jack06]

“By synchronizing the front desk and the door locks
initially, and by using the same pseudorandom generator,

the front desk can keep its records of the current
combinations in step with the doors themselves.”

6

Signatures and Fields

7

Signatures: Key, Room, Guest, FrontDesk

• Key refers to the key combination stored in the magnetic
strip of the card

• FrontDesk stores at any time a mapping
• between each room and its most recent key combination

(if any), and
• between each room and its current guest

Signatures and Fields

8

Room refers to the room lock

Each room (lock) has
n an associated set of possible keys, and
n exactly one current key at a time

Each key belongs to at most one room

Each guest has zero or more keys at any time

Signatures and Fields
module hotel
open util/ordering [Key] as KO

9

Signatures and Fields
module hotel
open util/ordering [Key] as KO

sig Key {}

sig Room {
keys: set Key,
var currentKey: Key

}

sig Guest {
var keys: set Key

}

one sig FrontDesk {
var lastKey: Room -> lone Key,
var occupant: Room -> Guest

}
10

fun sig FDlastKey : Room -> Key {
FrontDesk.lastKey

}

fun sig FDoccupant: Room -> Guest {
FrontDesk.occupant

}

Room Constraint

Each key belongs to at most one room

fact {
all k: Key | lone (Room <: keys).k

}

11

module hotel
open util/ordering [Key] as KO

sig Key {}

sig Room {
keys: set Key,
var currentKey: Key

}

sig Guest { var keys: set Key }

one sig FrontDesk {
var lastKey: Room -> lone Key,
var occupant: Room -> Guest

}

fun sig FDlastKey : Room -> Key {
FrontDesk.lastKey

}

fun sig FDoccupant: Room -> Guest
{

FrontDesk.occupant
}

New Key Generation

Given a key k and a set ks of keys,
nextKey returns the smallest key (in the key ordering) in ks that follows k

fun nextKey [k: Key, ks: set Key]: set Key
{

KO/min [KO/nexts[k] & ks]
}

12

Initial State
module examples/hotel
open util/ordering [Key] as KO

sig Key {}

sig Room {
keys: set Key,
var currentKey: Key

}

sig Guest {
var keys: set Key

}

one sig FrontDesk {
var lastKey: Room -> lone Key,
var occupant: Room -> Guest

}

13

No constraints

No rooms are occupied

the record of each room’s key
at the front desk is synchronized
with the current combination
of the lock itself

No guests have keys

Hotel Operations: Initial State
pred init {

-- no guests have keys
no Guest.keys

-- the roster at the front desk shows
-- no room as occupied
no FDoccupant

-- the record of each room’s key at the
-- front desk is synchronized with the
-- current combination of the lock itself
all r: Room |

r.FDlastKey = r.currentKey
}

14

Hotel Operations: Guest Entry
pred entry [g: Guest, r: Room, k: Key]

• Preconditions:
– The key used to open the lock is one of the keys the guest is holding

• Pre and Post Conditions:
– The key on the card

• either matches the lock’s current key, and the lock remains unchanged (not a new guest), or
• matches its successor, and the lock is advanced (new guest)

• Frame conditions:
– no changes to the state of other rooms, to the set of keys held by guests, or to

the records at the front desk

15

Hotel Operations: Guest Entry
pred entry [g: Guest, r: Room, k: Key] {

-- preconditions
-- the key used to open the lock is one of the keys
-- held by the guest
k in g.keys

-- pre and post conditions
(-- not a new guest
k = r.currKey and r.currKey' = r.currKey
or
-- new guest
k = nextKey[r.currKey, r.keys] and r.currKey' = k

)

-- frame conditions
noFrontDeskChange
noRoomChange[Room - r]
noGuestChange[Guest]

}
16

Hotel Operations: Check-out
pred checkOut [g: Guest]

• Preconditions:
– the guest occupies one or more rooms

• Postconditions:
– the guest’s rooms become available

• Frame conditions:
– Nothing changes but the occupant relation

17

Hotel Operations: Check-out
pred checkOut [g: Guest] {

-- preconditions
-- the guest occupies one or more rooms
some FDoccupant.g

-- postconditions
-- the guest's rooms become available
FDoccupant' = FDoccupant - (Room -> g)

-- frame conditions
FDlastKey' = FDlastKey
noRoomChange[Room]
noGuestChange[Guest]

}

18

Hotel Operations: Check-in
pred checkIn [g: Guest, r: Room, k: Key]

• Preconditions:
– the room is available
– the input key is the successor of the last key in the

sequence associated to the room
• Postconditions:
– the guest holds the input key and becomes the new

occupant of the room
– the input key becomes the room’s current key

• Frame conditions:
– Nothing changes but the occupant relation and the guest’s

relations

19

Hotel Operations: Check-in
pred checkIn [g: Guest, r: Room, k: Key] {
-- preconditions

-- the room has no current occupant
no r.FDoccupant
-- the input key is the successor of the last key in
-- the sequence associated to the room
k = nextKey[r.FDlastKey, r.keys]

-- postconditions
-- the guest becomes the new occupant of the room
FDoccupant' = FDoccupant + (r -> g)
-- the guest holds the input key
g.keys' = g.keys + k
-- the input key becomes the room's current key
FDlastKey' = FDlastKey ++ (r -> k)

-- frame conditions
noRoomChange[Room]
noGuestChange[Guest - g] } 20

Trace Generation

• The first time step satisfies the initialization conditions
• Any pair of consecutive time steps are related by
– an entry operation, or
– a check-in operation, or
– a check-out operation

21

Trace Generation
fact Traces {
init

always
some g: Guest, r: Room, k: Key |
entry[g, r, k] or
checkin[g, r, k] or
checkout[g]

}

22

Analysis
Let’s check if unauthorized entries are possible:
– If a guest g enters room r at time t, and the front desk records show r as

occupied at that time, then g must be a recorded occupant of r.

assert noBadEntry {
always all r: Room, g: Guest, k: Key |

let o = r.FDoccupant |
(entry[g, r, k] and some o) implies g in o

}

23

Analysis
check noBadEntry for 3
but 1 Room, 2 Guest, 5 steps

• It is enough to check for problem already with just 2 guests and 2 rooms

• steps’s scope must be at least 5 because at least 4 steps are needed to
execute each operation once

• There is a counterexample
(see file dynamic/hotel1-elec.als)

24

0: Initial State

• initially, the current key of Room is Key0
• this is also reflected in the front desk’s record

25

Key0 < Key1 < Key2

1: CheckIn Operation

• Guest1 checks in to Room and receives key Key1
• the occupancy roster at the front desk is updated accordingly
• Key1 is recorded as the last key assigned to Room

26

2: CheckOut Operation

• Guest1 checks out, and the occupancy roster is cleared
• Since Guest1 never entered, Room’s current key is still Key0
• Guest1 still holds Key1 27

3: CheckIn Operation

• Guest0 checks into Room and receives key Key2
• the occupancy roster at the front desk is updated accordingly
• Key2 is recorded as the last key assigned to Room

28

4: Entry Operation

• Guest1 presents Key1 to the lock of Room
• Since Room’s current key is still Key0, Guest1 is admitted

29

Necessary Restriction
There must be no intervening operation
between a guest’s check-in and room entry

pred noInterveningOps {
always

all g: Guest, r: Room, k: Key |
checkIn[g, r, k] implies after entry[g, r, k]

}

30

Conditional Assertion
Make assertion under noInterveningOps assumption

assert noBadEntry {

noInterveningOps implies

always all r: Room, g: Guest, k: Key |
let o = r.FrontDesk.occupant |

(entry[g, r, k] and some o) implies g in o
}

31

Analysis

• We check once again:
check noBadEntry for 3

but 2 Room, 2 Guest, 5 steps

– No counter-example (see file dynamic/hotel2-elec.als)

• For greater confidence, we increase the scope:
check noBadEntry for 5

but 3 Room, 3 Guest, 20 steps

– No counterexamples

32

