# CS:5810 Formal Methods in Software Engineering 

## Sets and Relations

## These Notes

- review the concepts of sets and relations required to work with the Alloy language
- focus on the kind of set operation and definitions used in specifications
- give some small examples of how we will use sets in specifications


## Sets

A set is a collection of distinct objects
A set's objects are drawn from a larger domain of objects all of which have the same type --- sets are homogeneous

## Examples:

$\{2,4,5,6, \ldots\}$
\{ red, yellow, blue \}
\{ true, false \}
\{ red, true, 2 \}


## Set Values

The value of a set is the collection of its members

Two sets $A$ and $B$ are equal iff

- every member of $A$ is a member of $B$
- every member of $B$ is a member of $A$


## Notation:

- $x \in S$ denotes " $x$ is a member of $S$ "
- $\varnothing$ denotes the empty set


## Defining Sets

We can define a set by enumeration

- PrimaryColors := \{red, yellow, blue \}
- Boolean := \{true, false \}
- Evens := \{ ..., -4, -2, 0, 2, 4, ... \}

This works fine for finite sets, but

- what do we mean by "..." ?
- remember, we want to be precise


## Defining Sets

We can define a set by comprehension, that is, by describing a property that its elements must share

## Notation:

$$
\{x: D \mid P(x)\}
$$

Form a new set of elements drawn from domain $D$ by including exactly the elements that satisfy predicate (i.e., Boolean function) P

## Examples:

$$
\begin{array}{ll}
\{x: N \mid x<10\} & \text { Naturals less than } 10 \\
\{x: Z \mid(\exists y: Z \mid x=2 y)\} & \text { Even integers } \\
\{x: N \mid x>x\} & \text { Empty set of natural numbers }
\end{array}
$$

## Cardinality

The cardinality (\#) of a finite set is the number of its elements

## Examples:

$$
\begin{aligned}
& -\#\{\text { red, yellow, blue }\}=3 \\
& -\#\{1,23\}=2 \\
& -\# Z=?
\end{aligned}
$$

Cardinalities are defined for infinite sets too but we'll be mostly concerned with the cardinality of finite sets

## Set Operations

Union ( $X, Y$ sets over domain $D$ ): $X \cup Y \equiv\{e: D \mid e \in X$ or $e \in Y\}$
$-\{$ red $\} \cup\{b l u e\}=\{$ red, blue $\}$
Intersection: $\quad X \cap Y \equiv\{e: D \mid e \in X$ and $e \in Y\}$
$-\{$ red, blue $\} \cap\{$ blue, yellow $\}=\{$ blue $\}$
Difference $\quad X \backslash Y \equiv\{e: D \mid e \in X$ and $e \notin Y\}$
$-\{$ red, yellow, blue $\} \backslash\{$ blue, yellow $\}=\{$ red $\}$

## Subsets

A subset holds elements drawn from another set
$X \subseteq Y$ iff every element of $X$ is in $Y$
Example: $\{1,7,24\} \subseteq\{1,7,17,24\} \subseteq Z$
A proper subset is a non-equal subset
Another view of set equality: $A=B$ iff $(A \subseteq B$ and $B \subseteq A)$

## Power Sets

The power set of set S , denoted $\operatorname{Pow}(\mathrm{S})$, is the set of all subsets of $S$ :

$$
\operatorname{Pow}(S) \equiv\{e \mid e \subseteq S\}
$$

## Example:

$$
\operatorname{Pow}(\{a, b, c\})=\{\varnothing,\{a\},\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\},\{a, b, c\}\}
$$

Note: for any $S, \varnothing \subseteq S$ and thus $\varnothing \in$ Pow (S)

## Exercises

These slides include questions that you should be able to solve at this point

They may require you to think some

You should spend some effort in solving them
... and may in fact appear on exams

## Exercises

1. Specifying using comprehension notation
a) Odd positive integers
b) The squares of integers, i.e. $\{0,1,4,9,16, \ldots\}$
2. Express the following logic properties on sets without using the \# operator
a) Set has at least one element
b) Set has no elements
c) Set has exactly one element
d) Set has at least two elements
e) Set has exactly two elements

## Set Partitioning

- Sets are disjoint if they share no elements
- We will often take some set $S$ and divide its members into disjoint subsets called blocks or parts
- We call this division a partition
- Each member of $S$ belongs to exactly one block of the partition



## Partition Example

## Model residential scenarios

Basic domains: Person, Residence

Partitions:

- Partition Person into Child, Adult
- Partition Residence into Home, DormRoom, Apartment


## Exercises

1. Express the following properties of pairs of sets
a) Two sets are disjoint
b) Two sets form a partitioning of a third set

## Expressing Relationships

It's useful to be able to refer to structured values

- a group of values that are bound together
- e.g., struct, record, object fields

Alloy is a calculus of relations (sets of tuples)
All of our Alloy models will be built using relations
... but first some basic definitions

## Products

Given two sets $A$ and $B$, the product of $A$ and $B$, usually denoted $A \times B$, is the set of all possible pairs $(a, b)$ where $a \in A$ and $b \in B$

$$
A \times B \equiv\{(a, b) \mid a \in A, b \in B\}
$$

## Example:

PrimaryColor x Boolean $=\left\{\begin{array}{ll}\text { (red, true), } & \text { (red, false), } \\ \text { (blue, true), } & \text { (blue, false), } \\ \text { (yellow, true), } & \text { (yellow, false) }\end{array}\right\}$

## Binary Relations

A binary relation $R$ between $A$ and $B$ is an element of $\operatorname{Pow}(A \times B)$, i.e., $R \subseteq A \times B$


## Examples:

Parent : Person $\times$ Person =
\{ (John, June), (John, Sam) \}
Square: $\mathrm{Z} \times \mathrm{N}=$
$\{(1,1),(-1,1),(-2,4)\}$
ClassGrades : Person x $\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{F}\}=\{($ Kim, A), (Alex, B) $\}$

## Binary Relations

The set of first elements is the definition domain of the relation - Parent $=\{($ John, Autumn), (John, Sam) \} - defdomain (Parent) $=\{$ John $\} \quad$ not Person!

The set of second elements is the image of the relation - image (Square) $=\{1,4\} \quad$ not N !

What about \{ (1,blue), (2,blue), (1,red) \}
-definition domain? image?

## N -ary Relations

A ternary relation $R$ between $A, B$ and $C$ is an element of Pow (A x B x C)

## Example:

FavoriteBeer : Person x Beer x Price
$=\{(J o h n$, Miller, \$2), (Ted, Heineken, \$4), (Steve, Miller, \$2) \}

N -ary relations with $\mathrm{n}>3$ are defined analogously ( n is the arity of the relation)

## Common Relation Structures



## Functional Relations

A function is a relation $F$ of arity $n+1$ containing no two distinct tuples with the same first $n$ elements,

$$
\text { - i.e., for } n=1, \quad \nexists\left(a, b_{1}\right),\left(a, b_{2}\right) \in F \text { s.t. } b_{1} \neq b_{2}
$$

## Examples:

$$
\begin{aligned}
& -\{(2, \text { red }),(3, \text { blue }),(5, \text { red })\} \\
& -\{(4,2),(6,3),(8,4)\} \\
& -\{(2, \text { red }),(3, \text { blue }),(2, \text { blue })\}
\end{aligned}
$$

Instead of $F: A_{1} \times A_{2} \times \ldots \times A_{n} \times B$ we write $F: A_{1} \times A_{2} \times \ldots \times A_{n}->B$

## Exercises

Which of the following are functions?

1. Parent $=\{($ John, Ann), (John, Sam), (Sam, Joy) $\}$
2. Square $=\{(1,1),(-1,1),(-2,4)\}$
3. ClassGrades $=\{($ Todd, A$),($ Vic, B$)\}$

## Relations vs. Functions



## Special Kinds of Functions

Consider a function from S to T
$f$ is total if defined for all values of $S$
$f$ is partial if undefined for some values of $S$

Examples:

$$
\begin{array}{ll}
\text { - Squares : } \mathrm{Z}->\mathrm{N}=\{\ldots,(-1,1),(0,0),(1,1),(2,4), \ldots\} & \text { total } \\
\text { - SquareRoot : } \left.\mathrm{N}->\mathrm{N}=\left\{(\mathrm{x}, \mathrm{y}): \mathrm{N} \times \mathrm{N} \mid \mathrm{y}^{2}=\mathrm{x}\right)\right\} & \text { partial }
\end{array}
$$

## Function Structures

## Total Function



Partial Function Undefined for this input


Note: the empty relation over
a non-empty domain is a partial function

## Special Kinds of Functions

A function $\mathrm{f}: \mathrm{S}->\mathrm{T}$ is

- injective (one-to-one) if no image element is associated with multiple domain elements
- surjective (onto) if its image is T
- bijective if it is both injective and surjective

We'll see that these come up frequently

- can be used to define properties concisely


## Function Structures

## Injective Function



Surjective Function


## Exercises

1. What kind of function/relation is Abs?

Abs : $\mathrm{ZxN}=\{(\mathrm{x}, \mathrm{y}): \mathrm{ZxN} \mid(\mathrm{x}<0$ and $\mathrm{y}=-\mathrm{x})$ or $(\mathrm{x} \geq 0$ and $\mathrm{y}=\mathrm{x})\}$
2. How about Squares?

Squares : $\mathrm{ZxN}=\{(\mathrm{x}, \mathrm{y}): \mathrm{ZxN\mid y=x} \mathrm{\cdot x} \mathrm{\}}$
3. How about Rel?

$$
\text { Rel: } \begin{aligned}
\mathrm{Z} \times \mathrm{N}=\{(\mathrm{x}, \mathrm{y}): \mathrm{ZxN\mid} \mid & =2 \cdot x \text { if } x>=0 \\
y & =2 \cdot(-x)-1 \text { if } x<0\}
\end{aligned}
$$

## Special Cases

## Relations



## Functions as Sets

## Functions are relations and hence sets

We can apply to them all the usual operators

- ClassGrades $=\{($ Todd, A$),($ Jane, B) $\}$
- \#(ClassGrades $\cup\{($ Matt, C) \}) $=3$


## Exercises

1. In the following if an operator fails to preserve a property give an example
2. What operators preserve function-ness?
a) $\cap$ ?
b) U?
c) \?
3. What operators preserve surjectivity?
4. What operators preserve injectivity?

## Relation Composition

Use two relations to produce a new one

- map domain of first to image of second
- Given $s: A \times B$ and $r: B \times C$ then $s ; r: A \times C$

$$
s ; r \equiv\{(a, c) \mid \exists b \text { s.t. }(a, b) \in s \text { and }(b, c) \in r\}
$$

## Example:

$$
\begin{aligned}
& -s=\{(\text { red }, 1),(\text { blue }, 2)\} \\
& -r=\{(1,2),(2,4),(3,6)\} \\
& -s ; r=\{(\text { red } 2),(\text { blue }, 4)\}
\end{aligned}
$$

Not limited to binary relations

## Relation Transitive Closure

Intuitively, the transitive closure $r^{+}$of a binary relation $r: S \times S$ is the result of adding a direct link $(a, b)$ to $r$ for every $a$ and $b$ where $b$ is reachable from a along $r$ :

$$
r^{+} \equiv r \cup(r ; r) \cup(r ; r ; r) \cup \ldots
$$

Formally, $\mathrm{r}^{+}$三 smallest transitive relation containing r

## Example:

- GrandParent = Parent ; Parent
- GrandGrandParent = Parent ; GrandParent
- Ancestor $=$ Parent U GrandParent U GrandGrandParent U $\ldots$ = Parent ${ }^{+}$


## Relation Transpose

Intuitively, the transpose $\sim_{r}$ of a relation $r: S \times T$ is the relation obtained by reversing all the pairs in $r$

$$
\sim r \equiv\{(b, a) \mid(a, b) \in r\}
$$

## Example:

- ChildOf = ~Parent
- DescendantOf $=(\sim \text { Parent })^{+}$


## Exercises

1. What properties, i.e., function-ness, onto-ness, 1-1-ness, are preserved by these relation operators?
a) composition (;)
b) closure ( ${ }^{+}$)
c) transpose ( ${ }^{\sim}$ )
2. If an operator fails to preserve a property give an example

## Acknowledgements

Some of these slides are adapted from

David Garlan's slides from Lecture 3 of his course of Software Models entitled "Sets, Relations, and Functions"
(http://www.cs.cmu.edu/afs/cs/academic/class/15671-f97/www/ )

