
CS:5810

Formal Methods in Software Engineering

Course Overview

Cesare Tinelli

Fall 2022

1 / 12



Instructional Staff

Prof. Cesare Tinelli, instructor

Mitziu Echeverria, TA

2 / 12



Course Info and Material

• All information, including the syllabus, available on website at:
http://www.cs.uiowa.edu/~tinelli/classes/5810/Fall22

• Textbook (draft): Program Proofs by Rustan Leino, 2020

• Class notes and additional reading material to be posted on the website

• Recorded lectures on UICapture

• Announcements and discussions on Piazza

• Submissions and grades on ICON

• Check the course website and the Piazza website regularly!

3 / 12

http://www.cs.uiowa.edu/~tinelli/classes/5810/Fall22


Course Design Goals

1. Learn about formal methods (FMs) in software engineering

2. Understand how FMs help produce high-quality software

3. Learn about formal modeling and specification languages

4. Write and understand formal requirement specifications

5. Learn about main approaches in formal software verification

6. Know which formal methods to use and when

7. Use automated and interactive tools to verify models and code

4 / 12



Course Topics

Software Specification
• High-level design
• System-level design (Model-based Development)
• Code-level design

Main Software Validation Techniques
Model Checking: often automatic, abstract
Deductive Verification: typically semi-automatic, precise
(source code level)
Abstract Interpretation: automatic, correct, incomplete,
terminating

5 / 12



Course Organization
• Course organized by level of specification

• Emphasis on tool-based specification and validation methods

• A number of graded and ungraded exercises, in class and at home

• Hands-on homework where you specify, design, and verify

• For each main topic
• An introductory homework assignment
• A team mini-project

• 1 midterm, 1 final exam

• More details on the syllabus and the website

6 / 12



Part I: High-level Design

Language: Alloy
• Lightweight modeling language for software design
• Amenable to a fully automatic analysis
• Aimed at expressing complex structural constraints and behavior in a

software system
• Intuitive structural modeling tool based on relational logic
• Automatic analyzer based on SAT solving technology

Learning Outcomes
• Design and model software systems in the Alloy language
• Check models and their properties with the Alloy Analyzer
• Understand what can and cannot be expressed in Alloy

7 / 12



Part I: High-level Design

Language: Alloy
• Lightweight modeling language for software design
• Amenable to a fully automatic analysis
• Aimed at expressing complex structural constraints and behavior in a

software system
• Intuitive structural modeling tool based on relational logic
• Automatic analyzer based on SAT solving technology

Learning Outcomes
• Design and model software systems in the Alloy language
• Check models and their properties with the Alloy Analyzer
• Understand what can and cannot be expressed in Alloy

7 / 12



Part II: Model-based Development

Language: Lustre
• Executable specification language for synchronous reactive systems
• Designed for efficient compilation and formal verification
• Used in safety-critical applications industry
• Automatic analysis with tools based on model-checking techniques

Learning Outcomes:
• Write system and property specifications in Lustre
• Perform simulations and verifications of Lustre models
• Understand what can and cannot be expressed in Lustre

8 / 12



Part II: Model-based Development

Language: Lustre
• Executable specification language for synchronous reactive systems
• Designed for efficient compilation and formal verification
• Used in safety-critical applications industry
• Automatic analysis with tools based on model-checking techniques

Learning Outcomes:
• Write system and property specifications in Lustre
• Perform simulations and verifications of Lustre models
• Understand what can and cannot be expressed in Lustre

8 / 12



Part III: Code-level Specification

Language: Dafny
• Programming language with specification constructs
• Specifications embedded in source code as formal contracts
• Tool support with sophisticated verification engines
• Automated analysis based on theorem proving techniques

Learning Outcomes:
• Write formal specifications and contracts in Dafny
• Verify functional properties of Dafny programs with automated tools
• Understand what can and cannot be expressed in Dafny

9 / 12



Part III: Code-level Specification

Language: Dafny
• Programming language with specification constructs
• Specifications embedded in source code as formal contracts
• Tool support with sophisticated verification engines
• Automated analysis based on theorem proving techniques

Learning Outcomes:
• Write formal specifications and contracts in Dafny
• Verify functional properties of Dafny programs with automated tools
• Understand what can and cannot be expressed in Dafny

9 / 12



10 / 12



WHAT:  LEARN ABOUT COMPUTING & TECHNOLOGY IN A FUN

AND FRIENDLY ENVIRONMENT. LEARN NEW SKILLS,  PREPARE

FOR INTERVIEWS, GET HELP WITH CLASSES, AND CONNECT

WITH OTHERS OVER SOME WEEKLY PIZZA!

WELCOME 
TO ACM!

Individuals with disabilities are encouraged to attend all University of Iowa-sponsored events.
If you are a person with a disability who requires a reasonable accommodation in order to
participate in this program, please contact Mitchell Hermon In advance at (515) 822-5084

LEARN MORE: SCAN THE QR CODE TO JOIN THE DISCORD

FOR WEEKLY UPDATES OR EMAIL MITCHELL-

HERMON@UIOWA.EDU.

HTTPS://DISCORD.GG/

Q9TYNWPUEF

11 / 12


