

5

Formal Specification

by

Andreas Roth

Peter H. Schmitt

This chapter serves as an introduction to formal specifications. In Sect. 5.1 we
reconsider in greater detail, but still on a fairly general level, the basic build-
ing blocks of formal specification—pre- and postconditions, invariants, and
modifies clauses—that have already been informally introduced in Sect. 1.3.
The next two sections then show how these notions can be formulated in two
popular specification languages, OCL and JML. A short comparison between
the two languages in Section 5.4 concludes this chapter.

Methodological questions like: How should operation contracts be inherited
by subclasses? At which system states are invariants required to hold? How
can modular specification and verification be effected? will be postponed till
Chapter 8.

5.1 General Concepts

Specifications may be used at different stages in the software development pro-
cess. They may be attached to a coarse design model or to runnable code or at
any stage in between. What is essentially needed for the kind of specifications
we treat in this book are

1. a notion of a state, e.g., the state or snapshot of a system model or the
state of computation of a JAVA program;

2. a notion of a transition from pre-state to post-state effected by an opera-
tion;

3. a language to formulate specifications. It is understood that we should be
able to determine whether a statement in this language is true or false in
any given state.

In the example in Sect. 1.3 user authentication was not considered. Let us
address this task now. We think of a user having inserted her bankcard into an
automatic teller machine (ATM). After some basic initalisation the machine

244 5 Formal Specification

performs an operation we choose to call enterPIN. The user is prompted to
enter her pin.

Let us start thinking about what specifications we may want for enterPIN.

5.1.1 Operation Contracts

We decide to allow three attempts to enter the correct pin. So, it is natural
to introduce an attribute wrongPINCounter that counts the number of un-
successful attempts. An operation contract for enterPIN may then look like
this:

precondition card is inserted, user not yet authenticated
postcondition if entered pin is correct

then the user is authenticated,
if entered pin is incorrect

and wrongPINCounter < 2

then wrongPINCounter is increased by 1
and user is not authenticated,

if entered pin is incorrect
and wrongPINCounter >= 2

then the card is confiscated
and user is not authenticated.

With this concrete example in mind we are ready for the general definition.
Here and in the following we will use the word operation in a general sense
and refer to implementations of operations as methods.

Definition 5.1. A contract with precondition and postcondition for an oper-
ation op is satisfied if:

When op is called in any state that satisfies the precondition then op
terminates and in any terminating state of op the postcondition is
true.

This definition looks innocuous enough, but it is worth stressing the following
facts.

1. No guarantees are given when the precondition is not satisfied. If for some
reason the enterPIN method is called when no card is inserted, there is
no telling what happens.

2. By default, termination is part of the contract. There are other options
though and we will come back to this a bit later in this subsection.

3. The terminating state may be reached by normal or by abrupt termina-
tion, i.e., termination by op throwing an exception.

It is usual to allow more than one pre-/postcondition pair in a contract. The
above example could be rephrased as:

5.1 General Concepts 245

precondition card is inserted, user not yet authenticated,
pin is correct

postcondition user is authenticated,

precondition card is inserted, user not yet authenticated,
pin is incorrect and wrongPINCounter < 2

postcondition wrongPINCounter is increased by 1,
and user is not authenticated,

precondition card is inserted, user not yet authenticated,
pin is incorrect and wrongPINCounter >= 2

postcondition card is confiscated
and user is not authenticated.

In this example, the preconditions are mutually exclusive. This is not required
in general.

In non-trivial contexts it is not easy to come up with a postcondition that
precisely defines an operation. One particular difficulty is to state what items
do not change. This is a notorious problem in many areas of computer science
that deal with some notion of action and has been given a special name: the
frame problem. The first observation towards a solution of the frame problem,
at least in our context, is that we should make no attempt to enumerate the
items that do not change. There are hopelessly many. Rather we should try to
determine those items that at most may get changed. We thus add an explicit
list of items that may be modified by a method to its specification. This is
not an uncommon approach, and has consequently been pursued in the book
[Morgan, 1990].

In our enterPIN example the modification list might look like this:

modifies wrongPINCounter

all attributes needed for user authentication
all attributes needed for confiscating the card

Since we have at this level of the design not fixed all attributes we have to
be a bit vague about the modification required for user authentication. It is
easy to imagine how a card gets confiscated in the real world; it ends up in a
special box of the machine to be picked up by a clerk. We will see below how
this can be modelled in a specification.

The requirements given in Definition 5.1 go in program verification theory
by the name of total correctness. When termination is not required we speak of
partial correctness. The choice between these alternatives is realised by adding
another clause termination to the contract. Possible values for this clause
could be required, not required or normal termination. In the last case
we do not want termination to be brought about by an exception.

For a uniform treatment we stipulate that all operations have a contract.
If contract parts are not explicitly given, we assume the defaults in Table 5.1.

246 5 Formal Specification

Table 5.1. Default contracts

Default Contracts

precondition true
postcondition true
modifies everything

termination required

5.1.2 Invariants

Another frequently used specification method is that of an invariant, i.e., a
statement that is required to be true in all system states. A possible invariant
in the enterPIN scenario is:

invariant wrongPINCounter is always ≥ 0 and ≤ 2

Since in our model of the banking world the wrongPINCounter attribute is
attached to the class ATM, this invariant says that in all system states, for
all ATM-machines m that exist in this state, 0 ≤ m.wrongPINCounter≤ 2 is
satisfied.

In object-oriented programming and design it is has become customary
to attach invariants to classes or interfaces. We will follow this practice. Fre-
quently invariants address only one instance of a class. This has lead to the
figure of speech of an object satisfying an invariant throughout its lifetime.
Though this view is helpful in many cases, it fails to cover invariants that
address only static fields. Also, invariants addressing two instances of a class
are not covered naturally since one of them has to be chosen as the main
actor, arbitrarily. An example of the latter type of invariants is the following,
attached to the class BankCard (see Figure 5.1 below):

invariant no two cards have the same cardNumber

Invariants may even address fields and objects from different classes. To give
an example we expand our scenario by considering a central host to which the
ATM is connected. In particular we imagine that this central host provides
an attribute validCardsCount satisfying:

invariant validCardsCount equals the number of issued
bank cards that are still valid

The next step towards a thorough understanding of the concept of an invariant
is the answer to the question: When should an invariant hold? The first and
quick description we used at the beginning of this subsection, that an invariant
should hold in all system states, is in most cases far too strong. This leads us
to consider two notions of invariants:

• strong invariants that really hold in all system states
(these will be treated in Sections 9.2 and 9.4),

5.1 General Concepts 247

• invariants without further qualification
(we will continue to consider these here).

As a first approximation we may require an invariant to be true as long as
no operation is executing. The method ATM::confiscateCard() will prob-
ably first set insertedCard = null which will destroy the above invariant
on validCardsCount. Only after ATM::confiscateCard() updates the field
validCardsCount will it be true again. We record the present state of our
discussion in the following definition:

Definition 5.2. A class C satisfies an invariant Inv if,

1. for any operation op and any state s satisfying at least one precondition
of op and Inv, the invariant Inv is also true in any terminating state.

2. Inv is true in the state reached after execution of any constructor.

Notice, that nothing is said here about termination or truth of the postcon-
dition. These issues are settled in the operations contract for op.

This is a first working definition that will be sufficient for the purposes of
the present chapter. It does not address the special case of invariants involving
only static fields and leaves open which operations should be considered. In-
tuitively all exported operations of the class to which the invariant is attached
should suffice. This is not true in all cases (⇒ Chap. 8).

As can be seen from Definition 5.2, invariants are in principle superfluous,
one could add them to pre- and postconditions of every operation contract.
Obviously, this is not a very practical alternative in particular in a context
where new subclasses are added to an existing program.

The reader might wonder at this point how invariants and operation con-
tracts behave with respect to the class hierarchy. Our position on this issue
is:

• an invariant of a class is inherited by all its subclasses,
• on the other hand an operation redefined in a subclass does not inherit

the operation contract from the superclass.

Given the number of subtyping disciplines that have been proposed in the
literature this non-committal approach for operation contracts seems to be
best suited.

An example of another kind of invariant that is useful at a later stage in
the software development when code is already present are loop invariants:

/* loop invariant Inv */while (guard) {

body

}

The intention is that Inv is true in the state before the while loop is entered
and again in the states after each execution of its body. No commitment is
made on the termination of the loop.

248 5 Formal Specification

5.2 Object Constraint Language

The Object Constraint Language (OCL) is part of the OMG standard Unified
Modeling Language, UML1. An easy introduction is available through the
book [Warmer and Kleppe, 2003]. Material on a precise semantics of OCL is
contained in the volume [Clark and Warmer, 2002], in particular [Gogolla and
Richters, 2002]. Another source for a formal semantics is [Brucker and Wolff,
2002]. There is also Chapter 10 of the standard describing the semantics in
terms of UML plus OCL. But, not many people found this account accessible.
Our text follows the draft of the OCL Version 2.0 standard as of June 6, 2005,
[OCL 2.0].

OCL was introduced to express those parts of the meaning that diagrams
cannot convey by themselves. It was first developed in 1995 by Jos Warmer and
Steve Cook. The most extensive use of OCL so far is within the UML standard
itself, where it is used in the semantics description of the UML metamodel. For
an example of the use of OCL in API specification see [Larsson and Mostowski,
2004].

OCL is perceived by its creators as a formal language. On the other hand
they put emphasis on the fact that OCL is not designed for people who have a
strong mathematical background. We quote from [Warmer and Kleppe, 1999a,
Preface]:

The users of OCL are the same people as the users of UML: software
developers with an interest in object technology. OCL is designed for
usability, although it is underpinned by mathematical set theory and
logic.

5.2.1 OCL by Example

Before we enter into a systematic treatment of OCL we start with some in-
structive examples. The UML standard allows one to add constraints to al-
most every diagram type. In this chapter we exclusively consider constraints
in UML class diagrams and use the diagram in Figure 5.1 as our running ex-
ample. It is in fact the UML class model for the scenario previously sketched in
Sect. 5.1. It contains the three classes ATM, BankCard and CentralHost. Of the
attributes for the ATM class we have already encountered wrongPINCounter.
The attribute insertedCard is either null or points to the instance of class
BankCard that is currently inserted in the ATM. We use the Boolean field
customerAuthenticated to model whether the inserted card is authenticated
or not. The last attribute centralHost points to the central host the ATM
in question is attached to.

Figure 5.2 shows how the informal contract for the enterPIN operation
given above translates into OCL.

1 See http://www.uml.org

http://www.uml.org

5.2 Object Constraint Language 249

BankCard

- cardNumber:Integer
- correctPin:Integer
- accountNumber:Integer
- invalid:Boolean
+ makeCardInvalid()
≪query≫
+ pinIsCorrect():Boolean
≪query≫
+ cardIsInvalid():Boolean
≪query≫
+ getAccountNumber():Integer

ATM

- centralHost:CentralHost
- insertedCard:BankCard
- customerAuthenticated:Boolean
- wrongPINCounter:Integer
+ enterPIN(pin:Integer)
+ confiscateCard()
≪query≫
+ cardIsInserted():Boolean
≪query≫
+ customerIsAuthenticated():Boolean

CentralHost

maxAccountNumber:Integer
- validCardsCount:Integer
+ createAccount(N:Integer)
+ issueCard(N:Integer,pin:Integer)
≪query≫
+ accountExists(N:Integer):Boolean

0..1 0..1

insertedCard

1centralHost

*

Fig. 5.1. Class diagram for the ATM scenario

This specification uses two features that are not present in the OCL stan-
dard but are implemented in the KeY system. The modifies clause we have
simply added since it proved indispensable for our purposes and also since it
increases compatibility with JML (⇒ Sect. 5.3). The literal null is the only
element in the OCL type VoidType and serves us to denote JAVA’s null object.
We will comment on this later, Section 5.2.4. This being said let us have a
closer look at this OCL operation contract.

First we observe that the syntactical entities used either come from the
class diagram or are OCL built-ins. From the class diagram we are allowed
to use in OCL: names of classes (does not occur in this example, but will
appear shortly), attributes, association ends (in the present example this does
not show since, incidentally, any association end also occurs as an attribute),
and queries. Arbitrary operation names may not occur outside the context
declaration since OCL is intended to be side-effect free.

Next you would expect that in an object-oriented setting an attribute like
insertedCard in the above precondition is applied to a particular object.
In fact it is, you just do not see it. By a frequently used shorthand, object
references may be omitted and will be replaced by default with the reserved
variable self which plays in OCL the same role that this plays in JAVA. Thus
the precondition from Fig.5.2 reads in full:

250 5 Formal Specification

OCLontext ATM::enterPIN(pin: Integer)modifies: customerAuthenticated, wrongPINCounter,

insertedCard, insertedCard.invalidpre: insertedCard <> null and not customerAuthenticatedpost: if pin = insertedCard@pre.correctPINthen customerAuthenticatedelseif wrongPINCounter@pre < 2then wrongPINCounter = wrongPINCounter@pre + 1and not customerAuthenticatedelse
insertedCard = nulland insertedCard@pre.invalidand not customerAuthenticatedendifendif

OCL

Fig. 5.2. An OCL contract for the enterPIN operation

OCLontext ATM::enterPIN(pin: Integer)pre: self.insertedCard <> null andnot self.customerAuthenticated

OCL

OCL offers as a third possibility that you declare your own local reference,
e.g., atm1:

OCLontext atm1:ATM::enterPIN(pin: Integer)pre: atm1.insertedCard <> null andnot atm1.customerAuthenticated

OCL

These references self or atm1 are implicitly universally quantified, i.e., the
intended meaning of an operation contract is: in all system states and for
all instances atm1 of class ATM, if the precondition for atm1 is satisfied, then
the postcondition is satisfied for atm1. Implicit universal quantification also
applies to any other reference occurring in the contract, like the argument pin
in our example.

Still looking at Figure 5.2, we notice the peculiar @pre symbol. Only in
postconditions it may be attached to attributes, associations or queries and
refers to the value of the corresponding model element before execution of the
operation.

5.2 Object Constraint Language 251

Let us look at some more examples of OCL constraints. The following
contract explains how we model confiscation of cards.

OCLontext ATM::confiscateCard()pre: insertedCard <> nullpost: insertedCard = null and insertedCard@pre.invalid

OCL

The attribute insertedCard is reset to null. This is obvious, since after
confiscation there is no card inserted. In our model, however, the card in
question is still an instance of class BankCard undistinguished from all other
instances. To avoid this we introduced the attribute invalid of BankCard

which is set to true when the card gets confiscated. Notice, we have to use
insertedCard@pre since in the post state insertedCard is null.

So much for operation contracts. Let us now present examples of OCL
invariants.The simplest invariant from Section 5.1.2 is formalised in OCL as:

OCL (5.1)ontext ATMinv: 0 <= wrongPINCounter && wrongPINCounter <= 2

OCL

In greater detail we would add explicitly the variable self which is thought
of as universally quantified:

OCLontext ATMinv: 0 <= self.wrongPINCounter &&

self.wrongPINCounter <= 2

OCL

The next invariant gives us the occasion to use some of the more advanced
built-in concepts.

OCL (5.2)ontext BankCardinv: BankCard::allInstanes() -> forall(p1,p2|

p1<>p2 implies p1.cardNumber<>p2.cardNumber)

OCL

Note, that now the context is the class BankCard. The intended meaning of this
invariant is evident. Here allInstances() is a query that is available for most
classes. (More precisely it is inherited from the class OclAny for all subclasses
of OclAny.) In any snapshot, A::allInstances() evaluates to the set of all
existing elements of class A. In the OCL standard the use of allInstances()
is restricted to classes with finitely many elements and required to yield an

252 5 Formal Specification

undefined result when applied to a class with infinitely many elements like
String or Integer. This is a viable position when you use OCL in simulation
tools or for runtime checking. It is too restrictive for formal verification in
general.

BankCard::allInstances() is our first example of an OCL expression
that evaluates to a collection of objects rather than to a single object or
a single value. This also accounts for the -> symbol following BankCard::

allInstances(). To provide for an easier reading, OCL uses -> instead of a
simple dot when applying an operation to a collection. In fact, if you change
all -> to dots in an OCL expression and then hand it to me I will be able to
restore all arrows (except in one very special exceptional case). The operation
that is applied to the collection BankCard::allInstances() in the present
case is universal quantification. Unlike in other languages where you may
always add quantifiers to a formula, e.g., ∀p1.∀p2.(p1 6= p2 −> c(p1) 6= c(p2))
in predicate logic, in OCL you first have to provide a collection that the
quantifier, universal or existential, will range over. Notice also that OCL allows
you to quantify two variables by one operator, just as some logic notations
would allow you to write ∀p1, p2.(p1 6= p2 −> c(p1) 6= c(p2)).

The next example introduces more operations on collections.

OCL (5.3)ontext CentralHostinv: validCardsCount =

BankCard::allInstanes() ->selet(not invalid) -> size()
OCL

We again encounter a shorthand here. The full version could look as follows:

OCLinv: validCardsCount =

BankCard::allInstanes() ->selet(c | c.invalid) -> size()
OCL

Now, this might look familiar to readers with a background in basic set the-
ory. Assume that BankCard::allInstances() evaluates to a set A then the
whole expression evaluates to the set of those elements c ∈ A that satisfy the
condition after the | symbol.

You can think of the UML class diagram and its OCL constraints as a
specification, as a blue print for a system to be built. At this level one can
check consistency of the specification or try to derive other properties of the
specification alone. In addition, if code has been written, you will want to prove
that it satisfies the constraints. A possible implementation of the enterPIN

method is shown in Figure 5.3. If you are interested to try out for yourself

5.2 Object Constraint Language 253

JAVApubli void enterPIN (int pin) {if (!(cardIsInserted () &&

!customerIsAuthenticated ())) {throw new RuntimeException ();

}if (insertedCard.pinIsCorrect (pin)) {

customerAuthenticated = true;
} else {

++wrongPINCounter;if (wrongPINCounter >= 3)

confiscateCard ();

}

}

JAVA

Fig. 5.3. The enterPIN method

the verification of this operation contract with KeY you will find assistance in
Section 10.3.

The examples we have seen so far were close to program code. The diagram
in Figure 5.4, however, may occur very early in system modelling. It identifies
the main classes in a role-based access scenario, User, Role, Permission. In
addition there are associations connecting users and roles and also roles with
permissions. No commitment is made at this point on how these relations will
be realised in code. Notice the asterisks at each association end. They stand
for multiplicities and signal that a user may have an unbounded number of
roles, a role may be assigned to an unlimited number of users, a role may be
granted an unlimited number of permissions and a permission may be part of
an unbounded number of roles.

User Role

Permission

≪query≫
+ isUsed():Boolean

ua *

assigned users

* pa **

assigned permissions

Fig. 5.4. UML class diagrams for role-based access scenario

We can think, even at this general level, of useful contracts, e.g., that every
permission is used:

254 5 Formal Specification

OCLontext Permission::isUsed():Booleanpost: result = role.assigned_users -> notEmpty()
OCL

We already know that the postcondition is a shorthand of:

OCLpost: self.result = self.role.assigned_users -> notEmpty()
OCL

Furthermore result is an OCL keyword that can only be used in postcondi-
tions of operations that return a result, exactly for specifying what this result
should be. Notice, that this offers the possibility to not only give a condition
that should be satisfied after execution of the operation, but to uniquely define
its result.

Let us look at the expression at the right hand side of the = sign. It shows
that we can string together several dot-operations. That is what in OCL
jargon is called navigation, because it has the effect of navigating through the
UML class diagram. The first leg of this navigation is towards an unnamed
association end. In this case the default is to use the name of the class to which
the association end is attached, spelled in lower case. This first leg yields the
set R = {r1, . . . , rk} of roles that are attached to the permission represented
by self. The whole expression self.role.assigned users is a much used
shorthand for:

OCL (5.4)post: self.role -> ollet(r | r.assigned_users)

OCL

If for r = ri the OCL expression r.assigned_users evaluates to a set Ui of
users then the whole expression evaluates to the union U1 ∪ . . . ∪ Uk. More
precisely, this union is considered as a bag or multi-set with the consequence,
that a user that is assigned to more then one role will occur more than once
in the result.

5.2.2 OCL Syntax

In this subsection we try to convey a basic understanding of the syntax and
semantics of OCL. The main reference for a full definition is the OMG stan-
dard draft [OCL 2.0]. This is still not the final document and does not settle
all issues, but it will be more than sufficient for what we need here.

The Object Constraints Language, OCL, is a typed language; every ex-
pression has a unique type. Evaluating an expression e in a snapshot yields
a value of the type of e. Figure 5.5 presents a survey of the types available
in OCL. Abstract classes, i.e., classes whose instances are all instances of one

5.2 Object Constraint Language 255

of its subclasses, are written in italics. It deviates from [OCL 2.0, Chapter 8,
Figure 5] in that

• it does not show ElementType, which is mainly used to connect to state
machine diagrams, which we do not consider here,

• it does not show InvalidType, since we do not use it, see Section 5.2.4.
• it does not show TypeType since the meaning of this remains unclear,
• we chose to omit OrderedSetType for brevity,
• it shows AnyType as a subclass of PrimitiveType rather than as direct

subclass of Classifier. The standard’s position on this is still inconsis-
tent and the difference does not have an impact on what we have to say
here.

Classifier
(from core)

Message-
Type

Class
(from core)

DataType
(from core)

VoidType

TupleType PrimitiveType CollectionType

SetType SequenceType BagType

0..4

+collectionTypes

1

+elementType

PrimitiveType

OclBoolean OclReal OclInteger OclString AnyType

Fig. 5.5. The hierarchy of OCL types

256 5 Formal Specification

The classes shown in Figure 5.5 are metaclasses. To illustrate what is
meant by this look at OclInteger. This class has exactly one instance, which
is named Integer. The instances of Integer in turn are the well known
numbers . . .−1, 0, 1,

OCL expressions are always placed into the context of an UML class model.
The classes, say C1, . . . , Ck, appearing there will be the instances of the meta-
class Class from Figure 5.5. Evaluation of an OCL expression is always done
with respect to a fixed snapshot s of the modelled system. To evaluate expres-
sions we need to know how to evaluate types in s. This is easy for types that
derive from the class diagram: the type Ci evaluates to the set of all instances
of class Ci that exist in s.

CollectionType is an abstract class, that is to say, that any instance
of it has to be an instance of one of its subclasses. For any instance C in
the metaclass Class we have the instances Bag(C), Set(C), Sequence(C) of
BagType, SetType, and SequenceType, respectively. The evaluation of these
are, naturally, the bags, sets, sequences of elements of class C existing in a
given snapshot s. Also Set(Integer), Set(String) etc. occur in SetType

and even Set(Set(C)) and Set(Set(Integer)) are legitimate types with
the usual intended meaning.

We skip commenting on tuple types, since they are what you expect. Thus
VoidType and AnyType remain. The metaclass VoidType has exactly one in-
stance OclVoid. The only instance of OclVoid is the element null. The only
instance of AnyType is the OCL type OclAny. This type is meant to be the
big grab bag of almost everything. At any snapshot every instance of a model
class C, every instance of a primitive type is also an instance of OclAny. The
OCL standard decided that this should not apply for instances of collection
or tuple types. The main reason is to steer clear of semantical problems. OCL
not only uses types, but also declares a subtype relation among them, much in
the same way as in the first-order logic introduced in Chapter 2. This relation
is called conformance and is defined as follows:

Definition 5.3. The conforms to relation is the least reflexive and transitive
relation on the set of all OCL types satisfying the following conditions

1. Integer conforms to Real,
2. C1 conforms to C2 for instances Ci of Class iff C1 is a subtype of C2 in

the UML class diagram,
3. S(T1) conforms to S(T2) for S one of Collection, Set, Bag or Sequence

iff T1 conforms to T2,
4. T conforms to OclAny for any type T that is not a collection or a tuple

type,
5. OclVoid conforms to every other type,
6. for tuple types we have: Tuple(name1:T1, . . . , namek:Tk)

conforms to Tuple(name′1:S1, . . ., name
′
k:Sk)

iff {name1, . . . , namek} = {name′1,. . . , name
′
k} and for namei = name′j

we have Ti conforms to Sj.

5.2 Object Constraint Language 257

According to item 6 above, the OCL expression

Tuple(first :Integer , second :Integer ,node:C)

conforms to
Tuple(second :Integer ,node:C,first :Real)

if C conforms to D.
Having completed our survey of OCL types we are now ready to explain

what OCL expressions are. It has become popular to present formal languages
by a metamodel. Figure 5.6 shows the top level of the metamodel for the ab-
stract syntax of OCL expressions. We explain bit by bit how to read this
model. Classes with the label “(from core)” are classes from the metamodel
of UML. They serve to connect OCL expressions to the class diagram to which
they belong. The top-level class for OCL is the abstract class OCLExpression.
If you are more comfortable with grammar rules you could express this infor-
mation equivalently by the production rule

TypedElement
(from core)

OclExpression

CallExp Literal
Exp

IfExp Variable
Exp

Type-
Exp

Message-
Exp

State-
Exp

FeatureCall-
Exp

LoopExp Classifier
(from core)

Variable

IteratorExp IterateExp Parameter
(from core)

0..1

*

referredType

0.
.1

*

refV
ar

refE
xp

0..1

0..1

source

ap
p
lie

d
E
le

m
en

t

0..1

1

body

lo
op

B
o
d
yO

w
n
er

0.
.1

lo
op

E
xp

*

iterator

0..1

baseExp

0..1 result

0..1

initializedElement

0..1

initExp

* 0..1

variable

representedParam

Fig. 5.6. Toplevel metaclass diagram for OCL expressions

258 5 Formal Specification

IfExp

OclExpression

1

thenExpression

0..1

thenOwner

1 condition

0..1 ifOwner

1

elseExpression

0..1

elseOwner

Fig. 5.7. Metamodel for conditional expressions

OclExpressionCS ::= CallExpCS | VariableExpCS |

LiteralExpCS | LetExpCS |

MessageExpCS | IfExpCS

We use the postfix CS to distinguish between the names of metaclasses and
non-terminal symbols in the concrete syntax grammar. Notice that there are
no non-terminals for the metaclasses TypeExp and StateExp. These will occur
as parts of OCL expressions, but cannot stand alone as an OCL expression.
The non-terminal LetExpCS has no corresponding class in Figure 5.6, because
we left it out to not clutter the diagram even further.

Before we look closer into the top-level diagram, we describe the general
workings of the abstract syntax model by looking at the simple metamodel for
conditional expressions in Figure 5.7. The diagram shows that a conditional
expression consists of OCL expressions, referred to by the association ends
condition, thenExpression, and elseExpression. These three expressions
are considered as parts of the conditional expression as signalled by the com-
position icons. The multiplicities at the corresponding ends, that is 1 in all
cases, show that none of these may be missing. This is an elegant way to de-
scribe conditional expressions abstractly without imposing a concrete syntax.

Certainly, not every OCL expression can serve as a value for the condition.
This restriction cannot be expressed in the metaclass diagram. Instead OCL
constraints are added. For conditional expressions these are the invariants:

OCLontext IfExpinv: self.condition.type.name = ’Boolean’inv: self.condition.type.olIsKindOf(PrimitiveType)inv: self.type = thenExp.type.commonSuperType(elseExp.type)

OCL

5.2 Object Constraint Language 259

The attribute type is inherited from the UML metaclass TypedElement. The
first invariant says that the type of the condition expression has to be named
Boolean. Since somebody might draw a class diagram with a class named
Boolean the second invariant requires that the type of the condition expres-
sion be primitive. The operation oclIsKindOf(T) may be found in the OCL
standard library as a Boolean operation on the class OclAny with the expla-
nation that s.oclIsKindOf(T) is true if s is a (not necessarily immediate)
subtype of T. The third invariant determines the type of the if expression.
s.commonSuperType(t) is a defined OCL expression that returns the least
common supertype of s and t if it exists and undefined otherwise. A complete
OCL definition of the commonSyperType operation will be given at the end of
Section 5.2.2. The type ofif c:Boolean then t:Integer else s:Real endif
thus is Real. Finally, here is the grammar rule for the concrete syntax.

IfExpCS ::= ’if’ OclExpCS ’then’ OclExpCS

’else’ OclExpCS ’endif’

FeatureCall-
Exp

NavigationCall-
Exp

OclExpression

PropertyCall-
Exp

Property
(from core)

OperationCall-
Exp

Operation
(from core)

*
{ordered}

0..1

parentNav

qualifier

arguments

parentCall

{ordered}

*

0..1

* 0..1

referringExp referredOperation

* 0..1

referringExp referredProp

*

0..1navigationSource

Fig. 5.8. Metamodel for OCL featureCall expressions

Let us now turn back and look at Figure 5.6 again. For abstract classes it
is easy to read off the grammar rules from the metamodel:

260 5 Formal Specification

CallExpCS ::= FeatureCallExpCS | LoopExpCS

Looking at Figure 5.8 we find furthermore:

FeatureCallExpCS ::= NavigationCallExpCS |

PropertyCallCS | OperationCallExpCS

To gain an initial understanding, let us look at some examples taken from the
constraints we had already encountered in Section 5.2.1.

The expressions p1.cardNumber, p2.cardNumber are property call expres-
sions. So are insertedCard@pre and self.insertedCard@pre. Examples of
operation call expressions are p1.cardNumber <> p2.cardNumber, p1 <> p2,
BankCard::allInstances(). An example for the last category of feature call
expressions, i.e., an example for a navigation call expression (taken from Fig-
ure 5.4 on page 253) is self.role.assigned users or role.assigned users.

Next we have a closer look at OperationCallExp. The concrete syntax
grammar rule reads as:

OperationCallExpCS ::=

(A) OclExpCS(1) sNameCS OclExpCS(2) |

(B) OclExpCS ’->’ sNameCS’(’ argumentsCS?’)’ |

(C) OclExpCS’.’sNameCS ismarkedPreCS?’(’argumentsCS?’)’ |

(D) sNameCS ismarkedPreCS?’(’argumentsCS?’)’ |

(G) pathNameCS’(’argumentsCS?’)’ |

(H) sNameCS OclExpCS

As usual in grammar formalisms, a non-terminal with a question mark is
optional. The rule in the standard lists additional clauses (E) and (F), which
in our version are subsumed by (D) and (C). Here are typical examples for all
six cases of operation call expressions:

(A) wrongPINCounter + 1

wrongPINCounter < 2

wrongPINCounter = wrongPINCounter + 1

insertedCard <> null

(B) self.role.assigned_users -> notEmpty()

s -> union(s2)

(C) self.insertedCard.pinIsCorrect()

self.insertedCard.pinIsCorrect@pre()

(D) pinIsCorrect()

pinIsCorrect()@pre

(G) BankCard::allInstances()

(H) -wrongPINCounter

not cardIsInserted()

In the above, sNameCS is our shorthand notation for simpleNameCS. This is a
string of symbols without further restrictions. There are of course additional
well-formedness conditions for each of the eight production rules that make
sure that the instance of sName is the name of an operation with the correct

5.2 Object Constraint Language 261

typing that is available in the OCL library or in the UML model the expression
is attached to. First, pathNameCS is a non-empty sequence of simple names
separated by “::”. Applying rule (G) requires to check that pathNameCS ends
in className::opName()where className does occur in the context diagram
and opName() is a static operation declared in this class. className may
optionally be prefixed by package names or might be implicit. Finally, we
observe that case (D) is the same as (C) only with implicit source expression.
Typically the implicit source could be the variable self.

Now let us look at the other two subclasses of feature call expressions. In
the rules to follow we skip the rule versions for implicit source expressions.

(A) PropertyCallExpCS ::= OclExpressionCS’.’

sNameCS isMarkedPreCS?

(C) PropertyCallExpCS ::= pathNameCS

Here sNameCS must match a suitable attribute name. (C) covers the case that
the attribute is static.

(A) NavigationCallExpCS ::= AssociationEndCallExpCS

(B) NavigationCallExpCS ::= AssociationClassCallExpCS

(A) AssociationEndCallExpCS ::= OclExpressionCS’.’

sNameCS(’[’argumentsCS’]’)? isMarkedPreCS?

(A) AssociationClassCallExpCS ::= OclExpressionCS’.’

sNameCS(’[’argumentsCS’]’)? isMarkedPreCS?

Note that the rules for AssociationEndExpCS and AssociationClassExpCS

are literally identical. The difference is that in the first rule sNameCS has to
match the name of an association end and in the second rule sNameCS has to
match the name of an association class available in the context UML model.
The optional arguments within square brackets take care of qualifiers attached
to association ends or classes.

This is all we want so say on feature call expressions. Next we turn to
loop expressions, consult Figure 5.6. Of the two subclasses of the metaclass
LoopExp we consider IteratorExp here and defer IterateExp to Sect. 5.2.4
on advanced topics.

(A) IteratorExpCS ::=

OclExpressionCS ’->’ sNameCS

(’(VarDecl, (’,’ VarDecl)? ’|’)? OclExpressionCS’)’

(B) IteratorExpCS ::= OclExpressionCS’.’sNameCS’(’argCS?’)’

(C) IteratorExpCS ::= OclExpressionCS’.’sNameCS

(D) IteratorExpCS ::=

OclExpressionCS’.’sNameCS (’[’argumentsCS’]’)?

(E) IteratorExpCS ::=

OclExpressionCS’.’sNameCS (’[’argumentsCS’]’)?

262 5 Formal Specification

Table 5.2. Iterators from the OCL standard library

exists any select

forAll one reject

isUnique collect collectNested

sortedBy

A complete listing of the built-in choices for sNameCS in (A) is shown in
Table 5.2. New iterators may be added. The following are correct iterator
expressions:

(A1) source ’->’ ’select’ ’(’ p ’|’ body ’)’

(A2) source ’->’ ’select’ ’(’ body ’)’

Assume that source evaluates to a collection s = {a1, . . . , a2}. Then the
whole expression evaluates to the subset of those elements ai ∈ s that satisfy
body. If the type of source is not a collection type it is implicitly turned into
one, with the understanding that in the evaluation an object is replaced by
the singleton set containing this object.

For the remaining rules (B) to (C) it is required that the source expressions
be of collection type. They are all shorthand notations for a collect iterator.
For example, an expression source.attribute is shorthand for

source -> collect(p | p.attribute) .

If again source evaluates to s = {a1, . . . , an}, then the result of the whole
expression is the set {ai.attribute | ai ∈ s}.

So far we have considered stand-alone OCL expressions. We now turn to
the syntax OCL offers to explicitly relate constraints to UML model elements.
We only discuss invariants, pre- and postconditions, and definitions, ignoring
initial value, derived invariants, body, and guard expressions.

The generic form of invariants is:

OCLontext (x1,..,xk:)?classPathinv (invName)?: expression

OCL

For operations contracts the generic form looks like this:

OCLontext (x1,..,xk:)?classPath::op(p1:T1,..,pn:Tn):Tpre (prename1)?: precondition1post (postname1)?: postcondition1

:pre (prenamek)?: preconditionkpost (postnamek)?: postconditionk

OCL

5.2 Object Constraint Language 263

For definitions, the generic context is shown below, where the left-hand sides
are either variables or operation declarations:

OCLontext classPathdef: lhs1 = ex1

:

lhsk = ex2

OCL

As an example for a definition we reproduce the definition of the least common
supertype from the UML metaclass Classifier that had been used in the
discussion of if expressions.

OCLontext Classifierdef: commonSuperType(c:Classifier):Classifier =

Classifier.allInstanes() -> selet(cst |

c.conformsTo(cst) and self.conformsTo(cst) andnot Classifier.allInstanes() -> exists(t |

c.conformsTo(t) and self.conformsTo(t) and
t.conformsTo(cst) and t <> s))

-> any()

OCL

For an explanation of any() see Figure 5.5. There is also a construct for
definitions local to a single expression, e.g.:

OCLontext ATM::enterPIN(pin: Integerpre: let cardInserted = self.insertedCard <> nullin
cardInsterted and not self.customerAuthenticated

OCL

In both constructs def and let the variable or operation to be defined may
also occur on the right-hand side, i.e., arbitrary, mutual recursive definitions
are possible.

5.2.3 OCL Semantics

We define a precise meaning for OCL expressions indirectly by translating
them to first-order logic, in some cases to dynamic logic, and then referring
to the semantics explained in Chapters 2 and 3.

264 5 Formal Specification

Signature

First we fix the signature of the target language. The types occurring in
the context of the OCL expressions to be translated directly constitute a
type hierarchy (T , Td, Ta,⊑) as defined in Sect. 2.1. This hierarchy includes
the types ⊥ and ⊤, even though they have no corresponding OCL type. For
every type B there are the types Set(B), Sequence(B), etc. The functions
and predicates in the signature Σ of the target language are determined as
follows:

C0 C1
r0 r1

m1m0

Fig. 5.9. A generic association

1. For every binary association r between classes C0 and C1 with role names
r0, r1 and multiplicitiesm0,m1, see Figure 5.9, there are non-rigid function
symbols in Σ with the following typing

r1 : C0 → C1 if m1 = 1
r1 : C0 → Set(C1) if m1 6= 1
r1 : C0 → Sequence(C1) if m1 6= 1 and the association end at C1

is marked ≪ ordered ≫

Likewise there is a function symbol r0 : C1 → C0 if m0 = 1 etc. In case
that m0 = m1 = ∗, a binary predicate symbol r : C0 × C1 is introduced
in addition.

2. For n-ary associations r, an n-ary predicate symbol of the appropriate
typing occurs in Σ.

3. For every attribute att in class C with result type Cr, there is a unary
function att : C → Cr in Σ (if the attribute is static, the function is a
constant of type Cr).

4. For every query operation op in class C with parameters of types C1, . . . Cn

and result type Cr, there is an (n+ 1)-ary function symbol op in Σ with
op : C×C1× . . .×Cn → Cr (if the operation is a static the typing reduces
to op : C1 × . . .× Cn → Cr).

5. The signature Σ contains names for all operations in the OCL standard
library.

6. If C is an association class attached to an association r between classes
C1 and C2 then function symbols c1 : C → C1 and c2 : C → C2, or
c1 : C → Collection(C1) and c2 : C → Collection(C2) depending on the
multiplicities of association r, are available in Σ.

5.2 Object Constraint Language 265

All the functions and predicate symbols introduced in the above list are non-
rigid symbols.

In this presentation we use the same names for the OCL entities and their
counterparts in first-order logic with the exceptions shown in Table 5.3. Func-
tions and predicates introduced in predicate logic as counterparts of functions
in the OCL library are rigid symbols.

Table 5.3. Traditional names for Boolean and set operations

OCL Logic OCL Logic

not ! x.intersection(y) x ∩ y
and & x.union(y) x ∪ y
or | x.includes(y) y ∈ x
implies −> x.excludes(y) y 6∈ x
x.including(y) x ∪ {y} x.includesAll(y) y ⊆ x
x.excluding(y) x \ {y} x.isEmpty() x

.
= ∅

x.excludesAll(y) x ∩ y
.
= ∅ x.notEmpty() x 6= ∅

x.equals(y) x
.
= y x <> y x 6= y

The expression allInstances() is a static method in the OCL standard
library. It is inherited by all types T extending OclAny, which is in particular
the case for all classifiers from the UML model. For any such T there is a
non-rigid constant T :: allInstances() of type Set(T) in our signature Σ.

The translation of iterators will be deferred for the moment.

Semantics of Expressions without Iterators

Once a type hierarchy and a signature Σ are fixed, we can form well-sorted
terms (⇒ Sect. 2.3). Translating OCL expressions, for the moment without
iterators, into terms of first-order typed logic amounts to nothing more than
changing from one concrete syntax to another. In addition we view Boolean
functions as predicates. The OCL expression

insertedCard <> null and not customerAuthenticated

from Figure 5.2 on page 250 now reads

insertedCard(self) 6= null & ! customerAuthenticated(self) .

The context information tells us, that this expression plays the role of an
invariant. The variable self is thus implicitly understood as quantified over
all existing instances of ATM. The translation of the invariant into the KeY
input language thus is:

266 5 Formal Specification

KeY\forall ATM x;(x.<created> ->

insertedCard(x) != null & customerAuthenticated(x))

KeY

In our logic quantification ranges over all instances of a class, also over those
not yet created. So, the restriction x.<created> had to be added to capture
the meaning of the OCL constraint correctly (⇒ Sect. 3.6.6). Since this will
happen frequently in rest of this section we use ∀̇x.φ and ∃̇x.φ as abbreviations
for ∀x.(x.<created> −> φ) and ∃x.(x.<created> & φ), respectively. The
above invariant could thus be written as:

∀̇ATM x.(insertedCard(x) !
.
= null & customerAuthenticated(x)) .

In addition to what we have said so far there are also symbols f@pre in Σ
for any f ∈ Σ that is not already suffixed with @pre. Thus,

pin = insertedCard@pre.correctPIN

translates to

pin(self) = correctPIN (insertedCard@pre(self)) .

In translating associations, see again Figure 5.9, one of the function sym-
bols added to Σ already carries all the information. Nevertheless the redun-
dancy to have one function symbol for each direction is highly desirable. But,
when reasoning with terms over Σ we need axioms expressing the interrela-
tions between them:

∀̇C0 x.∀̇C1 y.(r1(x)
.
= y <−> r0(y)

.
= x) if m0 = m1 = 1

∀̇C0 x.∀̇C1 y.(y ∈ r1(x) <−> r0(y)
.
= x) if m0 = 1,m1 6= 1

∀̇C0 x.∀̇C1 y.(r1(x)
.
= y <−> x ∈ r0(y)) if m0 6= 1,m1 = 1

Similar formulas have to be added for multiplicities m different from
1 and ∗. Finally, we need axioms to reason about constants of the form
B::allInstances():

∀̇Object x.(x ∈ B::allInstances() <−> x<−B) .

It is important to notice that the type Set(T) is treated on the same footing
as any other type in our first-order logic. There is no commitment that in an
interpretation I the domain I(Set(T)) consists of all (finite) subsets of I(T).
A formula like

∀̇T x.∃̇Set(T) u.∀T z.(z ∈ u <−> ψ(x))

need not be universally valid for arbitrary ψ. If we want certain relationships
between I(Set(T)) and I(T) to hold, we have to add axioms to enforce it. We

5.2 Object Constraint Language 267

Table 5.4. First-order translations of some iterators

OCL e0->forAll(x | e1)

FOL ∀̇x.(x ∈ [e0] −> [e1])

OCL e0->exists(x | e1)

FOL ∃̇x.(x ∈ [e0] & [e1])

OCL e0->selet(x | e1)

FOL se0,e1 (new symbol) with definition

∀̇x.(x ∈ se0,e1 <−> (x ∈ [e0] & [e1]))

OCL e0->ollet(x | e1)

FOL ce0,e1 (new symbol) with definition

∀̇z.(z ∈ ce0,e1 <−> ∃̇x.(x ∈ [e0] & z
.
= [e1]))

OCL e0->isUnique(x | e1)

FOL ∀̇x.∀̇y.(x ∈ [e0] & y ∈ [e0] & [e1]
.
= {x/y}[e1] −> x

.
= y)

OCL e0->any(x | e1)

FOL skx,e0,e1 (new symbol) with definition

∃̇x.(x ∈ [e0] & [e1]) −> skx,e0,e1 ∈ [e0] & {x/skx,e0,e1}[e1]

insist that the basic set theoretic operations are defined and have their usual
meaning. Thus we know, that for every finite subset {t1, . . . , tn} of I(T) there
is an s ∈ Set(T) such that t ∈ s is exactly true for t = ti for some 1 ≤ i ≤ n.
This is known as the Henkin semantics of higher order logic. We also insist
that for every Set(T) the following axiom is satisfied:

∀̇Object x.∀̇Set(T) u.(x ∈ u −> x<− T) .

Semantics of Iterators

The OCL Standard Library is not systematic in the way it defines the meaning
of its expressions. The union operation union(s:Set(T)):Set(T) on sets e.g.,
is defined via postconditions:

OCLpost: result->forAll(elem |

self->inludes(elem) or s->inludes(elem))post: self ->forAll(elem | result->inludes(elem))post: s ->forAll(elem | result->inludes(elem))
OCL

It could just as well have been defined using the iterate construct:

OCL

self -> union(s : Set(T)) : Set(T) =

self -> iterate(x ; u:Set(T) = s | u->inluding(x))
OCL

268 5 Formal Specification

On the other hand, select is defined in the standard as an iterator, but could
just as well have benn characterised by postconditions:

OCL

source -> selet(iterator | body)post: result -> forAll(e | source.inludes(e))post: result -> forAll(e | body)post: source -> forAll(e | body implies result.inludes(e))
OCL

It is easy to see that in fact all iterators can be defined this way using only
forAll and exists. to translate OCL iterators into first-order logic. See the
summary in Table 5.4, where [e] denotes the first-order logic (FOL) translation
of OCL expression e,2 and {x/t0}t1 is the term resulting from t1 by replacing
all occurrences of variable x by the term t0.

To illustrate how the new symbols, introduced in Table 5.4, are used, let
us reconsider the expression from the invariant (5.3) on page 252:

validCardsCount = BankCard::allInstances() ->

select(not invalid) -> size()

which translates to

validCardsCount (self) = size(a)

plus the definition

∀̇x.(x ∈ a <−> x ∈ BankCard :: allInstances() & invalid(x)) .

Comparing the first-order logic translation of any(x|e) with its definition
in Figure 5.5 one might object that it does not take into account that the
new constant should denote the first element of its kind. But notice that the
operation asSequence is performed with respect to an unknown order. Choos-
ing the first element in an arbitrary order amounts to choosing an arbitrary
element.

Operation Contracts

An operation contract

OCLontext C::op()pre: prepost: post
OCL

2 The same notation will later be used to denote translated JML expressions, but
there will hardly be occasions for confusing both.

5.2 Object Constraint Language 269

is translated into the dynamic logic formula

[pre] −> 〈C::op()〉[post] .

We notice, that this translation adopts the total correctness semantics, i.e.,
termination of the operation is required. We should also point out that the
above translation treats the contract in isolation. The whole picture would
also include invariants that can be assumed in proving the above implica-
tion (⇒ Chap. 8).

The KeY tool also offers the partial correctness semantics translation

[pre] −> [C::op()][post]

as an option. Using the modal operator 〈〉 in the total correctness semantics
treats abrupt termination as non-termination. If you want a postcondition to
also hold after abrupt termination the contract is translated:

[pre] −> 〈try{C::op()}catch(java.lang.Throwable exc){}〉[post] .

See also the definition of Prgop() in Sect. 8.2.3. How abrupt termination is
handled is explained in Sect. 3.6.7.

If the postcondition post contains as a subexpression a@pre(exp) the
translation is [Baar et al., 2001]:

(

[pre] & ∀̇x.(a@pre(x)
.
= a(x))

)

−> 〈C::op()〉[post] .

Here, a@pre is a new function symbol, which in particular does not occur in
the body of op. On the other hand a will normally occur in the code of op.
The newly added premiss ∀̇x.(a@pre(x)

.
= a(x) outside the scope of the modal

operator allows one to conclude that the value of a@pre(x) after execution of
C is the value of a(x) before.

Paper

authors[*]:Person
number:Int
pages:Int
totalnumber:Int
sumpages:Int

OCLontext Paperinv: Paper::allInstanes() ->iterate(x:Paper;y:Integer = 0|y+x.pages)

= Paper::totalnumber

OCL

Fig. 5.10. Example of a constraint with iterate

5.2.4 Advanced Topics

The Iterate Construct

As the first advanced construct we now consider the iterate construct, the
second kind of loop expression, that we had skipped in Sect. 5.2.2, see Fig-
ure 5.6 for its position within the metamodel. Figure 5.10 shows an invariant

270 5 Formal Specification

of the class Paper which expresses that the static attribute totalnumber of
this class equals, at all times, the sum of the pages attribute taken over all
instances in the class. The general form of an iterate expression is given in
Figure 5.11, which uses the names for association ends from the metamodel.
The following restrictions apply:

1. variable y ist different from x,
2. variable y does not occur in the term t,
3. variables x and y do not occur in t0,
4. the types of y and u coincide,
5. the type of t is a collection type Collection(S) and x is of type S.

Given a model M = (D, δ, I) and an assignments β to local variables. The
interpretation valM,β(exp) for

exp = t ->iterate(x;y = t0 | u)

is obtained as follows. Let A = {a1, . . . , an} be the evaluation valM,β(t) of
the source expression t. For the purposes of this definition, for any variable
assignment γ, we use γ[a, b] to denote

γ[a, b](z) :=

a if z = x

b if z = y

γ(z) otherwise

Using this notation we define

β1 = β[a1, valM,β(t0)]

βk+1 = βk[ak+1, valM,βk
(u)] for k < n

Then, valM,β(exp) = valM,βn
(u).

This definition depends in general on the ordering of the set {a1, . . . , an}.
If t is of type Sequence then, naturally, we use the order given by the sequence.
In the other cases, it is the responsibility of the user to ensure independence
from the order of evaluation.

All iterator expressions can in fact be defined in terms of an iterate expres-
sion, see Figure 5.5 below. The OCL standard is not systematic with respect
to the definition of set theoretic operations. The union of two sets, e.g., is spec-
ified by an operation contract, but could just as well have been defined using
iterate. The select operation on the other hand is defined via iterate,
but could just as well have been specified by a postcondition.

We strongly recommend to avoid iterate expressions in OCL specifications,
they are hard to read, they are at a low level of abstraction and they put an
excessive burden on verification. If need arises, a new iterator could be defined.
Its definition may use the iterate construct but in the specification only the
iterator occurs.

5.2 Object Constraint Language 271

iterator variable expr of sort T , initial expr

source expression t -> iterate(x : S; y : T = t0 | u)

result variable expr of sort T , body

Fig. 5.11. Syntax of the iterate construct

Table 5.5. Definitions for some iterators

t->forAll(x|a) = t -> iterate(x;y = true| y and a)

t->exists(x|a) = t -> iterate(x;y = false| or a)

t-> collectNested(x|u) = t -> iterate(x;y = Bag{} |

y ->including(u))

t->collect(x|u) = t->collectNested(x|u) -> flatten()

t->select(x|a) = t-> iterate(x;y = Collection{} |if a then y.including(x) else y

t->any(x|e) = t->select(x|e)-> asSequence()-> first()

t-> flatten() a = if
t.type.elementType.

oclIsKindOf(CollectionType)then
t -> iterate(c;acc:Bag = Bag{} |

acc -> union(c->asBag))else
tendif

a This is the definition from the OCL standard, which only works for set
nestings of level 2.

collectNested

In OCL2.0 the collect operation is defined via the more general operation
called collectNested. The expression

self.role -> collectNested(r | r.assigned_users) ,

similar to the one considered in OCL example 5.4 on page 254, evaluates to
{U1, . . . , Uk} if for r = ri the OCL expression r.assigned_users evaluates
to a set Ui.

272 5 Formal Specification

Type Dependent Operations

There are three families of operators defined in OclAny that depend on types.

1. oclAsType(T:TypeExp):OclAny→ T

2. oclIsTypeOf(T:TypeExp):OclAny→ Boolean

3. oclIsKindOf(T:TypeExp):OclAny→ Boolean

Note, that the type expression is not an argument to these operations. It can
be viewed as part of the operation’s name. Translations to first-order logic are
straight forward:

[e.oclAsType(T:TypeExp)] = (T)[e]

[e.oclIsTypeOf(T:TypeExp)] = [e] <−− T

[e.oclIsKindOf(T:TypeExp)] = [e] <− T

Exceptions in OCL

In contrast to JML (⇒ Sect. 5.3), the OCL language does not offer built-
in support for talking about exceptions. This can be remedied by adding
a new Boolean attribute excThrown(’T:TypeExp’) to any class. Types are
attached to the excThrown attribute in the same way types are attached to
the operations in the previous section.3

The use of excThrown only makes sense in the later stages of design when,
e.g., the classes in the design model can be related to JAVA classes. The type T
should then be a subtype of Exception. The easiest way to technically realize
the use of excThrown would then be to automatically add the corresponding
attribute excThrown to the JAVA class Object. Also excThrown can only be
used in postconditions. A constraint

OCLontext C0::op(x1:D1,..,xn:Dn):C1pre: e0post: e1

OCL

with excThrown(’T1:TypeExp’), . . . , excThrown(’Tk:TypeExp’) occurring
in the postcondition e1 is translated into the dynamic logic proof obligation

KeY

==>\forall T1 x1; .. \forall Tn xn;(

x1.<created> & .. & xn.<created> & [e0]

->

3 This feature is at the time of this writing only implemented in a simplified form
in KeY.

5.2 Object Constraint Language 273\< boolean thrownT1 = false;
:boolean thrownTk = false;try {C0::self.op(x1,..,xn);}ath (java.lang.Throwable exc) {

thrownT1 = exc instaneof T1;

:

thrownTk = exc instaneof Tk; }\>
[e1]*

KeY

JAVA

/**

* �postonditions self.x< 0 implies

* excThrown(’IllegalArgumentException’)

*/publi void positive()throws IllegalArgumentException {if (this.x >= 0) { do something; }else { throw new IllegalArgumentException(); };

}

JAVA

Fig. 5.12. Postcondition referring to exceptions

Here thrownTi are new local Boolean program variables, whose names
are composed of the string Thrown appended with the string Ti, and [e1]*

arises from [e1] by replacing all occurrences of excThrown(’Ti:TypeExp’)
by thrownTi.

Figure 5.12 contains a concrete example of a JAVA program with a post-
condition that refers to exceptions. For a change we have used a different way
to attach an OCL condition to an operation, i.e., by placing it as a specially
tagged comment directly into JAVA code in front of the method it refers to.
Here is the translated proof obligation in dynamic logic:

KeY\< boolean thrownIllegalArgumentException = false;try { TrivialExc()::self.positive (); }ath (java.lang.Throwable thrownExc) {

thrownIllegalArgumentException=thrownExcinstaneof java.lang.IllegalArgumentException; }\> (self.x < 0 -> thrownIllegalArgumentException = TRUE)

KeY

274 5 Formal Specification

Another example program of the same kind is shown in Figure 5.13 with
the following dynamic logic proof obligation:

KeY

==>\< boolean thrownIllegalArgumentException = false;try { TrivialExc1()::self.positive (); }ath (java.lang.Throwable thrownExc) {

thrownIllegalArgumentException=thrownExcinstaneof java.lang.IllegalArgumentException; }\> thrownIllegalArgumentException != TRUE

KeY

JAVA

/**

* �postonditions not excThrown(’IllegalArgumentException’)

*/publi void positive()throws IllegalArgumentException {try{if (this.x >= 0) { this.b = true; }else { throw new IllegalArgumentException(); }

} ath (java.lang.Throwable exc) {this.b = false;
}

}

JAVA

Fig. 5.13. Another postcondition referring to exceptions

Miscellaneous

In the OCL constraints throughout this chapter, we frequently made use of the
constant null. We extended OCL by assuming that any UML class diagram
implicitly contains a class Null that is a subclass of every existing class in the
diagram and whose only element is null. For all attributes attr that Null

inherits the value of null.attr is undefined. Since OCL2.0 there is now an
OCL type OclVoid that is the only instance of the metaclass VoidType and
in turn contains as only element the object null. So, you could identify the
types Null and OclVoid if you wished. We think of our solution as a first step
towards defining an OCL profile for JAVA specification. We stick to it for the
moment till the discussion on what is in general regarded as a null object has
reached a consensus.

5.3 JAVA Modeling Language 275

The OCL standard uses a three-valued logic to treat undefinedness. We
deviate from this. In our logic all functions are total and undefinedness is
handled by underspecification as explained in the sidebar 3.3.1 on page 90.
See also Sect. refsect11:partmod.

If a and b are inherited attributes in class Null then in all snapshotsnull.a and null.b are defined, but we have no information on what the
values are. Thus neither null.a = null.b nor null.a != null.b are valid.
For a comparison of the various logical approaches to formalise undefinedness
we recommend [Hähnle, 2005]. We want to emphasise that our semantics,
defined by the translation into first-order logic faithfully models OCL in that
an expression is undefined according to the OCL standard if and only if it is
undefined in our translation semantics. The first difference is that we do not
have an equivalent of the instance invalid which is the only element of the
OCL type OclInvalid. The use of invalid can be easily avoided by using
the query oclIsInvalid() on the the type OclAny. The second difference lies
in the logic employed to deal with undefined statements. OCL uses a three-
valued logic while KeY uses classical two-valued logic with underspecification.

5.3 JAVA Modeling Language

An increasingly popular specification language for JAVA projects is the JAVA

Modeling Language, JML. Unlike UML the language is not standardised by
an organisation like the OMG, the development is more a community effort
lead by Gary T. Leavens, Iowa State University.4 The nature of such a project
entails that language details change, sometimes rapidly, over time and there
is no ultimate reference for JML. Fortunately, for the items that we address in
this introduction, the syntax and semantics are for the greatest part already
settled in [Leavens et al., 2006]. Basic design decisions and extensive examples
are described in [Leavens et al., 2003].

As the major difference to UML/OCL, JML focuses solely on the phases of
software development in which source code is written. Moreover the only sup-
ported programming language is JAVA. JML talks directly about JAVA classes
represented in source files. There is no need for separate UML class diagrams.
Since specifications may also serve the purpose of documenting a program,
it is most natural that specifications are directly annotated to the entities to
which they refer. So if we have a class invariant for a JAVA class C, the JML
representation of the invariant is directly written as comment (somewhat in
the style of a Javadoc comment) into the class declaration of C. If it is not
desired to include specifications into source code, it is also possible to add JML
specifications in extra files, which contain copies of the source file signatures.

The close integration of JML with JAVA allows one to use JAVA expressions,
for instance the side-effect free boolean expression atm.wrongPINCounter==0,

4 See www.jmlspecs.org

www.jmlspecs.org

276 5 Formal Specification

directly in invariants and operation contracts. This possibility makes writing
specifications easily accessible for developers acquainted with JAVA. Moreover,
JML is more easily adapted to the JAVA specific issues, such as abrupt termi-
nation.

In this section we start, as in the previous section, with some illuminating
examples from our ATM scenario, before a more thorough introduction to
JML’s syntax and semantics follows.

5.3.1 JML by Example

Consider now a design phase in which concrete JAVA code has been written
for a realisation of the ATM scenario. We assume that a JAVA class ATM is part
of it. Immediately preceding its method enterPIN, the JML representation
of the operation contract described in Sect. 5.1.1 is annotated as a comment
starting with the symbol @. It has become customary to also end a JML
comment with @ though this is not mandatory.

This can be seen in the listing in Fig. 5.14. At a first glance, we see that the
JML specification from lines 9 to 40 contains three blocks, each starting withpubli normal_behavior. These blocks represent three operation contracts
as introduced in Sect. 5.1.1. In JML terminology operation contracts are called
specification cases while contract refers to the collection of all specification
cases; we continue to stick with the term operation contract. JML annotations
come together with visibility modifiers subject to the same rules as in JAVA.
These have no bearing on the semantics, the meaning of a publi contract is
the same as that of a private contract. On the other hand visibility modifiers
are in many cases helpful to formulate sensible contracts. JML adopts the
principle that a publi invariant is not allowed to talk about private fields.

The JML keyword normal_behavior states that the contract implicitly
includes the requirement that the method must not throw an exception.

Let us look more closely at the third operation contract (lines 30 to 39).
There are three keywords starting clauses that are terminated by a semicolon:

requires The condition following this keyword describes a precondition of
the contract. More precisely, the conjunction of all these conditions forms
the precondition of the operation contract. The expression following the
first requires clause on line 10 resembles a JAVA expression, and its
meaning is in fact that of a boolean JAVA expression. So this part of the
precondition says that before calling enterPIN the insertedCard field
must not be null, in order to ensure the assertions formalised in this
contract. Alternatively, instead of expressing the precondition of the op-
eration contract in separate clauses, one could have equivalently used the
and-operator && and written (replacing lines 31 to 34):

5.3 JAVA Modeling Language 277

JAVA + JML

1 publi lass ATM {

2

3 private /*@ spe_publi @*/

4 BankCard insertedCard = null;
5 private /*@ spe_publi @*/

6 boolean customerAuthenticated = false;
7

8

9 /*@ publi normal_behavior
10 requires insertedCard != null;
11 requires !customerAuthenticated;

12 requires pin == insertedCard.correctPIN;

13 assignable customerAuthenticated;

14 ensures customerAuthenticated;

15

16 also
17

18 publi normal_behavior
19 requires insertedCard != null;
20 requires !customerAuthenticated;

21 requires pin != insertedCard.correctPIN;

22 requires wrongPINCounter < 2;

23 assignable wrongPINCounter;

24 ensures wrongPINCounter

25 == \old(wrongPINCounter) + 1;

26 ensures !customerAuthenticated;

27

28 also
29

30 publi normal_behavior
31 requires insertedCard != null;
32 requires !customerAuthenticated;

33 requires pin != insertedCard.correctPIN;

34 requires wrongPINCounter >= 2;

35 assignable insertedCard, wrongPINCounter,

36 insertedCard.invalid;

37 ensures insertedCard == null;
38 ensures \old(insertedCard).invalid;
39 ensures !customerAuthenticated;

40 @*/

41 publi void enterPIN (int pin) {

42 // here the implementation follows

JAVA + JML

Fig. 5.14. A JML specification for enterPIN

278 5 Formal Specification

JML (5.5)requires insertedCard != null
&& !customerAuthenticated

&& pin != insertedCard.correctPIN

&& wrongPINCounter >= 2;

JML

ensures All boolean expressions of an operation contract following this key-
word form (again in the sense of a conjunction) the postcondition of the
contract. Our first example of a JML expression which is no JAVA expres-
sion turns up in line 38; here \old occurs. Keywords special to JML within
expressions, like \old, start with a backslash. This one serves the same
purpose as the @pre construct. Unlike @pre it refers to a whole expres-
sion. So \old(insertedCard) refers to the value of insertedCard before
executing enterPIN. There are some subtle problems with this way of
referring to pre states which we discuss later in Sect. 5.4.

assignable This keyword is followed by a list (items separated with a
comma) of what is allowed to change during the execution of the method.
JML does not allow temporary modifications of the specified location dur-
ing the call deviating from the definition of modifies clauses in Sect. 3.7.4.

The JML contracts in Fig. 5.14 though marked publi refer to the pri-
vate field insertedCard. This is not a legal JML expression and any correct
checker would reject it. To override the default we may declare a private JAVA

field to be treated by the specification as if it were public by the annotation
/*@ spec_public @*/. For the insertedCard field this was done in line 3
in Fig. 5.14. We could have omitted the keywords publi normal_behavior

because JML would assume them by default.
Clearly something is wrong if enterPIN is called but insertedCard is

still equal to null. In the contracts we have seen so far the caller of the
method is responsible to establish this precondition. If he does not, then no
commitment is made. We could however decide otherwise and require that if
the precondition is not met an exception of a type ATMException is thrown
and no customer is authenticated. This could be specified in JML with the help
of exceptional_behavior, a signals_only clause and a signals clause:

JAVA + JML (5.6)

/*@ (* the contracts as defined above *)

@ also publi exeptional_behavior
@ requires insertedCard==null;
@ signals_only ATMException;

@ signals (ATMException) !customerAuthenticated;

@*/publi void enterPIN (int pin) {

// here the implementation follows

JAVA + JML

5.3 JAVA Modeling Language 279

The signals_only clause says that only exceptions of type ATMException

must be thrown and the signals clause specifies that in the case of a thrown
ATMException the customerAuthenticated field is set to false.

Another detail worth mentioning already here is the use of side-effect free
and terminating methods in JML expressions. This is, as was the case with
OCL, perfectly legal. Such methods are called pure in JML terminology and
must be annotated with the keyword /*@ pure @*/. We could, e.g., add the
following method, which is clearly pure, in class ATM:

JAVA + JMLpubli /*@ pure @*/ boolean cardIsInserted() {return insertedCard!=null;
}

JAVA + JML

Now cardIsInserted() could replace insertedCard != null in all the con-
tracts above.

The next example shows how invariants are written in JML. Again we want
to formalise the property that different cards have different card numbers,
compare the OCL constraint (5.2) on page 251. Clearly, this requires means
that go beyond JAVA expressions. Universal quantification, syntactically quite
similar to first-order logic, is used. The range of the quantification must only
include the objects which are created. This can be achieved with the help of
the expression \created(o), which says that o is a created object. Since the
resulting expression does not depend on one particular instance of BankCard it
is referred to as a static invariant. The whole annotation to the class BankCard
now reads:

JAVA + JML (5.7)publi lass BankCard {

/*@ publi stati invariant
@ (\forall BankCard p1, p2;

@ \created(p1) && \created(p2);
@ p1!=p2 ==> p1.cardNumber!=p2.cardNumber)

@*/private /*@ spe_publi @*/ int cardNumber;

// rest of class follows

}

JAVA + JML

Opposed to static invariants are instance invariants. They formalise prop-
erties of a particular instance, referred to by this. The OCL invariant (5.3)
from page 252 on the class CentralHost reads in JML as follows:

280 5 Formal Specification

JAVA + JML (5.8)publi lass CentralHost {

/*@ publi instane invariant this.validCardsCount
@ == (\num_of BankCard p; !p.invalid)

@*/

}

JAVA + JML

As in JAVA we could have skipped this in this.validCardsCount. An in-
stance invariant contains an implicit universal quantification in that it requires
that the stated property must evaluate to true for all created objects of its
class.

We could use this to rewrite the JML static invariant (5.7) into an equiv-
alent instance invariant:

JAVA + JML (5.9)publi lass BankCard {

/*@ publi instane invariant
@ (\forall BankCard p; this != p ==>this.cardNumber != p.cardNumber)

@*/private /*@ spe_publi @*/ int cardNumber;

// rest of class follows

}

JAVA + JML

5.3.2 JML Expressions

Every JAVA expression according to Gosling et al. [2000] that does not include
operators with side-effect, like e++, e--, ++e, --e, non-pure method invoca-
tion expressions, and assignment operators, is a JML expression. Any such
expression e has a natural representation in KeY’s first-order logic, which we
denote by [e]. The JML reference manual [Leavens et al., 2006] does not con-
tain a formal semantics of JML. The paper [Jacobs and Poll, 2001] roughly
sketches a semantics of JML expressions in a higher-order logic that is a com-
mon abstraction of PVS and Isabelle/HOL.

The translation to first-order logic serves us as a precise definition of the
meaning of JML expression. In Table 5.6, the mapping e ; [e] is defined for
JML expressions e0, e1, and e2.

For example, the JML expression

insertedCard != null && !customerAuthenticated;

is translated as follows to first-order logic:

5.3 JAVA Modeling Language 281

Table 5.6. Mapping from JML and JAVA expressions to FOL (selected items)

JML Expression first-order logic formula

!e0 ![e0]
e0 && e1 [e0] & [e1]
e0 || e1 [e0] | [e1]
e0?e1:e2 if [e0] then [e1] else [e2]
e0 != e1 !([e0]

.
= [e1])

e0 >= e1 [e0] >= [e1]

!(o.insertedCard
.
= null) & ! o.customerAuthenticated

.
= TRUE .

Note that this formula contains free occurrences of a variable o of type ATM,
which is the this type the JML expression refers to.

Moreover JML introduces operators to express implication (==>) and log-
ical equivalence (<==>).

Finally JML extends JAVA by quantified expressions. We have already seen
an example of universal quantification at work in the JML annotation (5.7).
Existential quantification works analogously. Table 5.7 summarises the first-
order logic translations of these expressions. Note that quantifiers bind two
expressions, the range predicate and the body expression with the semantics
shown in the first-order logic column. A missing range predicate is by defaulttrue. Quantifiers are meant to range over all objects including the not yet
created ones. This is in accordance with our definition of quantification in
Sect. 3.3. In contrast to that, JML excludes null from the range of quantifi-
cation.

Table 5.7. Mapping from new JML expressions to first-order logic (selected items)

JML Expression first-order logic formula

e0 ==> e1 [e0] −> [e1]
e0 <==> e1 [e0] <−> [e1]
(\forall T e;e0;e1) \forall T e; (([e] !

.
= null & [e0]) −> [e1])

(\exists T e;e0;e1) \exists T e; ([e] !
.
= null & [e0] & [e1])

In addition to these traditional quantifiers JML offers so called generalised
and numerical quantifiers. We have already seen the \num_of quantifier which
delivers the number of values of its quantified variable for which the expression
in the second argument is true. Other such quantifiers are \sum, \product,
\min, and \max. Translations of these expressions have to be done similarly
as for OCL (see Sect. 5.2.3).

More on the translation of JML expressions can be found in [Engel, 2005].

282 5 Formal Specification

5.3.3 Operation Contracts in JML

We now turn our attention to operation contracts in JML. We have al-
ready encountered operation contracts starting with normal_behavior and
exceptional_behavior in Figure 5.14. These are, in fact, special cases of a
general contract concept starting with the keyword behaviorwhich we discuss
now.

An operation contract consists of a number of clauses each starting with
one of the keywords requires, assignable, ensures, diverges, signals, or
signals_only.

The boolean expressions following the requires clauses specify (seen as
a conjunction) the preconditions of the operation contract. All other clauses
must be true only under the provision that all requires clauses hold.

The postcondition of an operation contract is spread over the ensures,
signals, and signals_only clauses. ensures describes the postcondition in
the case of normal termination of the operation. That is, if the operation
terminates normally then all the boolean expressions following ensures must
hold. The signals clause specifies what happens if the operation terminates
abruptly. signals is not directly followed by a JML expression. Instead there
is first a declaration of an exception type T , and then a boolean JML expres-
sion e. If abrupt termination is caused by an exception of type T then e must
be true in the post-state. Note that e does not specify the condition which
triggers the specified expression to be thrown; such conditions can be stated
in the requires clause of an operation contract. Finally signals_only lists
the types of exceptions that may at most be thrown by a method. As we have
done for JML expressions, we can define the meaning of a JML postcondi-
tion by translating them into the first-order fragment of JAVA CARD DL. The
postcondition of a contract

JMLensures E;signals (ET1) S1;

...signals (ETn) Sn;signals_only OT1,. . .,OTm;

JML

is translated into

(e
.
= null −> [E])

& (e <− [ET1]
.
= TRUE −> [S1])

. . .
& (e <− [ETn]

.
= TRUE −> [Sn])

& (e <− [OE1]
.
= TRUE |

. . .
| e <− [OEm]

.
= TRUE)

5.3 JAVA Modeling Language 283

We assume in this translation that the operation stores a thrown exception
causing abrupt termination in the variable e. If the operation terminates nor-
mally then e equals null.

assignable is followed by a list of expressions which specify locations of
the program. When these expressions are translated into our first-order logic,
the top-level operator must be a non-rigid function symbol representing a field
symbol or an array access. As special symbols we allow the JML expressions
\nothing (which is equivalent to the empty modifies set) and \everything

(which means that every location is allowed to be modified). The semantics
of assignable clauses follows Definition 3.62. The diverges clause consists
again of a boolean JML expression. It specifies the condition which must hold
before calling the operation if the operation does not terminate. This sounds
complicated but fortunately in practice and also as a matter of normalisation
this can be reduced to two cases. As one case, we specify diverges false,
then, in case of non-termination, false must have been satisfied before the
operation call. This is never the case. Thus, diverges false requires the
operation to terminate. On the other hand one could specify diverges true,
then non-termination is always allowed. It is quite easy to figure out, that we
can use appropriate requires clauses and these two incarnations of diverges
to express all termination behaviour we may desire.

We can summarise the requirements imposed by an operation contract for
an operation op as follows: When op is called in any state that satisfies all the
requires clauses then:

• If op terminates normally then all ensures clauses are satisfied.
• If op terminates abruptly with an exception of type ET then

– all signals(ET ′) clauses for exception types ET ′ where ET is a
subtype of ET ′ are satisfied and

– there is a signals_only(ET ′′) clause such that ET is a subtype of
ET ′′.

• If op terminates (either normally or abruptly) then at most the locations
specified by assignable are modified compared to the pre-state.

• If op does not terminate, then the diverges condition has been true before
calling op.

Figure 5.15 depicts the meaning of the special contracts normal_behavior
and exceptional_behavior in terms of behavior contracts. Abbreviations,
like the use of normal_behavior instead of a more verbose behavior, oc-
cur quite often in JML, and the process of resolving them is referred to as
desugaring. Extending this scheme to specification cases with more than one
occurrence of the different clauses can naturally be done.

Some JML operation contracts even have no behavior, normal_behavior,
or exceptional_behavior header at all. Instead they start with clauses (like
requires, ensures, etc.) directly. Such operation contracts are called light-
weight in JML jargon. All others are called heavyweight. There is only a small
semantical difference of lightweight specifications compared to heavyweight

284 5 Formal Specificationnormal_behaviorrequires R;assignable A;ensures E;diverges D;

=⇒

behaviorrequires R;assignable A;ensures E;diverges D;signals (Exception) false;exeptional_behaviorrequires R;assignable A;diverges D;signals (ET) S;signals_only (OT);

=⇒

behaviorrequires R;assignable A;ensures false;diverges D;signals (E) S;signals_only (OT);

Fig. 5.15. Desugaring of normal_behavior and exceptional_behavior

specifications starting with behavior. In lightweight specifications most miss-
ing clauses default to \not_specified, which leaves different JML tools dif-
ferent options to treat the missing items. In KeY, always the same defaults
as for heavyweight specifications are used. See Table 5.8 for lightweight and
heavyweight defaults. The choices correspond to Table 5.1 in Sect. 5.1.

Table 5.8. Defaults for missing JML clauses

Clause Lightweight default Heavyweight default

requires \not_specified true
assignable \not_specified \everything

ensures \not_specified true
diverges false false
signals \not_specified (Exception)true
signals_only All exception types declared in the JAVA

method declaration

We have already seen in the introductory examples that, when describing
post-states, one needs to refer to the state before the method invocation. The
ensures and signals clauses describe post-states so that the JML expressions
used in these clauses may include the \old construct.

With /*@ pure @*/ annotations, implicit additions to all operation con-
tracts are implied. This can again be seen as a de-sugaring. The operation con-
tracts for an operation annotated with /*@ pure @*/ are equivalent to adding
assignable \nothing and diverges false to all operation contracts which
are available for the constrained operation.

JML dictates a stricter rule of inheritance of operation contracts than re-
quired in Sect. 5.1. Every contract for a method automatically applies to over-
ridden methods, too. Syntactically this is signified by the fact that contracts

5.3 JAVA Modeling Language 285

for overridden methods must start with also, the keyword which conjoins
several contracts for an operation. The contract inheritance policy has the
effect that all subtypes of a type T are behavioural subtypes (see Sect. 8.1.3)
of T [Leavens and Dhara, 2000].

5.3.4 Invariants in JML

JML distinguishes two types of class invariants: instance invariants and static
invariants.

An instance invariant is a boolean JML expression containing explicitly
or implicitly the variable this. An instance invariant is satisfied in a pro-
gram state if it always evaluates to true when the value of this ranges
over all instances of its class. Syntactically, instance invariants are com-
ments (as usual, starting and ending with @) which are explicitly marked with
instance invariant or, if the targeted type is a class, just as invariant.

As illustrated in Sect. 5.3.2, we can translate boolean JML expressions into
first-order logic formulae. The characteristic property of instance invariants
is that there is a free variable in the resulting formulae. Consider the JML
invariant (5.9) in Sect. 5.3.1. It could be represented as follows as first-order
logic formula containing a program variable o of type BankCard:

KeY\forall BankCard p; p.<created> = TRUE ->

o != p -> o.cardNumber != p.cardNumber

KeY

The variable o is, according to the semantics of invariants, implicitly univer-
sally quantified over all created objects of the respective type. For a uniform
treatment of invariants, we make this quantification explicit. We obtain closed
formulae. If φ is the “raw” translation of a boolean JML expression in an in-
variant and if o is the occurring free variable of type T , then

\forall T o; (o.<created>
.
= true −> φ)

is defined to be the translation of the JML invariant. The translation of our
example yields:

KeY\forall Bankcard o; \forall Bankcard p;

(o.<created>=TRUE & p.<created>=TRUE & o != p

-> o.cardNumber != p.cardNumber)

KeY

According to Leavens et al. [2006], instance invariants defined in a class
C must hold at any visible state for any object o of C. Visible states for an
object o are the states reached when a method of o (this includes non-static

286 5 Formal Specification

methods and static methods declared in C or a super class) is invoked or
finished or when a constructor of o is finished. A further visible state is when
no method or constructor of o is in progress. The latter means that invariants
must be established, according to JML, when in a method of o another method
is called. JML thus requires invariants to hold at intermediate states of an
operation. In Chapter 8 we will deviate from the visible state semantics of
JML, since it is overly strong to require invariants to hold at intermediate
states.

The semantics of invariants is liberalised by the possibility of JML to
declare methods with /*@ helper @*/. It is not required that invariants hold
at the entry and exit states of such helper methods.

Static invariants do not refer to a special instance of the class they are
defined in. This implies that static invariants can only refer to instance fields
via quantification as in the example of the static invariant in Sect. 5.3.1.
We have seen there that it was in that case possible to replace it with an
equivalent instance invariant (5.9). So are static invariants necessary at all?
Imagine we want to express that the static integer field maxAccountNumber in
class CentralHost is always greater or equal to 0. Then we want to require
this condition even in states in which no object of CentralHost is created at
all. So it is of no use to add an instance invariant

JAVA + JMLpubli lass CentralHost {

/*@ publi instane invariant maxAccountNumber >= 0 @*/

//...

JAVA + JML

which would need to hold only after the constructor call of the first instance
of this class is finished. The following static invariant

JAVA + JMLpubli lass CentralHost {

/*@ publi stati invariant maxAccountNumber >= 0 @*/

//...

JAVA + JML

must however hold already after the static initialisation of CentralHost has
finished, which is the desired property.

Static invariants must be explicitly declared as static (as above) or they
are written into an interface declaration and just start with invariant.

5.3.5 Model Fields and Model Methods

The operation contracts and instance invariants we have seen so far may only
talk about instance (and static) fields occurring in the JAVA program they

5.3 JAVA Modeling Language 287

annotate. Since instance fields may only occur in classes and not in interfaces,
how would we write operation contracts and instance invariants for interfaces?

In our banking scenario we could extend the simple BankCard class into
a card which allows one to collect bonus points as well. Whenever certain
transactions are done with the card, a counter bankCardPoints on the card
is increased. We also foresee the situation that the bonus point system will be
used with other cards from other vendors than our bank. It may thus be a good
idea to separate the interface of accessing bonus points from the BankCard

class. We use a JAVA interface IBonusCard, which BankCard implements. A
JAVA interface is definitely the best choice since we do not want to provide
implementations, as for instance in an abstract class, for the other vendors,
just the mere interface:

JAVApubli interfae IBonusCard {publi void addBonus(int newBonusPoints);

}

JAVA

As already mentioned, we may wonder how to add a suitable specification,
since there are no fields to talk about in a JAVA interface. Here JML model
fields are the solution. We simply assume that a field representing bonus
points was available. Let us call it bonusPoints of type int. Since it is not a
true field and just for specification purposes, we add it (as usual in JML) as
comment and qualified with the key word model. In specifications, as in the
operation contract for addBonus this field may then be referred to:

JAVA + JMLpubli interfae IBonusCard {

/*@ publi instane model int bonusPoints; @*/

/*@ ensures bonusPoints == \old(bonusPoints)+newBonusPoints;
@ assignable bonusPoints;

@ */publi void addBonus(int newBonusPoints);

}

JAVA + JML

The specification says that the bonus points are increased by the number
given as argument in the method addBonus.

You may wonder how we can relate concrete implementations like that of
BankCard with model fields. Let us consider the implementation of addBonus
in BankCard:

288 5 Formal Specification

JAVApubli lass BankCard implements IBonusCard{

/*@ public instance model int bonusPoints; @*/

/*@ also

@ assignable bankCardPoints;

@*/publi void addBonus(int newBonusPoints) {

bankCardPoints+=newBonusPoints;

}

}

JAVA

Since JML operation contracts are inherited, the contract in IBonusCard

is implicitly present at this method, but it specifies the change of field
bonusPoints not that of bankCardPoints as the implementation does. We
thus need to specify the relation between the concrete field and the model
field. In our case the relation is simple: bonusPoints exactly corresponds to
bankCardPoints; whenever we refer to bonusPoints in a specification, we
mean bankCardPoints in the implementation. This is how we denote this in
JML, added directly after the header of the class declaration:

JML (5.10)

/*@ private represents bonusPoints <- bankCardPoints; @*/

JML

The expression on the right side could in fact also be a more complicated
expression. If for some reason the points stored on the bank card are 100
times the points credited by the addBonus method we could write:

JML

/*@ private represents bonusPoints <- bankCardPoints * 100;

@*/

JML

In our translation to first-order logic, we can simply replace every occurrence
of the model field with the expression

The represents clauses so far are called functional abstractions since the
relation between model field and concrete field(s) is a function. There are also
relational abstractions

JML

/*@ represents x \suh_that A(x); @*/

JML

which relate concrete fields with the model field x; the relation must satisfy
the axiom A(x). The functional abstraction (5.10) can thus also be expressed
as relational abstraction:

5.3 JAVA Modeling Language 289

JML

/*@ private represents bonusPoints\suh_that bonusPoints==bankCardPoints;

@*/

JML

As Breunesse and Poll [2003] point out, the translation of model fields into a
logical representation is non-trivial if A(x) is not a function of x or if it is not
a total function. KeY roughly follows one of the solutions in that paper: All
occurrences of the model field in an expression are replaced by occurrences of
a reference to a pure (“model”) method m with no arguments and the same
result type as the type of the model method. Method m is specified with an
operation contract which (a) requires in its precondition that there is an x
such that A(x) holds, and (b) ensures that the result r of m satisfies A(r).

5.3.6 Supporting Verification with Annotations

All JML annotations considered so far are obligations for verification: We are
aiming to prove that the program satisfies the given specification. There are
also other kinds of annotations which can be considered more as helpers for
the verification process, such as loop invariants. For the program (3.1) on
page 154 a loop invariant could be specified with JML as follows.

JAVA + JML

m = a[0]; i = 1;while (i < a.length) {

/*@ ensures \forall integer x;0 != x && x < i ;a[x] <= m;

@ assignable m, i;

@ */if (a[i] < m) then

m = a[i];

i++;

}

JAVA + JML

This example also shows the use of the assignable clause for loop bodies. This
is at the time of this writing not a part of the official JML syntax, but is
expected to be included soon.

290 5 Formal Specification

5.4 Comparing OCL and JML

Advantages of OCL over JML:

1. OCL lives on a higher level of abstraction. A UML diagram can be an-
notated with OCL constraints before code is developed. Automatic gen-
eration of constraints from patterns (described in Chapter 6) as well as
editing constraints parallel to natural language phrases (as detailed in
Chapter 7) would be much harder if not impossible on code level.

2. As a consequence of the previous item, OCL is not committed to a par-
ticular programming language and better suited for model driven system
development.

3. OCL is an OMG standard, though one has to admit that at the time of
this writing the official standard draft still contains serious inconsistencies
and many unfinished items.

Advantages of JML over OCL

1. JML is closer to JAVA code, which encourages its use by programmers and
developers. In fact, today JML specifications are much more widespread
than OCL specifications.

2. JML offers a greater variety of concepts on the implementation level, like
exceptional behaviour, modifies clauses, and loop invariants.

JML is not standardised and its specification document is still very incomplete.

Referring to the Pre-State

It is a detail, but nevertheless instructive to compare the differences in re-
ferring to values in pre-states in OCL and JML, i.e., to compare OCL’s
@pre construct with JML’s \old. The former can be attached to individ-
ual symbols while the second can only be applied to whole expressions. So,
o@pre.b@pre.c@pre, o.b@pre.c@pre, o.b.c@pre, o@pre.b.c@pre are all le-
gal OCL expressions while only \old(o.b.c) is allowed in JML, and would
correspond to the first of the OCL expressions. The JML proponents argue
that the explicit scoping of the \old construct make it easier to read. A
more substantial difference is the fact, that the @pre construct is hard to
implement for run-time checking in full generality. A drawback of the \old

construct comes to the surface in the following specification problem. Suppose
you want to state in a postcondition to a method m manipulating an array
a[] and a field idx that the value a[0] equals the old value of the array at
position idx. Now, \old(a[idx]) would not do, since the value of idx in the
pre-state would be used. We resorted to

JML

(\forall int x; x==idx; \old(a[x])==a[0]);
JML

5.4 Comparing OCL and JML 291

On the other hand, one has to admit that OCL does not offer a built-in
construct to model JAVA arrays. The sequence data type does not fit since it
does not take into account that JAVA arrays are objects and also it declares
operations, e.g., union or append, that do not make sense for arrays. As an
extension of OCL we introduced functions a.get(i) and a.length(i) for
array object a and integer i. The above discussed expression can now easily
be written as a.get@pre(i).

Modifies Clauses

Our semantics of the assignable or modifies clause deviates slightly from the
semantics in JML. In the JML semantics, only the locations listed in the
assignable clause can be assigned to during method execution. In the KeY
semantics the locations contained in the modifier terms may be assigned to,
it is only important that in the end the terms have the same value as before.
We found no clear statement on OCL’s position on the frame problem. The
unofficial position seem to be that it is assumed that locations not contained
in the postcondition cannot change. In [Baar, 2006] explicit extension of OCL
to deal with the frame problem are proposed.

Range of Quantification

In JML, quantification extends over all elements of a given type and not only
over all created or allocated elements. Since our logic uses the same semantics
the static JML invariant (5.7) translates in

∀p1.∀p2.(p1 !
.
= p2 −> p1.cardNumber !

.
= p2.cardNumber)

where p1, p2 are variables of type BankCard. The instance JML invariant (5.9)
on the other hand translates to

∀this.(this.<created> −> ∀p.(this !
.
= p −>

this.cardNumber !
.
= p.cardNumber))

This discrepancy is attributable to the fact that implicit quantification of the
variable this is treated differently from explicitly quantified variables; they
are only meant to range over existing elements.

For a not created BankCard o, the value of o.cardNumber should be unde-
fined. The validity of the two formulae above now depends on how undefined-
ness is modelled. In our logic we model undefinedness by underspecification
which would make both formulae invalid.

In our logic we express the intended invariant by

∀p1.∀p2.(p1.<created> & p2.<created>−> (p1 !
.
= p2 −>

p1.cardNumber !
.
= p2.cardNumber))

292 5 Formal Specification

The JML community is at the time of this writing considering the introduction
of an attribute similar to <created>.

The shown first-order formula is also the correct translation of the OCL
constraint (5.2). The OCL method A::allInstances() returns the set of all
existing instances of A.

The semantics in Appendix A of the OCL standard draft also distinguishes
between existing elements and reservoir elements waiting to be created. But
there seems to be no possibility to talk about these element in the language.

Integers

The following JML specification for the integer square root method can be
found in [Leavens et al., 2003]

JAVA + JML (5.11)

/*@ requires y >= 0;

@ ensures
@ \result * \result <= y &&

@ y < (abs(\result)+1) * (abs(\result)+1);
@ */publi stati int isqrt(int y)

JAVA + JML

In [Chalin, 2003], the following flaw has been pointed out. For y = 1 and
\result = 1073741821 = 1

2
(max int − 5) the above postcondition is true,

though we do not want 1073741821 to be a square root of 1. The problem
arises since JML uses the JAVA semantics of integers which yields

1073741821 ∗ 1073741821 = −2147483639
1073741822 ∗ 1073741822 = 4

The findings in [Chalin, 2003] seem to indicate that programmers tend to
have the mathematical integers in their minds and frequently make mistakes
in JML specification. Chalin proposes the extension JMLa that includes a new
primitive type \bigint of arbitrary precision integers, i.e., the mathematical
integers.

The KeY system offers the option to choose between the mathematical
and the JAVA semantics of integers (⇒ Chap. 12).

In OCL quantification over all integers is not possible. Its semantics only
allows finite sets. The expression Integer::allInstances() -> forAll(e)

is thus undefined.

	Formal Specification by Andreas Roth and Peter H. Schmitt
	General Concepts
	Operation Contracts
	Invariants

	Object Constraint Language
	OCL by Example
	OCL Syntax
	OCL Semantics
	Advanced Topics

	Java Modeling Language
	JML by Example
	JML Expressions
	Operation Contracts in JML
	Invariants in JML
	Model Fields and Model Methods
	Supporting Verification with Annotations

	Comparing OCL and JML

