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Arrays are references

var a := new [20];
al7] := "hello";

var b := a;

assert b[7] == "hello";
b[7] := "hi";

a[8] := "greetings";

assert a[7] == "hi" && b[8]

Type of a is
array<string>

== "greetings”;



Arrays are references

var a := new [20]; Type of a is
al7] := "hello"; array<string>
var b := a;

assert b[7] == ;

b[7] := ;

al[8] := ;

assert a[7] == && b[8] == ;

b := new [8];

b[7] := ;

assert a[7] == ;

assert a.Length == 20 && b.Length

I
I
(0.0)
oo



Multi-dimensional arrays

var m := new [3,

m[@, 9] := true;
m[1l, 8] := false;
assert m.Lengtho ==

10];

3 && m.Lengthl

Type of mis
array2<bool>

10;



Sequences

Arrays are mutable and are reference types
Sequences are immutable and are value types, like and

To declare a sequence we use type constructor seq,
e.g., segq<bool>, seg<int>

Examples:
[ ] the empty sequence
[58] singleton integer sequence

, , ] string sequence



Sequences

var s := [6, 28, 496];
assert s[2] == 496;

assert |s == 3; // length function
assert s + [8128] == [6, 28, 496, 8128];

var p := [1, 5, 12, 22, 35]
assert p[2..4] == [12, 22];
assert p[..2] == [1, 5];
assert p[2..] = [12 22, 35];
a := new [3];

alo], a[l], a[2] := 6, 28, 496;
s, p :=al[..], a[..2];

assert s == [6, 28, 496] && p == [6, 28];



Linear search

method LinearSearch<T>(a: <T>,

returns (n:

)

P: T ->

\

Predicateon T




Linear search

method LinearSearch<T>(a: <T>, P: T ->

returns (n: ) \\\

ensures O <= n <= a.lLength "
ensures n == a.Length || P(a[n]) Predicateon T




Linear search

method LinearSearch<T>(a: <T>, P: T ->
returns (n: )

ensures @ <= n <= a.lLength

ensures n == a.Length || P(a[n])
{

n := 0;

while n I= a.Length
invariant @ <= n <= a.lLength



Linear search

method LinearSearch<T>(a: <T>, P: T ->
returns (n: )

ensures @ <= n <= a.lLength

ensures n == a.Length || P(a[n])
{

n := 0;

while n I= a.Length
invariant @ <= n <= a.lLength

{
if P(a[n])
{ return; }  returnjumpsto end of
n :=n+ 1; method, and we need to
} prove the postcondition



Alternative implementation

method LinearSearchl<T>(a: <T>, P:T ->
returns (n: )

ensures @ <= n <= a.lLength

ensures n == a.Length || P(a[n])
{

n := a.lLength;
}



Alternative implementation

method LinearSearchl<T>(a: <T>, P:T -> )
returns (n: )
ensures @ <= n <= a.lLength
ensures n == a.Length || P(a[n])
{
n := a.lLength;
}
To specify that no elements satisfy P, when n == a.lLength we need to quantify

over the elements of a.

We can achieve the same effect by quantifying over the array positions instead:

forall 1 :: 0 <=1 < a.Length ==> IP(a[i])



Strengthening the contract

method LinearSearchl<T>(a: <T>, P:T -> )
returns (n: )

ensures @ <= n <= a.lLength

ensures n == a.Length || P(a[n])

ensures n == a.lLength ==>

forall 1 :: © <= 1 < a.Length ==> !P(a[i])

\

can leave off i’s type
since it can be inferred




Strengthening the contract

method LinearSearchl<T>(a: <T>, P:T -> )
returns (n: )

ensures @ <= n <= a.lLength

ensures n == a.Length || P(a[n])

ensures n == a.lLength ==>

forall 1 :: @ <= 1 < a.Length ==> 'P(a[i])

We use the “replace a constant by a variable”
loop design technique 6.1:

invariant forall 1 :: 0 <=1 < n ==> IP(a[i])



{ forall 1 :: @ <=1 <n+ 1==>1 P(a[i]) }
n :=n+ 1;
{ forall 1 :: @ <=1 < n ==> 1 P(a[i]) }



{ forall i :: @ <=1 <n || i ==n==> 1P(a[i]) }
{ forall 1 :: @ <=1 <n+ 1==>1 P(a[i]) }
n :=n+ 1;

{ forall 1 :: @ <=1 < n ==> 1 P(a[i]) }



Linear search

forall x :: A |

| B ==> C
= (forall x :: A =

=>
=> C) && (forall x :: B

Il
Il
\4
(@)
~

{ (forall i :: @ <=1 < n ==>1 P(a[i])) &&
(forall 1 :: 1 == n ==> | P(a[i]))

}

{ forall i :: @ <=1 <n || i ==n ==> 1P(a[i]) }

{ forall 1 :: @6 <=1 <n+1==>1 P(a[i]) }

n :=n+ 1;

{ forall 1 :: @ <=1 < n ==> 1| P(a[i]) }



Linear search

(forall x :: x == E ==> A) = A[X\E] (one-point rule)

{ (forall i :: @ <=1 < n ==> IP(a[i])) && !P(a[n]) }
{ (forall i :: @ <=1 < n ==> 1| P(a[i])) &&
(forall i :: i == n ==> 1 P(a[i]))
¥
{ forall i :: @ <=1 <n || 1i==n==> IP(a[i]) }
{ forall 1 :: @ <=1 <n+ 1==>1 P(a[i]) }
n :=n+ 1;

{ forall 1 :: @ <=1 < n ==> 1| P(a[i]) }



Linear search

holds due to invariant

\\

{ (forall i :: @ <=1 < n ==> IP(a[i])) && !P(a[n]) }
{ (forall i :: @ <=1 < n ==> 1 P(a[i])) &&
(forall i :: i == n ==> | P(a[i]))
}
{ forall i :: @ <=1 <n || 1 ==n ==> IP(a[i]) }
{ forall i :: @ <=1 <n+ 1 ==>"1 P(a[i]) }
n :=n+ 1;
{ forall 1 :: @ <=1 < n ==>1 P(a[i]) }

holds after if (P(a[n])) { return; }




{ (forall i :: @ <=1 <
{ (forall i :: @ <=1 <
(forall i :: i == n =

¥

{ forall i

{ forall i
13

{ forall i

n = n +

Linear search

n ==> IP(a[i])) && !P(a[n]) }
n ==> 1 P(a[i])) &&
=> 1 P(a[i]))
1 @ <=1i<n || 1i==n==>1P(a[i]) }
t: @ <=1i<n+1==>1P(a[i]) }

:: @ <=1 < n==>1 P(a[i]) }

Loop body for LinearSearch works here



Full program

method LinearSearchl<T>(a: <T>, P:T -> )
returns (n: )
ensures @ <= n <= a.lLength

ensures n a.Length || P(a[n])
ensures n == a.lLength ==>
forall 1 :: @ <= 1 < a.Length ==> IP(a[i])
{
n := 0;
while n != a.Length
invariant @ <= n <= a.lLength
invariant forall 1 :: 0 <=1 < n ==> IP(a[i])
{
if P(a[n]) { return; }
n := n+ 1;
}
}



Finding the first element

method LinearSearch2<T>(a: <T>, P:T -> )
returns (n: )

ensures @ <= n <= a.lLength

ensures n == a.Length || P(a[n])

ensures forall 1 :: 0 <=1 < n ==> IP(a[i])

The second and third postconditions imply that n is the smallest index such
that a[ n | satisfies P

The loop specification and body of LinearSearchl satisfy this contract too



Knowing it's there

If we can assume that at least one element of a satisfies P
we can simplify the contract to

method LinearSearch3<T>(a: <T>, P:T -> )
returns (n: )
requires exists 1 :: @ <= 1 < a.lLength & P(a[i])

ensures @ <= n < a.Length && P(a[n])



An invariant that says where to look

The element we are looking for is at index n or higher

invariant exists i ::
n <= 1 < a.Length && P(a[i])

holds after
if (P(a[n])
{ return; }

/// on entry to loop

{ 'P(a[n]) && exists i ::
n <= i < a.Length && P(a[i]) }
{ exists 1 :: n+ 1 <=1 < a.Length & P(a[i]) }
n :=n+ 1;
{ exists i :: n <=1 < a.Length & & P(a[i]) }

holds due to invariant




Implementation of LinearSearch3

method LinearSearch3<T>(a: <T>, P: T -> )
returns (n: )
requires exists i :: @ <= 1 < a.lLength && P(a[i])
ensures @ <= n < a.Length && P(a[n])
{
n := 0;

simplified since n never

while true - f reaches a.Length
invariant @ <= n < a.Length

invariant exists i :: n <=1 < a.Length && P(a[i])
decreases a.Length - n
{
if P(a[n]) { return; }
n :=n+ 1;
}

¥



Exercises

1. Write a linear-search specification for the method

method LinearSearch4<T>(a: array<T>, P: T -> bool)
returns (n: int)

that always returns a value strictly less than a.Length and uses a negative value (instead of
a.Length) to signal that no element satisfies P.

Implement the specification.



