CS:5810 Formal Methods in Software Engineering

Reasoning about Programs with Arrays in Dafny

Copyright 2020-21, Graeme Smith and Cesare Tinelli.
Produced by Cesare Tinelli at the University of lowa from notes originally developed by Graeme Smith at the University of Queensland. These notes

are copyrighted materials and may not be used in other course settings outside of the University of lowa in their current form or modified form without
the express written permission of one of the copyright holders. During this course, students are prohibited from selling notes to or being paid for taking
notes by any person or commercial firm without the express written permission of one of the copyright holders.

Arrays are references

var a := new [20];
al7] := "hello";

var b := a;

assert b[7] == "hello";
b[7] := "hi";

a[8] := "greetings";

assert a[7] == "hi" && b[8]

Type of a is
array<string>

== "greetings”;

Arrays are references

var a := new [20]; Type of a is
al7] := "hello"; array<string>
var b := a;

assert b[7] == ;

b[7] := ;

al[8] := ;

assert a[7] == && b[8] == ;

b := new [8];

b[7] := ;

assert a[7] == ;

assert a.Length == 20 && b.Length

I
I
(0.0)
oo

Multi-dimensional arrays

var m := new [3,

m[@, 9] := true;
m[1l, 8] := false;
assert m.Lengtho ==

10];

3 && m.Lengthl

Type of mis
array2<bool>

10;

Sequences

Arrays are mutable and are reference types
Sequences are immutable and are value types, like and

To declare a sequence we use type constructor seq,
e.g., segq<bool>, seg<int>

Examples:
[] the empty sequence
[58] singleton integer sequence

, ,] string sequence

Sequences

var s := [6, 28, 496];
assert s[2] == 496;

assert |s == 3; // length function
assert s + [8128] == [6, 28, 496, 8128];

var p := [1, 5, 12, 22, 35]
assert p[2..4] == [12, 22];
assert p[..2] == [1, 5];
assert p[2..] = [12 22, 35];
a := new [3];

alo], a[l], a[2] := 6, 28, 496;
s, p :=al[..], a[..2];

assert s == [6, 28, 496] && p == [6, 28];

Linear search

method LinearSearch<T>(a: <T>,

returns (n:

)

P: T ->

\

Predicateon T

Linear search

method LinearSearch<T>(a: <T>, P: T ->

returns (n:) \\\

ensures O <= n <= a.lLength "
ensures n == a.Length || P(a[n]) Predicateon T

Linear search

method LinearSearch<T>(a: <T>, P: T ->
returns (n:)

ensures @ <= n <= a.lLength

ensures n == a.Length || P(a[n])
{

n := 0;

while n I= a.Length
invariant @ <= n <= a.lLength

Linear search

method LinearSearch<T>(a: <T>, P: T ->
returns (n:)

ensures @ <= n <= a.lLength

ensures n == a.Length || P(a[n])
{

n := 0;

while n I= a.Length
invariant @ <= n <= a.lLength

{
if P(a[n])
{ return; } returnjumpsto end of
n :=n+ 1; method, and we need to
} prove the postcondition

Alternative implementation

method LinearSearchl<T>(a: <T>, P:T ->
returns (n:)

ensures @ <= n <= a.lLength

ensures n == a.Length || P(a[n])
{

n := a.lLength;
}

Alternative implementation

method LinearSearchl<T>(a: <T>, P:T ->)
returns (n:)
ensures @ <= n <= a.lLength
ensures n == a.Length || P(a[n])
{
n := a.lLength;
}
To specify that no elements satisfy P, when n == a.lLength we need to quantify

over the elements of a.

We can achieve the same effect by quantifying over the array positions instead:

forall 1 :: 0 <=1 < a.Length ==> IP(a[i])

Strengthening the contract

method LinearSearchl<T>(a: <T>, P:T ->)
returns (n:)

ensures @ <= n <= a.lLength

ensures n == a.Length || P(a[n])

ensures n == a.lLength ==>

forall 1 :: © <= 1 < a.Length ==> !P(a[i])

\

can leave off i’s type
since it can be inferred

Strengthening the contract

method LinearSearchl<T>(a: <T>, P:T ->)
returns (n:)

ensures @ <= n <= a.lLength

ensures n == a.Length || P(a[n])

ensures n == a.lLength ==>

forall 1 :: @ <= 1 < a.Length ==> 'P(a[i])

We use the “replace a constant by a variable”
loop design technique 6.1:

invariant forall 1 :: 0 <=1 < n ==> IP(a[i])

{ forall 1 :: @ <=1 <n+ 1==>1 P(a[i]) }
n :=n+ 1;
{ forall 1 :: @ <=1 < n ==> 1 P(a[i]) }

{ forall i :: @ <=1 <n || i ==n==> 1P(a[i]) }
{ forall 1 :: @ <=1 <n+ 1==>1 P(a[i]) }
n :=n+ 1;

{ forall 1 :: @ <=1 < n ==> 1 P(a[i]) }

Linear search

forall x :: A |

| B ==> C
= (forall x :: A =

=>
=> C) && (forall x :: B

Il
Il
\4
(@)
~

{ (forall i :: @ <=1 < n ==>1 P(a[i])) &&
(forall 1 :: 1 == n ==> | P(a[i]))

}

{ forall i :: @ <=1 <n || i ==n ==> 1P(a[i]) }

{ forall 1 :: @6 <=1 <n+1==>1 P(a[i]) }

n :=n+ 1;

{ forall 1 :: @ <=1 < n ==> 1| P(a[i]) }

Linear search

(forall x :: x == E ==> A) = A[X\E] (one-point rule)

{ (forall i :: @ <=1 < n ==> IP(a[i])) && !P(a[n]) }
{ (forall i :: @ <=1 < n ==> 1| P(a[i])) &&
(forall i :: i == n ==> 1 P(a[i]))
¥
{ forall i :: @ <=1 <n || 1i==n==> IP(a[i]) }
{ forall 1 :: @ <=1 <n+ 1==>1 P(a[i]) }
n :=n+ 1;

{ forall 1 :: @ <=1 < n ==> 1| P(a[i]) }

Linear search

holds due to invariant

\\

{ (forall i :: @ <=1 < n ==> IP(a[i])) && !P(a[n]) }
{ (forall i :: @ <=1 < n ==> 1 P(a[i])) &&
(forall i :: i == n ==> | P(a[i]))
}
{ forall i :: @ <=1 <n || 1 ==n ==> IP(a[i]) }
{ forall i :: @ <=1 <n+ 1 ==>"1 P(a[i]) }
n :=n+ 1;
{ forall 1 :: @ <=1 < n ==>1 P(a[i]) }

holds after if (P(a[n])) { return; }

{ (forall i :: @ <=1 <
{ (forall i :: @ <=1 <
(forall i :: i == n =

¥

{ forall i

{ forall i
13

{ forall i

n = n +

Linear search

n ==> IP(a[i])) && !P(a[n]) }
n ==> 1 P(a[i])) &&
=> 1 P(a[i]))
1 @ <=1i<n || 1i==n==>1P(a[i]) }
t: @ <=1i<n+1==>1P(a[i]) }

:: @ <=1 < n==>1 P(a[i]) }

Loop body for LinearSearch works here

Full program

method LinearSearchl<T>(a: <T>, P:T ->)
returns (n:)
ensures @ <= n <= a.lLength

ensures n a.Length || P(a[n])
ensures n == a.lLength ==>
forall 1 :: @ <= 1 < a.Length ==> IP(a[i])
{
n := 0;
while n != a.Length
invariant @ <= n <= a.lLength
invariant forall 1 :: 0 <=1 < n ==> IP(a[i])
{
if P(a[n]) { return; }
n := n+ 1;
}
}

Finding the first element

method LinearSearch2<T>(a: <T>, P:T ->)
returns (n:)

ensures @ <= n <= a.lLength

ensures n == a.Length || P(a[n])

ensures forall 1 :: 0 <=1 < n ==> IP(a[i])

The second and third postconditions imply that n is the smallest index such
that a[n | satisfies P

The loop specification and body of LinearSearchl satisfy this contract too

Knowing it's there

If we can assume that at least one element of a satisfies P
we can simplify the contract to

method LinearSearch3<T>(a: <T>, P:T ->)
returns (n:)
requires exists 1 :: @ <= 1 < a.lLength & P(a[i])

ensures @ <= n < a.Length && P(a[n])

An invariant that says where to look

The element we are looking for is at index n or higher

invariant exists i ::
n <= 1 < a.Length && P(a[i])

holds after
if (P(a[n])
{ return; }

/// on entry to loop

{ 'P(a[n]) && exists i ::
n <= i < a.Length && P(a[i]) }
{ exists 1 :: n+ 1 <=1 < a.Length & P(a[i]) }
n :=n+ 1;
{ exists i :: n <=1 < a.Length & & P(a[i]) }

holds due to invariant

Implementation of LinearSearch3

method LinearSearch3<T>(a: <T>, P: T ->)
returns (n:)
requires exists i :: @ <= 1 < a.lLength && P(a[i])
ensures @ <= n < a.Length && P(a[n])
{
n := 0;

simplified since n never

while true - f reaches a.Length
invariant @ <= n < a.Length

invariant exists i :: n <=1 < a.Length && P(a[i])
decreases a.Length - n
{
if P(a[n]) { return; }
n :=n+ 1;
}

¥

Exercises

1. Write a linear-search specification for the method

method LinearSearch4<T>(a: array<T>, P: T -> bool)
returns (n: int)

that always returns a value strictly less than a.Length and uses a negative value (instead of
a.Length) to signal that no element satisfies P.

Implement the specification.

