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“Academia” Modeling Example
• We will model an academic enterprise expressing relationships between 
– People 

• Faculty
• Students 

– Graduate
– Undergraduate

• Instructors – which can be grad students or faculty

– Courses
– Academic departments
– Personal ID numbers
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How should we model these basic domains in Alloy?



Strategy

• Build and validate your model incrementally
– Start with basic signatures and fields
–Add basic constraints
– Instantiate the model and study the results
–Probe the model with assertions
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Strategy

• Add groups of features at a time
–New signatures and fields
–New constraints
–Confirm previous assertions
–Probe new features with assertions 
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Basic Components
• People
– Students: Undergrads and Grads
– Instructors: Faculty and Grads

• Courses
• Relationships
– One instructor teaches a course
– One or more students are taking a course
– Students can be waiting for for course
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Academia Signatures
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abstract sig Person {}
sig Faculty extends Person {}
abstract sig Student extends Person {}
sig Graduate, Undergrad extends Student {}
sig Instructor in Person {}

sig Course {}
…

We are not specifying here that 
instructors can only be graduate 
students or faculty.  We will do 
that later with a “fact” constraint.



Academia Fields

• Only one instructor teaches a course
• 2 choices:

sig Instructor in Person {
teaches: set Course }

fact oneInstrucPerCourse {
all c: Course | one teaches.c }

sig Course {
taughtby: one Instructor }
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We cannot specify that 
there is exactly one 
instructor per course

We have to add a 
fact specifying this 
constraint



Course Fields

• Only one instructor teaches a course
• One or more students are taking a course
• Students can be waiting for a course



Course Fields
• Only one instructor teaches a course
• One or more students are taking a course
• Students can be waiting for a course

sig Course {

taughtby: one Instructor,

enrolled: some Student,

waitlist: set Student

}
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Exactly one instructor per course.

One or more students 
per course

Zero or more students 
per course



Dependent Relations
• We may choose to define dependent fields as auxiliary relations instead:

teaches (transpose of taughtby)
taking (transpose of enrolled)
waitingfor (transpose of waitlist)

fun teaches []: Instructor -> Course { ~taughtby }
fun taking []: Student -> Course { ~enrolled }
fun waitingfor []: Student -> Course { ~waitlist }

• Or we may choose not to have them at all:
if i is an instructor, 

i.teaches = taughtby.i
10



Note

• Let i be an Instructor
• Let taughtby be the following binary relation
– taughtby: Course -> one Instructor 

• The following expressions denote the same set of courses
– taugthby.i
– i.~taugthby
– i[taugthby]
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Academia Constraints

• All instructors are either faculty or graduate students

– Was not expressed in signature definition — although it could have:

sig Instructor in Graduate + Faculty

• No one is waiting for a course unless someone is enrolled

• No graduate students teach a course that they are enrolled in
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Academia Constraints
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fact {
-- All instructors are either Faculty or Graduate Students

-- no one is waiting for a course unless someone is enrolled

-- graduate students do not teach courses they are enrolled in or waiting to enroll in

}



Academia Constraints
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fact {
-- All instructors are either Faculty or Graduate Students
all i: Instructor | i in Faculty + Graduate

-- no one is waiting for a course unless someone is enrolled
all c: Course | 

some c.waitlist implies some c.enrolled

-- graduate students do not teach courses they are enrolled in or waiting to enroll in
all c: Course | 

c.taughtby !in c.enrolled + c.waitlist
}



Academia Realism Constraints

• There is a graduate student who is an instructor

• There are at least:

– Two courses and

– Three undergraduates
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Academia Realism Constraints
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Can be added to the model as facts, or just put in a run command to 
instruct the Alloy Analyzer to ignore unrealistic instances

pred RealismConstraints [] {
-- there is a graduate student who is an instructor
some Graduate & Instructor 

-- there are at least two courses
#Course > 1

-- there are at least three undergraduates
#Undergrad > 2

} 



Academia Assertions

Let’s check if our model has these properties:

• No instructors are on the waitlist for a course they teach

• No student is enrolled and on the waitlist for the same course
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Academia Assertions
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-- no instructors are on the waitlist for a course they teach

-- no student is enrolled and on the waitlist 
-- for the same course



Academia Assertions
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-- no instructors are on the waitlist for a course they teach
assert NoWaitingTeacher {

all c: Course | 
no (c.taughtby & c.waitlist)

}

-- no student is enrolled and on the waitlist 
-- for the same course
assert NoEnrolledAndWaiting {

all c: Course | 
no (c.enrolled & c.waitlist)

}



Exercises

• Load academia-1.als

• With realism conditions enabled, do any instances exist in the 
default scopes?
– Manipulate the scopes as necessary to obtain an instance under the 

realism conditions

• By looking at various sample instances, do you consider the 
model to be underconstrained in any way?

• Check assertions

20



Realism constraints
• No instances exist in the default scope
• Why ?

– default scope:
at most 3 tuples in each top-level signature

entails: at most 3 Students

– some Graduate & Instructor 
#Undergrad > 2

entails: at least 4 Students
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Realism Constraints
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pred [] RealismConstraints
{

-- there is a graduate student who’s an instructor
some Graduate & Instructor 

-- there are at least two courses
#Course > 1

-- there are at least three undergraduates
#Undergrad > 2

}

run RealismConstraints for 4



Instance
#Undergrad > 2 #Undergrad > 1

Instance found:

Signatures:
Course = {C0,C1}
Person = {U0,U1,G}
Faculty = {}
Student = {U0,U1,G}
Undergrad = {U0,U1}
Graduate = {G}
Instructor = {G}

Relations:
taughtby = {(C0,G),(C1,G)}
enrolled = {(C0,U1),(C1,U0)}
waitlist = {(C1,U1),(C1,U0)}
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Need to relate enrollment 
and waiting lists



Counter-example to assertion
Analyzing NoEnrolledAndWaiting ...

Counterexample found:

Signatures:
Course = {C}
Person = {G0,G1,F}
Faculty = {F}
Student = {G0,G1}
Undergrad = {}
Graduate = {G0,G1}
Instructor = {G0,G1}

Relations:
taughtby = {(C,G0)}
enrolled = {(C,G1)}
waitlist = {(C,G1)}
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Academia Assertions

• No student is enrolled and on the waitlist for the same course

– A counterexample has been found, hence 
we transform this assertion into a fact

• No instructors are on the waitlist for a course they teach
– No counterexample
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Academia Assertions

• NoWaitingTeacher assertion
– No counterexample within the default scope
– No counterexample within the scope 4, 5, 6, 10

• Can we conclude that the assertion is valid?
– No! (It might have conterexamples but out of scope)

• But we take comfort in the
– small scope hypothesis: if an assertion is not valid, it probably has a small 

counterexample
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Why NoWaitingTeacher holds
• Assertion
-- no instructor is on the waitlist for a course that he/she teaches
assert NoWaitingTeacher {

all c: Course | no (c.taughtby & c.waitlist)

}

• Facts
-- (i) faculty are not students and (ii) graduate students do not 
-- teach courses they are enrolled in or waiting to enroll in
all c: Course | 

c.taughtby !in c.enrolled + c.waitlist
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Extension 1

• Add an attribute for students
– Unique ID numbers
– This requires a new signature

• Add student transcripts

• Add prerequisite structure for courses

28



New Relations
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sig Id {}

abstract sig Student extends Person {
id: one Id,
transcript: set Course

}

sig Graduate, Undergrad extends Student {}

sig Instructor in Person {}

sig Course {
taughtby: one Instructor,
enrolled: some Student,
waitlist: set Student, 
prerequisites: set Course

}



New Constraints
• Each Student is identified by one unique ID
– Exactly one ID per Student 

already enforced by multiplicities
– No two distinct students have the same ID

has to be specified as a fact

• A student’s transcript contains a course only if it contains the course’s 
prerequisites

• A course does not have itself as a prerequisite

• Realism: there exists a course with prerequisites and with students 
enrolled
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Academia Constraints
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fact {

...

-- A student’s transcript contains a course only
-- if it contains the course’s prerequisites
all s: Student |

s.transcript.prerequisites in s.transcript

-- A course does not have itself as a prerequisite
all c: Course | c !in c.prerequisites

}

run {

...

-- there is a course with prerequisites and 
-- enrolled students
some c: Course |

some c.prerequisites and some c.enrolled
}

not sufficient!



Academia Constraints
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fact {

...

-- A student’s transcript contains a course only 
-- if it contains the course’s prerequisites
all s: Student |

s.transcript.prerequisites in s.transcript

-- There are no cycles in the prerequisite dependencies
all c: Course | c !in c.^prerequisites

}

run {

...

-- there is a course with prerequisites and
-- enrolled students
some c: Course |

some c.prerequisites and some c.enrolled
}



Academia Assertions

• Students can only wait to be in a course for 
which they already have  the prerequisites

assert AllWaitsHavePrereqs {

all s: Student | 

(waitlist.s).prerequisites in s.transcript

}
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Exercises

• Load academia-2.als
• With realism conditions enabled, do any instances exist in the 

default scopes?
– Manipulate the scopes as necessary to obtain an instance under the 

realism conditions

• By looking at various sample instances, do you consider the 
model to be underconstrained in any way?
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Counter-example
Analyzing AllWaitsHavePrereqs ...

Counterexample found:

Signatures:
Id = {Id0,Id1,Id2}
Course = {C0,C1}
Person = {U,G0,G1}
Faculty = {}
Student = {U,G0,G1}
Undergrad = {U}
Graduate = {G0,G1}
Instructor = {G0,G1}

Relations:
taughtby = {(C0,G0),(C1,G0)}
enrolled = {(C0,U),(C1,G1)}
waitlist = {(C1,U)}
prerequisites = {(C1,C0)}
transcript = {(G1,C0)}
id = {(U,Id0),(G0,Id2),(G1,Id1)}
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U waits for the course C1
and

C0 is a prerequisite for C1
but

U does not have C0

Where is (U,C0)?



New Constraint

Old Assertion: AllWaitsHavePrereqs
Students can wait only for those courses for which they already have 
the prerequisites

Old Fact:
Students can have a course only if they already have the prerequisites

New Fact:
Students can have, wait for or take a course only if they already have the 
prerequisites
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New Constraint
New Fact: A student can have, wait for or take a course only if they already have the 
prerequisites

all s: Student | 
(waitlist.s.prerequisites +
enrolled.s.prerequisites +
s.transcript.prerequisites) in s.transcript

all s: Student | 
(waitlist.s + enrolled.s + s.transcript).prerequisites 
in s.transcript
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Extension 2

• Add Departments, with
– Instructors
– Courses 
– Required courses
– Student majors

• Add Faculty-Grad student relationships
– Advisor
– Thesis committee
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Department Relations

• Each instructor is in a single department
– Each department has at least one instructor

• Each department has some courses
– Courses are in a single department

• Each student has a single department as his/her major
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Faculty-Student Relations

• A graduate student has exactly one faculty member as an 
advisor

• Faculty members serve on graduate students’ committees
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New Relations
sig Faculty extends Person {
incommittee: set Graduate

}

abstract sig Student extends
Person {
major: one Department

}

sig Graduate extends Student {
advisor: one Faculty

}

sig Instructor in Person {
department: one Department

}

sig Department {
course: some Course,
required: some Course

} 
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------------------------- Facts -------------------------

-- Each department has at least one instructor
all d: Department | some department.d

-- Each course is in a single department 
all c: Course | one course.c



New Constraints
• Advisors are on their advisees’ committees

• Students are advised by faculty in their major

• Only faculty can teach required courses

• Faculty members only teach courses in their department

• Required courses for a major are a subset of the courses in that major

• Students must be enrolled in at least one course from their major
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Exercise

• Express as an Alloy fact each of the new constraints in the 
previous slide
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abstract sig Person {}

sig Faculty extends Person {
incommittee: set Graduate 

}

abstract sig Student extends

Person {
id: one Id,
transcript: set Course,
major: one Department

}

sig Undergrad extends Student {}

sig Graduate extends Student {
advisor: one Faculty 

}

sig Instructor in Person {
department: one Department

}

sig Course {
taughtby: one Instructor,
enrolled: some Student,
waitlist: set Student, 
prerequisites: set Course

}

sig Id {}

sig Department { 
courses: some Course, 
required: some Course 

}

------------------ Signatures and Fields -----------------

Advisors are on their advisees’ committees
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abstract sig Person {}

sig Faculty extends Person {
incommittee: set Graduate 

}

abstract sig Student extends

Person {
id: one Id,
transcript: set Course,
major: one Department

}

sig Undergrad extends Student {}

sig Graduate extends Student {
advisor: one Faculty 

}

sig Instructor in Person {
department: one Department

}

sig Course {
taughtby: one Instructor,
enrolled: some Student,
waitlist: set Student, 
prerequisites: set Course

}

sig Id {}

sig Department { 
courses: some Course, 
required: some Course 

}

------------------ Signatures and Fields -----------------

Students are advised by faculty in their major
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abstract sig Person {}

sig Faculty extends Person {
incommittee: set Graduate 

}

abstract sig Student extends

Person {
id: one Id,
transcript: set Course,
major: one Department

}

sig Undergrad extends Student {}

sig Graduate extends Student {
advisor: one Faculty 

}

sig Instructor in Person {
department: one Department

}

sig Course {
taughtby: one Instructor,
enrolled: some Student,
waitlist: set Student, 
prerequisites: set Course

}

sig Id {}

sig Department { 
courses: some Course, 
required: some Course 

}

------------------ Signatures and Fields -----------------

Required courses for a major are a subset of the courses in that major
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abstract sig Person {}

sig Faculty extends Person {
incommittee: set Graduate 

}

abstract sig Student extends

Person {
id: one Id,
transcript: set Course,
major: one Department

}

sig Undergrad extends Student {}

sig Graduate extends Student {
advisor: one Faculty 

}

sig Instructor in Person {
department: one Department

}

sig Course {
taughtby: one Instructor,
enrolled: some Student,
waitlist: set Student, 
prerequisites: set Course

}

sig Id {}

sig Department { 
courses: some Course, 
required: some Course 

}

------------------ Signatures and Fields -----------------

Only faculty teach required courses
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abstract sig Person {}

sig Faculty extends Person {
incommittee: set Graduate 

}

abstract sig Student extends

Person {
id: one Id,
transcript: set Course,
major: one Department

}

sig Undergrad extends Student {}

sig Graduate extends Student {
advisor: one Faculty 

}

sig Instructor in Person {
department: one Department

}

sig Course {
taughtby: one Instructor,
enrolled: some Student,
waitlist: set Student, 
prerequisites: set Course

}

sig Id {}

sig Department { 
courses: some Course, 
required: some Course 

}

------------------ Signatures and Fields -----------------

Faculty members only teach courses in their department
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abstract sig Person {}

sig Faculty extends Person {
incommittee: set Graduate 

}

abstract sig Student extends

Person {
id: one Id,
transcript: set Course,
major: one Department

}

sig Undergrad extends Student {}

sig Graduate extends Student {
advisor: one Faculty 

}

sig Instructor in Person {
department: one Department

}

sig Course {
taughtby: one Instructor,
enrolled: some Student,
waitlist: set Student, 
prerequisites: set Course

}

sig Id {}

sig Department { 
courses: some Course, 
required: some Course 

}

------------------ Signatures and Fields -----------------

Students must be enrolled in at least one course from their major
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abstract sig Person {}

sig Faculty extends Person {
incommittee: set Graduate 

}

abstract sig Student extends

Person {
id: one Id,
transcript: set Course,
major: one Department

}

sig Undergrad extends Student {}

sig Graduate extends Student {
advisor: one Faculty 

}

sig Instructor in Person {
department: one Department

}

sig Course {
taughtby: one Instructor,
enrolled: some Student,
waitlist: set Student, 
prerequisites: set Course

}

sig Id {}

sig Department { 
courses: some Course, 
required: some Course 

}

------------------ Signatures and Fields -----------------

There are at least two departments and some required courses
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abstract sig Person {}

sig Faculty extends Person {
incommittee: set Graduate 

}

abstract sig Student extends

Person {
id: one Id,
transcript: set Course,
major: one Department

}

sig Undergrad extends Student {}

sig Graduate extends Student {
advisor: one Faculty 

}

sig Instructor in Person {
department: one Department

}

sig Course {
taughtby: one Instructor,
enrolled: some Student,
waitlist: set Student, 
prerequisites: set Course

}

sig Id {}

sig Department { 
courses: some Course, 
required: some Course 

}

------------------ Signatures and Fields -----------------

A student’s committee members are faculty in his/her major



Assertions

• Realism constraints: There are at least two departments and 
some required courses

• Administrative constraint: A student’s committee members 
are faculty in his/her major
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Exercises
• Load academia-3.als
• With realism conditions enabled, do any instances exist in the default 

scopes?
• Manipulate the scopes as necessary to obtain an instance under the 

realism conditions
– This requires some thought since constraints may interact in subtle ways
– For example, adding a department requires at least one faculty member for that 

department
• Can you think of any more questions about the model?
– Formulate them as assertions and see if the properties are already enforced by 

the constraints
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