
CS:5810 Formal Methods in Software Engineering

Introduction to Alloy 5
Part 3

Copyright 2001-21, Matt Dwyer, John Hatcliff, Rod Howell, Laurence Pilard, and Cesare Tinelli.
Created by Cesare Tinelli and Laurence Pilard at the University of Iowa from notes originally developed by Matt Dwyer, John Hatcliff, Rod Howell at Kansas
State University. These notes are copyrighted materials and may not be used in other course settings outside of the University of Iowa in their current form
or modified form without the express written permission of one of the copyright holders. During this course, students are prohibited from selling notes to or
being paid for taking notes by any person or commercial firm without the express written permission of one of the copyright holders.

Facts

Explicit constraints on signatures and fields are expressed in
Alloy as facts

fact Name {

Formula1

Formula2

…

}

AA generates only instances that also satisfy all of the fact
constraints in a model

1

Example Facts
-- No person can be their own ancestor
fact selfAncestor {
no p: Person | p in p.^parents

}

-- At most one father and mother
fact loneParents {
all p: Person | lone p.parents & Man and

lone p.parents & Woman
}

-- A person's siblings are other persons with the same parents
fact siblingsDefinition {
all p: Person |
p.siblings = {q: Person | p.parents = q.parents} - p

}
2

Example Facts
-- No person can be their own ancestor
fact selfAncestor {
no p: Person | p in p.^parents

}

-- At most one father and mother
fact loneParents {
all p: Person { lone p.parents & Man // alternative syntax for

lone p.parents & Woman } // conjunctive body
}

-- A person's siblings are other persons with the same parents
fact siblingsDefinition {
all p: Person |
p.siblings = {q: Person | p.parents = q.parents} - p

}
3

Example Facts
fact social {
-- Every married man (woman) has a wife (husband)
all p: Married |
let s = p.spouse |
(p in Man => s in Woman) and
(p in Woman => s in Man)

-- One’s spouse can't be one’s sibling
no p: Married | p.spouse in p.siblings

-- A person can't be married to a blood relative
no p: Married |

some p.*parents & p.spouse.*parents

}
4

Formulas separated by white
space in a { ... } block are
treated conjunctively

Run Command

• Used to ask AA to generate an instance of the model
• May include run conditions
– Used to guide AA to pick model instances with certain characteristics
– E.g., force certain sets and relations to be non-empty
– In this case, not part of the “true” specification

5

Run Example

6

Family Structure:

-- The simplest run command
-- The scope of every signature is 3
run {}

-- The scope scope of every signature is 5
run {} for 5

-- With conditions forcing each set to be populated
-- Setting the scope to 2
run {some Man && some Woman && some Married} for 2

-- Other scenarios with conditions
run {some Woman && no Man} for 7
run {some Man && some Married && no Woman}

Run Command

• To analyze a model,
you add a run command and instruct AA to execute it
– the run command

tells the tool to search for an instance of the model

– you may also give a scope to signatures
bounds the size of instances that will be considered

• AA executes only the first run command in a file

7

Scope

• Limits the size of instances considered to make instance finding
feasible

• Represents the maximum number of elements in a top-level
signature

• Default value = 3 for each top-level signature

8

Run Conditions

• We can use run conditions to encode realism constraints to
e.g.,
– Force generated models to include at least one married person, or

one married man, etc.

• Run conditions can abstracted in constraint macros via the
definition of predicates
– This allows common constraints to be shared

9

Exercises

• Load family-2.als
• Execute it
• Analyze the metamodel
• Look at the generated instance
• Does it look correct?
• What if anything would you change about it?

10

Empty Signatures

• The analyzer’s algorithms prefer smaller instances
– Often it produces empty signatures or otherwise trivial instances
– It is useful to know that these instances satisfy the constraints

(since you may not want them)

• Usually, they do not illustrate the interesting behaviors that are
possible

11

Exercises

• Load family-3.als
• Execute it
• Look at the generated instance
• Does it look correct?
• How can you produce
– two married couples?
– a non-empty married relation and a non-empty siblings relation ?

12

Assertions

• Often, we expect our model to entails certain additional
constraints that are not directly expressed
– e.g., (some A) and (A in B) entails some B

• We can define these constraints as assertions and ask the
analyzer to check if they hold
– e.g., assert BNonEmpty { some B }

check BNonEmpty

13

Assertions

• If the constraint in an assertion does not hold (i.e., does not follow
from the model) the analyzer will produce a counterexample
instance

• If you expect an assertion to hold but it does not, you can either
– add it directly as a fact, or
– refine your model with other constraints until the assertion holds, or
– reflect on whether your expectation that it held was correct to start with!

14

Assertions
• No one has a parent who is also a sibling

assert a1 { all p: Person | no p.parents & p.siblings }

• A person’s siblings are his/her siblings’ siblings

assert a2 { all p: Person | p.siblings = p.siblings.siblings }

• No one shares a common ancestor with his/her spouse
(i.e., spouse isn’t related by blood)

assert a3 { no p: Married |
some p.^parents & p.spouse.^parents

}

15

Assertion Scopes

• You can specify a scope explicitly for any signature
• However, if a signature has been given a scope, then

– a scope of its subignatures can be always determined
– sometimes the scope of its supersignatures can be determined as well

• The AA will compute the tightest scopes it can

16

Scope Examples
abstract sig Object {}
sig Directory extends Object {}
sig File extend Object {}
sig Alias in File {}

We consider some assertion A

• all well-formed commands:
check A for 5 Object
check A for 4 Directory, 3 File
check A for 5 Object, 3 Directory
check A for 3 Directory, 5 File, 3 Alias

• ill-formed, for leaving the scope of File unspecified:
check A for 3 Directory, 3 Alias

17

Scope Examples
abstract sig Object {}
sig Directory extends Object {}
sig File extend Object {}
sig Alias in File {}

• check A for 5 or run {} for 5
places a bound of 5 on each top-level signature (in this case just Object)

• check A for 5 but 3 Directory
additionally places a bound of 3 on Directory, and a bound of 2 on File by
implication

• check A for exactly 3 Directory, exactly 3 Alias, 5 File
limits File to at most 5 tuples, but requires Directory and Alias to have
exactly 3 tuples each

18

Size Determination

Size determined by a signature declaration has priority on size determined
in scope

Example:

abstract sig Color {}
one sig red, yellow, green extends Color {}
sig Pixel { color: one Color }

check A for 2
limits the signature Pixel to 2 elements, but assigns a size of exactly 3 to Color

19

Exercises

• Load family-4.als
• Execute it
• Look at the generated counter-examples
• Why is SiblingsSibling false?
• Why is NoIncest false?

20

Problems with Assertions
Analyzing SiblingSiblings ...
Scopes: Person(3)
Counterexample found:

Person = {M,W0,W1}
Man = {M}
Woman = {W0,W1}
Married = {M,W1}

children = {(W0,W1)}
siblings = {(M,W0),(W0,M)}
spouse = {(M,W1),(W1,M)}

21

M.siblings = {W0}
M.siblings.siblings = {M}

Problems with Assertions

Analyzing NoIncest ...
Scopes: Person(3)
Counterexample found:

Person = {M0,M1,W}
Man = {M0,M1}
Woman = {W}
Married = {M1,W}

children = {(M0,W),(W,M1)}
siblings = {}
spouse = {(M1,W),(W,M1)}

22

(M0 is an Ancestor of M1
and

M0 is an ancestor of W)
and

M1 and W are married

Exercises
• Fix the specification in family-4.als
– If the model is underconstrained, add appropriate constraints
– If the assertion is not correct, modify it

• Demonstrate that your fixes yield no counter-examples
– Does varying the scope make a difference?
– Does this mean that the assertions hold for all models?

23

Functions and Predicates
Parametrized macros for relational expressions and formulas
– Can be named and reused in different contexts

(facts, assertions, and run conditions)
– Can have zero or more parameters
– Used to abstract and factor out common patterns

Functions are good for:
– relational expressions you want to reuse in different contexts

Predicates are good for:
– formulas you want to reuse in different contexts

24

Functions
A named relation expression template, with zero or more parameters

Examples:

– The sisters function
fun sisters [p: Person] : set Woman {

{ w: Woman | w in p.siblings }
}

– The parents relation defined as a constant function
fun parents [] : Person -> Person {

~children
}

– fact { all q: Person |
not (q in q.^parents or q in sisters[q]) }

25

Predicates
A named formula template, with zero or more parameters

Example:
– Two people are blood relatives iff they have a common ancestor
pred BloodRelated [p1: Person, p2: Person] {
some (p1.*parents & p2.*parents)

}
– A person can't be married to a blood relative
no p: Married | BloodRelated[p, p.spouse]

Note: Predicates are ignored unless they are applied to actual arguments
in a fact or assertion

26

Predicate or Fact ?

• Predicates are (parametrized) definitions of constraints

• Facts are assumed constraints

Note: You can package constraints as predicates and then instantiate those
predicates in facts

pred IsSingle[p: Person] { not (p in Married) }
pred IsFather[p: Man] { some p.children }

fact { some q: Man | IsSingle[q] && IsFather[q] }

27

Exercises

• Define a predicate IsChildless that characterizes the notion of not
having children

• Define a function father that returns the father of a given person

28

Exercises
• Define a predicate that characterizes the notion of “in-law” for the

family example

• Write a fact stating that a person is an in-law of their in-laws

• Add these to the family example and run it through AA

• Can you express this same notion in another way in the Alloy model?

– Do so and run it through AA
– Which approach is better? Why?

29

Exercises
• Add an assertion stating that a person has no married in-laws

• What is the minimum scope for set Person for which ACA can find a
counterexample?

• How would you use ACA to prove that your answer is truly the
minimum scope?

• Prove it!

30

Acknowledgements

31

The family structure example is based on an example by
Daniel Jackson distributed with the Alloy Analyzer

