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Facts

Explicit constraints on signatures and fields are expressed in 
Alloy as facts

fact Name {

Formula1

Formula2

…

}

AA generates only instances that also satisfy all of the fact 
constraints in a model
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Example Facts
-- No person can be their own ancestor
fact selfAncestor {
no p: Person | p in p.^parents

}

-- At most one father and mother
fact loneParents {
all p: Person | lone p.parents & Man   and

lone p.parents & Woman 
}

-- A person's siblings are other persons with the same parents
fact siblingsDefinition {
all p: Person | 
p.siblings = {q: Person | p.parents = q.parents} - p

}
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Example Facts
-- No person can be their own ancestor
fact selfAncestor {
no p: Person | p in p.^parents

}

-- At most one father and mother
fact loneParents {
all p: Person { lone p.parents & Man        // alternative syntax for

lone p.parents & Woman }    // conjunctive body
}

-- A person's siblings are other persons with the same parents
fact siblingsDefinition {
all p: Person | 
p.siblings = {q: Person | p.parents = q.parents} - p

}
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Example Facts
fact social {
-- Every married man (woman) has a wife (husband) 
all p: Married | 
let s = p.spouse |
(p in Man => s in Woman) and
(p in Woman => s in Man)

-- One’s spouse can't be one’s sibling
no p: Married | p.spouse in p.siblings

-- A person can't be married to a blood relative
no p: Married | 

some p.*parents & p.spouse.*parents

}
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Formulas separated by white 
space in a  { ... }  block are 
treated conjunctively



Run Command

• Used to ask AA to generate an instance of the model
• May include run conditions
– Used to guide AA to pick model instances with certain characteristics
– E.g., force certain sets and relations to be non-empty
– In this case, not part of the “true” specification
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Run Example
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Family Structure:

-- The simplest run command
-- The scope of every signature is 3
run {}

-- The scope scope of every signature is 5
run {} for 5

-- With conditions forcing each set to be populated
-- Setting the scope to 2
run {some Man && some Woman && some Married} for 2

-- Other scenarios with conditions
run {some Woman && no Man} for 7
run {some Man && some Married && no Woman}



Run Command

• To analyze a model, 
you add a run command and instruct AA to execute it
– the run command

tells the tool to search for an instance of the model

– you may also give a scope to signatures
bounds the size of instances that will be considered

• AA executes only the first run command in a file
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Scope

• Limits the size of instances considered to make instance finding 
feasible

• Represents the maximum number of elements in a top-level 
signature

• Default value = 3 for each top-level signature
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Run Conditions

• We can use run conditions to encode realism constraints to 
e.g., 
– Force generated models to include at least one married person, or 

one married man, etc.

• Run conditions can abstracted in constraint macros via the 
definition of predicates
– This allows common constraints to be shared
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Exercises

• Load family-2.als
• Execute it
• Analyze the metamodel
• Look at the generated instance
• Does it look correct?
• What if anything would you change about it?
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Empty Signatures

• The analyzer’s algorithms prefer smaller instances
– Often it produces empty signatures or otherwise trivial instances 
– It is useful to know that these instances satisfy the constraints 

(since you may not want them)

• Usually, they do not illustrate the interesting behaviors that are 
possible
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Exercises

• Load family-3.als
• Execute it
• Look at the generated instance
• Does it look correct?
• How can you produce 
– two married couples?
– a non-empty married relation and a non-empty siblings relation ?

12



Assertions

• Often, we expect our model to entails certain additional 
constraints that are not directly expressed
– e.g.,  (some A) and (A in B) entails   some B

• We can define these constraints as assertions and ask the 
analyzer to check if they hold
– e.g.,   assert BNonEmpty { some B }

check BNonEmpty
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Assertions

• If the constraint in an assertion does not hold (i.e., does not follow 
from the model) the analyzer will produce a counterexample 
instance

• If you expect an assertion to hold but it does not, you can either
– add it directly as a fact, or 
– refine your model with other constraints until the assertion holds, or
– reflect on whether your expectation that it held was correct to start with!
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Assertions
• No one has a parent who is also a sibling

assert a1 { all p: Person | no p.parents & p.siblings }

• A person’s siblings are his/her siblings’ siblings

assert a2 { all p: Person | p.siblings = p.siblings.siblings }

• No one shares a common ancestor with his/her spouse 
(i.e., spouse isn’t related by blood)

assert a3 { no p: Married | 
some p.^parents & p.spouse.^parents

}
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Assertion Scopes

• You can specify a scope explicitly for any signature
• However, if a signature has been given a scope, then

– a scope of its subignatures can be always determined
– sometimes the scope of its supersignatures can be determined as well

• The AA will compute the tightest scopes it can
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Scope Examples
abstract sig Object {}
sig Directory extends Object {}
sig File extend Object {}
sig Alias in File {}

We consider some assertion A

• all well-formed commands:
check A for 5 Object
check A for 4 Directory, 3 File
check A for 5 Object, 3 Directory
check A for 3 Directory, 5 File, 3 Alias

• ill-formed, for leaving the scope of File unspecified:
check A for 3 Directory, 3 Alias
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Scope Examples
abstract sig Object {}
sig Directory extends Object {}
sig File extend Object {}
sig Alias in File {}

• check A for 5 or run {} for 5
places a bound of 5 on each top-level signature (in this case just Object)

• check A for 5 but 3 Directory
additionally places a bound of 3 on Directory, and a bound of 2 on File by 
implication

• check A for exactly 3 Directory, exactly 3 Alias, 5 File
limits File to at most 5 tuples, but requires Directory and Alias to have 
exactly 3 tuples each
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Size Determination

Size determined by a signature declaration has priority on size determined 
in scope

Example:

abstract sig Color {}
one sig red, yellow, green extends Color {}
sig Pixel { color: one Color }

check A for 2
limits the signature Pixel to 2 elements, but assigns a size of exactly 3 to Color
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Exercises

• Load family-4.als
• Execute it
• Look at the generated counter-examples
• Why is SiblingsSibling false?
• Why is NoIncest false?
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Problems with Assertions
Analyzing SiblingSiblings ...
Scopes: Person(3)
Counterexample found:

Person = {M,W0,W1}
Man = {M}
Woman = {W0,W1}
Married = {M,W1}

children = {(W0,W1)}
siblings = {(M,W0),(W0,M)}
spouse = {(M,W1),(W1,M)}
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M.siblings = {W0}
M.siblings.siblings = {M}



Problems with Assertions

Analyzing NoIncest ...
Scopes: Person(3)
Counterexample found:

Person = {M0,M1,W}
Man = {M0,M1}
Woman = {W}
Married = {M1,W}

children = {(M0,W),(W,M1)}
siblings = {}
spouse = {(M1,W),(W,M1)}
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( M0 is an Ancestor of M1
and

M0 is an ancestor of W )
and

M1 and W are married



Exercises
• Fix the specification in family-4.als
– If the model is underconstrained, add appropriate constraints
– If the assertion is not correct, modify it

• Demonstrate that your fixes yield no counter-examples
– Does varying the scope make a difference?
– Does this mean that the assertions hold for all models?
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Functions and Predicates
Parametrized macros for relational expressions and formulas
– Can be named and reused in different contexts

(facts, assertions, and run conditions)
– Can have zero or more parameters
– Used to abstract and factor out common patterns

Functions are good for:
– relational expressions you want to reuse in different contexts

Predicates are good for:
– formulas you want to reuse in different contexts
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Functions
A named relation expression template, with zero or more parameters

Examples:

– The sisters function
fun sisters [p: Person] : set Woman {

{ w: Woman | w in p.siblings } 
}

– The parents relation defined as a constant function
fun parents [] : Person -> Person {

~children
}

– fact { all q: Person | 
not (q in q.^parents or q in sisters[q]) }
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Predicates
A named formula template, with zero or more parameters

Example:
– Two people are blood relatives iff they have a common ancestor
pred BloodRelated [p1: Person, p2: Person] {
some (p1.*parents & p2.*parents)

}
– A person can't be married to a blood relative
no p: Married | BloodRelated[p, p.spouse]

Note: Predicates are ignored unless they are applied to actual arguments 
in a fact or assertion
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Predicate or Fact ?

• Predicates are (parametrized) definitions of constraints

• Facts are assumed constraints

Note: You can package constraints as predicates and then instantiate those 
predicates in facts

pred IsSingle[p: Person] { not (p in Married) }
pred IsFather[p: Man] { some p.children }

fact { some q: Man | IsSingle[q] && IsFather[q] }
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Exercises

• Define a predicate IsChildless that characterizes the notion of not 
having children

• Define a function father that returns the father of a given person
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Exercises
• Define a predicate that characterizes the notion of “in-law” for the 

family example

• Write a fact stating that a person is an in-law of their in-laws

• Add these to the family example and run it through AA

• Can you express this same notion in another way in the Alloy model?

– Do so and run it through AA
– Which approach is better?  Why?
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Exercises
• Add an assertion stating that a person has no married in-laws

• What is the minimum scope for set Person for which ACA can find a 
counterexample?

• How would you use ACA to prove that your answer is truly the 
minimum scope?

• Prove it!
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