CS:4420 Artificial Intelligence Spring 2019

First-Order Logic

Cesare Tinelli

The University of Iowa

Copyright 2004-19, Cesare Tinelli and Stuart Russella

[^0]
Readings

- Chap. 8 of [Russell and Norvig, 3rd Edition]

Knowledge Representation and Logic

Recall:

The field of Mathematical Logic provides powerful, formal knowledge representation languages and inference systems to build reasoning agents

We will consider two languages, and associated inference systems, from mathematical logic:

- Propositional Logic
- First-order Logic

Pros and cons of Propositional Logic

+PL is declarative: pieces of syntax correspond to facts

+ PL allows partial/disjunctive/negated information (unlike most data structures and databases)
+ Propositional logic is compositional: meaning of $B_{1,1} \wedge P_{1,2}$ is derived from meaning of $B_{1,1}$ and of $P_{1,2}$
+ Meaning in propositional logic is context-independent (unlike natural language, where meaning depends on context)
- Propositional logic has very limited expressive power (unlike natural language)
E.g., cannot say "pits cause breezes in adjacent squares" except by writing one sentence for each square

First-order Logic

Whereas propositional logic assumes world contains facts, first-order logic (like natural language) assumes the world contains

- Objects: people, houses, numbers, theories, Ronald McDonald, colors, baseball games, wars, centuries, ...
- Relations: red, round, bogus, prime, brother of, bigger than, inside, part of, has color, occurred after, owns, comes between,
- Functions: father of, best friend, third inning of, one more than, end of, ...

Syntax of FOL: Basic elements

Constant symbols KingJohn, 2, Potus, [], ...
Relation symbols Brothers(, , $),\rangle_{-}>_{-} \operatorname{Red}(-), \ldots$
Function symbols Sqrt(_), LeftLegOf(_), _ + _, ...
Variables
x, y, a, b, \ldots
Connectives $\quad \wedge \vee \neg \Rightarrow \Leftrightarrow$
Equality
Quantifiers $\quad \forall \exists$

Atomic sentences

$$
\begin{aligned}
\text { Atomic sentence }= & \text { relation }\left(\text { term }_{1}, \ldots, \text { term }_{n}\right) \\
& \text { or } \text { term }_{1}=\text { term }_{2} \\
\text { Term }= & \begin{array}{l}
\text { function }\left(\text { term }_{1}, \ldots, \text { term }_{n}\right) \\
\text { or constant or variable }
\end{array}
\end{aligned}
$$

E.g., Brother(KingJohn, RichardTheLionheart),
$\operatorname{Length}(\operatorname{LeftLegOf}($ RobinHood $))>\operatorname{Length}(\operatorname{LeftLegOf}($ KingJohn $)))$

Complex sentences

Complex sentences are made from atomic sentences using connectives

$$
\neg S, \quad S_{1} \wedge S_{2}, \quad S_{1} \vee S_{2}, \quad S_{1} \Rightarrow S_{2}, \quad S_{1} \Leftrightarrow S_{2}
$$

E.g. \quad Siblings(KingJohn, Richard) \Rightarrow Siblings(Richard, KingJohn)

$$
\begin{aligned}
& x>2 \vee 1<x \\
& 1>2 \wedge \neg y>2
\end{aligned}
$$

Language of FOL: Grammar

Sentence	- AtomicS \mid ComplexS		
AtomicS	True \| False	RelSymb (Term, . .)	Term = Term
ComplexS	(Sentence) \| Sentence Connective Sentence	\neg Sentence	
	Quantifier Sentence		
Term	$=$ FunSymb (Term, ...) \| ConstSymb	Variable	
Connective	$=\wedge\|\vee\| \Rightarrow \mid \Leftrightarrow$		
Quantifier	\forall Variable $\mid \exists$ Variable		
Variable	$=a\|b\| \cdots\|x\| y \mid \cdots$		
ConstSymb	$=A\|B\| \cdots \mid$ John $00\|1\| \cdots\|\pi\| \ldots$		
FunSymb	$=F\|G\| \cdots \mid$ Cosine \mid Height \mid FatherOf $\|+\| \ldots$		
RelSymb	$::=P\|Q\| \cdots \mid$ Red \mid Brother \mid Apple $\|>\|$.		

Truth in FOL

Sentences are true with respect to a model and an interpretation
A model contains ≥ 1 objects (domain elements) and relations and functions over them them

An interpretation specifies referents for
variables \rightarrow objects
constant symbols \rightarrow objects
predicate symbols \rightarrow relations
function symbols \rightarrow functional relations
An atomic sentence $P\left(t_{1}, \ldots, t_{n}\right)$ is true in an interpretation iff the objects referred to by t_{1}, \ldots, t_{n} are in the relation referred to by P

Models for FOL: Example

Truth example

Consider the interpretation in which
Richard \rightarrow Richard the Lionheart
John \rightarrow the evil King John
Brother \rightarrow the brotherhood relation
Under this interpretation, Brother(Richard, John) is true just in case Richard the Lionheart and the evil King John are in the brotherhood relation in the model

Semantics of First-Order Logic

(A little) more formally:
An interpretation \mathcal{I} is a pair (\mathcal{D}, σ) where

- \mathcal{D} is a set of objects, the universe (or domain)
- σ is mapping from variables to objects in \mathcal{D}
- $c^{\mathcal{I}}$ is an object in \mathcal{D} for every constant symbol c
- $f^{\mathcal{I}}$ is a function from \mathcal{D}^{n} to \mathcal{D} for every function symbol f of arity n
- $r^{\mathcal{I}}$ is a relation over \mathcal{D}^{n} for every relation symbol r of arity n

An Interpretation \mathcal{I} in the Blocks World

Constant Symbols: $\quad A, B, C, D, E, T$
Function Symbols: Support
Relation Symbols: On, Above, Clear

$A^{\mathcal{I}}=\mathrm{a}, B^{\mathcal{I}}=\mathrm{b}, C^{\mathcal{I}}=\mathrm{c}, D^{\mathcal{I}}=\mathrm{d}, E^{\mathcal{I}}=\mathrm{e}, T^{\mathcal{I}}=\mathrm{t}$
Support $^{\mathcal{I}}=\{\langle\mathrm{a}, \mathrm{b}\rangle,\langle\mathrm{b}, \mathrm{c}\rangle,\langle\mathrm{c}, \mathrm{t}\rangle,\langle\mathrm{d}, \mathrm{e}\rangle,\langle\mathrm{e}, \mathrm{t}\rangle,\langle\mathrm{t}, \mathrm{t}\rangle\}$
$O n^{\mathcal{I}}=\{\langle\mathrm{a}, \mathrm{b}\rangle,\langle\mathrm{b}, \mathrm{c}\rangle,\langle\mathrm{c}, \mathrm{t}\rangle,\langle\mathrm{d}, \mathrm{e}\rangle,\langle\mathrm{e}, \mathrm{t}\rangle\}$
$A^{\text {Above }}=\{\langle\mathrm{a}, \mathrm{b}\rangle,\langle\mathrm{a}, \mathrm{c}\rangle,\langle\mathrm{a}, \mathrm{t}\rangle, \ldots\}$
Clear $^{\mathcal{I}}=\{\langle\mathrm{a}\rangle,\langle\mathrm{d}\rangle\}$

Semantics of First-Order Logic

Let $\mathcal{I}=(\mathcal{D}, \sigma)$ be an interpretation and E an expression of FOL
We write $\llbracket e \rrbracket^{\mathcal{I}}$ to denote the meaning of e in \mathcal{I}
The meaning $\llbracket t \rrbracket^{\mathcal{I}}$ of a term t is an object of \mathcal{D}, inductively defined as follows:

$$
\begin{array}{lll}
\llbracket x \rrbracket^{\mathcal{I}} & :=\sigma(x) & \text { for all variables } x \\
\llbracket c \rrbracket^{\mathcal{I}} & :=c^{\mathcal{I}} & \text { for all constant symbols } c \\
\llbracket f\left(t_{1}, \ldots, t_{n}\right) \rrbracket^{\mathcal{I}} & :=f^{\mathcal{I}}\left(\llbracket t_{1} \rrbracket^{\mathcal{I}}, \ldots, \llbracket t_{n} \rrbracket^{\mathcal{I}}\right) & \text { for all } n \text {-ary function symbols } f
\end{array}
$$

Example

Consider the symbols MotherOf, Spouse Of and the interpretation $\mathcal{I}=(\mathcal{D}, \sigma)$ where

Mother $O f^{\mathcal{I}}$ is a unary fn mapping people to their mother Spouse $O f^{\mathcal{I}}$ is a unary fn mapping people to their spouse

$$
\sigma:=\{x \mapsto \text { Bart, } y \mapsto \text { Homer, } \ldots\}
$$

What is the meaning of SpouseOf(MotherOf(x)) in \mathcal{I} ?

$$
\begin{aligned}
\llbracket \text { SpouseOf }(\text { MotherOf }(x)) \rrbracket^{\mathcal{I}} & =\text { SpouseOf } \mathcal{I}^{\mathcal{I}}\left(\llbracket \text { MotherOf }(x) \rrbracket^{\mathcal{I}}\right) \\
& =\text { SpouseOf } \mathcal{I}^{\mathcal{I}}\left(\text { MotherOf } f^{\mathcal{I}}\left(\llbracket x \rrbracket^{\mathcal{I}}\right)\right) \\
& =\text { SpouseOf } \mathcal{I}^{\mathcal{I}}\left(\text { MotherOf } f^{\mathcal{I}}(\sigma(x))\right) \\
& =\text { SpouseOf }{ }^{\mathcal{I}}\left(\text { MotherOf } f^{\mathcal{I}}(\text { Bart })\right) \\
& =\text { SpouseOf } \mathcal{I}^{\mathcal{I}}(\text { Marge }) \\
& =\text { Homer }
\end{aligned}
$$

Semantics of First-Order Logic

Let $\mathcal{I}=(\mathcal{D}, \sigma)$ be an interpretation
The meaning $\llbracket \varphi \rrbracket^{\mathcal{I}}$ of a formula φ is either True or False
It is inductively defined as follows:

$$
\begin{array}{llll}
\llbracket t_{1}=t_{2} \rrbracket^{\mathcal{I}} & :=\text { True } & \text { iff } \llbracket t_{1} \rrbracket^{\mathcal{I}} \text { is the same as } \llbracket t_{2} \rrbracket^{\mathcal{I}} \\
\llbracket r\left(t_{1}, \ldots, t_{n}\right) \rrbracket^{\mathcal{I}} & :=\text { True } & \text { iff }\left\langle\llbracket t_{1} \rrbracket^{\mathcal{I}}, \ldots, \llbracket t_{n} \rrbracket^{\mathcal{I}}\right\rangle \in r^{\mathcal{I}} \\
\llbracket\urcorner \varphi \rrbracket^{\mathcal{I}} & :=\text { True/False } & \text { iff } \llbracket \varphi \rrbracket^{\mathcal{I}}=\text { False } / \text { True } \\
\llbracket \varphi_{1} \vee \varphi_{2} \rrbracket^{\mathcal{I}} & :=\text { True } & \text { iff } \llbracket \varphi_{1} \rrbracket^{\mathcal{I}}=\text { True or } \llbracket \varphi_{2} \rrbracket^{\mathcal{I}}=\text { True } \\
\llbracket \exists x \varphi \rrbracket^{\mathcal{I}} & :=\text { True } & \text { iff } & \llbracket \varphi \rrbracket_{\sigma^{\prime}}^{\mathcal{I}}=\text { True for some } \sigma^{\prime} \text { that } \\
& & & \\
& \text { disagrees with } \sigma \text { at most on } x
\end{array}
$$

Semantics of First-Order Logic

Let $\mathcal{I}=(\mathcal{D}, \sigma)$ be an interpretation
The meaning of formulas built with the other logical symbols:

$$
\begin{array}{ll}
\llbracket \varphi_{1} \wedge \varphi_{2} \rrbracket^{\mathcal{I}} & :=\llbracket \neg\left(\neg \varphi_{1} \vee \neg \varphi_{2}\right) \rrbracket^{\mathcal{I}} \\
\llbracket \varphi_{1} \Rightarrow \varphi_{2} \rrbracket^{\mathcal{I}} & :=\llbracket \neg \varphi_{1} \vee \varphi_{2} \rrbracket^{\mathcal{I}} \\
\llbracket \varphi_{1} \Leftrightarrow \varphi_{2} \rrbracket^{\mathcal{I}} & :=\llbracket\left(\varphi_{1} \Rightarrow \varphi_{2}\right) \wedge\left(\varphi_{2} \Rightarrow \varphi_{1}\right) \rrbracket^{\mathcal{I}} \\
\llbracket \forall x \varphi \rrbracket^{\mathcal{I}} & :=\llbracket \neg \exists x \neg \varphi \rrbracket^{\mathcal{I}}
\end{array}
$$

If a sentence is closed, i.e., it has no free variables, its meaning does not depend on the the variable assignment-although it may depend on the domain:

$$
\llbracket \forall x \exists y R(x, y) \rrbracket^{\mathcal{I}}=\llbracket \forall x \exists y R(x, y) \rrbracket^{\mathcal{I}^{\prime}} \quad \text { for any } \quad \mathcal{I}^{\prime}=\left(\mathcal{D}, \sigma^{\prime}\right)
$$

Models, Validity, etc. for Sentences

An interpretation $\mathcal{I}=(\mathcal{D}, \sigma)$ satisfies a sentence φ, or is a model of φ, if $\llbracket \varphi \rrbracket^{\mathcal{I}}=$ True

A sentence is satisfiable if it has at least one model

$$
\text { Ex: } \quad \forall x x \geq y, \quad P(x)
$$

A sentence is unsatisfiable if it has no models

$$
\text { Ex: } \quad P(x) \wedge \neg P(x), \quad \neg(x=x), \quad(\forall x Q(x, y)) \Rightarrow \neg Q(a, b)
$$

A sentence φ is valid if every interpretation is a model of it
Ex: $\quad P(x) \Rightarrow P(x), \quad x=x, \quad(\forall x P(x)) \Rightarrow \exists x P(x)$

Note: φ is valid/unsatisfiable iff $\neg \varphi$ is unsatisfiable/valid

Models, Validity, etc. for Sets of Sentences

An interpretation (\mathcal{D}, σ) satisfies a set Γ of sentences, or is a model of Γ, if it is a model for every sentence in Γ

A set Γ of sentences is satisfiable if it has at least one model

$$
\text { Ex: } \quad\{\forall x x \geq 0, \forall x x+1>x\}
$$

Γ is unsatisfiable, or inconsistent, if it has no models

$$
\text { Ex: } \quad\{P(x), \neg P(x)\}
$$

Γ entails a sentence $\varphi(\Gamma \models \varphi)$, if every model for Γ is also a model for φ

$$
\text { Ex: } \quad\left\{\forall x P(x) \Rightarrow Q(x), P\left(A_{10}\right)\right\} \models Q\left(A_{10}\right)
$$

Note: As in propositional logic, $\Gamma \models \varphi$ iff $\Gamma \wedge \neg \varphi$ is unsatisfiable

Possible Interpretations Semantics

Sentences can be seen as constraints on the set S of all possible interpretations.

A sentence denotes all the possible interpretations that satisfy it (the models of φ):
If φ_{1} denotes a set of interpretations S_{1} and φ_{2} denotes a set S_{2}, then

- $\varphi_{1} \vee \varphi_{2}$ denotes $S_{1} \cup S_{2}$,
- $\varphi_{1} \wedge \varphi_{2}$ denotes $S_{1} \cap S_{2}$,
- $\neg \varphi_{1}$ denotes $S \backslash S_{1}$,
- $\varphi_{1} \models \varphi_{2}$ iff $S_{1} \subseteq S_{2}$.

Possible Interpretations Semantics

Sentences can be seen as constraints on the set S of all possible interpretations.

A sentence denotes all the possible interpretations that satisfy it (the models of φ):
If φ_{1} denotes a set of interpretations S_{1} and φ_{2} denotes a set S_{2}, then

- $\varphi_{1} \vee \varphi_{2}$ denotes $S_{1} \cup S_{2}$,
- $\varphi_{1} \wedge \varphi_{2}$ denotes $S_{1} \cap S_{2}$,
- $\neg \varphi_{1}$ denotes $S \backslash S_{1}$,
- $\varphi_{1} \models \varphi_{2}$ iff $S_{1} \subseteq S_{2}$.

Note 1: A sentence denotes either no interpretations or an infinite number of them!

Note 2: Valid sentences do not tell us anything about the world. They are satisfied by every possible interpretation!

Models for FOL: Lots!

We can enumerate the models for a given FOL sentence:

For each number of universe elements n from 1 to ∞ For each k-ary predicate P_{k} in the sentence For each possible k-ary relation on n objects For each constant symbol C in the sentence For each one of n objects mapped to C

Enumerating models is not going to be easy!

Universal quantification

$\forall\langle$ variables $\rangle\langle$ sentence \rangle
Everyone at Berkeley is smart:
$\forall x \operatorname{At}(x$, Berkeley $) \Rightarrow \operatorname{Smart}(x)$
$\forall x P$ is true in an interpretation \mathcal{I} iff P is true with x being each possible object in I's domain

Roughly speaking, equivalent to the conjunction of instantiations of P

$$
\begin{aligned}
& (\text { At }(\text { KingJohn, Berkeley }) \Rightarrow \operatorname{Smart}(\text { KingJohn })) \\
\wedge & (\text { At }(\text { Richard }, \text { Berkeley }) \Rightarrow \operatorname{Smart}(\text { Richard })) \\
\wedge & (\text { At }(\text { Berkeley }, \text { Berkeley }) \Rightarrow \operatorname{Smart}(\text { Berkeley })) \\
\wedge & \ldots
\end{aligned}
$$

Existential quantification

$\exists\langle$ variables $\rangle\langle$ sentence \rangle
Someone at Stanford is smart:
$\exists x \operatorname{At}(x, \operatorname{Stanford}) \wedge \operatorname{Smart}(x)$
$\exists x P$ is true in an interpretation \mathcal{I} iff P is true with x being some possible object in I's domain

Roughly speaking, equivalent to the disjunction of instantiations of P

$$
\begin{aligned}
& (\text { At }(\text { KingJohn }, \text { Stanford }) \wedge \operatorname{Smart}(\text { KingJohn })) \\
\vee & (\text { At }(\text { Richard }, \text { Stanford }) \wedge \operatorname{Smart}(\text { Richard })) \\
\vee & (\text { At }(\text { Stanford }, \text { Stanford }) \wedge \operatorname{Smart}(\text { Stanford })) \\
\vee & \ldots
\end{aligned}
$$

Properties of quantifiers

$\forall x \forall y \varphi$ is equivalent to $\forall y \forall x \varphi$ (why?)
$\exists x \exists y \varphi$ is equivalent to $\exists y \exists x \varphi$ (why?)
$\exists x \forall y \varphi$ is not equivalent to $\forall y \exists x \varphi$
Ex.
$\exists x \forall y \operatorname{Loves}(x, y)$
"There is a person who loves everyone in the world"
$\forall y \exists x \operatorname{Loves}(x, y)$
"Everyone in the world is loved by at least one person"
Quantifier duality: each can be expressed using the other
$\forall x \operatorname{Likes}(x$, IceCream)
$\neg \exists x \neg \operatorname{Likes}(x$, IceCream)
$\exists x \operatorname{Likes}(x$, Broccoli)
$\neg \forall x \neg \operatorname{Likes}(x$, Broccoli)

From English prepositions to FOL connectives

English	Logic
A and $\mathrm{B} \mid \mathrm{A}$ but B	$A \wedge B$
A if $\mathrm{B} \mid \mathrm{A}$ when $\mathrm{B} \mid \mathrm{A}$ whenever B	$B \Rightarrow A$
if A , then $\mathrm{B} \mid \mathrm{A}$ implies $\mathrm{B} \mid \mathrm{A}$ forces B	$A \Rightarrow B$
only if $\mathrm{A}, \mathrm{B} \mid \mathrm{B}$ only if $\mathrm{A} \mid$	$B \Rightarrow A$
A precisely when $\mathrm{B} \mid \mathrm{A}$ if and only if B	$B \Leftrightarrow A \mid A \Leftrightarrow B$
A or B (or both) \| A unless B	$A \vee B$ (logical or)
either A or B (but not both)	$A \oplus B$ (exclusive or)

A common mistake to avoid

Typically, \Rightarrow is the main connective with \forall
Common mistake: using \wedge as the main connective with \forall :

$$
\forall x \text { At }(x, \text { Berkeley }) \wedge \operatorname{Smart}(x)
$$

means "Everyone is at Berkeley and everyone is smart"

A common mistake to avoid

Typically, \Rightarrow is the main connective with \forall
Common mistake: using \wedge as the main connective with \forall :

$$
\forall x \text { At }(x, \text { Berkeley }) \wedge \operatorname{Smart}(x)
$$

means "Everyone is at Berkeley and everyone is smart"

Compare with

$$
\forall x \quad \operatorname{At}(x, \text { Berkeley }) \Rightarrow \operatorname{Smart}(x)
$$

"Everyone at Berkeley is smart"

Another common mistake to avoid

Typically, \wedge is the main connective with \exists
Common mistake: using \Rightarrow as the main connective with \exists :

$$
\exists x \quad \text { At }(x, \text { Stanford }) \Rightarrow \operatorname{Smart}(x)
$$

is true if there is anyone who is not at Stanford!

Another common mistake to avoid

Typically, \wedge is the main connective with \exists
Common mistake: using \Rightarrow as the main connective with \exists :

$$
\exists x \quad A t(x, \text { Stanford }) \Rightarrow \operatorname{Smart}(x)
$$

is true if there is anyone who is not at Stanford!

Compare with

$$
\exists x \operatorname{At}(x, \operatorname{Stanford}) \wedge \operatorname{Smart}(x)
$$

"Someone at Stanford is smart"

Fun with sentences

Brothers are siblings

Fun with sentences

Brothers are siblings

$\forall x, y \operatorname{Brothers}(x, y) \Rightarrow \operatorname{Siblings}(x, y)$

Fun with sentences

Brothers are siblings
$\forall x, y \operatorname{Brothers}(x, y) \Rightarrow \operatorname{Siblings}(x, y)$
"Siblings" is symmetric

Fun with sentences

Brothers are siblings
$\forall x, y \operatorname{Brothers}(x, y) \Rightarrow \operatorname{Siblings}(x, y)$
"Siblings" is symmetric
$\forall x, y \operatorname{Siblings}(x, y) \Leftrightarrow \operatorname{Siblings}(y, x)$

Fun with sentences

Brothers are siblings
$\forall x, y \operatorname{Brothers}(x, y) \Rightarrow \operatorname{Siblings}(x, y)$
"Siblings" is symmetric
$\forall x, y \operatorname{Siblings}(x, y) \Leftrightarrow \operatorname{Siblings}(y, x)$
One's mother is one's female parent

Fun with sentences

Brothers are siblings
$\forall x, y \operatorname{Brothers}(x, y) \Rightarrow \operatorname{Siblings}(x, y)$
"Siblings" is symmetric
$\forall x, y \operatorname{Siblings}(x, y) \Leftrightarrow \operatorname{Siblings}(y, x)$
One's mother is one's female parent
$\forall x, y \operatorname{Mother}(x, y) \Leftrightarrow(\operatorname{Female}(x) \wedge \operatorname{Parent}(x, y))$

Fun with sentences

Brothers are siblings
$\forall x, y \operatorname{Brothers}(x, y) \Rightarrow \operatorname{Siblings}(x, y)$
"Siblings" is symmetric
$\forall x, y \operatorname{Siblings}(x, y) \Leftrightarrow \operatorname{Siblings}(y, x)$
One's mother is one's female parent
$\forall x, y \operatorname{Mother}(x, y) \Leftrightarrow(\operatorname{Female}(x) \wedge \operatorname{Parent}(x, y))$
A first cousin is a child of a parent's sibling

Fun with sentences

Brothers are siblings
$\forall x, y \operatorname{Brothers}(x, y) \Rightarrow \operatorname{Siblings}(x, y)$
"Siblings" is symmetric
$\forall x, y \operatorname{Siblings}(x, y) \Leftrightarrow \operatorname{Siblings}(y, x)$
One's mother is one's female parent
$\forall x, y \operatorname{Mother}(x, y) \Leftrightarrow(\operatorname{Female}(x) \wedge \operatorname{Parent}(x, y))$
A first cousin is a child of a parent's sibling

```
\(\forall x_{1}, x_{2} \operatorname{FirstCousin}\left(x_{1}, x_{2}\right) \Leftrightarrow\)
    \(\exists p_{1}, p_{2} \operatorname{Siblings}\left(p_{1}, p_{2}\right) \wedge \operatorname{Parent}\left(p_{1}, x_{1}\right) \wedge \operatorname{Parent}\left(p_{2}, x_{2}\right)\)
```


Fun with sentences

Brothers are siblings
$\forall x, y \operatorname{Brothers}(x, y) \Rightarrow \operatorname{Siblings}(x, y)$
"Siblings" is symmetric
$\forall x, y \operatorname{Siblings}(x, y) \Leftrightarrow \operatorname{Siblings}(y, x)$
One's mother is one's female parent
$\forall x, y \operatorname{Mother}(x, y) \Leftrightarrow(\operatorname{Female}(x) \wedge \operatorname{Parent}(x, y))$
A first cousin is a child of a parent's sibling

```
\(\forall x_{1}, x_{2} \operatorname{FirstCousin}\left(x_{1}, x_{2}\right) \Leftrightarrow\)
    \(\exists p_{1}, p_{2} \operatorname{Siblings}\left(p_{1}, p_{2}\right) \wedge \operatorname{Parent}\left(p_{1}, x_{1}\right) \wedge \operatorname{Parent}\left(p_{2}, x_{2}\right)\)
```

Dogs are mammals

Fun with sentences

Brothers are siblings
$\forall x, y \operatorname{Brothers}(x, y) \Rightarrow \operatorname{Siblings}(x, y)$
"Siblings" is symmetric
$\forall x, y \operatorname{Siblings}(x, y) \Leftrightarrow \operatorname{Siblings}(y, x)$
One's mother is one's female parent
$\forall x, y \operatorname{Mother}(x, y) \Leftrightarrow(\operatorname{Female}(x) \wedge \operatorname{Parent}(x, y))$
A first cousin is a child of a parent's sibling

```
\(\forall x_{1}, x_{2} \operatorname{FirstCousin}\left(x_{1}, x_{2}\right) \Leftrightarrow\)
    \(\exists p_{1}, p_{2} \operatorname{Siblings}\left(p_{1}, p_{2}\right) \wedge \operatorname{Parent}\left(p_{1}, x_{1}\right) \wedge \operatorname{Parent}\left(p_{2}, x_{2}\right)\)
```

Dogs are mammals
$\forall x \operatorname{Dog}(x) \Rightarrow \operatorname{Mammal}(x)$

Equality

Recall that $t_{1}=t_{2}$ is true under a given interpretation if and only if t_{1} and t_{2} refer to the same object

$$
\begin{array}{ll}
\text { E.g., } & 1=2 \text { and } x * x=x \text { are satisfiable } \\
& 2=2 \text { is valid }
\end{array}
$$

E.g., definition of (full) Sibling in terms of Parent:
$\forall x, y \operatorname{Siblings}(x, y) \Leftrightarrow[\neg(x=y) \wedge \exists m, f \neg(m=f) \wedge$
$\operatorname{Parent}(m, x) \wedge \operatorname{Parent}(f, x) \wedge \operatorname{Parent}(m, y) \wedge \operatorname{Parent}(f, y)]$

More fun with sentences

1. No one is his/her own sibling
2. Sisters are female, brothers are male
3. Every one is male or female but not both
4. Every married person has a spouse
5. Married people have spouses
6. Only married people have spouses
7. People cannot be married to their siblings
8. Not everybody has a spouse
9. Everybody has a mother
10. Everybody has a mother and only one

More fun with sentences

1. $\forall x \neg \operatorname{Siblings}(x, x)$
2. $\forall x, y(\operatorname{Sisters}(x, y) \Rightarrow \operatorname{Female}(x) \wedge \operatorname{Female}(y)) \wedge$

$$
(\operatorname{Brothers}(x, y) \Rightarrow \operatorname{Male}(x) \wedge \operatorname{Male}(y))
$$

3. $\forall x \operatorname{Person}(x) \Rightarrow(\operatorname{Male}(x) \vee \operatorname{Female}(x)) \wedge$

$$
\neg(\operatorname{Male}(x) \wedge \operatorname{Female}(x))
$$

4. $\forall x(\operatorname{Person}(x) \wedge M \operatorname{Mrried}(x)) \Rightarrow \exists y \operatorname{Spouse}(x, y)$
5. $\forall x(\operatorname{Person}(x) \wedge M \operatorname{Married}(x)) \Rightarrow \exists y \operatorname{Spouse}(x, y)$
6. $\forall x, y(\operatorname{Person}(x) \wedge \operatorname{Person}(y) \wedge \operatorname{Spouse}(x, y)) \Rightarrow M a r r i e d(x) \wedge \operatorname{Married}(y)$
7. $\forall x, y \operatorname{Spouse}(x, y) \Rightarrow \neg \operatorname{Siblings}(x, y)$
8. $\neg \forall x \operatorname{Person}(x) \Rightarrow \exists y \operatorname{Spouse}(x, y)$

Alter.: $\exists x \operatorname{Person}(x) \wedge \neg \exists y \operatorname{Spouse}(x, y)$
9. $\forall x \operatorname{Person}(x) \Rightarrow \exists y \operatorname{Mother}(y, x)$
10.

$$
\forall x \quad \operatorname{Person}(x) \Rightarrow \exists y \quad \operatorname{Mother}(y, x) \wedge
$$

$$
\neg \exists z \neg(y=z) \wedge \operatorname{Mother}(z, x)
$$

[^0]: a These notes were originally developed by Stuart Russell and are used with permission. They are copyrighted material and may not be used in other course settings outside of the University of Iowa in their current or modified form without the express written consent of the copyright holders.

