CS:5810
Formal Methods in
Software Engineering

Introduction to Floyd-Hoare Logic

Copyright 2020, Graeme Smith and Cesare Tinelli.

Produced by Cesare Tinelli at the University of lowa from notes originally developed by Graeme Smith at the University of
Queensland. These notes are copyrighted materials and may not be used in other course settings outside of the
University of lowa in their current form or modified form without the express written permission of one of the copyright
holders. During this course, students are prohibited from selling notes to or being paid for taking notes by any person or
commercial firm without the express written permission of one of the copyright holders.

From contracts to Floyd-Hoare Logic

In the design-by-contract methodology, contracts are
usually assigned to procedures or modules

In general though, it is possible to assign contracts to
each statement of a program

A formal framework for doing this was developed by
Tony Hoare

It is based on the notion of a Hoare triple

Dafny is based on Floyd-Hoare Logic

Hoare triples

For predicates P and Q and program S, the Hoare triple

preconditionl-—»{ P} SA{0Q }= postcondition

states the following:
if S is started in any state that satisfies P,
then S will not crash (or do other bad things) and
will terminate in some state satisfying O

Examples: { x==1 1} x :=20 { x == 20 }
{ x <18 }y :=18 - x {y >= 0 }
{ x <18 }y :=54{y>= 0}

Non-example: { x < 18 } x :=y {y >=0 }

Forward reasoning

Constructing a postcondition from a given precondition

In general, there are many possible postconditions

Examples:

e e N e T e T

X

< K K KX X

w w w w Ww

e e N e T e T

O <= X && y == 3 }

3 <=y }
true }

Strongest postcondition

Forward reasoning constructs the strongest (i.e., most
specific) postcondition

{X=0} vy :=x+3 {0<k=x8&& Yy ==31}

Def: A is strongerthan B if A ==> B is avalid formula

Def: A formula is valid if it is true for any valuation of its
free variables

Backward reasoning

Construct a precondition for a given postcondition

Again, there are many preconditions

Examples:

{ X <= 70 }

{ x == 65 && y < 21 }
{ x <= 77 }

{ x*x + y*y <= 2500 }
{ false }

< K v K X

w W ow W w

<= 80 }
<= 80 }
<= 80 }
<= 80 }
<= 80 }

Weakest precondition

Backward reasoning constructs the weakest (i.e., most
general) precondition

{ x<k=77} vy :=x+3 {y<=280}

Def: A is weakerthan B if B ==> A is avalid formula

Weakest precondition for assignment
Given { ? }x :=E{Q}

we construct ? by replacing each x in Q with E
(denoted by Q[x\E])

Examples: {?} y:=a+b {25«<=y}

t\“~—— 25 <= a + b

{ 25 <=x+ 3 + 12 } a :

X+ 34{ 25 <=a+ 12 }
{X+1<k=y }x :=x+1{x<=y}
{ 3*2*x + 5*y < 100 } x :

2*x { 3*x + 5*y < 100 }

Swap example

var tmp :

Y
tmp;

X,

Swap example

The initial values of x and y are
var tmp := X; specified using logical variables
X 1= y; XandY

y := tmp;

Swap example

The initial values of x and y are
specified using logical variables
X; XandY

var tmp :

=Y

tmp;

Swap example

var tmp := X;

Swap example

var tmp := X;

Swap example

var tmp := X;

Swap example

var tmp := X;
X =Y,
y = tmp;

The final step is the proof obligation that
(x == X && y == VY) ==> (y == Y && x == X)

is valid

Program-proof bookkeeping

Program-proof bookkeeping

X 1=y - X;
y ‘=Y - X;
X =Yy + X;

The constructed precondition simplifies to

y:: &&X::

Program-proof bookkeeping

_
—

X =Yy - X;
) >

y =Y - X

X 1=y + X;

We are also allowed to strengthen the conditions as
we work backwards (but not weaken them!)

Simultaneous assighments

Dafny allows several assignments in one statement

Examples:
X, y := 3, 10; sets xto 3 and yto 19
X, Y := X +Yy, X -Yy; setsxtothesumofxandy

and y to their difference

All right-hand sides are computed before any variables
are assigned. Note difference with

X 1= X+VY; Yy =X -Y;

Simultaneous assighments

The weakest precondition of

is constructed by replacing in postcondition
each x, with £, and

each x, with (denoted Q[x,, x,\E,, E,]).

Example:

[X,y\E,F]

X, Y =Y, X)

Variable introduction

var x := tmp; is actually two statements:

var X; X := tmp;

Cannot assume anything about value of introduced
variable

{ forall x :: Q } var x { Q }

Examples: F false

{forall x :: @ <=x } var x { @6 <= x }

{forall x :: @ <= x*x } var x { @ <= x*x }

What about strongest postconditions?

Consider { w< x & x<y } x =100 { ? }

Obviously, x == 100 is a postcondition, but it is not the strongest
Something more is implied by the precondition:
there exists an Xgsuchthat w < X5 && X, < Yy

which can be simplifiedto w + 1 < y

In general:

{ P} x := E { exists Xy ::
P[x\Xe] && x == E[x\Xg] }

WP and §P

Let P be a predicate on the pre-state of a program S and
let O be a predicate on the post-state of S

WP [S, Q] denotes the weakest precondition of S wrt Q
SPIS, P] denotes the strongest postcondition of S wrt P
WP [x := E, Q] = Q[x\E]

SP[x := E, P] = exists x, ::
P[x\Xg] && x == E[x\Xq]

Control flow

Until now:
Assignment: x := E

Variable introduction: var x

Next:
Sequential composition: S;T
Conditions: if B { S } else { T }
Method calls: t := M(E)

Later:

Loops: while B { S }

Sequential composition

557 1P}YS{Q}rTA{R}
{P}rs{orand{Q}T{R}

Strongest postcondition
Q= SPI[S, P]
SPIS;T, PI=8SPI[T, SPIS, P]]

Weakest precondition
Q = WPI[T, R]
WPI[S;T, Rl=WPI[S, WPIT, R]]

Conditional control flow

it B {S } else { T}

5%
LV [{uy
O,

{x} LY}

10}

Conditional control flow

it B {S} else {T}

{p }} Floyd-Hoare logic tells us:
/\B 1. P && B ==> V
{V} [{W}} 2. P &% IB ==> W
3. {V}sS{Xx}
{X} {VY} 4. {W3} 1T {V}
5. ==>Q
{ Q} 6. Y==>Q

Strongest postcondition

it B {S} else {T}

[/{P}\}AB X =SP[P && B, S]
{P && B {P && 'B} Y =SP[P && [B, T]
{X} v}

{
A

{ X IIY}J

SP[if B { S } else { T }, P]=
SP[P & B, S] || SP[P && !B, T]

Weakest precondition

it B {S} else {T}

{8 ==> V & !B ==> W}

y IB V=WPIS, O]
{VvyY {w} W=WPI[T, Q]
{0y {0}

WP[it B { S } else { T }, Q]=
(B ==> WPIS, Q]) &&
(IB ==> WPI[T, 0])

Weakest precondition (example)
it x < 3 {

X, Yy = X+1, 10;

} else {

Weakest precondition (example)
it x < 3 {

X, Yy = X+1, 10;

} else {

Weakest precondition (example)
it x < 3 {

X, Yy = X+1, 10;

} else {

Weakest precondition (example)
it x < 3 {

X, Yy = X+1, 10;

} else {

Weakest precondition (example)
it x < 3 {

X, Yy = X+1, 10;

} else {

Weakest precondition (example)
it x < 3 {

X, Yy = X+1, 10;

} else {

Refresher: Implication properties

A ==>B equivto 'A || B

Hence,
A ==>true | equiv. to |true
A ==> false ! LA
true ==>B " B
false ==> B ! true

Useful law for simplifying predicates

A ==> (B ==> C) equivvto (A & & B) ==> C

Weakest precondition (example)

it x < 3 {

X, Yy = X+1, 10;
} else {

y = X,

¥

Weakest precondition (example)

it x < 3 {

X, Yy = X+1, 10;
} else {

y = X,

¥

Weakest precondition (example)

it x < 3 {

X, Yy = X+1, 10;
} else {

y = X,

¥

Weakest precondition (example)

it x < 3 {

X, Yy = X+1, 10;
} else {

y = X,

¥

Weakest precondition (example)

it x < 3 {

X, Yy = X+1, 10;
} else {

y = X,

¥

Method correctness

Given

method M(x: X) returns (y: Y)
requires P
ensures Q

{
}

we need to prove

Body

P ==> WP [Body, 0]

Method calls

Methods are opaque, i.e., we reason in terms of their
specifications, not their implementations.

Given

method Triple(x:) returns (y:)
ensures y == 3 * x

we expect to be able to prove

t := Triple(u + 3)

Parameters

We need to relate the actual parameters (of the method
call) with the formal parameters (of the method)

To avoid name clashes, we rename the formal
parameters to fresh variables

method Triple(x’:) returns (y’:)
ensures y’ == 3 * x’
Then for t := Triple(u + 3) we have

X' :=u+ 3 and t =y’

Assumptions

The caller can assume that the method’s postcondition
holds

We introduce a new statement assume E to capture
this

SPl[assume E, P] = E & P

WP [assume E, P] = E ==> Q

Triple(u + 3) isthen

The semantics of t

var x’, y’; X’ = u + 3;
assume y’ == 3 * x?; t =y’

Weakest precondition

method M(x: X) returns (y: Y) ensures R[x,V]

WP [r = M(E), Q] with x., v, fresh
= WP [var x.,V,; % := E; assume R[x,y\x v], r:=v, Q]
= WP [var x;,y,; WP [x::= E, WP [assume R[x,y\xg,V,],
WP [r =y, Qlll}
= WP [var x;,y,; WP [x::= E, WP [assume R[x,y\xgv,.], Q[r\y]1]]
= WP [var x. ,y,; WP [= E, RDGy\e,y,] ==> QLr\y,]1]

= WP [var x¢,v; RDGY\E,y] ==>Q[r\y]] since x; notin Q
= forall x¢,y, 1t RDGY\E,y,] ==> Q[r\y,]

=forall y, it RDGYAE,y.] ==> Q[r\y,]

Weakest precondition

WPt := M(E), Q] = forall y’ ::
R[X)y\EJy,] ==> Q[t\Y’]

where R is M’s postcondition

Given

method Triple(x: int) returns (y: int)
ensures y == 3 ¥ x

t := Triple(u + 3);

Assertions

assert E does nothing when E holds, otherwise it
crashes the program

method Triple(x:) returns (r:) o
var 'y := 2 * x;
r:= X +V;
assert r == 3 * x;

}
WP [assert E,Q] =E && Q

SPlassert E,P] = P & E

Method calls with preconditions

Given

method M(x: X) returns (y: Y)
requires P

ensures R
The semantics of r := M(E) s
var Xg, Ye; Xg = Ej
assert P[x\xg]; assume R[X,y\Xg VY.l r 1= vy.

WPI[r := M(E),Q] = P[x\E] &&
forall y. ::
R[X,y\E,yP] ==> Q[P\yr]

Function calls

No output
w/_ parameters
function Average(a: , b:): {
(a +b) /2
}
T\ Expression, not

a statement

Functions are transparent. We reason about them in
terms of their definition, not a specification

method Triple(x:) returns (r:)
ensures r == Average(2*x, 4*Xx)

Function calls

In Dafny, functions are part of the specification

If you want to use a function in code, you need to use a
declare a function method

function method Average(a: , b:): {
(a +b) /2

}

method Triple(x:) returns (r:)
ensures r == 3*x

{
r := Average(2*x, 4*x);

}

Partial expressions

An expression is not always well defined,
e.g., ¢/d when d evaluates to 0

Associated with such partial expressions are implicit
assertions

Example:

assert d 1= 0 & v = 0;

it ¢/d < u/v {
assert @ <= 1 < a.lLength;
X := a[i];

}

Partial expressions

Functions may have preconditions making calls to them
partial

Example: given

function method MinusOne(x:) :
requires 0 < Xx

the call z := MinusOne(y) has an implicit assertion

assert 6 <y

Exercises

1. Suppose youwant X + y == 22 to hold after the statement
if x <20{y :=3; }else{y :=2; }

In which states can you start the statement? In other words, compute the
weakest precondition of the statement with respecttox + y == 22.
Simplify the condition after you have computed it.

2. Compute the weakest precondition for the following statement with respect
to y < 10. Simplify the condition.

if x < 8 {
if x ==5{y :=10; } else {y := 2; }
} else
y =

(S W1

o o

¥

Exercises

3. Compute the weakest precondition for the following statement with respect
toy % 2 == 0 (thatis, "yis even"). Simplify the condition.

if x < 10 {

if x <20 {y :=1; }else{y :=2; }
} else {

y = 4;
}

4. Compute the weakest precondition for the following statement with respect
toy % 2 ==0 (that is, "y is even"). Simplify the condition.

if x < 8 {

if x <4 {x :=x+1; }else{y :=2; }
} else {

if x < 32 {y :=1; } else { }
}

Exercises

5. Determine under which circumstances the following program establishes
O <=y < 100. Try first to do that in your head. Write down the answer you
come up with, and then write out the full computations to check that you got
the right answer.

if x < 34 {
2 X + 1; } else { y := 233; }

~
<
i

if x < 55 {y :=21; } else { y := 144; }

6. Which of the following Hoare-triple combinations are valid?
a) {9 <=x}x :=x+1{ -2<=x1}ty :=0 {-10 <= x}

b) {0 <= x} x :=x +1{ true } x := x + 1 {2 <= x}
c) {0 <=x} x :=x+1; x :=x+ 1 {2 <= x}

d) {0 <= x} x :=3 * x; x :=x+ 1 {3 <= x}

e) {x <2}y :=x+5; x :=2* x {x <y}

Exercises

7. Compute the weakest precondition of the following statements with respect
to the postcondition x + y < 1060.

a) X := 32; y := 40
b) X :=x+ 2;y =y -3 *x

8. Compute the weakest precondition of the following statement with respect
to the postcondition x < 10:

a) if x%2==0{y =y +3; }else{y :=4; }
b) ify <10 { vy :

Il
X
+

<
\o
-
D
—
n
)
=
X

Il

(0.0)
\o
-

9. Compute the weakest precondition of the following statements with respect
to the postcondition x < 100. Simplify your answer.

a) assert y == 25 d) assert x <= 100
b) assert 0 <= X e) assert @ <= x < 100
c) assert x < 200

Exercises

10. If X' does not appear in the desired postcondition Q, then prove that
x':= E; assert P[x\x'] isthesameas assert P[X\E] by showing
that the weakest preconditions of these two statements with respect to Q are

the same.

11. What implicit assertions are associated with the following expressions?

a) x / (y + z)
b) a[2 * i]
c) MinusOne(MinusOne(y))

12. What implicit assertions are associated with the following expressions?
Note: The right-hand expression in a conjunction is only evaluated when the
left-hand conjunction is true.

a) a/b<<c/d
b) a/ b< 10 & c / d < 100
Cc) MinusOne(y) == 8 ==> aly] ==

