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Lustre: a synchronous dataflow language

Design of reactive systems:
@ run in an infinite loop, and

o produce an output every n milliseconds

clock
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Exercises

Model a switch with two buttons, Set and Reset.

node Switch( Set, Reset, Init : bool ) returns (
State : bool );

such that:
o pressing Set turns the switch on;
o pressing Reset turns the switch off;

o the initial position of the switch is determined by a third signal Init
if Set and Reset are initially both unpressed.
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Exercises

Model a switch with two buttons, Set and Reset.
node Switch( Set, Reset, Init : bool ) returns (
State : bool );
such that:
o pressing Set turns the switch on;
o pressing Reset turns the switch off;

o the initial position of the switch is determined by a third signal Init
if Set and Reset are initially both unpressed.

node Switch( Set, Reset, Init : bool )
returns ( X : bool );
let
X = if Set then true
else if Reset then false
else (Init -> pre X);
tel
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Exercises

Model a switch with two buttons, Set and Reset.

node Switch( Set, Reset, Init : bool ) returns (
State : bool );

such that:
o pressing Set turns the switch on;
o pressing Reset turns the switch off;

o the initial position of the switch is determined by a third signal Init
if Set and Reset are initially both unpressed.

Equivalently:

node Switch( Set, Reset, Init : bool )
returns ( X : bool );

let

X = Set or (not Reset and (Init -> pre X)) ;
tel
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Exercises

node 77?7 (r,b:

let

tel

out

else

else

bool) returns

if r then O
if b then (O
(0

(out:

-> pre
-> pre

int);

out) + 1

out) ;
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Exercises

node ??? (r,b: bool) returns (out: int);
let

out = if r then O
else if b then (0 -> pre out) + 1

else (0 -> pre out);
tel
ro bo r1 b1 r2 bo
false true false true true true

v v v
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Exercises

Counter with reset:

node ??? (r,b: bool) returns (out: int);

let
out = if r then O
else if b then (0 -> pre out) + 1
else (0 -> pre out);
tel
To bo r1 by 2 b2
false true false true true true

v

1

v v

2 0
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Exercises

Counter with reset:

node cnt (r,b: bool) returns (out:

var pre_out: int;

let pre_out = 0 -> pre out;

out = if r then O

int);

else if b then pre_out + 1

else
tel
ro bo
false true

v

pre_out;

ri by

false true
v

r2 b2

true true
v
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Exercises

Counter with reset:

node cnt (r,b: bool) returns (out: int);
var pre_out: int;
let pre_out = 0 -> pre out;
out = if r then O
else if b then pre_out + 1

else pre_out;
tel
ro by r1 by r2 b2
false true false true true true

pre_out_ * * pre_out, * * pre_out, * # pre_out,
out at 1
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Modularity

Once defined, a node can be used as a basic operator
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Modularity

Once defined, a node can be used as a basic operator

What does A look like?

X = true -> (pre A = 3)
A = cnt(X, true);
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Once defined, a node can be used as a basic operator

What does A look like?

X = true -> (pre A = 3)
A = cnt(X, true);
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Modularity

Once defined, a node can be used as a basic operator

What does A look like?

X = true -> (pre A = 3)
A = cnt(X, true);

A=0,1,2, 3,0,
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Modularity

Once defined, a node can be used as a basic operator

What does A look like?

X = true -> (pre A = 3)
A = cnt(X, true);

A=0,1,2,3,0 1,2 3,0 1...
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Modularity

A node can have several outputs:

node MinMax( X : real ) returns ( Min, Max : real );
let
Min = X -> if (X < pre Min) then X else pre Min
Max = X -> if (X > pre Max) then X else pre Max
tel

B

B

node minMaxAverage ( X: real ) returns ( Y: real ) ;
var Min, Max: real ;
let
Min, Max = MinMax(X) ;
Y = (Min + Max)/2.0 ;
tel
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Complete example: specification

Stopwatch:
@ one integer output: time “to display”;

@ three input buttons:
on_off  starts and stops the stopwatch,

reset resets the stopwatch if not running,

freeze  freezes the displayed time if running, cancelled if stopped
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Complete example: available nodes

-- Bistable switch
node switch (on, off: bool) returns (state: bool);
let
state =
if (false -> pre state) then not off else on;
tel

-- Counts steps if inc is true, can be reset
node counter (reset,inc: bool) returns (out: int);

let
out = if reset then O
else if inc then (0 -> pre_out) + 1
else (0 -> pre_out);
tel

-- Detects raising edges of a signal
node edge (in: bool) returns (out: bool);
let
out = false -> in and (not pre in);
tel
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Complete example: solution(s)

Unsatisfactory solution not using edge:

node stopwatch (on_off, reset, freeze: bool)
returns (time: int);
var actual_time: int;

running, frozen: bool;

let

running = switch(on_off, on_off);

frozen = switch(

freeze and running, freeze or on_off

)

actual_time = counter(reset and not running,

time = if frozen then (0 -> pre time) else actual_time;
tel
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Complete example: solution(s)

Satisfactory solution:

node stopwatch (on_off, reset, freeze: bool)
returns (time: int);
var actual_time: int;
running, frozen,
on_off_pressed, r_pressed, f_pressed: bool;
let
on_off_pressed = edge(on_off);
r_pressed = edge(reset);
f_pressed = edge(freeze);
running = switch(on_off_pressed, on_off_pressed);
frozen = switch(

f_pressed and running, f_pressed or on_off_pressed

)

actual_time = counter(r_pressed and not running, running);

time = if frozen then (0 -> pre time) else actual_time;
tel
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Credits

Part of these notes are based on the following lectures notes:

The Lustre Language — Synchronous Programming
by Pascal Raymond and Nicolas Halbwachs
Verimag-CNRS
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