CS:5810 Formal Methods in Software
Engineering

Reactive Systems and the Lustre Language!
Part 2

Adrien Champion Cesare Tinelli

1Copyright 2015-20, Adrien Champion and Cesare Tinelli, the University of lowa. These notes are copyrighted
materials and may not be used in other course settings outside of the University of lowa in their current form or
modified form with the exp written permission of one of the copyright holders. During this course, students
are prohibited from selling notes to or being paid for taking notes by any person or commercial firm without the

express written permission of one of the copyright holder.

1/13

Lustre: a synchronous dataflow language

Design of reactive systems:
@ run in an infinite loop, and

o produce an output every n milliseconds

clock

CPU Lrrerererrrrrrerrrrrrrrrrerrrnd

2/13

Lustre: a synchronous dataflow language

Design of reactive systems:
@ run in an infinite loop, and
o produce an output every n milliseconds
in2

ing iny

clock | |

CPU Lrrerererrrrrrerrrrrrrrrrerrrnd

2/13

Lustre: a synchronous dataflow language

Design of reactive systems:
@ run in an infinite loop, and
o produce an output every n milliseconds

ing outy ing outy ina outs

clock | | |

CPU Lrrerererrrrrrerrrrrrrrrrerrrnd

2/13

Exercises

Model a switch with two buttons, Set and Reset.

node Switch(Set, Reset, Init : bool) returns (
State : bool);

such that:
o pressing Set turns the switch on;
o pressing Reset turns the switch off;

o the initial position of the switch is determined by a third signal Init
if Set and Reset are initially both unpressed.

3/13

Exercises

Model a switch with two buttons, Set and Reset.
node Switch(Set, Reset, Init : bool) returns (
State : bool);
such that:
o pressing Set turns the switch on;
o pressing Reset turns the switch off;

o the initial position of the switch is determined by a third signal Init
if Set and Reset are initially both unpressed.

node Switch(Set, Reset, Init : bool)
returns (X : bool);
let
X = if Set then true
else if Reset then false
else (Init -> pre X);
tel

3/13

Exercises

Model a switch with two buttons, Set and Reset.

node Switch(Set, Reset, Init : bool) returns (
State : bool);

such that:
o pressing Set turns the switch on;
o pressing Reset turns the switch off;

o the initial position of the switch is determined by a third signal Init
if Set and Reset are initially both unpressed.

Equivalently:

node Switch(Set, Reset, Init : bool)
returns (X : bool);

let

X = Set or (not Reset and (Init -> pre X)) ;
tel

4/13

Exercises

node 77?7 (r,b:

let

tel

out

else

else

bool) returns

if r then O
if b then (O
(0

(out:

-> pre
-> pre

int);

out) + 1

out) ;

5/13

Exercises

node ??? (r,b: bool) returns (out: int);
let

out = if r then O
else if b then (0 -> pre out) + 1

else (0 -> pre out);
tel
ro bo r1 b1 r2 bo
false true false true true true

v v v

5/13

Exercises

node ??? (r,b: bool) returns (out: int);
let

out = if r then O
else if b then (0 -> pre out) + 1

else (0 -> pre out);
tel
ro bo r1 b1 r2 bo
false true false true true true

v v v

5/13

Exercises

Counter with reset:

node ??? (r,b: bool) returns (out: int);

let
out = if r then O
else if b then (0 -> pre out) + 1
else (0 -> pre out);
tel
To bo r1 by 2 b2
false true false true true true

v

1

v v

2 0

5/13

Exercises

Counter with reset:

node cnt (r,b: bool) returns (out:

var pre_out: int;

let pre_out = 0 -> pre out;

out = if r then O

int);

else if b then pre_out + 1

else
tel
ro bo
false true

v

pre_out;

ri by

false true
v

r2 b2

true true
v

6/13

Exercises

Counter with reset:

node cnt (r,b: bool) returns (out: int);
var pre_out: int;
let pre_out = 0 -> pre out;
out = if r then O
else if b then pre_out + 1

else pre_out;
tel
ro by r1 by r2 b2
false true false true true true

pre_out_ * * pre_out, * * pre_out, * # pre_out,
out at 1

6/13

Modularity

Once defined, a node can be used as a basic operator

7/13

Modularity

Once defined, a node can be used as a basic operator

What does A look like?

X = true -> (pre A = 3)
A = cnt(X, true);

7/13

Modularity

Once defined, a node can be used as a basic operator

What does A look like?

X = true -> (pre A = 3)
A = cnt(X, true);

A=0,

7/13

Modularity

Once defined, a node can be used as a basic operator

What does A look like?

X = true -> (pre A = 3)
A = cnt(X, true);

A=0, 1,

7/13

Modularity

Once defined, a node can be used as a basic operator

What does A look like?

X = true -> (pre A = 3)
A = cnt(X, true);

A=0, 1, 2,

7/13

Modularity

Once defined, a node can be used as a basic operator

What does A look like?

X = true -> (pre A = 3)
A = cnt(X, true);

A=0,1, 2, 3

7/13

Modularity

Once defined, a node can be used as a basic operator

What does A look like?

X = true -> (pre A = 3)
A = cnt(X, true);

A=0,1,2, 3,0,

7/13

Modularity

Once defined, a node can be used as a basic operator

What does A look like?

X = true -> (pre A = 3)
A = cnt(X, true);

A=0,1,2,3,0 1,2 3,0 1...

7/13

Modularity

A node can have several outputs:

node MinMax(X : real) returns (Min, Max : real);
let
Min = X -> if (X < pre Min) then X else pre Min
Max = X -> if (X > pre Max) then X else pre Max
tel

B

B

node minMaxAverage (X: real) returns (Y: real) ;
var Min, Max: real ;
let
Min, Max = MinMax(X) ;
Y = (Min + Max)/2.0 ;
tel

8/13

Complete example: specification

Stopwatch:
@ one integer output: time “to display”;

@ three input buttons:
on_off starts and stops the stopwatch,

reset resets the stopwatch if not running,

freeze freezes the displayed time if running, cancelled if stopped

9/13

Complete example: available nodes

-- Bistable switch
node switch (on, off: bool) returns (state: bool);
let
state =
if (false -> pre state) then not off else on;
tel

-- Counts steps if inc is true, can be reset
node counter (reset,inc: bool) returns (out: int);

let
out = if reset then O
else if inc then (0 -> pre_out) + 1
else (0 -> pre_out);
tel

-- Detects raising edges of a signal
node edge (in: bool) returns (out: bool);
let
out = false -> in and (not pre in);
tel

10/13

Complete example: solution(s)

Unsatisfactory solution not using edge:

node stopwatch (on_off, reset, freeze: bool)
returns (time: int);
var actual_time: int;

running, frozen: bool;

let

running = switch(on_off, on_off);

frozen = switch(

freeze and running, freeze or on_off

)

actual_time = counter(reset and not running,

time = if frozen then (0 -> pre time) else actual_time;
tel

11/13

Complete example: solution(s)

Satisfactory solution:

node stopwatch (on_off, reset, freeze: bool)
returns (time: int);
var actual_time: int;
running, frozen,
on_off_pressed, r_pressed, f_pressed: bool;
let
on_off_pressed = edge(on_off);
r_pressed = edge(reset);
f_pressed = edge(freeze);
running = switch(on_off_pressed, on_off_pressed);
frozen = switch(

f_pressed and running, f_pressed or on_off_pressed

)

actual_time = counter(r_pressed and not running, running);

time = if frozen then (0 -> pre time) else actual_time;
tel

12/13

Credits

Part of these notes are based on the following lectures notes:

The Lustre Language — Synchronous Programming
by Pascal Raymond and Nicolas Halbwachs
Verimag-CNRS

13/13

