
CS:5810 Formal Methods in Software
Engineering

Reactive Systems and the Lustre Language1

Adrien Champion Cesare Tinelli

1Copyright 2015-20, Adrien Champion and Cesare Tinelli, the University of Iowa. These notes are
copyrighted materials and may not be used in other course settings outside of the University of Iowa in
their current form or modified form without the express written permission of one of the copyright
holders. During this course, students are prohibited from selling notes to or being paid for taking notes
by any person or commercial firm without the express written permission of one of the copyright holder.

1 / 17

Embedded systems development

Pivot language between design and code should

have clear and precise semantics, and

be consistent with design / prototype formats and target
platforms

2 / 17

Embedded systems development

Pivot language between design and code should

have clear and precise semantics, and

be consistent with design / prototype formats and target
platforms

2 / 17

Embedded systems development

Pivot language between design and code should

have clear and precise semantics, and

be consistent with design / prototype formats and target
platforms

2 / 17

Lustre: a synchronous dataflow language

Synchronous:
a base clock regulates computations;
computations are inherently parallel

Dataflow:
inputs, outputs, variables, constants . . . are endless streams of
values

Declarative:
set of equations, no statements

Reactive systems:
Lustre programs run forever
At each clock tick they

compute outputs from their inputs
before the next clock tick

3 / 17

Lustre: a synchronous dataflow language

Synchronous:
a base clock regulates computations;
computations are inherently parallel

Dataflow:
inputs, outputs, variables, constants . . . are endless streams of
values

Declarative:
set of equations, no statements

Reactive systems:
Lustre programs run forever
At each clock tick they

compute outputs from their inputs
before the next clock tick

3 / 17

Lustre: a synchronous dataflow language

Synchronous:
a base clock regulates computations;
computations are inherently parallel

Dataflow:
inputs, outputs, variables, constants . . . are endless streams of
values

Declarative:
set of equations, no statements

Reactive systems:
Lustre programs run forever
At each clock tick they

compute outputs from their inputs
before the next clock tick

3 / 17

A simple example

node average (x, y: real) returns (out: real);
let

out = (x + y) / 2.0;
tel

Circuit view:

x

+

y /

2.0

out

4 / 17

A simple example

node average (x, y: real) returns (out: real);
let

out = (x + y) / 2.0;
tel

Circuit view:

x

+

y /

2.0

out

4 / 17

A simple example

node average (x, y: real) returns (out: real);
let

out = (x + y) / 2.0;
tel

Mathematical view:

∀i ∈ N, outi =
xi + yi

2

5 / 17

A simple example

node average (x, y: real) returns (out: real);
let

out = (x + y) / 2.0;
tel

Transition system unrolled view:

clock ticks . . .0

x0+y0
2.0

x0 y0

out0

1

x1+y1
2.0

x1 y1

out1

2

x2+y2
2.0

x2 y2

out2

3

x3+y3
2.0

x3 y3

out3

6 / 17

A simple example

node average (x, y: real) returns (out: real);
let

out = (x + y) / 2.0;
tel

Transition system unrolled view:

clock ticks . . .0

x0+y0
2.0

x0 y0

out0

1

x1+y1
2.0

x1 y1

out1

2

x2+y2
2.0

x2 y2

out2

3

x3+y3
2.0

x3 y3

out3

6 / 17

A simple example

node average (x, y: real) returns (out: real);
let

out = (x + y) / 2.0;
tel

Transition system unrolled view:

clock ticks . . .0

4.0+6.0
2.0

4.0 6.0

5.0

1

0.0+7.0
2.0

0.0 7.0

3.5

2

1.0+1.0
2.0

1.0 1.0

1.0

3

7.0+1.0
2.0

7.0 1.0

4.0

6 / 17

Combinational programs

Basic types: bool, int, real

Constants (i.e., constant streams):
2 2 2 2 2 2 . . .

true true true true true true . . .

Pointwise operators:
x x0 x1 x2 x3 x4 . . .
y y0 y1 y2 y3 y4 . . .

x + y x0 + y0 x1 + y1 x2 + y2 x3 + y3 x4 + y4 . . .

All classical operators are provided

7 / 17

Combinational programs

Basic types: bool, int, real

Constants (i.e., constant streams):
2 2 2 2 2 2 . . .

true true true true true true . . .

Pointwise operators:
x x0 x1 x2 x3 x4 . . .
y y0 y1 y2 y3 y4 . . .

x + y x0 + y0 x1 + y1 x2 + y2 x3 + y3 x4 + y4 . . .

All classical operators are provided

7 / 17

Combinational programs

Conditional expressions:

node max (n1 ,n2: real) returns (out: real);
let

out = if (n1 >= n2) then n1 else n2;
tel

Functional “if ... then ... else ...”

It is an expression, not a statement

-- This does not compile
if (a >= b) then m = a else m = b;

8 / 17

Combinational programs

Conditional expressions:

node max (n1 ,n2: real) returns (out: real);
let

out = if (n1 >= n2) then n1 else n2;
tel

Functional “if ... then ... else ...”

It is an expression, not a statement

-- This does not compile
if (a >= b) then m = a else m = b;

8 / 17

Combinational programs

Local variables:

node max (a,b: real) returns (out: real);
var

condition: bool;
let

out = if condition then a else b;
condition = a >= b;

tel

Order does not matter

Set of equations not sequence of statements

Causality is resolved syntactically

9 / 17

Combinational programs

Local variables:

node max (a,b: real) returns (out: real);
var

condition: bool;
let

out = if condition then a else b;
condition = a >= b;

tel

Order does not matter

Set of equations not sequence of statements

Causality is resolved syntactically

9 / 17

Combinational programs

Local variables:

node max (a,b: real) returns (out: real);
var

condition: bool;
let

out = if condition then a else b;
condition = a >= b;

tel

Order does not matter

Set of equations not sequence of statements

Causality is resolved syntactically

9 / 17

Combinational programs

Combinational recursion is forbidden:

x = 1 / (2 - x);

has a unique integer solution: x = 1,

but is not computable step by step

Syntactic loop:

x = if c then y else 0;
y = if c then 1 else x;

not a real (semantic) loop:

x = if c then 1 else 0;
y = x;

but still forbidden by Lustre

10 / 17

Combinational programs

Combinational recursion is forbidden:

x = 1 / (2 - x);

has a unique integer solution: x = 1,

but is not computable step by step

Syntactic loop:

x = if c then y else 0;
y = if c then 1 else x;

not a real (semantic) loop:

x = if c then 1 else 0;
y = x;

but still forbidden by Lustre

10 / 17

Combinational programs

Combinational recursion is forbidden:

x = 1 / (2 - x);

has a unique integer solution: x = 1,

but is not computable step by step

Syntactic loop:

x = if c then y else 0;
y = if c then 1 else x;

not a real (semantic) loop:

x = if c then 1 else 0;
y = x;

but still forbidden by Lustre

10 / 17

Combinational programs

Combinational recursion is forbidden:

x = 1 / (2 - x);

has a unique integer solution: x = 1,

but is not computable step by step

Syntactic loop:

x = if c then y else 0;
y = if c then 1 else x;

not a real (semantic) loop:

x = if c then 1 else 0;
y = x;

but still forbidden by Lustre

10 / 17

Memory programs

Previous operator pre :
(pre x)0 is undefined (nil)
(pre x)i = xi−1 for i > 0

11 / 17

Memory programs

Previous operator pre :
(pre x)0 is undefined (nil)
(pre x)i = xi−1 for i > 0

Initialization -> :
(x -> y)0 = x0

(x -> y)i = yi for i > 0

11 / 17

Memory programs

Previous operator pre :
(pre x)0 is undefined (nil)
(pre x)i = xi−1 for i > 0

Initialization -> :
(x -> y)0 = x0

(x -> y)i = yi for i > 0

Examples:

x x0 x1 x2 x3 x4 x5 . . .
pre x

// x0 x1 x2 x3 x4 . . .

y y0 y1 y2 y3 y4 y5 . . .
x -> y

x0 y1 y2 y3 y4 y5 . . .

2 2 2 2 2 2 2 . . .
2 -> (pre x)

2 x0 x1 x2 x3 x4 . . .

11 / 17

Memory programs

Previous operator pre :
(pre x)0 is undefined (nil)
(pre x)i = xi−1 for i > 0

Initialization -> :
(x -> y)0 = x0

(x -> y)i = yi for i > 0

Examples:

x x0 x1 x2 x3 x4 x5 . . .
pre x // x0 x1 x2 x3 x4 . . .

y y0 y1 y2 y3 y4 y5 . . .
x -> y

x0 y1 y2 y3 y4 y5 . . .

2 2 2 2 2 2 2 . . .
2 -> (pre x)

2 x0 x1 x2 x3 x4 . . .

11 / 17

Memory programs

Previous operator pre :
(pre x)0 is undefined (nil)
(pre x)i = xi−1 for i > 0

Initialization -> :
(x -> y)0 = x0

(x -> y)i = yi for i > 0

Examples:

x x0 x1 x2 x3 x4 x5 . . .
pre x // x0 x1 x2 x3 x4 . . .

y y0 y1 y2 y3 y4 y5 . . .
x -> y

x0 y1 y2 y3 y4 y5 . . .

2 2 2 2 2 2 2 . . .
2 -> (pre x)

2 x0 x1 x2 x3 x4 . . .

11 / 17

Memory programs

Previous operator pre :
(pre x)0 is undefined (nil)
(pre x)i = xi−1 for i > 0

Initialization -> :
(x -> y)0 = x0

(x -> y)i = yi for i > 0

Examples:

x x0 x1 x2 x3 x4 x5 . . .
pre x // x0 x1 x2 x3 x4 . . .

y y0 y1 y2 y3 y4 y5 . . .
x -> y x0 y1 y2 y3 y4 y5 . . .

2 2 2 2 2 2 2 . . .
2 -> (pre x)

2 x0 x1 x2 x3 x4 . . .

11 / 17

Memory programs

Previous operator pre :
(pre x)0 is undefined (nil)
(pre x)i = xi−1 for i > 0

Initialization -> :
(x -> y)0 = x0

(x -> y)i = yi for i > 0

Examples:

x x0 x1 x2 x3 x4 x5 . . .
pre x // x0 x1 x2 x3 x4 . . .

y y0 y1 y2 y3 y4 y5 . . .
x -> y x0 y1 y2 y3 y4 y5 . . .

2 2 2 2 2 2 2 . . .
2 -> (pre x)

2 x0 x1 x2 x3 x4 . . .

11 / 17

Memory programs

Previous operator pre :
(pre x)0 is undefined (nil)
(pre x)i = xi−1 for i > 0

Initialization -> :
(x -> y)0 = x0

(x -> y)i = yi for i > 0

Examples:

x x0 x1 x2 x3 x4 x5 . . .
pre x // x0 x1 x2 x3 x4 . . .

y y0 y1 y2 y3 y4 y5 . . .
x -> y x0 y1 y2 y3 y4 y5 . . .

2 2 2 2 2 2 2 . . .
2 -> (pre x) 2 x0 x1 x2 x3 x4 . . .

11 / 17

Memory programs

Recursive definition using pre :

n = 0 -> 1 + pre n;
a = false -> not pre a;

n 0

1 2 3 . . .

a false

true false true . . .

12 / 17

Memory programs

Recursive definition using pre :

n = 0 -> 1 + pre n;
a = false -> not pre a;

n 0 1 2 3 . . .
a false

true false true . . .

12 / 17

Memory programs

Recursive definition using pre :

n = 0 -> 1 + pre n;
a = false -> not pre a;

n 0 1 2 3 . . .
a false true false true . . .

12 / 17

Memory programs: examples

Raising edge:

node guess (signal: bool) returns (e: bool);
let

e = false -> signal and not pre signal;
tel

signal false true true false true false . . .
e

false

true false false true false . . .

13 / 17

Memory programs: examples

Raising edge:

node guess (signal: bool) returns (e: bool);
let

e = false -> signal and not pre signal;
tel

signal false true true false true false . . .
e false

true false false true false . . .

13 / 17

Memory programs: examples

Raising edge:

node guess (signal: bool) returns (e: bool);
let

e = false -> signal and not pre signal;
tel

signal false true true false true false . . .
e false true false false true false . . .

13 / 17

Memory programs: examples

Raising edge:

node guess (signal: bool) returns (e: bool);
let

e = false -> signal and not pre signal;
tel

signal false true true false true false . . .
e false true false false true false . . .

13 / 17

Memory programs: examples

Min and max of a sequence:

node guess (n: int) returns (out1 ,out2: int);
let

out1 = n -> if (n < pre out1) then n else pre
out1;

out2 = n -> if (n > pre out2) then n else pre
out2;

tel

n 4 2 3 0 3 7 . . .
out1

4

2 2 0 0 0 . . .

out2 4 4 4 4 4 7 . . .

14 / 17

Memory programs: examples

Min and max of a sequence:

node guess (n: int) returns (out1 ,out2: int);
let

out1 = n -> if (n < pre out1) then n else pre
out1;

out2 = n -> if (n > pre out2) then n else pre
out2;

tel

n 4 2 3 0 3 7 . . .
out1 4

2 2 0 0 0 . . .

out2 4 4 4 4 4 7 . . .

14 / 17

Memory programs: examples

Min and max of a sequence:

node guess (n: int) returns (out1 ,out2: int);
let

out1 = n -> if (n < pre out1) then n else pre
out1;

out2 = n -> if (n > pre out2) then n else pre
out2;

tel

n 4 2 3 0 3 7 . . .
out1 4 2 2 0 0 0 . . .

out2 4 4 4 4 4 7 . . .

14 / 17

Memory programs: examples

Min and max of a sequence:

node guess (n: int) returns (out1 ,out2: int);
let

out1 = n -> if (n < pre out1) then n else pre
out1;

out2 = n -> if (n > pre out2) then n else pre
out2;

tel

n 4 2 3 0 3 7 . . .
out1 4 2 2 0 0 0 . . .
out2 4 4 4 4 4 7 . . .

14 / 17

Memory programs: examples

Min and max of a sequence:

node guess (n: int) returns (out1 ,out2: int);
let

out1 = n -> if (n < pre out1) then n else pre
out1;

out2 = n -> if (n > pre out2) then n else pre
out2;

tel

n 4 2 3 0 3 7 . . .
out1 4 2 2 0 0 0 . . .
out2 4 4 4 4 4 7 . . .

14 / 17

Exercises

Design a node

node switch (on ,off: bool)
returns (state: bool);

such that:
state raises (false to true) if on;
state falls (true to false) if off;

everything behaves as if state was false at the origin;
switch must work properly even if on and off are the same

15 / 17

Exercises

Design a node

node switch (on ,off: bool)
returns (state: bool);

such that:
state raises (false to true) if on;
state falls (true to false) if off;
everything behaves as if state was false at the origin;
switch must work properly even if on and off are the same

15 / 17

Exercises

Compute the sequence 1, 1, 2, 3, 5, 8 . . .

Fibonacci sequence:
u0 = u1 = 1
un = un−1 + un−2 for n ≥ 2

16 / 17

Exercises

Compute the sequence 1, 1, 2, 3, 5, 8, 13, 21 . . .

Fibonacci sequence:
u0 = u1 = 1
un = un−1 + un−2 for n ≥ 2

16 / 17

Credits

These notes are based on the following lectures notes:

The Lustre Language — Synchronous Programming
by Pascal Raymond and Nicolas Halbwachs
Verimag-CNRS

17 / 17

