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Embedded systems development

Pivot language between design and code should

have clear and precise semantics, and

be consistent with design / prototype formats and target
platforms
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Lustre: a synchronous dataflow language

Synchronous:
a base clock regulates computations;
computations are inherently parallel

Dataflow:
inputs, outputs, variables, constants . . . are endless streams of
values

Declarative:
set of equations, no statements

Reactive systems:
Lustre programs run forever
At each clock tick they

compute outputs from their inputs
before the next clock tick
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A simple example

node average (x, y: real) returns (out: real);
let

out = (x + y) / 2.0;
tel

Circuit view:

x

+
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tel

Mathematical view:

∀i ∈ N, outi =
xi + yi

2
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A simple example
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Combinational programs

Basic types: bool, int, real

Constants (i.e., constant streams):
2 2 2 2 2 2 . . .

true true true true true true . . .

Pointwise operators:
x x0 x1 x2 x3 x4 . . .
y y0 y1 y2 y3 y4 . . .

x + y x0 + y0 x1 + y1 x2 + y2 x3 + y3 x4 + y4 . . .

All classical operators are provided
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Combinational programs

Conditional expressions:

node max (n1 ,n2: real) returns (out: real);
let

out = if (n1 >= n2) then n1 else n2;
tel

Functional “if ... then ... else ...”

It is an expression, not a statement

-- This does not compile
if (a >= b) then m = a else m = b;
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Combinational programs

Local variables:

node max (a,b: real) returns (out: real);
var

condition: bool;
let

out = if condition then a else b;
condition = a >= b;

tel

Order does not matter

Set of equations not sequence of statements

Causality is resolved syntactically
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Combinational programs

Combinational recursion is forbidden:

x = 1 / (2 - x);

has a unique integer solution: x = 1,

but is not computable step by step

Syntactic loop:

x = if c then y else 0;
y = if c then 1 else x;

not a real (semantic) loop:

x = if c then 1 else 0;
y = x;

but still forbidden by Lustre
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Memory programs

Previous operator pre :
(pre x)0 is undefined ( nil )
(pre x)i = xi−1 for i > 0
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Memory programs

Recursive definition using pre :

n = 0 -> 1 + pre n;
a = false -> not pre a;

n 0

1 2 3 . . .

a false

true false true . . .
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Memory programs: examples

Raising edge:

node guess (signal: bool) returns (e: bool);
let

e = false -> signal and not pre signal;
tel

signal false true true false true false . . .
e

false

true false false true false . . .
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Memory programs: examples

Min and max of a sequence:

node guess (n: int) returns (out1 ,out2: int);
let

out1 = n -> if (n < pre out1) then n else pre
out1;

out2 = n -> if (n > pre out2) then n else pre
out2;

tel

n 4 2 3 0 3 7 . . .
out1

4

2 2 0 0 0 . . .

out2 4 4 4 4 4 7 . . .
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Exercises

Design a node

node switch (on ,off: bool)
returns (state: bool);

such that:
state raises (false to true) if on;
state falls (true to false) if off;

everything behaves as if state was false at the origin;
switch must work properly even if on and off are the same
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Exercises

Compute the sequence 1, 1, 2, 3, 5, 8 . . .

Fibonacci sequence:
u0 = u1 = 1
un = un−1 + un−2 for n ≥ 2
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Exercises

Compute the sequence 1, 1, 2, 3, 5, 8, 13, 21 . . .

Fibonacci sequence:
u0 = u1 = 1
un = un−1 + un−2 for n ≥ 2
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Credits

These notes are based on the following lectures notes:

The Lustre Language — Synchronous Programming
by Pascal Raymond and Nicolas Halbwachs
Verimag-CNRS
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