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Overview

• Basics of dynamic models
– Modeling a system’s states and state transitions
– Modeling operations causing transitions

• Simple example of operations
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Static Models

• So far we’ve used Alloy to define the allowable 
values of state components
– values of sets
– values of relations

• A model instance is a set of state component 
values that
– Satisfies the constraints defined by multiplicities, 

fact, “realism” conditions, …
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Static Model Instances

4

Person = {Matt, Sue}

Man = {Matt}

Woman = {Sue}

Married = {}

spouse = {}

children = {}

siblings = {}

Person = {Matt, Sue}

Man = {Matt}

Woman = {Sue}

Married = {Matt, Sue}

spouse = {(Matt,Sue), (Sue,Matt)}

children = {}

siblings = {}

Person = {Matt, Sue, Sean}

Man = {Matt, Sean}

Woman = {Sue}

Married = {Matt, Sue}

spouse = {(Matt,Sue), (Sue,Matt)}

children = {(Matt,Sean), (Sue,Sean)}

siblings = {}
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Dynamic Models

• Static models allow us to describe the legal 
states of a dynamic system

• We also want to be able to describe the legal 
transitions between states
E.g.
– To get married one must be alive and not currently 

married
– One must be alive to be able to die
– A person becomes someone’s child after birth
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Example

6

abstract sig Person {
children: set Person,
siblings: set Person

} 

sig Man, Woman extends Person {}

sig Married in Person {
spouse: one Married 

}

Family Model
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State Transitions
• Two people get married

– At time t, spouse = {}
– At time t’, spouse = {(Matt, Sue), (Sue,Matt)}

⇒We can add the notion of time in the relation spouse

7

Person = {Matt,Sue}

Man = {Matt}

Woman = {Sue}

Married = {}

spouse = {} 

children = {}

siblings = {}

Person = {Matt, Sue}

Man = {Matt}

Woman = {Sue}

Married = {Matt, Sue}

spouse = {(Matt, Sue), (Sue, Matt)}

children = {}

siblings = {}
Time t Time t’
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Modeling State Transitions

• Alloy has no predefined notion of state 
transition

• However, there are several ways to model 
dynamic aspects of a system in Alloy

• A general and relatively simple way is to: 
1. introduce a Time signature expressing time
2. add a time component to each relation that 

changes over time
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Family Model Signatures

9

abstract sig Person {
children: set Person,
siblings: set Person set

} 

sig Man, Woman extends Person {}

sig Married in Person {
spouse: one Married one

}
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Family Model Signatures with Time

10

sig Time {}

abstract sig Person {
children: Person set -> Time,
siblings: Person set -> Time

} 

sig Man, Woman extends Person {}

sig Married in Person {
spouse: Married one -> Time

}
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Transitions
• Two people get married

– At time t,  Married = {}
– At time t’,  Married = {Matt, Sue}

– Actually, we can’t have a time-dependent signature such as 
Married because signatures are not time dependent

11

Person = {Matt,Sue}

Man = {Matt}

Woman = {Sue}

Married = {}

spouse = {} 

children = {}

siblings = {}

Person = {Matt, Sue}

Man = {Matt}

Woman = {Sue}

Married = {Matt, Sue}

spouse = {(Matt, Sue), (Sue, Matt)}

children = {}

siblings = {}Time t Time t’



Transitions
• A person is born
– At time t, Person = {}
– At time t’, Person = {Sue}

– We cannot add the notion being born to the signature 
Person because signatures are not time dependent

12

Person = {}

Man = {}

Woman = {}

spouse = {} 

children = {}

siblings = {}

Person = {Sue}

Man = {}

Woman = {Sue}

spouse = {}

children = {}

siblings = {}Time t Time t’



Signatures are Static

13

abstract sig Person {
children: Person set -> Time,
siblings: Person set -> Time,
spouse: Person lone -> Time

}
sig Man, Woman extends Person {}

sig Married in Person {
spouse: Married one -> Time

}
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Signatures are Static

14

abstract sig Person {
children: Person set -> Time,
siblings: Person set -> Time,
spouse: Person lone -> Time
alive: set Time

}

sig Man, Woman extends Person {}
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Revising Constraints

15

abstract sig Person {
children: Person set -> Time,
siblings: Person set -> Time,
spouse: Person lone -> Time,
alive: set Time

}
sig Man, Woman extends Person {}
fun parents[] : Person->Person {~children}
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Revising Constraints

16

abstract sig Person {
children: Person set -> Time,
siblings: Person set -> Time,
spouse: Person lone -> Time,
alive: set Time
parents: Person set -> Time

}
sig Man, Woman extends Person {}
fun parents[] : Person->Person {~children}
fact parentsDef {
all t: Time | parents.t = ~(children.t)

}
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Revising Constraints
-- Time-dependent parents relation

fact parentsDef {
all t: Time | parents.t = ~(children.t)

}

-- Two persons are blood relatives iff
-- they have a common ancestor
pred BloodRelatives [p, q: Person, t: Time]
{

some p.*(parents.t) & q.*(parents.t)
}
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Revising Static Constraints
-- People cannot be their own ancestors
all t: Time | no p: Person | 

p in p.^(parents.t)

-- No one can have more than one father
-- or mother
all t: Time | all p: Person | 

lone (p.parents.t & Man) 
and 
lone (p.parents.t & Woman) 

...
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Revising Static Constraints
-- A person p's siblings are those people, other
-- than p, with the same parents as p
all t: Time | all p: Person | 

p.siblings.t = 
{ q: Person - p | some q.parents.t and

p.parents.t = q.parents.t }

-- Each married man (woman) has a wife (husband) 
all t: Time | all p: Person | 

let s = p.spouse.t |
(p in Man implies s in Woman) and
(p in Woman implies s in Man)
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Revising Static Constraints
-- A spouse can't be a sibling
all t: Time | no p: Person | 

some p.spouse.t and
p.spouse.t in p.siblings.t

-- People can't be married to a blood relative
all t: Time | no p: Person |

let s = p.spouse.t |
some s and
BloodRelatives[p, s, t]
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Revising Static Constraints
-- a person can't have children with 
-- a blood relative
all t: Time | all p, q: Person |

(some (p.children.t & q.children.t) and 
p != q) 
implies 
not BloodRelatives[p, q, t]

-- the spouse relation is symmetric
all t: Time |

spouse.t = ~(spouse.t)  
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Exercises

• Load family-6.als
• Execute it
• Analyze the model
• Look at the generated instance
• Does it look correct?
• What, if anything, would you change about 

it?
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Alternative Approach: Electrum Alloy

A new version of Alloy with an implicit, built-in 
notion of (discrete) time

• A model instance is an infinite sequence of states
• Signatures/relations can change from state to state
• A new set of temporal operators allows us to 

express properties over time
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Temporal Operators
Formula Meaning
always p p holds from current state forward
historically p p holds from current state backward
after p p holds in the next state
before p p holds in the previous state
eventually p p holds in the current state or a later on
once p p holds in current state or an earlier one
p until q p holds continuously until q holds
p since q p has held continuously since last time q held
e’ value of e in next state

24CS:5810 -- Formal Methods in Software Engineering   Fall 2020



Example Traces
Time steps 1 2 3 4 5 6 7 8 9 …
p ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ …
q ⦁ ⦁ ⦁ …
always p ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ …
historically p ⦁ ⦁ ⦁ ⦁ ⦁ …
after p ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ …
before p ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ …
eventually q ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ …
once q ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ …
p until q ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ …
p since q ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ …
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Relations can Change Over Time

26

enum Liveness { Alive, Dead, Unborn }

abstract sig Person {
var children: set Person, 
var parents: set Person,  
var siblings: set Person,
var spouse: lone Person,
var liveness: Liveness

}
sig Man, Woman extends Person {}
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Revising Constraints

27

enum Liveness { Alive, Dead, Unborn }

abstract sig Person {
var children: set Person, 
var spouse: lone Person,
var liveness: Liveness

}
sig Man, Woman extends Person {}

fun parents[] : Person->Person {~children}
fun siblings[p: Person]:Person {{q: Person | …}}
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Revising Constraints
pred BloodRelatives [p, q: Person] {

some p.*parents & q.*parents
}
pred isAlive [p: Person] { p.liveness = Alive }
pred isDead [p: Person] { p.liveness = Dead }
pred isUnborn [p: Person] {p.liveness = Unborn}

-- a newborn is someone who has just been born 
pred newBorn[p: Person] {

isAlive[p] and before !isAlive[p]
}

pred isMarried [p: Person] { some p.spouse }
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Revising Static Constraints
-- People cannot be their own ancestors
always no p: Person | p in p.^parents

-- No one can have more than one father
-- or mother
always all p: Person | 

lone (p.parents & Man) 
and 
lone (p.parents & Woman) 

-- the spouse relation is symmetric
always spouse = ~spouse
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Revising Static Constraints
-- Each married man (woman) has a wife (husband) 
always all p: Person | 

let s = p.spouse |
(p in Man implies s in Woman) and
(p in Woman implies s in Man)

-- A person can't have children with 
-- a blood relative
always all disj p, q: Person |

some (p.children & q.children) implies 
not BloodRelatives[p, q]
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Revising Static Constraints
-- A spouse can't be a sibling
always no p: Person | 

some p.spouse and
p.spouse in p.siblings

-- People can't be married to a blood relative
always no p: Person |

let s = p.spouse |
some s and
BloodRelatives[p, s]
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Adding Temporal Constraints
-- Dead people stay dead
always all p: Person | 

isDead[p] implies after isDead[p]

-- Dead people where once alive
always all p: Person |

isDead[p] implies once isAlive[p]

-- No one lives forever
always all p: Person |

isAlive[p] implies eventually isDead[p]
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Adding Temporal Constraints
-- Living people never become unborn
always all p: Person |

isAlive[p] implies always !isUnborn[p]

-- Live people stay alive until they die
always all p: Person |

isAlive[p] implies
(isAlive[p] until isDead[p])

-- Newborns have a father and a mother
always all p: Person | newBorn[p] implies

some m:Man | some w: Woman | p.parents = m+w
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Adding Temporal Constraints
-- Children were born from previously alive
-- parents
always all p, q: Person | 

p in q.children implies
once (newBorn[p] and once isAlive[q])

-- People with parents have had those parents
-- since birth
always all p, q: Person |

p in q.children implies
(p in q.children since newBorn[p])
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Exercises

• Load family-6-elec.als in Electrum Alloy
• Execute it
• Analyze the model
• Look at the generated instance
• Does it look correct?
• What, if anything, would you change about 

it?
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Dynamics as State Transitions

• The evolution of a dynamic system can be 
modeled as a set of traces

• Each trace is a sequence of transitions from 
one state to another

• A transition can be thought of as caused by 
the application of a state transformer

• A state transformer is an operator that 
modifies the current state
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Possible Trace

37

Person = {Matt, Sue, Sean}

Man = {Matt, Sean}

Woman = {Sue}

spouse = {}

children = {}

liveness = {(Matt, U), 
(Sue,U), (Sean,U)}

Person = {Matt, Sue, Sean}

Man = {Matt, Sean}

Woman = {Sue}

spouse = {}

children = {}

liveness = {(Matt, U), 
(Sue,A), (Sean,U)}

Person = {Matt, Sue, Sean}

Man = {Matt, Sean}

Woman = {Sue}

spouse = {(Matt,Sue), (Sue,Matt)}

children = {}

liveness = {(Matt,A), (Sue,A), 
(Sean,U)}

Person = {Matt, Sue, Sean}

Man = {Matt, Sean}

Woman = {Sue}

spouse = {(Matt,Sue), (Sue,Matt)}

children = {(Matt,Sean), (Sue,Sean)}

liveness = {(Matt,A), (Sue,A), 
(Sean,A)}
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Transitions
A person is born from 
parents

State transformer that
modifies children and 
liveness relations

38

Person = {Matt, Sue, Sean}

Man = {Matt, Sean}

Woman = {Sue}

spouse = {(Matt,Sue), (Sue,Matt)}

children = {}

liveness = {(Matt,Alive), (Sue,Alive), 
(Sean,Unborn)}

Person = {Matt, Sue, Sean}

Man = {Matt, Sean}

Woman = {Sue}

spouse = {(Matt,Sue), (Sue,Matt)}

children = {(Matt,Sean), (Sue,Sean)}

liveness = {(Matt,Alive), (Sue,Alive),   
(Sean,Alive)}
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Expressing Transitions in Electrum

• A state transformer is modeled as a predicate
over two states:
1. the state right before the transition (current 

state) and
2. the state right after it (next state)

• We use the temporal operators of Electrum 
Alloy to express constraints on the current and 
the next state
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Expressing State Transformers
• Pre-condition constraints
– Describe the states to which the transformer applies

• Post-condition constraints
– Describes the effects of the transformer in 

generating the next state
• Frame-condition constraints
– Describes what does not change between current 

state and next state of a transition

Distinguishing the pre-, post- and frame-conditions in 
comments provides useful documentation
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Example: Marriage
pred getMarried [p,q: Person] {
-- preconditions

-- p and q are both alive
isAlive[p] and isAlive[p]
-- neither is married
no (p+q).spouse
-- they are not be blood relatives
not BloodRelatives[p, q]

-- post-conditions
-- p and q are each other’s spouses
p.spouse' = q
q.spouse' = p

-- frame conditions 

}
41

??
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enum Liveness { Alive, Dead, 
Unborn }

abstract sig Person {
var children: set Person, 
var spouse: lone Person,
var liveness: Liveness }

sig Man,Woman extends Person {}
pred isAlive [p: Person]

{ p.liveness = Alive }

spouse' is the next 
version of spouse



Frame Condition

How is each relation impacted by marriage?
• 5 relations : 
– children, parents, siblings
– spouse
– liveness

• The parents and siblings relations are defined in 
terms of the children relation

• Thus, the frame condition has only to consider
children, spouse and liveness
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Frame Condition Predicates
pred noChildrenChangeExcept [P: set Person] {

all p: Person - P | 
p.children' = p.children

}

pred noSpouseChangeExcept [P: set Person] {
all p: Person - P |

p.spouse' = p.spouse
}

pred noLivenessChangeExcept [P: set Person] {
all p: Person - P |

p.alive' = p.alive
}
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Marriage Operator
pred getMarried [p, q: Person]
{
-- preconditions

isAlive[p] and isAlive[q]
no (m+w).spouse
not BloodRelatives[m, w]

-- post-conditions
p.spouse' = q and q.spouse' = p

-- frame conditions
noSpouseChangeExcept[p+q]
noChildrenChangeExcept[none]
noLivenessChangeExcept[none]

}
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Instance of Marriage
…
pred someMarriage {

some m: Man | some w: Woman | 
getMarried[m, w]

}
-– there is a marriage initially
run { someMarriage }
-– there is a marriage initially or later on
run { eventually someMarriage }
-– there is a marriage eventually but not initially
run { not someMarriage and eventually someMarriage }
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Birth from Parents Operator
pred isBornFromParents [p: Person, m: Man, w: Woman] {

-- Pre-condition
isUnborn[p]
once (isAlive[w] and isAlive[m])
isAlive[w]

-- Post-condition and frame condition
after isAlive[p]
children' = children + (m -> p) + (m -> q)

-- Frame condition
noLivenessChangeExcept[p]
noSpouseChangeExcept[none]

}
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Instance of Birth

pred someBirth {
some p1: Person, p2: Man, p3: Woman | 
isBornFromParents[p1, p2, p3]

}

run { eventually someBirth }
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Death Operator
pred dies [p: Person] {

-- Pre-condition
isAlive[p]

-- Post-condition
after isDead[p]

-- Post-condition and frame condition
let q = p.spouse |
spouse' = spouse - ((p -> q) + (q -> p))

-- Frame conditions
noChildrenChangeExcept[none]
noLivenessChangeExcept[p]

}
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Instance of Death
pred someDeath {

some p: Person | dies[p]
}

run { eventually someDeath }

run { 
some p: Person |

isAlive[p] and after isAlive[p] and
eventually dies[p]

}
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Specifying Transition Systems
• A transition system can be defined as a set of 

traces (aka executions):
sequences of states generated by the operators

• In our example, for every execution:
– The initial state satisfies some initialization

condition
– Each pair of consecutive states are related by 

• a birth operation, or
• a death operation, or
• a marriage operation
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Initial State Specification

init specifies constraints on the initial state

pred init [] {
no children
no spouse
#LivingPeople > 2
#Person > #LivingPeople

}
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fun LivingPeople[]: Person 
{
liveness.Alive

}



Transition Relation Specification
trans specifies that each transition is a consequence of the 

application of one of the operators to some individuals

pred trans []  {
(some m: Man, w: Woman | getMarried [m, w])
or 
(some p: Person, m: Man, w: Woman | 

isBornFromParents [p, m, w])
or 
(some p: Person | dies [p])
or
other

}
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The Need for a No-op

• For convenience, Electrum considers only infinite
traces

• So we need a do-nothing operator for systems that 
can have finite executions

pred other [] {
-- the relevant relations stay the same
children' = children
spouse' = spouse
liveness' = liveness

}
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System Specification
System specifies that
• each execution starts in a state satisfying the initial state 

condition and 
• moves from one state to the next by the application of one 

operator at a time

pred System {
init and always trans

}
run { System }
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System Invariants
• Many of the facts that we stated in our static model 

now become expected system invariants

• These are properties that
– should hold in initial states
– should be preserved by system transitions

• We can check that a property is invariant for a given 
system System (within a given scope) by 
– encoding it as a formula F and
– checking the assertion    

System => always F
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Expected Invariants: Examples
-- People cannot be their own ancestors
assert a1 { System =>

always no p: Person | p in p.^parents
}
check a1 for 6

-- No one can have more than one father or mother
assert a2 { System => 

always all p: Person | 
lone (p.parents & Man) and 
lone (p.parents & Woman) 

}
check a2 for 8 
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Exercises
• Load family-7-elec.als in Electrum Alloy
• Execute it
• Look at the generated instance
• Does it look correct?
• What if anything would you change about it?
• Check each of the given assertions
• Are they all valid? 
• If not, how would you change the model to fix 

that?
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Exercises
• Load dynamic/trash-1-elec.als in 

Electrum Alloy
• Complete the model as instructed there
• Execute it
• Check each of the assertions you have written
• Are they all valid? 
• If not, how would you change the model to fix 

that?
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