
Dynamic Models in Alloy

Copyright 2001-20 Matt Dwyer, John Hatcliff, Rod Howell, Laurence Pilard, and Cesare Tinelli.
Produced by Cesare Tinelli and Laurence Pilard at the University of Iowa from notes originally developed by Matt Dwyer,
John Hatcliff and Rod Howell at Kansas State University. These notes are copyrighted materials and may not be used in
other course settings outside of the University of Iowa in their current form or modified form without the express written
permission of one of the copyright holders. During this course, students are prohibited from selling notes to or being paid
for taking notes by any person or commercial firm without the express written permission of one of the copyright holder.

CS:5810
Formal Methods in

Software Engineering

Overview

• Basics of dynamic models
– Modeling a system’s states and state transitions
– Modeling operations causing transitions

• Simple example of operations

2CS:5810 -- Formal Methods in Software Engineering Fall 2020

Static Models

• So far we’ve used Alloy to define the allowable
values of state components
– values of sets
– values of relations

• A model instance is a set of state component
values that
– Satisfies the constraints defined by multiplicities,

fact, “realism” conditions, …

3CS:5810 -- Formal Methods in Software Engineering Fall 2020

Static Model Instances

4

Person = {Matt, Sue}

Man = {Matt}

Woman = {Sue}

Married = {}

spouse = {}

children = {}

siblings = {}

Person = {Matt, Sue}

Man = {Matt}

Woman = {Sue}

Married = {Matt, Sue}

spouse = {(Matt,Sue), (Sue,Matt)}

children = {}

siblings = {}

Person = {Matt, Sue, Sean}

Man = {Matt, Sean}

Woman = {Sue}

Married = {Matt, Sue}

spouse = {(Matt,Sue), (Sue,Matt)}

children = {(Matt,Sean), (Sue,Sean)}

siblings = {}

CS:5810 -- Formal Methods in Software Engineering Fall 2020

Dynamic Models

• Static models allow us to describe the legal
states of a dynamic system

• We also want to be able to describe the legal
transitions between states
E.g.
– To get married one must be alive and not currently

married
– One must be alive to be able to die
– A person becomes someone’s child after birth

5CS:5810 -- Formal Methods in Software Engineering Fall 2020

Example

6

abstract sig Person {
children: set Person,
siblings: set Person

}

sig Man, Woman extends Person {}

sig Married in Person {
spouse: one Married

}

Family Model

CS:5810 -- Formal Methods in Software Engineering Fall 2020

State Transitions
• Two people get married

– At time t, spouse = {}
– At time t’, spouse = {(Matt, Sue), (Sue,Matt)}

⇒We can add the notion of time in the relation spouse

7

Person = {Matt,Sue}

Man = {Matt}

Woman = {Sue}

Married = {}

spouse = {}

children = {}

siblings = {}

Person = {Matt, Sue}

Man = {Matt}

Woman = {Sue}

Married = {Matt, Sue}

spouse = {(Matt, Sue), (Sue, Matt)}

children = {}

siblings = {}
Time t Time t’

CS:5810 -- Formal Methods in Software Engineering Fall 2020

Modeling State Transitions

• Alloy has no predefined notion of state
transition

• However, there are several ways to model
dynamic aspects of a system in Alloy

• A general and relatively simple way is to:
1. introduce a Time signature expressing time
2. add a time component to each relation that

changes over time

8CS:5810 -- Formal Methods in Software Engineering Fall 2020

Family Model Signatures

9

abstract sig Person {
children: set Person,
siblings: set Person set

}

sig Man, Woman extends Person {}

sig Married in Person {
spouse: one Married one

}

CS:5810 -- Formal Methods in Software Engineering Fall 2020

Family Model Signatures with Time

10

sig Time {}

abstract sig Person {
children: Person set -> Time,
siblings: Person set -> Time

}

sig Man, Woman extends Person {}

sig Married in Person {
spouse: Married one -> Time

}

CS:5810 -- Formal Methods in Software Engineering Fall 2020

Transitions
• Two people get married

– At time t, Married = {}
– At time t’, Married = {Matt, Sue}

– Actually, we can’t have a time-dependent signature such as
Married because signatures are not time dependent

11

Person = {Matt,Sue}

Man = {Matt}

Woman = {Sue}

Married = {}

spouse = {}

children = {}

siblings = {}

Person = {Matt, Sue}

Man = {Matt}

Woman = {Sue}

Married = {Matt, Sue}

spouse = {(Matt, Sue), (Sue, Matt)}

children = {}

siblings = {}Time t Time t’

Transitions
• A person is born
– At time t, Person = {}
– At time t’, Person = {Sue}

– We cannot add the notion being born to the signature
Person because signatures are not time dependent

12

Person = {}

Man = {}

Woman = {}

spouse = {}

children = {}

siblings = {}

Person = {Sue}

Man = {}

Woman = {Sue}

spouse = {}

children = {}

siblings = {}Time t Time t’

Signatures are Static

13

abstract sig Person {
children: Person set -> Time,
siblings: Person set -> Time,
spouse: Person lone -> Time

}
sig Man, Woman extends Person {}

sig Married in Person {
spouse: Married one -> Time

}

CS:5810 -- Formal Methods in Software Engineering Fall 2020

Signatures are Static

14

abstract sig Person {
children: Person set -> Time,
siblings: Person set -> Time,
spouse: Person lone -> Time
alive: set Time

}

sig Man, Woman extends Person {}

CS:5810 -- Formal Methods in Software Engineering Fall 2020

Revising Constraints

15

abstract sig Person {
children: Person set -> Time,
siblings: Person set -> Time,
spouse: Person lone -> Time,
alive: set Time

}
sig Man, Woman extends Person {}
fun parents[] : Person->Person {~children}

CS:5810 -- Formal Methods in Software Engineering Fall 2020

Revising Constraints

16

abstract sig Person {
children: Person set -> Time,
siblings: Person set -> Time,
spouse: Person lone -> Time,
alive: set Time
parents: Person set -> Time

}
sig Man, Woman extends Person {}
fun parents[] : Person->Person {~children}
fact parentsDef {
all t: Time | parents.t = ~(children.t)

}
CS:5810 -- Formal Methods in Software Engineering Fall 2020

Revising Constraints
-- Time-dependent parents relation

fact parentsDef {
all t: Time | parents.t = ~(children.t)

}

-- Two persons are blood relatives iff
-- they have a common ancestor
pred BloodRelatives [p, q: Person, t: Time]
{

some p.*(parents.t) & q.*(parents.t)
}

17CS:5810 -- Formal Methods in Software Engineering Fall 2020

Revising Static Constraints
-- People cannot be their own ancestors
all t: Time | no p: Person |

p in p.^(parents.t)

-- No one can have more than one father
-- or mother
all t: Time | all p: Person |

lone (p.parents.t & Man)
and
lone (p.parents.t & Woman)

...

18CS:5810 -- Formal Methods in Software Engineering Fall 2020

Revising Static Constraints
-- A person p's siblings are those people, other
-- than p, with the same parents as p
all t: Time | all p: Person |

p.siblings.t =
{ q: Person - p | some q.parents.t and

p.parents.t = q.parents.t }

-- Each married man (woman) has a wife (husband)
all t: Time | all p: Person |

let s = p.spouse.t |
(p in Man implies s in Woman) and
(p in Woman implies s in Man)

19CS:5810 -- Formal Methods in Software Engineering Fall 2020

Revising Static Constraints
-- A spouse can't be a sibling
all t: Time | no p: Person |

some p.spouse.t and
p.spouse.t in p.siblings.t

-- People can't be married to a blood relative
all t: Time | no p: Person |

let s = p.spouse.t |
some s and
BloodRelatives[p, s, t]

20CS:5810 -- Formal Methods in Software Engineering Fall 2020

Revising Static Constraints
-- a person can't have children with
-- a blood relative
all t: Time | all p, q: Person |

(some (p.children.t & q.children.t) and
p != q)
implies
not BloodRelatives[p, q, t]

-- the spouse relation is symmetric
all t: Time |

spouse.t = ~(spouse.t)

21CS:5810 -- Formal Methods in Software Engineering Fall 2020

Exercises

• Load family-6.als
• Execute it
• Analyze the model
• Look at the generated instance
• Does it look correct?
• What, if anything, would you change about

it?

22CS:5810 -- Formal Methods in Software Engineering Fall 2020

Alternative Approach: Electrum Alloy

A new version of Alloy with an implicit, built-in
notion of (discrete) time

• A model instance is an infinite sequence of states
• Signatures/relations can change from state to state
• A new set of temporal operators allows us to

express properties over time

23CS:5810 -- Formal Methods in Software Engineering Fall 2020

Temporal Operators
Formula Meaning
always p p holds from current state forward
historically p p holds from current state backward
after p p holds in the next state
before p p holds in the previous state
eventually p p holds in the current state or a later on
once p p holds in current state or an earlier one
p until q p holds continuously until q holds
p since q p has held continuously since last time q held
e’ value of e in next state

24CS:5810 -- Formal Methods in Software Engineering Fall 2020

Example Traces
Time steps 1 2 3 4 5 6 7 8 9 …
p ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ …
q ⦁ ⦁ ⦁ …
always p ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ …
historically p ⦁ ⦁ ⦁ ⦁ ⦁ …
after p ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ …
before p ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ …
eventually q ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ …
once q ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ …
p until q ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ …
p since q ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ …

25CS:5810 -- Formal Methods in Software Engineering Fall 2020

Relations can Change Over Time

26

enum Liveness { Alive, Dead, Unborn }

abstract sig Person {
var children: set Person,
var parents: set Person,
var siblings: set Person,
var spouse: lone Person,
var liveness: Liveness

}
sig Man, Woman extends Person {}

CS:5810 -- Formal Methods in Software Engineering Fall 2020

Revising Constraints

27

enum Liveness { Alive, Dead, Unborn }

abstract sig Person {
var children: set Person,
var spouse: lone Person,
var liveness: Liveness

}
sig Man, Woman extends Person {}

fun parents[] : Person->Person {~children}
fun siblings[p: Person]:Person {{q: Person | …}}

CS:5810 -- Formal Methods in Software Engineering Fall 2020

Revising Constraints
pred BloodRelatives [p, q: Person] {

some p.*parents & q.*parents
}
pred isAlive [p: Person] { p.liveness = Alive }
pred isDead [p: Person] { p.liveness = Dead }
pred isUnborn [p: Person] {p.liveness = Unborn}

-- a newborn is someone who has just been born
pred newBorn[p: Person] {

isAlive[p] and before !isAlive[p]
}

pred isMarried [p: Person] { some p.spouse }
28CS:5810 -- Formal Methods in Software Engineering Fall 2020

Revising Static Constraints
-- People cannot be their own ancestors
always no p: Person | p in p.^parents

-- No one can have more than one father
-- or mother
always all p: Person |

lone (p.parents & Man)
and
lone (p.parents & Woman)

-- the spouse relation is symmetric
always spouse = ~spouse

29CS:5810 -- Formal Methods in Software Engineering Fall 2020

Revising Static Constraints
-- Each married man (woman) has a wife (husband)
always all p: Person |

let s = p.spouse |
(p in Man implies s in Woman) and
(p in Woman implies s in Man)

-- A person can't have children with
-- a blood relative
always all disj p, q: Person |

some (p.children & q.children) implies
not BloodRelatives[p, q]

30CS:5810 -- Formal Methods in Software Engineering Fall 2020

Revising Static Constraints
-- A spouse can't be a sibling
always no p: Person |

some p.spouse and
p.spouse in p.siblings

-- People can't be married to a blood relative
always no p: Person |

let s = p.spouse |
some s and
BloodRelatives[p, s]

31CS:5810 -- Formal Methods in Software Engineering Fall 2020

Adding Temporal Constraints
-- Dead people stay dead
always all p: Person |

isDead[p] implies after isDead[p]

-- Dead people where once alive
always all p: Person |

isDead[p] implies once isAlive[p]

-- No one lives forever
always all p: Person |

isAlive[p] implies eventually isDead[p]

32CS:5810 -- Formal Methods in Software Engineering Fall 2020

Adding Temporal Constraints
-- Living people never become unborn
always all p: Person |

isAlive[p] implies always !isUnborn[p]

-- Live people stay alive until they die
always all p: Person |

isAlive[p] implies
(isAlive[p] until isDead[p])

-- Newborns have a father and a mother
always all p: Person | newBorn[p] implies

some m:Man | some w: Woman | p.parents = m+w

33CS:5810 -- Formal Methods in Software Engineering Fall 2020

Adding Temporal Constraints
-- Children were born from previously alive
-- parents
always all p, q: Person |

p in q.children implies
once (newBorn[p] and once isAlive[q])

-- People with parents have had those parents
-- since birth
always all p, q: Person |

p in q.children implies
(p in q.children since newBorn[p])

34CS:5810 -- Formal Methods in Software Engineering Fall 2020

Exercises

• Load family-6-elec.als in Electrum Alloy
• Execute it
• Analyze the model
• Look at the generated instance
• Does it look correct?
• What, if anything, would you change about

it?

35CS:5810 -- Formal Methods in Software Engineering Fall 2020

Dynamics as State Transitions

• The evolution of a dynamic system can be
modeled as a set of traces

• Each trace is a sequence of transitions from
one state to another

• A transition can be thought of as caused by
the application of a state transformer

• A state transformer is an operator that
modifies the current state

CS:5810 -- Formal Methods in Software Engineering Fall 2020 36

Possible Trace

37

Person = {Matt, Sue, Sean}

Man = {Matt, Sean}

Woman = {Sue}

spouse = {}

children = {}

liveness = {(Matt, U),
(Sue,U), (Sean,U)}

Person = {Matt, Sue, Sean}

Man = {Matt, Sean}

Woman = {Sue}

spouse = {}

children = {}

liveness = {(Matt, U),
(Sue,A), (Sean,U)}

Person = {Matt, Sue, Sean}

Man = {Matt, Sean}

Woman = {Sue}

spouse = {(Matt,Sue), (Sue,Matt)}

children = {}

liveness = {(Matt,A), (Sue,A),
(Sean,U)}

Person = {Matt, Sue, Sean}

Man = {Matt, Sean}

Woman = {Sue}

spouse = {(Matt,Sue), (Sue,Matt)}

children = {(Matt,Sean), (Sue,Sean)}

liveness = {(Matt,A), (Sue,A),
(Sean,A)}

CS:5810 -- Formal Methods in Software Engineering Fall 2020

Transitions
A person is born from
parents

State transformer that
modifies children and
liveness relations

38

Person = {Matt, Sue, Sean}

Man = {Matt, Sean}

Woman = {Sue}

spouse = {(Matt,Sue), (Sue,Matt)}

children = {}

liveness = {(Matt,Alive), (Sue,Alive),
(Sean,Unborn)}

Person = {Matt, Sue, Sean}

Man = {Matt, Sean}

Woman = {Sue}

spouse = {(Matt,Sue), (Sue,Matt)}

children = {(Matt,Sean), (Sue,Sean)}

liveness = {(Matt,Alive), (Sue,Alive),
(Sean,Alive)}

CS:5810 -- Formal Methods in Software Engineering Fall 2020

Expressing Transitions in Electrum

• A state transformer is modeled as a predicate
over two states:
1. the state right before the transition (current

state) and
2. the state right after it (next state)

• We use the temporal operators of Electrum
Alloy to express constraints on the current and
the next state

CS:5810 -- Formal Methods in Software Engineering Fall 2020 39

Expressing State Transformers
• Pre-condition constraints
– Describe the states to which the transformer applies

• Post-condition constraints
– Describes the effects of the transformer in

generating the next state
• Frame-condition constraints
– Describes what does not change between current

state and next state of a transition

Distinguishing the pre-, post- and frame-conditions in
comments provides useful documentation

40CS:5810 -- Formal Methods in Software Engineering Fall 2020

Example: Marriage
pred getMarried [p,q: Person] {
-- preconditions

-- p and q are both alive
isAlive[p] and isAlive[p]
-- neither is married
no (p+q).spouse
-- they are not be blood relatives
not BloodRelatives[p, q]

-- post-conditions
-- p and q are each other’s spouses
p.spouse' = q
q.spouse' = p

-- frame conditions

}
41

??

CS:5810 -- Formal Methods in Software Engineering Fall 2020

enum Liveness { Alive, Dead,
Unborn }

abstract sig Person {
var children: set Person,
var spouse: lone Person,
var liveness: Liveness }

sig Man,Woman extends Person {}
pred isAlive [p: Person]

{ p.liveness = Alive }

spouse' is the next
version of spouse

Frame Condition

How is each relation impacted by marriage?
• 5 relations :
– children, parents, siblings
– spouse
– liveness

• The parents and siblings relations are defined in
terms of the children relation

• Thus, the frame condition has only to consider
children, spouse and liveness

42CS:5810 -- Formal Methods in Software Engineering Fall 2020

Frame Condition Predicates
pred noChildrenChangeExcept [P: set Person] {

all p: Person - P |
p.children' = p.children

}

pred noSpouseChangeExcept [P: set Person] {
all p: Person - P |

p.spouse' = p.spouse
}

pred noLivenessChangeExcept [P: set Person] {
all p: Person - P |

p.alive' = p.alive
}

43CS:5810 -- Formal Methods in Software Engineering Fall 2020

Marriage Operator
pred getMarried [p, q: Person]
{
-- preconditions

isAlive[p] and isAlive[q]
no (m+w).spouse
not BloodRelatives[m, w]

-- post-conditions
p.spouse' = q and q.spouse' = p

-- frame conditions
noSpouseChangeExcept[p+q]
noChildrenChangeExcept[none]
noLivenessChangeExcept[none]

}
44CS:5810 -- Formal Methods in Software Engineering Fall 2020

Instance of Marriage
…
pred someMarriage {

some m: Man | some w: Woman |
getMarried[m, w]

}
-– there is a marriage initially
run { someMarriage }
-– there is a marriage initially or later on
run { eventually someMarriage }
-– there is a marriage eventually but not initially
run { not someMarriage and eventually someMarriage }

45CS:5810 -- Formal Methods in Software Engineering Fall 2020

Birth from Parents Operator
pred isBornFromParents [p: Person, m: Man, w: Woman] {

-- Pre-condition
isUnborn[p]
once (isAlive[w] and isAlive[m])
isAlive[w]

-- Post-condition and frame condition
after isAlive[p]
children' = children + (m -> p) + (m -> q)

-- Frame condition
noLivenessChangeExcept[p]
noSpouseChangeExcept[none]

}

46CS:5810 -- Formal Methods in Software Engineering Fall 2020

Instance of Birth

pred someBirth {
some p1: Person, p2: Man, p3: Woman |
isBornFromParents[p1, p2, p3]

}

run { eventually someBirth }

47CS:5810 -- Formal Methods in Software Engineering Fall 2020

Death Operator
pred dies [p: Person] {

-- Pre-condition
isAlive[p]

-- Post-condition
after isDead[p]

-- Post-condition and frame condition
let q = p.spouse |
spouse' = spouse - ((p -> q) + (q -> p))

-- Frame conditions
noChildrenChangeExcept[none]
noLivenessChangeExcept[p]

}
48CS:5810 -- Formal Methods in Software Engineering Fall 2020

Instance of Death
pred someDeath {

some p: Person | dies[p]
}

run { eventually someDeath }

run {
some p: Person |

isAlive[p] and after isAlive[p] and
eventually dies[p]

}

49CS:5810 -- Formal Methods in Software Engineering Fall 2020

Specifying Transition Systems
• A transition system can be defined as a set of

traces (aka executions):
sequences of states generated by the operators

• In our example, for every execution:
– The initial state satisfies some initialization

condition
– Each pair of consecutive states are related by

• a birth operation, or
• a death operation, or
• a marriage operation

50CS:5810 -- Formal Methods in Software Engineering Fall 2020

Initial State Specification

init specifies constraints on the initial state

pred init [] {
no children
no spouse
#LivingPeople > 2
#Person > #LivingPeople

}

51CS:5810 -- Formal Methods in Software Engineering Fall 2020

fun LivingPeople[]: Person
{
liveness.Alive

}

Transition Relation Specification
trans specifies that each transition is a consequence of the

application of one of the operators to some individuals

pred trans [] {
(some m: Man, w: Woman | getMarried [m, w])
or
(some p: Person, m: Man, w: Woman |

isBornFromParents [p, m, w])
or
(some p: Person | dies [p])
or
other

}
52CS:5810 -- Formal Methods in Software Engineering Fall 2020

???

The Need for a No-op

• For convenience, Electrum considers only infinite
traces

• So we need a do-nothing operator for systems that
can have finite executions

pred other [] {
-- the relevant relations stay the same
children' = children
spouse' = spouse
liveness' = liveness

}
CS:5810 -- Formal Methods in Software Engineering Fall 2020 53

System Specification
System specifies that
• each execution starts in a state satisfying the initial state

condition and
• moves from one state to the next by the application of one

operator at a time

pred System {
init and always trans

}
run { System }

54CS:5810 -- Formal Methods in Software Engineering Fall 2020

System Invariants
• Many of the facts that we stated in our static model

now become expected system invariants

• These are properties that
– should hold in initial states
– should be preserved by system transitions

• We can check that a property is invariant for a given
system System (within a given scope) by
– encoding it as a formula F and
– checking the assertion

System => always F
55CS:5810 -- Formal Methods in Software Engineering Fall 2020

Expected Invariants: Examples
-- People cannot be their own ancestors
assert a1 { System =>

always no p: Person | p in p.^parents
}
check a1 for 6

-- No one can have more than one father or mother
assert a2 { System =>

always all p: Person |
lone (p.parents & Man) and
lone (p.parents & Woman)

}
check a2 for 8

56CS:5810 -- Formal Methods in Software Engineering Fall 2020

Exercises
• Load family-7-elec.als in Electrum Alloy
• Execute it
• Look at the generated instance
• Does it look correct?
• What if anything would you change about it?
• Check each of the given assertions
• Are they all valid?
• If not, how would you change the model to fix

that?
57CS:5810 -- Formal Methods in Software Engineering Fall 2020

Exercises
• Load dynamic/trash-1-elec.als in

Electrum Alloy
• Complete the model as instructed there
• Execute it
• Check each of the assertions you have written
• Are they all valid?
• If not, how would you change the model to fix

that?

58CS:5810 -- Formal Methods in Software Engineering Fall 2020

