CS:5810
 Formal Methods in Software Engineering

Introduction to Alloy

Part 2

Copyright 2001-20 Matt Dwyer, John Hatcliff, Rod Howell, Laurence Pilard, and Cesare Tinelli. Created by Cesare Tinelli and Laurence Pilard at the University of lowa from notes originally developed by Matt Dwyer, John Hatcliff, Rod Howell at Kansas State University. These notes are copyrighted materials and may not be used in other course settings outside of the University of lowa in their current form or modified form without the express written permission of one of the copyright holders. During this course, students are prohibited from selling notes to or being paid for taking notes by any person or commercial firm without the express written permission of one of the copyright holders.

Alloys Constraints

- Signatures and fields resp. define classes (of atoms) and relations between them
- Alloy models can be refined further by adding formulas expressing additional constraints over those classes and relations
- Several operators are available to express both logical and relational constraints

Logical Operators

The usual logical operators are available, often in two forms:

- not	!	(Boolean) negation	
- and	\&\&	conjunction - or	
\|	implies	$=>$	disjunction
implication			
- else		alternative	
-		\ll	equivalence

Quantifiers

Alloy includes a rich collection of quantifiers
a11 x: S | F F holds for every x in S
some X: S | F $\quad \mathrm{F}$ holds for some x in S
no $x: S$ | F
F holds for no x in S
1one X: S | F F holds for at most one x in S
one x: S | F
F holds for exactly one x in S

Predefined Set Constants

There are three predefined set constants in Alloy: - none : empty set

- univ : universal set of all atoms
- ident : identity relation over all atoms

Example. For a model instance with just:

$$
\begin{aligned}
& \text { Man }=\{(\text { M0 }),(M 1),(\text { M2 })\} \\
& \text { Woman }=\{(\text { W0) },(\text { W1 })\}
\end{aligned}
$$

the constants have the values

```
none = {}
univ = {(M0),(M1),(M2),(W0),(W1)}
ident ={(M0,M0),(M1,M1),(M2,M2),(W0,W0),(W1,W1)}
```


Everything is a Relation in Alloy

- There are no scalars
- We never speak directly about elements (or tuples) of relations
- Instead, we can use singleton unary relations:

one sig Matt extends Person \{\}

- Quantified variables always denote singletons:
a11 x : S | ... x ...
$x=\{t\}$ for some element t of S

Set Operators and Predicates

| + | union |
| :--- | :--- | :--- |
| $\&$ | intersection |
| - | difference |
| in | subset |
| $=$ | equality |
| $!=$ | disequality |\quad operators

Example. Matt is a married man:

> Matt in (Married \& Man)

Relational Operators

Arrow Product

p -> q

- p and q are two relations
- p -> q is the relation you get by taking every combination of a tuple from p and a tuple from q and concatenating them (same as flat cross product)

Examples

```
Name = {(N0),(N1)}
Addr = {(D0),(D1)}
Book = {(B0)}
Name -> Addr = {(N0,D0),(N0,D1),(N1,D0),(N1,D1)}
Book -> Name -> Addr =
    {(B0,N0,D0),(B0,N0,D1),(B0,N1,D0),(B0,N1,D1)}
```


Transpose

~ p
take the mirror image of the relation p,
i.e., reverse the order of atoms in each tuple

Example

$$
\begin{aligned}
\cdot p & =\{(a 0, a 1, a 2, a 3),(b 0, b 1, b 2, b 3)\} \\
\cdot \sim p & =\{(a 3, a 2, a 1, a 0),(b 3, b 2, b 1, b 0)\}
\end{aligned}
$$

How would you use ~ to express the parents relation if you already have the children relation?
~children

Relational Composition (Join)

P. q

- p and q are two relations that are not both unary
- p.q is the relation you get by taking every combination of
a tuple from p and a tuple from q and adding their join, if it exists

How to join tuples ?

- What is the join of theses two tuples ?
- $\left(a_{1}, \ldots, a_{m}\right)$
$-\left(b_{1}, \ldots, b_{n}\right)$
If $a_{m} \neq b_{1}$ then the join is undefined
If $a_{m}=b_{1}$ then it is: $\left(a_{1}, \ldots, a_{m-1}, b_{2}, \ldots, b_{n}\right)$

Example

- (a,b). (a, c, d) undefined
- (a,b). (b, c, d) = (a, c, d)
- What about (a). (a) ? Not defined !
$t_{1} \cdot t_{2}$ is not defined if t_{1} and t_{2} are both unary tuples

Examples

- to maps a message to the name(s) it should be sent to
- address maps names to addresses

$$
\begin{aligned}
\text { to }=\{ & (M 0, N 0),(M 0, N 2) \\
& (M 1, N 2),(M 2, N 3)\}
\end{aligned}
$$

$$
\text { address }=\{(N 0, D 0),
$$

$$
(N 0, D 1),(N 1, D 1),(N 2, D 3)\}
$$

to.address maps a message to the address(es) it should be sent to

$$
\begin{aligned}
& \text { to. address }=\{(M 0, D 0), \\
& \quad(M 0, D 1),(M 0, D 3),(M 1, D 3)\}
\end{aligned}
$$

Exercise

What's the result of these join applications?

1. $\{(a, b)\} .\{(c)\}$
2. $\{(a)\} .\{(a, b)\}$
3. $\{(a, b)\} .\{(b)\}$
4. $\{(a)\} .\{(a, b, c)\}$
5. $\{(a, b, c)\} .\{(c, e),(c, d),(b, c)\}$
6. $\{(a, b)\} .\{(a, b, c)\}$
7. $\{(a, b, c, d)\} .\{(d, e, f),(d, a)\}$
8. $\{(a)\} .\{(b)\}$

Exercises

- Given a relation addr of arity 4 that contains the tuple $b->n->a->t$ when book b maps name n to address a at time t, and given a specific book B and a time T :

```
- addr = {(B0,N0,D0,T0), (B0,N0,D1,T1),
    (B0,N1,D2,T0),(B0,N1,D2,T1),(B1,N2,D3,T0),
    (B1,N2,D4,T1)}
- T = {(T1)} B = {(B0)}
```

The expression B. add r. T is the name-address mapping of book B at time T. What is the value of $B . a d d r . T$?

- When p is a binary relation and q is a ternary relation, what is the arity of the relation p.q?
- Join is not associative (i.e., (p.q).r and p.(q.r) are not always equivalent), why ?

Example: Family Structure

```
abstract sig Person {
children: set Person,
sib7ings: set Person
}
```

sig Man, Woman extends Person \{\}
one sig Matt extends Person \{\}
sig Married in Person \{ spouse: one Married
\}

Example: Family Structure

```
abstract sig Person { children: set Person, siblings: set Person }
sig Man, Woman extends Person {}
one sig Matt extends Person {}
sig Married in Person { spouse: one Married }
```

- How would you use join to find Matt's children or grandchildren ?

```
- Matt.children // Matt's children
- Matt.children.children // Matt's grandchildren
```

- What if we want to find Matt's descendants?

Example: Family Structure

```
abstract sig Person { children: set Person, siblings: set Person }
sig Man, Woman extends Person {}
sig Married in Person { spouse: one Married }
```

Every married man (woman) has a wife (husband)

One's spouse can't be one's sibling

Example: Family Structure

```
abstract sig Person { children: set Person, siblings: set Person }
sig Man, Woman extends Person {}
sig Married in Person { spouse: one Married }
```

Every married man (woman) has a wife (husband)

```
a11 p: Married
    (p in Man => p.spouse in Woman)
    and
    (p in Woman => p.spouse in Man)
```

One's spouse can't be one's sibling

```
no p: Married |
    p.spouse in p.siblings
```


Box Join

p [q]

- Semantically identical to dot join, but takes its arguments in different order

$$
\mathrm{p}[\mathrm{q}] \equiv \mathrm{q} \cdot \mathrm{p}
$$

Example. Matt's children or grandchildren ?

```
- children[Matt]
    // Matt's children
- children.children[Matt] // Matt's grandchildren
- children[children[Matt]] // Matt's grandchildren
```


Transitive Closure

- Intuitively, the transitive closure of a relation r : $S x$ S is what you get when you keep navigating through r until you can't go any farther

Example: Family Structure

- What if we want to find Matt's ancestors or descendants?
- Matt.^children
- Matt.^(~children)
// Matt's descendants
// Matt's ancestors
- How would you express the constraint "No person can be their own ancestor"
no p: Person | p in p.^(~children)

Reflexive-transitive closure

- *r $\equiv \wedge r+i d e n$

Domain and Image Restrictions

The restriction operators are used to filter relations to a given domain or image

If S is a set and r is a relation then

- $s<r$ contains tuples of r starting with an element in s
- r : $>S$ contains tuples of r ending with an element in s

Example

```
Man = {(M0),(M1),(M2),(M3)}
Woman = {(W0),(W1)}
children = {(M0,M1),(M0,M2),(M3,W0),(W1,M1)}
// father-child
Man <: children = {(M0,M1),(M0,M2),(M3,W0)}
// parent-son
children :> Man = {(M0,M1),(M0,M2),(W1,M1)}
```


Override

p ++ q

- p and q are two relations of arity two or more
- the result is like the union between p and q except that tuples of q can replace tuples of p : any tuple in p that matches a tuple in q starting with the same element is dropped

$$
-p++q \equiv p-(\operatorname{domain}(q)<: p)+q
$$

Example

- oldAddr = \{(N0,D0), (N1,D1),(N1,D2)\}
- newAddr = \{(N1,D4), (N3,D3)\}
- oldAddr ++ newAddr = \{(N0,D0),(N1,D4),(N3,D3)\}

Operator Precedence

Example: Family Structure

How would you express the constraint "No person can have more than one father and mother "?

Example: Family Structure

How would you express the constraint "No person can have more than one father and mother "?

```
a11 p: Person |
    (lone (children.p & Man)) and
    (lone (children.p & Woman))
```

Equivalently:
a11 p: Person |
(lone (Man <: children).p) and
(lone (Woman <: children).p)

Set Comprehension

$\{x: S \mid F\}$

- the set of values drawn from set S for which F holds

How would use the comprehension notation to specify the set of people that have the same parents as Matt?
(assuming Person has a parents field)

Set Comprehension

$\{x: S \mid F\}$

- the set of values drawn from set S for which F holds

How would use the comprehension notation to specify the set of people that have the same parents as Matt?
\{ q: Person | q.parents = matt. parents \}
(assuming Person has a parents field)

Example: Family Structure

How would you express the constraint
"A person P's siblings are those people, other than P, with the same parents as P"

Example: Family Structure

How would you express the constraint
"A person P's siblings are those people, other than P, with the same parents as P"

$$
\begin{aligned}
& \text { a11 p: Person | } \\
& \text { p.siblings = } \\
& \quad\{q: \text { Person | p.parents = q.parents }\}-p
\end{aligned}
$$

Let

You can factor expressions out:

$$
\text { 1et } x=e \mid A
$$

- Each occurrence of the variable x in A will be replaced by the expression e

Example. Each married man (woman) has a wife (husband)

```
a11 p: Married |
    1et q = p.spouse
    (p in Man => q in Woman) and
    (p in Woman => q in Man)
```


Acknowledgements

The family structure example is based on an example by Daniel Jackson distributed with the Alloy Analyzer

Exercise

```
abstract sig Person { children: set Person, siblings: set Person }
sig Man, Woman extends Person {}
sig Married in Person { spouse: one Married }
```

Write facts stating the following:

1. Siblings have the same father and the same mother
2. Two married people have the same children
