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These Notes
• review the concepts of sets and relations 

required for working with the Alloy language

• focus on the kind of set operation and 
definitions used in specifications

• give some small examples of how we will use 
sets in specifications
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Set

• Collection of distinct objects
• Each set’s objects are drawn from a larger domain

of objects all of which have the same type  --- sets 
are homogeneous

• Examples:
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{2,4,5,6,…} set of integers

{red, yellow, blue} set of colors

{true, false} set of boolean values

{red, true, 2} for us, not a set!

domain



Value of a Set

• Is the collection of its members

• Two sets A and B are equal iff
– every member of A is a member of B
– every member of B is a member of A

• x є S denotes “x is a member of S”
• Ø denotes the empty set
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Defining Sets

• We can define a set by enumeration
– PrimaryColors == {red, yellow, blue} 
– Boolean == {true, false}
– Evens == {…, -4, -2, 0, 2, 4, …}

• This works fine for finite sets, but
– what do we mean by “…” ?
– remember, we want to be precise
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Defining Sets
• We can define a set by comprehension, that is, by 

describing a property that its elements must share
• Notation:   { x : D |  P(x) } 
– Form a new set of elements drawn from domain D by 

including exactly the elements that satisfy predicate (i.e., 
Boolean function) P

• Examples:
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Naturals less than 10

Even integers

Empty set of natural numbers

{ x : N | x < 10}

{ x : Z | (∃ y : Z | x = 2y) }

{ x : N | x > x}



Cardinality

• The cardinality (#) of a finite set is the number 
of its elements

• Examples:
– # {red, yellow, blue} = 3
– # {1, 23} = 2
– # Z = ? 

• Cardinalities are defined for infinite sets too, but 
we’ll be most concerned with the cardinality of finite 
sets
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Set Operations

• Union (X, Y sets over domain D):
– X ∪ Y ≡ {e: D | e ∈ X or e ∈ Y}
– {red} ∪ {blue} = {red, blue}

• Intersection
– X ∩ Y ≡ {e: D | e ∈ X and e ∈ Y}
– {red, blue} ∩ {blue, yellow} = {blue}

• Difference
– X \ Y ≡ {e: D | e ∈ X and e ∉ Y}
– {red, yellow, blue} \ {blue, yellow} = {red}
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Subsets

• A subset holds elements drawn from another 
set
– X ⊆ Y  iff every element of X is in Y
– {1, 7, 17, 24} ⊆ Z

• A proper subset is a non-equal subset

• Another view of set equality
– A = B iff (A ⊆ B and B ⊆ A)
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Power Sets
• The power set of set S (denoted Pow (S)) is the set of 

all subsets of S, i.e., 

Pow(S) ≡ {e | e ⊆ S}

• Example:
– Pow ({a,b,c}) = {Ø, {a}, {b}, {c},

{a,b}, {a,c}, {b,c},
{a,b,c}}

Note: for any S, Ø ⊆ S and thus Ø ∈ Pow(S)
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Exercises

• These slides include questions that you should 
be able to solve at this point

• They may require you to think some

• You should spend some effort in solving them
– … and may in fact appear on exams
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Exercises
• Specifying using comprehension notation

– Odd positive integers
– The squares of integers, i.e. {1,4,9,16,…}

• Express the following logic properties on sets 
without using the # operator
– Set has at least one element 
– Set has no elements 
– Set has exactly one element
– Set has at least two elements
– Set has exactly two elements
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Set Partitioning
• Sets are disjoint if they share no elements
• Often when modeling, we will take some set S and divide 

its members into disjoint subsets called blocks or parts
• We call this division a  partition
• Each member of S belongs to exactly one block of the 

partition
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Apple pie

Pizza
Steak

Ice CreamCake

Chips & SalsaSoup

Sweet & Sour Pork



Example

• Basic domains: Person, Residence

• Partitions:
– Partition Person into Child, Adult
– Partition Residence into Home, DormRoom, 

Apartment
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Model residential scenarios



Expressing Relationships

• It’s useful to be able to refer to structured 
values
– a group of values that are bound together
– e.g., struct, record, object fields

• Alloy is a calculus of relations
• All of our Alloy models will be built using 

relations (sets of tuples)
• … but first some basic definitions
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Product
• Given two sets A and B, the product of A and B,

usually denoted A x B, is the set of all possible pairs 
(a, b) where  a ∈ A and b ∈ B

A x B ≡ { (a, b) | a ∈ A, b ∈ B }

• Example: PrimaryColor x Boolean:
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(red,true), (red, false),
(blue,true), (blue, false),
(yellow, true), (yellow, false)

}{



Relation
• A binary relation R between A and B is an 

element of Pow (A x B), i.e., R ⊆ A x B

• Examples:  
– Parent : Person x Person
• Parent = { (John, Autumn), (John, Sam) }

– Square : Z x N
• Square = {(1,1), (-1,1), (-2,4)}

– ClassGrades : Person x {A, B, C, D, F}
• ClassGrades = { (Todd,A), (Jane,B) }
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Relation
• A ternary relation R between A, B and C is 

an element of Pow (A x B x C)

• Example: 
– FavoriteBeer : Person x Beer x Price 
• FavoriteBeer = { (John, Miller, $2), (Ted, Heineken, 

$4), (Steve, Miller, $2) }

• N-ary relations with n>3 are defined 
analogously (n is the arity of the relation) 
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Binary Relations

• The set of first elements is the definition 
domain of the relation
– Parent = { (John, Autumn), (John, Sam) }
– domain (Parent) = {John}       NOT Person!

• The set of second elements is the image of the 
relation
– image (Square) = {1,4}            NOT  N!

• How about {(1,blue), (2,blue), (1,red)}
– domain?            image?
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Common Relation Structures
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One-to-Many

One-to-One

Many-to-One

Many-to-Many

One

“Many” (two)

One
One

Many

Many

One

Many



Functions
• A function is a relation F of arity n+1 

containing no two distinct tuples with the 
same first n elements, 
– i.e., for n = 1,
∀ (a1, b1) ∈ F, ∀ (a2, b2) ∈ F, (a1 = a2⇒ b1 = b2)

• Examples:
– { (2, red), (3, blue), (5, red) }
– { (4, 2), (6,3), (8, 4) }

• Instead of F: A1 x A2 x … x An x B
we write F: A1 x A2 x … x An -> B  
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Exercises

• Which of the following are functions?

1. Parent = { (John, Autumn), (John, Sam) }

2. Square = { (1, 1), (-1, 1), (-2, 4) }

3. ClassGrades = { (Todd, A), (Vic, B) }
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Relations vs. Functions
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AutumnJohn
SamLorie

Parent

-2
-1

1 4

1

Square

ATodd
BVic

ClassGrades

Many-to-many

Many-to-one

One-to-one

In other words, a function is a relation that is X-to-one.



Special Kinds of Functions

• Consider a function f from S to T

• f is total if defined for all values of S
• f is partial if undefined for some values of S

• Examples
– Squares : Z -> N,  Squares = {…, (-1,1), (0,0), (1, 1), (2,4), …}
– SquareRoot : N -> N = { (x, y) : N x N | y2 = x) }
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Function Structures
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Total Function

Undefined for this inputPartial Function

Note: the empty relation 
over an non-empty domain 
is a partial function



Special Kinds of Functions
A function f: S -> T is 

• injective (one-to-one) if no image element is 
associated with multiple domain elements

• surjective (onto) if its image is T

• bijective if it is both injective and surjective

We’ll see that these come up frequently
– can be used to define properties concisely
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Function Structures

CS:5810 -- Formal Methods in Software Engineering   Fall 2020

Injective Function

Surjective Function



Exercises

• What kind of function/relation is Abs?
– Abs = { (x, y) : Z x N | (x < 0 and y = -x) or  

(x ≥ 0 and y = x) }

• How about Squares?
– Squares : Z x N,  Squares = { (x, y) : Z x N | y = x*x }
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Special Cases
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Relations

Total

Partial Functions

Injective

Surjective

Bijective



Functions as Sets

• Functions are relations and hence sets

• We can apply to them all the usual operators

– ClassGrades = { (Todd, A), (Jane, B) }

– #(ClassGrades ∪ { (Matt, C) }) = 3
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Exercises

• In the following if an operator fails to preserve 
a property give an example

• What operators preserve function-ness?
– ∩ ?

– ∪ ?     
– \ ?

• What operators preserve surjectivity?     
• What operators preserve injectivity?
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Relation Composition
• Use two relations to produce a new one

– map domain of first to image of second
– Given s: A x B and r: B x C then s;r : A x C

s;r ≡  { (a,c) | (a,b) ∈ s and (b,c) ∈ r }

• For example 
– s = { (red,1), (blue,2) }
– r = { (1,2), (2,4), (3,6) }
– s;r = { (red,2), (blue,4) }
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Not limited to 
binary relations



Relation Transitive Closure
• Intuitively, the transitive closure of a binary relation 

r: S x S, written r+, is what you get when you keep 
navigating through r until you can’t go any farther. 

r+ ≡ r ∪ (r;r) ∪ (r;r;r) ∪ …

• Formally, r+ ≡ smallest transitive relation containing r

• For example 
– GrandParent = Parent;Parent
– Ancestor = Parent+
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Relation Transpose

• Intuitively, the transpose of a relation r: S x 
T, written ~r, is what you get when you 
reverse all the pairs in r

~r ≡ { (b,a) | (a,b) ∈ r }

• For example 
– ChildOf = ~Parent
– DescendantOf = (~Parent)+

CS:5810 -- Formal Methods in Software Engineering   Fall 2020



Exercises

• What properties, i.e., function-ness, onto-
ness, 1-1-ness, are preserved by these relation 
operators?
– composition (;)
– closure (+)
– transpose (~)

• If an operator fails to preserve a property give 
an example
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