
CS:5810
Formal Methods in Software

Engineering

Sets and Relations

Copyright 2001-20, Matt Dwyer, John Hatcliff, Rod Howell, Laurence Pilard, and Cesare Tinelli.
Created by Cesare Tinelli and Laurence Pilard at the University of Iowa from notes originally developed by Matt Dwyer,
John Hatcliff, Rod Howell at Kansas State University. These notes are copyrighted materials and may not be used in
other course settings outside of the University of Iowa in their current form or modified form without the express written
permission of one of the copyright holders. During this course, students are prohibited from selling notes to or being paid
for taking notes by any person or commercial firm without the express written permission of one of the copyright holders.

CS:5810 -- Formal Methods in Software Engineering Fall 2020

These Notes
• review the concepts of sets and relations

required for working with the Alloy language

• focus on the kind of set operation and
definitions used in specifications

• give some small examples of how we will use
sets in specifications

CS:5810 -- Formal Methods in Software Engineering Fall 2020

Set

• Collection of distinct objects
• Each set’s objects are drawn from a larger domain

of objects all of which have the same type --- sets
are homogeneous

• Examples:

CS:5810 -- Formal Methods in Software Engineering Fall 2020

{2,4,5,6,…} set of integers

{red, yellow, blue} set of colors

{true, false} set of boolean values

{red, true, 2} for us, not a set!

domain

Value of a Set

• Is the collection of its members

• Two sets A and B are equal iff
– every member of A is a member of B
– every member of B is a member of A

• x є S denotes “x is a member of S”
• Ø denotes the empty set

CS:5810 -- Formal Methods in Software Engineering Fall 2020

Î

Defining Sets

• We can define a set by enumeration
– PrimaryColors == {red, yellow, blue}
– Boolean == {true, false}
– Evens == {…, -4, -2, 0, 2, 4, …}

• This works fine for finite sets, but
– what do we mean by “…” ?
– remember, we want to be precise

CS:5810 -- Formal Methods in Software Engineering Fall 2020

Defining Sets
• We can define a set by comprehension, that is, by

describing a property that its elements must share
• Notation: { x : D | P(x) }
– Form a new set of elements drawn from domain D by

including exactly the elements that satisfy predicate (i.e.,
Boolean function) P

• Examples:

CS:5810 -- Formal Methods in Software Engineering Fall 2020

Naturals less than 10

Even integers

Empty set of natural numbers

{ x : N | x < 10}

{ x : Z | (∃ y : Z | x = 2y) }

{ x : N | x > x}

Cardinality

• The cardinality (#) of a finite set is the number
of its elements

• Examples:
– # {red, yellow, blue} = 3
– # {1, 23} = 2
– # Z = ?

• Cardinalities are defined for infinite sets too, but
we’ll be most concerned with the cardinality of finite
sets

CS:5810 -- Formal Methods in Software Engineering Fall 2020

Set Operations

• Union (X, Y sets over domain D):
– X ∪ Y ≡ {e: D | e ∈ X or e ∈ Y}
– {red} ∪ {blue} = {red, blue}

• Intersection
– X ∩ Y ≡ {e: D | e ∈ X and e ∈ Y}
– {red, blue} ∩ {blue, yellow} = {blue}

• Difference
– X \ Y ≡ {e: D | e ∈ X and e ∉ Y}
– {red, yellow, blue} \ {blue, yellow} = {red}

CS:5810 -- Formal Methods in Software Engineering Fall 2020

Subsets

• A subset holds elements drawn from another
set
– X ⊆ Y iff every element of X is in Y
– {1, 7, 17, 24} ⊆ Z

• A proper subset is a non-equal subset

• Another view of set equality
– A = B iff (A ⊆ B and B ⊆ A)

CS:5810 -- Formal Methods in Software Engineering Fall 2020

Power Sets
• The power set of set S (denoted Pow (S)) is the set of

all subsets of S, i.e.,

Pow(S) ≡ {e | e ⊆ S}

• Example:
– Pow ({a,b,c}) = {Ø, {a}, {b}, {c},

{a,b}, {a,c}, {b,c},
{a,b,c}}

Note: for any S, Ø ⊆ S and thus Ø ∈ Pow(S)

CS:5810 -- Formal Methods in Software Engineering Fall 2020

Exercises

• These slides include questions that you should
be able to solve at this point

• They may require you to think some

• You should spend some effort in solving them
– … and may in fact appear on exams

CS:5810 -- Formal Methods in Software Engineering Fall 2020

Exercises
• Specifying using comprehension notation

– Odd positive integers
– The squares of integers, i.e. {1,4,9,16,…}

• Express the following logic properties on sets
without using the # operator
– Set has at least one element
– Set has no elements
– Set has exactly one element
– Set has at least two elements
– Set has exactly two elements

CS:5810 -- Formal Methods in Software Engineering Fall 2020

Set Partitioning
• Sets are disjoint if they share no elements
• Often when modeling, we will take some set S and divide

its members into disjoint subsets called blocks or parts
• We call this division a partition
• Each member of S belongs to exactly one block of the

partition

CS:5810 -- Formal Methods in Software Engineering Fall 2020

Apple pie

Pizza
Steak

Ice CreamCake

Chips & SalsaSoup

Sweet & Sour Pork

Example

• Basic domains: Person, Residence

• Partitions:
– Partition Person into Child, Adult
– Partition Residence into Home, DormRoom,

Apartment

CS:5810 -- Formal Methods in Software Engineering Fall 2020

Model residential scenarios

Expressing Relationships

• It’s useful to be able to refer to structured
values
– a group of values that are bound together
– e.g., struct, record, object fields

• Alloy is a calculus of relations
• All of our Alloy models will be built using

relations (sets of tuples)
• … but first some basic definitions

CS:5810 -- Formal Methods in Software Engineering Fall 2020

Product
• Given two sets A and B, the product of A and B,

usually denoted A x B, is the set of all possible pairs
(a, b) where a ∈ A and b ∈ B

A x B ≡ { (a, b) | a ∈ A, b ∈ B }

• Example: PrimaryColor x Boolean:

CS:5810 -- Formal Methods in Software Engineering Fall 2020

(red,true), (red, false),
(blue,true), (blue, false),
(yellow, true), (yellow, false)

}{

Relation
• A binary relation R between A and B is an

element of Pow (A x B), i.e., R ⊆ A x B

• Examples:
– Parent : Person x Person
• Parent = { (John, Autumn), (John, Sam) }

– Square : Z x N
• Square = {(1,1), (-1,1), (-2,4)}

– ClassGrades : Person x {A, B, C, D, F}
• ClassGrades = { (Todd,A), (Jane,B) }

CS:5810 -- Formal Methods in Software Engineering Fall 2020

Relation
• A ternary relation R between A, B and C is

an element of Pow (A x B x C)

• Example:
– FavoriteBeer : Person x Beer x Price
• FavoriteBeer = { (John, Miller, $2), (Ted, Heineken,

$4), (Steve, Miller, $2) }

• N-ary relations with n>3 are defined
analogously (n is the arity of the relation)

CS:5810 -- Formal Methods in Software Engineering Fall 2020

Binary Relations

• The set of first elements is the definition
domain of the relation
– Parent = { (John, Autumn), (John, Sam) }
– domain (Parent) = {John} NOT Person!

• The set of second elements is the image of the
relation
– image (Square) = {1,4} NOT N!

• How about {(1,blue), (2,blue), (1,red)}
– domain? image?

CS:5810 -- Formal Methods in Software Engineering Fall 2020

Common Relation Structures

CS:5810 -- Formal Methods in Software Engineering Fall 2020

One-to-Many

One-to-One

Many-to-One

Many-to-Many

One

“Many” (two)

One
One

Many

Many

One

Many

Functions
• A function is a relation F of arity n+1

containing no two distinct tuples with the
same first n elements,
– i.e., for n = 1,
∀ (a1, b1) ∈ F, ∀ (a2, b2) ∈ F, (a1 = a2⇒ b1 = b2)

• Examples:
– { (2, red), (3, blue), (5, red) }
– { (4, 2), (6,3), (8, 4) }

• Instead of F: A1 x A2 x … x An x B
we write F: A1 x A2 x … x An -> B

CS:5810 -- Formal Methods in Software Engineering Fall 2020

Exercises

• Which of the following are functions?

1. Parent = { (John, Autumn), (John, Sam) }

2. Square = { (1, 1), (-1, 1), (-2, 4) }

3. ClassGrades = { (Todd, A), (Vic, B) }

CS:5810 -- Formal Methods in Software Engineering Fall 2020

Relations vs. Functions

CS:5810 -- Formal Methods in Software Engineering Fall 2020

AutumnJohn
SamLorie

Parent

-2
-1

1 4

1

Square

ATodd
BVic

ClassGrades

Many-to-many

Many-to-one

One-to-one

In other words, a function is a relation that is X-to-one.

Special Kinds of Functions

• Consider a function f from S to T

• f is total if defined for all values of S
• f is partial if undefined for some values of S

• Examples
– Squares : Z -> N, Squares = {…, (-1,1), (0,0), (1, 1), (2,4), …}
– SquareRoot : N -> N = { (x, y) : N x N | y2 = x) }

CS:5810 -- Formal Methods in Software Engineering Fall 2020

Function Structures

CS:5810 -- Formal Methods in Software Engineering Fall 2020

Total Function

Undefined for this inputPartial Function

Note: the empty relation
over an non-empty domain
is a partial function

Special Kinds of Functions
A function f: S -> T is

• injective (one-to-one) if no image element is
associated with multiple domain elements

• surjective (onto) if its image is T

• bijective if it is both injective and surjective

We’ll see that these come up frequently
– can be used to define properties concisely

CS:5810 -- Formal Methods in Software Engineering Fall 2020

Function Structures

CS:5810 -- Formal Methods in Software Engineering Fall 2020

Injective Function

Surjective Function

Exercises

• What kind of function/relation is Abs?
– Abs = { (x, y) : Z x N | (x < 0 and y = -x) or

(x ≥ 0 and y = x) }

• How about Squares?
– Squares : Z x N, Squares = { (x, y) : Z x N | y = x*x }

CS:5810 -- Formal Methods in Software Engineering Fall 2020

Special Cases

CS:5810 -- Formal Methods in Software Engineering Fall 2020

Relations

Total

Partial Functions

Injective

Surjective

Bijective

Functions as Sets

• Functions are relations and hence sets

• We can apply to them all the usual operators

– ClassGrades = { (Todd, A), (Jane, B) }

– #(ClassGrades ∪ { (Matt, C) }) = 3

CS:5810 -- Formal Methods in Software Engineering Fall 2020

Exercises

• In the following if an operator fails to preserve
a property give an example

• What operators preserve function-ness?
– ∩ ?

– ∪ ?
– \ ?

• What operators preserve surjectivity?
• What operators preserve injectivity?

CS:5810 -- Formal Methods in Software Engineering Fall 2020

Relation Composition
• Use two relations to produce a new one

– map domain of first to image of second
– Given s: A x B and r: B x C then s;r : A x C

s;r ≡ { (a,c) | (a,b) ∈ s and (b,c) ∈ r }

• For example
– s = { (red,1), (blue,2) }
– r = { (1,2), (2,4), (3,6) }
– s;r = { (red,2), (blue,4) }

CS:5810 -- Formal Methods in Software Engineering Fall 2020

Not limited to
binary relations

Relation Transitive Closure
• Intuitively, the transitive closure of a binary relation

r: S x S, written r+, is what you get when you keep
navigating through r until you can’t go any farther.

r+ ≡ r ∪ (r;r) ∪ (r;r;r) ∪ …

• Formally, r+ ≡ smallest transitive relation containing r

• For example
– GrandParent = Parent;Parent
– Ancestor = Parent+

CS:5810 -- Formal Methods in Software Engineering Fall 2020

Relation Transpose

• Intuitively, the transpose of a relation r: S x
T, written ~r, is what you get when you
reverse all the pairs in r

~r ≡ { (b,a) | (a,b) ∈ r }

• For example
– ChildOf = ~Parent
– DescendantOf = (~Parent)+

CS:5810 -- Formal Methods in Software Engineering Fall 2020

Exercises

• What properties, i.e., function-ness, onto-
ness, 1-1-ness, are preserved by these relation
operators?
– composition (;)
– closure (+)
– transpose (~)

• If an operator fails to preserve a property give
an example

CS:5810 -- Formal Methods in Software Engineering Fall 2020

Acknowledgements

CS:5810 -- Formal Methods in Software Engineering Fall 2020

Some of these slides are adapted from

David Garlan’s slides from Lecture 3 of his course of Software Models
entitled “Sets, Relations, and Functions”
(http://www.cs.cmu.edu/afs/cs/academic/class/15671-f97/www/)

http://www.cs.cmu.edu/afs/cs/academic/class/15671-f97/www/

