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In this Talk

M= .P (x) VE(D)=b+1l) ABv. ( v) AE(y)<

* Focus on techniques for establishing T-satisfiability of formulas with:

* Boolean structure
e Constraints in a background theory T, e.g. UFLIA

e Existential and Universal _



Outline

* Background
 Satisfiabilty Modulo Theories (SMT) solver architecture

...and how it extends to V reasoning via quantifier instantiation
Vx.y[x]=>y[t]

* Recent strategies for quantifier instantiation:
* E-matching, conflict-based, model-based, counterexample-guided



Quantified formulas ¥V in SMT

* Are of importance to applications:
* Automated theorem proving:
e Background axioms {Vx.g (e, x) =g (x,e)=x, Vx.g(x,9(y,2z))=9(g(x,vy),x),Vx.g(x,1(x))=e}
Software verification:

* Unfolding Vx. foo (x)=bar (x+1), code contracts Vx.pre (x)=post (f (x))
* Frame axioms Vx.x#t = A’ (x)=A (x)

Function Synthesis: Vi:input.do:output.R[0o, 1]
Planning: dp:plan.Vt:time.F [P, t]
Knowledge representation: Vxy:Person.sibling (x, y)=mother (x)=mother (y)



Quantified formulas ¥V in SMT

* Are of importance to applications:
* Automated theorem proving:
e Background axioms {Vx.g (e, x) =g (x,e)=x, Vx.g(x,9(y,2z))=9(g(x,vy),x),Vz.g(x,1(x))=e}
Software verification:

* Unfolding Vx. foo (x)=bar (x+1), code contracts Vx.pre (x)=post (f (x))
* Frame axioms Vx.x#t = A’ (x)=A (x)

Function Synthesis: Vi:input.do:output.R[0o, 1]
Planning: dp:plan.Vt:time.F [P, t]
Knowledge representation: Vxy:Person.sibling (x, y)=mother (x)=mother (y)

* Are very challenging in theory:
* Establishing T-satisfiability of formulas with V is generally undecidable



Quantified formulas ¥V in SMT

* Are of importance to applications:
* Automated theorem proving:
* Background axioms {Vx.g (e, x)=g(x,e)=x, Vx.g(x,9(y,2z))=9(g(x,y),x),Vx.g(x,1i(x))=e}
Software verification:

* Unfolding Vx. foo (x)=bar (x+1), code contracts Vx.pre (x)=post (f (x))
* Frame axioms Vx.x#t = A’ (x)=A (x)

Function Synthesis: Vi:input.do:output.R[0o, 1]
Planning: dp:plan.Vt:time.F [P, t]
Knowledge representation: Vxy:Person.sibling (x, y)=mother (x)=mother (y)

* Are very challenging in theory:
* Establishing T-satisfiability of formulas with V is generally undecidable

* Can be handled well in practice:
 Efficient decision procedures for decidable fragments
* Heuristic techniques have high success rates in the general case



Background: Quantifiers

e Universal quantification:
Vx:Int.P(x)

P is true for all integers x

* Existential quantification:
dx:Int.—0Q (x)

Q is false for some integer x



Satisfiability Modulo Theories (SMT) Solvers

First Order Formula
Vx.P(x)A—=P (5)

SIVIT Solver Arithmetic solver

SAT

Set solver

Array solver

Solver

Datatype solver

Quantifiers Module

 Combination of propositional (SAT) solver, theory solver(s), quantifiers module



Satisfiability Modulo Theories (SMT) Solvers

First Order Formula
Vx.P(x)A—=P (5)

SI\/IT Solver Arithmetic solver

S AT Set solver

Array solver

Solver

Datatype solver

Quantifiers Module

e Takes input first-order formula

* Outputs “sat” or “unsat”
* “sat” if and only if input has a model




Satisfiability Modulo Theories (SMT) Solvers

First Order Formula
Vx.P(x)A—=P (5)

Arithmetic solver

Set solver

Array solver

Datatype solver

Quantifiers Module

* Cooperative interaction between
components
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Introductory Examples

P : Int -> Bool

Signature
QO : Int -> Bool

Vx.P(x)

—P (5) v—=P (3)
Vx.P(x)=P (5)
Vx.P(x)=P (3)

Initial input

Learned clauses
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Introductory Examples

P : Int -> Bool

Signature
QO : Int -> Bool

Vx.P(x)VQ(x) Initial input
—P (7) A=P (2) A—Q (7)

* |s this satisfiable or unsatisfiable?
e |f unsatisfiable, what instantiations do | need?
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P : Int -> Bool

Signature
QO : Int -> Bool

Vx.P(x)VQ(x) Initial input
—P (7) A=P (2) A—Q (7)

Vx.P(x)VvQ(x)=(P(7)VvQ(7)) Learned clauses
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Introductory Examples

P : Int -> Bool
QO : Int -> Bool

Signature

VX P () AVY.Q(Y) Initial input
(P(4)v—=0(5))AP(0)AQ(7)

* |s this satisfiable or unsatisfiable?
e |f unsatisfiable, what instantiations do | need?



Introductory Examples

P : Int -> Bool
Q : Int -> BRool

(P (4)v—=0Q(3))AP(6)AQ(7)

Signature

Initial input

Learned clauses
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P : Int -> Bool
QO : Int -> Bool

Signature

vx.P(x) v (x) Initial input

* |s this satisfiable or unsatisfiable?
e |f unsatisfiable, what instantiations do | need?



Introductory Examples

P : Int -> Bool

Signature
Q : Int -> Bool

Vx.P(x)Vv0O (x)
Vx.P(x)VvQ (x)=(P(5)vQ(5)) Learned clauses

Initial input
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Introductory Examples
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} Sighature
Q : Int -> BRool
A } nitial input
(—El V- ¢ A=
PE-mEm vs) — Learned clauses

= satisfiable

false
false

Lrue C
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Introductory Examples

P : Int -> Bool ,
Sighature
Q : Int -> Bool

—_

— Initial input

— Learned clauses

false E = true
false




Introductory Examples

P : Int -> Bool

Signature
Q : Int -> BRool
vx. B (x)VQ(x) Initial input
Vx.P(x)VvQ(x)=(P(5)VvQ(5))
Vx.P(x)VvQ(x)=(P(3)Vv0(3)) Learned clauses

= This is input is satisfiable, no matter how many instantiations we consider



Introductory Examples

P : Int -> Bool

Q : Int -> Bool Signature
a : Int
Vx.P(x)VQ (x+3) Initial input

—P (a—3)/\—|Q (a)

* |s this satisfiable or unsatisfiable?
e |f unsatisfiable, what instantiations do | need?



Introductory Examples

P : Int -> Bool

Q : Int -> Bool Signature
a : Int
Vx.P(x)VQ (x+3) Initial input

— P (8.‘3) /\_IQ (a)
Vx.P(x)VQ (x+3) =P (a-3)VvQ ((a-3) +3) Learned clauses



Introductory Examples

P : Int -> Bool B
Q : Int -> Bool — Signature
a : Int )

— Initial input

— Learned clauses

=> satisfiable

- = true C = falég
B - colse NN - true




Introductory Examples

P : Int -> Bool B
QO : Int -> Bool —
a : Int )

—

—_—
——

B VOREE I

=> satisfiable

- = true Q(a) falég
B - alse  [GUEEN - true

Signature

Initial input

Learned clauses



Introductory Examples

P : Int -> Bool

Learned clauses

Q : Int -> Bool Signature
a Int
V. P(x)vQ (x+3) Initial input
—|P(a—3)/\—|Q(a)
Vx.P(x)VvQ(x+3)=P(a-3)VvQ((a-3)+3)
)

..since (a—-3) +3=a



Introductory Examples

P : Int -> Bool B
Q : Int -> Bool — Signature
a : Int )

— Initial input

— Learned clauses

=> unsatisfiable



Quantified Formulas in DPLL(T): Basics

(P(a) vI(b)=a+l)
(AVX.P(x) vVVy.=P(y) VR(V))
(Vx.f (x)=g(x)+h(x) v—=R(a))

—> Given the above input



Quantified Formulas in DPLL(T): Basics
(P(a) v ENOYSEHT )

(=Vx.P(x) vVy.=P(y) VR(Y))
(Vx.f (x)=g(x)+h(x) v—P(a))

* Consider the propositional abstraction of the formula

 Atoms may encapsulate quantified formulas with Boolean structure
* Eg. Vy.—=P(y) VR(V)



Quantified Formulas in DPLL(T): Basics
(FA v )

(— C
( E v —[TAH )
|

SAT Solver

* Find propositional satisfying assignment via off-the-shelf SAT solver
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g_\/

(—

(

—> True

A
BN - e
C

— false

* Find propositional satisfying assignment via off-the-shelf SAT solver



Quantified Formulas in DPLL(T): Basics

(P (a) v ENBISEET)

(V. P (x) v YyemB ) VR
(Vx.f (x)=g(x)+h(x) v—P(a))

P(a) — true  VMy.=P(y) VR(y) = — true
Bl - rue  Vx.f(x)=g(x)+h(x) — true

Vx.P(x) — false

—> Consider original atoms




Quantified Formulas in DPLL(T): Basics
(P (a) v ENIOVSSHT )

(=Vx.P(x) vVy.=P(y) VR(Y))

(Vx.f (x)=g(x)+h(x) v—P(a))

SAT Solver

P [ . (x),Vx. f(x)=g(x)+h(x),Vy.=P(y) VR(y)

J

I

M

—> Propositional assignment can be seen as a set of T-literals M
* Must check if M is T-satisfiable




Quantified Formulas in DPLL(T): Basics

(P (a) v ENBYSEHT)
(=Vx. P (x) v ¥y.=P(y) VR(#)

(Vx.f (x)=g(x)+h(x) v—P(a))

SAT Solver

T
/ _Vx.P (%)
‘ Vx. £ (x) =g (x) +h (x)

P(a) Vy.—P(y) VR(Y)

UF-Solver LIA-Solver Quantifiers Module

—> Distribute ground literals to T-solvers,V literals to quantifiers module




Quantified Formulas in DPLL(T): Basics

(P (a) v ENGISEHT)
~ (VX P( ) v

(Vx.f( g (x

M

) +

SAT Solver

~<- m Quantifiers Module

= These solvers may choose to add conflicts/lemmas to clause set




DPLL(T,+..+T.

A

)+Quantifiers: Overview

Conflicts, lemmas

T-Clauses F

Satisfying
Assignment
M

unsat

..when F'|s
propositionally
unsatisfiable

[Nieuwenhuis/Oliveras/Tinelli 06]

Q

Quantifiers Module gi= -

—> Each of these components may:
* Report Mis T-unsatisfiable by reporting conflict clauses

* Report lemmas if they are unsure




DPLL(T,+..+T )+Quantifiers: Overview

T-Clauses F

Satisfying
Assignment
M

unsat

..when F'|s
propositionally
unsatisfiable

[Nieuwenhuis/Oliveras/Tinelli 06]

4

T,-solver

T -solver

Quantifiers Module

..when Mis
T,+...+T -satisfiable

= If no component adds a lemma, then it must be the case
that M is T,+...+T -satisfiable




In this talk: DPLL(T)+Quantifiers, simplified

T-Clauses F

Satisfying

Assignment Theory
SAT Solver M solver(s)

— Ground Solver

Quantifiers
Module

= For purposes of this talk, partition M into quantifier-free part E, and set of V formulas Q




In this talk: DPLL(T)+Quantifiers, simplified

T-Clauses F [«

____________________ Conflicts, lemmas

[ S

Satisfying

Assignment Theory
SAT Solver M solver(s)

E is T-satisfiable

Quantifiers
Module

= Theory solvers determine whether E is T-(un)satisfiable




In this talk: DPLL(T)+Quantifiers, simplified

T-Clauses F «

Satisfying

Assignment Theory
solver(s)

SAT Solver M

Quantifiers
Module

EUWQ is T-satisfiable

= If E is T-satisfiable, quantifiers module may be invoked




In this talk: DPLL(T)+Quantifiers, simplified

T-Clauses F «

Satisfying

Assignment Theory
SAT Solver M solver(s)

B, |, E is T-satisfiable s

Quantifiers ="
Module

EUWQ is T-satisfiable

—> The remainder of the talk will discuss how the quantifiers module is implemented




DPLL(T)+Quantifiers, further simplified

T-clauses F' «

l

Ground
Solver

—-— e o e
-__—_———
_—
==
=
—
—
—_—

‘\

\

Quantifiers
unsa

\Yi[eYe [V][=

ground literals E / * Inputs:

Y formulas O * Set of ground T-literals E
* Set of V formulas Q

* Qutputs:
e “EUQ is T-satisfiable”, or

— F'is T-satisfiable
e Set of lemmastoaddto F




DPLL(T)+Quantifiers, further simplified

T-clauses F' «

l

Ground
Solver

_-— e e o
—_—_____
——
—
—
—
—
—_—

\\

\

Quantifiers

unsd

\Yi[eYe [V][=

ground literals E J * Inputs:
Y formulas O e Set of ground T-literals E
* Set of V formulas Q
* Recurrent Questions: * Outputs:
* Which lemmas do we add? e “EUQ is T-satisfiable”, or
* How do we know EUQ is T-satisfiable? — T is T-satisfiable
* When do we invoke it? * Set of lemmas to add to F




Which lemmas do we add: Basics

P (a)
E{ f (b) >a+1 -
Quantifiers
_Vx.P(x) Module
Q{ Vx.f (x)=g(x)+h (x)
)

g (
Vy.=P(y) VR(g(y))




Which lemmas do we add: Basics

f(b)>a+l

Quantifiers el

_—

Q{ Vx.f (x)=g(x ) h (x)
Vy.=P(y) VR(g(y))

* Existential quantification (negated universals) handled by Skolemization

* Introduce a fresh witness k, lemma says dx . —P (x) implies =P (k)
* Need only be applied once



Which lemmas do we add: Basics

P (a)
i { f (b)>a+1

Quantifiers

_IVX.P(
Q{ Vx.f(x)=g(x

Vy.=P(y) Vv

) +
R (g

)

Module

h (x)
(y))

return

_—

* Universal quantification handled by Instantiation

* Choose ground term(s) t, lemma(s) say Vx. f (x) =g (

—> May be applied ad infinitum!

x)+h (x

) implies £ (t)

=g (t) +h (t)




Quantifiers Module : Recurrent Questions

 Which instances do we add?
* E-matching [Detlefs et al 03]
* Conflict-based quantifier instantiation [Reynolds et al FMCAD14]
* Model-based quantifier instantiation [Ge,de Moura CAV09]
* Counterexample-guided quantifier instantiation [Reynolds et al CAV15]



Techniques for Quantifier Instantiation: Overview

Instances of ¥V in Q

F, ..

Quantifiers Module

B Conflict-Based
Q— E-matching CE-Guided
Ground —
SOIVGF Satisfying \ Model Based
assignment
E,Q \ Y J o Y }
Generally, Generally,
used for quantifiers with UF used for quantifiers w/o UF

l EUQ is T-satisfiable



Techniques for Qua

Instances of ¥V in Q

F, ..

Ground
Solver

unsat

—> Will describe details of each of these strategies

ntifier Instantiation: Overview

Satisfying
assignment

E,Q

Quantifiers Module

a

= Conflict-Based
B Eracching

)

Model Based
\
|

Generally,

used for quantifiers with UF

!

Generally,
used for quantifiers w/o UF

l EUQ is T-satisfiable




E-matching

E-matching

AN N A~ TN~

S— N e "

Q{ Vx.P(x) VR (x)



E-matching

3
0

P(a)
—P (b)
R(c)
—R (a)
S (e)

Conflict-Based

E-matching

Model Based

Vx.P(x) VR (x)




Conflict-Based

| ConfictBased
E-matching
S
—P (b)
E {: R(c)
—R (a)
S (e)

Q{ Vx.P(x) VR (x)
\ Y J
Pattern

—> ldea: choose instances based on pattern matching



Conflict-Based

E_matCh I ng E-matching

Model Based

return | (VxX.P(x) VR(x))=P (a) VR (a)

—P (b)

E {: R (c)
—|R(a)

S (e) ~ (Vx.P(x) VR(x))=P (b) VR (b)

Q{ Vx.P(x) VR (x)
\ Y }
Pattern




E-matching

P (a)

—P (b)

E R(c)
|-

S (e)

Q{ Vx.P(x) VR(x)

\ }
|

Pattern




Conflict-Based

E-matching: Functions, Equality R

Model Based




Conflict-Based

E-matching: Functions, Equality T

Model Based

= In E-matching, Pattern matching takes into account equalities in E



E-matching: Functions, Equality

P(a,c)
:E-{ f(b)=a

0 { Vxy.P (£ (x),y) =g (x)=y

\ }
|

Pattern

Conflict-Based

E-matching

Model Based




Conflict-Based

E-matching: Functions, Equality R

Model Based

P(a,c)
E{ f (b)=a

0 { Vxy.P (£ (x),y) =g (x)=y

P(a ,c)



Conflict-Based

E-matching: Functions, Equality T

Model Based

CeD

)

¢

E{ P(a,c)
tib)=a < T=P(a,c)
\

|
Congruence closure of E

y

0 { Vxy.P (£ (x),y) =g (x)=y

P(a ,c)



Conflict-Based

E-matching: Functions, Equality T

Model Based

CeD

¢

E{ P(a,c)
f(b)=a @P(a, )

y

0 { Vxy.P (£ (x),y) =g (x)=y

P(£(b),c) _EimpliesP(a,c)<P(£f(b),c)



E-matching: Functions, Equality

P(a,c)
E{ f (b)=a

Conflict-Based

E-matching

Model Based

(Vxy.P(f (x)
P(f (b),

0 { Vxy.P (£ (x),y) =g (x)=y

P(£(b),c)




E-matching: Challenges N e

* E-matching has no standard way of selecting patterns

* E-matching generates too many instances
 Many instances may overload the ground solver

* E-matching is incomplete

* |t may be non-terminating
* When it terminates, we generally cannot answer “EUQ is T-satisfiable”

* Although for some fragments+variants, we may guarantee ( termination << model )
» Decision Procedures via Triggers [Dross et al 13]
* Local Theory Extensions [Bansal et al 15]

—> Typically are established by a separate pencil-and-paper proof



E-matching: Pattern Selection - o I

* In practice, pattern selection can is done either by:

* The user, via annotations, e.g. (! .. :pattern ((P x)))
 The SMT solver itself

* Recurrent questions:
 Which terms be we permit as patterns? Typically, applications of UF:
 Use £ (x,vy) butnot x+y for Vxy.f (x,v)=x+y
 What if multiple patterns exist? Typically use all available patterns:
e Use both P (x) and R (x) for Vx.P (x) VR (x)

 What if no appropriate term contains all variables? May use “multi-patterns”:
* {R(x,y),R(y,z)}forVxyz. (R(x,y)AR(y,2))=>R (%, 2)

* Pattern selections may impact performance significantly [Leino et al 16]



Conflict-Based

E-matching: Too Many Instances e

Ground Model Based

E-matching

* Typical problems in applications:
e [ contains 1000s of clauses
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E-matching: Too Many Instances

E-matching

Model Based

Ground

~100
* Typical problems in applications:
e F contains 1000s of clauses
e Satisfying assignments contain 1000s of terms in E, 100s of ¥V in Q



Conflict-Based

E-matching: Too Many Instances

E-matching

Ground

Model Based

~100
* Typical problems in applications:
e [ contains 1000s of clauses

e Satisfying assignments contain 1000s of terms in E, 100s of ¥V in Q
e Leadsto 100s



Conflict-Based

E-matching: Too Many Instances

E-matching

Ground Model Based
— B

~10000

Q

\ J
|

~100

* Typical problems in applications:
e [ contains 1000s of clauses

e Satisfying assignments contain 1000s of terms in E, 100s of ¥V in Q
e Leads to 100s, 1000s

~1000




Conflict-Based

E-matching: Too Many Instances

E-matching

Ground

J— B
Solver
| Y : 3 \ v J
~100000 ~10000
\ J
Y
~100

* Typical problems in applications:
e [ contains 1000s of clauses

e Satisfying assignments contain 1000s of terms in E, 100s of ¥V in Q
e Leads to 100s, 1000s, 10000s of instances



E-matching: Too Many Instances - e |

~——  OVERLOADED

F

3 S E
~1ooooo } ~1oooo

J
"’100

—> Ground solver is overloaded, loop becomes slow,
...solver times out



E-matching

(for 8 of benchmarks z3 solves,
its E-matching procedure adds
more than 10M instances)

/

E-matching: Too Many Instances
# Instances cvc3 cvcd z3
# % # % # %
1-10 | 1464 13.49% | 1007 8.87% |1321 11.43%
10-100 | 1755 16.17% |1853 16.31% | 2554 22.11%
100-1000 | 3816 35.16% | 3680 32.40% |4553 39.41%
1000-10k | 1893  17.44% | 2468 21.73% | 1779  15.40%
10k-100k | 1162 10.71% |1414 12.45% | 823  7.12%
100k-1M | 560  5.16% | 607 534% | 376  3.25%
IM-10M | 193  1.78% | 330  2.91% M
>10M 10 0.09% 0 0.00% |[|8] 0.07%

e Evaluation on 33032 SMTLIB, TPTP, Isabelle benchmarks

* E-matching often requires many instances

(Above, 16.6% required >10k, max 19.5M by z3 on a software verification benchmark from TPTP)



E-matching: Too Many Instances - e |

E{ ZEEE; =P (...,f(a),f(a))
N return _ =P(...,f(a),f(b))
y / -—=-=» _ =>P(...,f(b),f(a))

_ =P(...,f(b),f(b))

Q{ VXy. . X5 . P(E(X1), .« 0oy E(X35))

= In fact, E-matching may be exponential, above produces 232 instances
* Thus, we limit # matches per ground term/pattern pair



Conflict-Based

E-matching: Non-termination p—

Model Based

Ground
Solver

E-matching

—> E-matching may be non-terminating



Conflict-Based

E-matching: Non-termination Ep——

Model Based

Ground | Vx. £ (f (x))=f(x)
Solver f(a)=a

Vx.f(f(x))=f(x)




E-matching: Non-termination

Conflict-Based

E-matching

Model Based

Ground |
Solver

f (a)=a

Vx.f (f(x))=£f(x)

Vx.f(f(x))=£f(x)
f(a)=a
f(f(a))=£(a)




Conflict-Based

E-matching: Non-termination Ep——

Model Based

Ground | Vx. £ (f (x))=f(x)
Solver f(

f(a)=a
f(f(a))=£f(a)




E-matching: Non-termination

Ground

Solver

f(a)=a
f(f(a))=1f(a)

Conflict-Based

E-matching

Model Based

Vx.f(f(x))=f(x)
f(a)=a
f(f(a))=£t(a)
£(£(£(a)))=£(£(a))

Vx.f (f(x))=£f(x)
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E-matching: Non-termination p—

<
<

.

Vx.f(f(x))=£f(x)
f (a)=a
fifa))=f(a)
fiitta)))=t(f(a))

Situation is referred to as a matching loop



E-matching: Non-termination

/m e e
N ) £ (
1

1
E-matching
1

LOOPS INDEFINITELY

' ]
£ (%) J e Various ways to avoid matching loops, e.g. by:

e Restricting pattern selection

* Fair instantiations strategies (track “levels”)



Conflict-Based

E-matching: Incompleteness p—

Model Based

b { empty

Vx.P(x)
Q{ Vx.=P (x)

—> E-matching is an incomplete procedure



Conflict-Based

E-matching: Incompleteness p—

Model Based

No
- Instances
Found

b { empty

return

Vx.P(x)
Q{ Vx.=P (x)

= If E-matching produces no instances,
this does not guarantee EUQ is T-satisfiable
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- From Q, learn constraints about ground terms g from E
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E-matching: Summary

* Using matching ground terms from E against patterns in Q:
- From Q, learn constraints about ground terms g from E

* Challenges
 What can we do when there too many instances to add?
=>Use conflict-based instantiation [Reynolds/Tinelli/deMoura FMCAD14]

* What can we do when there are no instances to add, problem is “sat”?
—=Use model-based instantiation [Ge/deMoura CAV09]



Conflict-Based Instantiation

P(a)
P(c)
R (d)
R

-1

y —P (D)
I_'R(a)
r_'R(e)
(c)

Conflict-Based

E-matching

Model Based

Vx.P(x

) VR (x

)




Conflict-Based Instantiation

all
0

P(a)
P(c)
R (d)
R

-1

/_'P(
r_'R(
r_'R(
(c)

)
)
)

Conflict-Based

E-matching

Model Based

Vx.P(x

) VR (x

)

XXX
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—> E-matching would produce {x—a}, {x—b}, {x—c}, {x—>d}, {x—>e}



ge!
)
(%)
©
(e}
+—
=
=
c
o
®)

Conflict-Based Instantiation

P U U e U U

N N N S S

P e U e U U s

N N S S S

P e U

N SN SN S S

Moo
> > > > >
T Q0T 0
A A A A Ay



ge!
)
(%)
©
(e}
+—
=
=
c
o
®)

Conflict-Based Instantiation
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—> Consider what we learn from these instances:
a
b
C
d
e

Conflict-Based Instantiation
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Conflict-Based Instantiation
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Conflict-Based Instantiation
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P(a),—P(b)
—lR(C)

—P (C) ,—|R(a)

R(d),—R(e)
— Consider what we learn from these instances:
a
b
C
d
e

Conflict-Based Instantiation



Conflict-Based Instantiation

P (
P (
R(

a
C
d

-1

)
)
)
R

y —P (D)
I_'R(a)
r_'R(e)
(c)

Vx.P(x

) VR(x)

Conflict-Based
1
1

to ' U O ™
X

X

XX

X

XX

PO VRS RS RPN
XXX

< < < <K KL<

Uyl
o /0 /0 /M ™
ceabe
< << <<
o W W
ceagl

®

— Consider what we learn from these instances:

E,Q,P(a
E,Q,P(b

) VR (a)
) VR (b)

E,Q,P(c) VR(c)

E,Q,P(

d) VR (d)
E,Q,P(e

) VR (e)

T

b)} P(c

P (e)

) v R (c) is a conflicting
instance for (E,Q) !



Conflict-Based Instantiation

Vx.P(x) VR (x)

Conflict-

based
Instantiation

Conflict-Based
|
|

» (Vx.P(x) VR(x))=P(c) VR(c)

— Consider what we learn from these instances:

a) g T
b) E R(b
c) F 1
d g T
e) F P(e

)

)

¥

Since P (c) VR (c)
suffices to derive L,
return only this instance




Conflict-Based Instantiation: EUF

Conflict-Based

E-matching

Model Based




Conflict-Based Instantiation: EUF

g(b)=a, f(a)=a,
b h(f(a))=d,h(b)=c

Q{ Vx.f(g(x))=h(f(x))

= Consider theinstance Vx.f (g(x))=h(f (x))=f (g(b))=h (f (b))
* Is this conflicting for (E, Q) ?



Conflict-Based Instantiation: EUF

Conflict-Based

E-matching

Model Based
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Conflict-Based Instantiation: EUF

| confictaased
a=g (b) =f (a)
d=h (f (a))

Vx.f =h (f | '
> { -2 lg )= R ) Consider the equivalence classes of E




Conflict-Based

Conflict-Based Instantiation: EUF

g(b)=a, f(a)=a,
b h(f(a))=d,h(b)=c

=h (£ (a))
Q{ Vx.f(g(x))=h(f(x)) f g h
a b b a b

\ J

i
Build partial definitions for functions in terms of representatives

E,Q,f(g(b))=h(f(b)) Fe £(g(b))=h(f (b))




Conflict-Based Instantiation: EUF

a¥c, £ (b)=Db,

g(b)=a, ft(a)=a,

E h(f(a))=d,h((b)=c
Q{ Vx.f(g(x))=h(f(x))

Conflict-Based

E-matching

Model Based




Conflict-Based Instantiation: EUF

a¥c, £ (b)=Db,
g(b)=a, f(a)=a,
I h(f(a))=d,h((b)=c

Conflict-Based

E-matching

Model Based




Conflict-Based Instantiation: EUF

a¥c, £ (b)=Db,
g(b)=a, f(a)=a,
I h(f(a))=d,h((b)=c

Conflict-Based

E-matching

Model Based
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Conflict-Based Instantiation: EUF

E-matching

Model Based




Conflict-Based Instantiation: EUF

Conflict-Based

E-matching

Model Based




Conflict-Based Instantiation: EUF

Conflict-Based

E-matching

Model Based
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Conflict-Based Instantiation: EUF

E-matching

Model Based

a¥c, f (b)=b,

g(b)=a, f(a)=a,
b h(f(a))=d,h(b)=c

Q{ Vx.f(g(x))=h(f(x))

E,Q,f(g(b))=h(f(b)) E; 1 From E, we know a#c



Conflict-Based Instantiation: EUF

[=]
{_A_\
-y
Hh
~ Q
v ~
— O
[
0. o
5
o
[
Q

O

Conflict-Based

| ConflictBased
a=g (b) =f (a)

Lof

f (g(b))=h(f (b)) isaconflicting
instance for (E, Q) |



Conflict-Based Instantiation: EUF

..., (b)=Db,
g(b)=a, f(a)=a,
b h(f(a))=d,h(b)=c

Q{ Vx.f(g(x))=h(f(x))

—> Consider the same example, but where we don’t know a#c
 Istheinstance £ (g (b))=h (f (b)) still useful?



Conflict-Based Instantiation: EUF

Conflict-Based

E-matching

Model Based

Build partial definitions
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Conflict-Based Instantiation: EUF

, T (b)=Db,
g (b)=a, f (a)=a,
B n(f(a))=d, nb)=c
d=h (f (a))
Q{ Vx.£(g(x))=h(f(x)) £ . h
/N || VAN
X R

E,Q, £(g(b))=h(f (b)) ke £(g(b))=h(f(b)) - Checkentailment



Conflict-Based

Conflict-Based Instantiation: EUF

E-matching

Model Based

g (
E{ h(f(a))=

Q{ Vx.f(g(x))

E,Q0,f(g(b))



Conflict-Based Instantiation: EUF . EErT—
..., (b)=Db,
E{ h(f?ﬁiiiiiﬁiiii’ < _a=g()=f(a) >
Q{ Vx.£(g(x))=h(f(x)) £ . h
a b a b
SRS

Instance is not conflicting,

but propagates an equality

E,Q, f(g(b))=h(£f (b)) Fe a=c} between two existing terms in E



Conflict-Based Instantiation: EUF . EErT—
.., I (b)=b,
E{ h(f?;?;zz:izgzzil < _a=g()=f(a) >
Q{ Vx.£(g(x))=h(f(x)) £ . h
a b a b
SRS

f(g(b)=h(f(b)) isa
propagating instance for (E, Q)
E,Q, £(g(b))=h(f (b)) Fe a=c} — These are also useful



Contlict-Based Instantiation: Impact T

le+7 T T T T T T

le+6 |

le+5 F

* Using conflict-based
instantiation (cvec4+ci),
require an order of magnitude
fewer instances for showing
“UNSAT” wrt E-matching alone

le+4d F

1000 [

cvcid+ci

100

10

10 100 1000 1le+4 1le+5 1le+6 1le+7

cvcd
_ (taken from [Reynolds et al FMICAD14], evaluation
Reported number of instances. On SMTLIB, TPTP, Isabelle benchmarks)
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Conflict-Based Instantiation: Impact

* CVC4 with conflicting instances cvecd+ci

* Solves the most benchmarks for TPTP and Isabelle
* Requires almost an order of magnitude fewer instantiations

TPTP Isabelle SMT-LIB
Solved Inst Solved Inst Solved Inst
cvel 5,245 627.0M 3,827 186.9M 3,407 42.3M
z3 6,269 613.5M 3,506 67.0M 3,983 6.4M
cved 6,100 879.0M 3,858 119.0M 3,680 60.7M
cved+ci 6,616 150.9M 3,747 32.4M

= A number of hard benchmarks can be solved without resorting to E-matching at all
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Conflict-Based Instantiation: Challenges

* How do we find conflicting instances?
* What about conflicts involving multiple quantified formulas?
 What if our quantified formulas that contain theory symbols?
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Conflict-Based
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1. Produce all instances ¥, ..., ¥, via E-matching for (E,Q)
2. Fori=1, .., n, checkif ¥, is a conflicting instance for (E,Q)



Conflict-Based Instantiation: Challenges

* How do we find conflicting instances?
* Naively:
1. Produce all instances ¥, ..., ¥, via E-matching for (E,Q)
2. Fori=1, .., n, checkif ¥, is a conflicting instance for (E,Q)
= but n may be very large!
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Conflict-Based Instantiation: Challenges

* How do we find conflicting instances?
* Naively:
1. Produce all instances ¥, ..., ¥, via E-matching for (E,Q)
2. Fori=1, .., n, checkif ¥, is a conflicting instance for (E,Q)
* In practice: it can be done more efficiently:

* Basic idea: construct instances via a stronger version of matching

* Intuition: for Vx.P (x) v Q (x), will only match P (x) with P (t) <1
(For technical details, see [Reynolds et al FMCAD2014])



Conflict-Based Instantiation: Challenges

Conflict-Based
|

* What about conflicts involving multiple quantified formulas?

=]

Po(a)
—Pg0 (2)

Q -

—

Vx.Py(x) =P, (x)
Vx.P, (x) =P, (%)

VxX.Pgg (X) =P (X)




Conflict-Based Instantiation: Challenges

Conflict-Based
|

* What about quantified formulas that contain theory symbols?

=1

(1)

5

0

Vxy.f(x+y)>x+2*y




Conflict-Based Instantiation: Challenges

Conflict-Based
|

* What about quantified formulas that contain theory symbols?

E{ £ (1)

* Want to find, e.g.:

0

Vxy.f(x+y)>x+2*y

° E, f (_3+4) >_3+2*4 |=UFL|Af (_3+4) >_3+2*4




Conflict-Based Instantiation: Challenges

Conflict-Based
|

* What about quantified formulas that contain theory symbols?

E{ £ (1)

* Want to find, e.g.:

0

Vxy.f(x+y)>x+2*y

.E,f(_3+4)>_3+2*4 |=UFL|Af(1)>5




Conflict-Based Instantiation: Challenges

Conflict-Based
|

* What about quantified formulas that contain theory symbols?

E{ £ (1)

* Want to find, e.g.:

0

° E,f(_3+4)>_3+2*4 |=UFL|A5>5

Vxy.f(x+y)>x+2*y

By E, we know £ (1)=5




Conflict-Based Instantiation: Challenges

Conflict-Based
|

* What about quantified formulas that contain theory symbols?

E{ £ (1)

* Want to find, e.g.:

0

¢ E,f(_3+4)>_3+2*4 |=UFL|AJ—

Vxy.f(x+y)>x+2*y




Conflict-Based Instantiation: Challenges

Conflict-Based
e

* What about quantified formulas that contain theory symbols?

E{ £ (1)

* Want to find, e.g.:

0

¢ E,f(_3+4)>_3+2*4 |=UFL|AJ—

Vxy.f(x+y)>x+2*y

= In practice, finding such instances cannot be done efficiently




Conflict-Based Instantiation: Summary

* Instantiation technique for (E, Q), where:
= From Q, derive conflicts _L, and
equalities g,=g, between ground terms g, , g, from E

* Run with higher priority to E-matching

* Resort to E-matching only if no conflicting or propagating instances can be found

* Leads to fewer instances, greater ability to answer “unsat”



Model-based Instantiation

—P (a) ’

P(M), =R(D),

ﬁR(C)

Vx.P(x) VR(X)

Ground

Solver
—P (a)
P (b)
—R (b)
—R (C)

Vx.P(x) VR (x)

— What if EUQ is satisfiable?

Conflict-Based

E-matching

Model-Based




Model-based Instantiation

—P (a) ’

P(M), =R(D),

ﬁR(C)

Vx.P(x) VR(X)

Ground

Solver
—P (a)
P (b)
—R (b)
—R (C)

Vx.P(x) VR (x)

— What if EUQ is satisfiable?

|
Model-Based

 Use model-based quantifier instantiation (MBQl)




Conflict-Based

Model-based Instantiation

—P(a), Pd), =RDd), =R(c)

E-matching

Model-Based

Ground Vx.P(x) VR(X)
Solver
—P (a)
P (b)
E{ —R (b)
—R (C)

Q{ Vx.P(x) VR(x)




Model-based Instantiation

Conflict-Based

E-matching

Ground

—P(a), P(b), —R(b), —R(c)
Vx.P(x) VR(X)

Model-Based

Solver

—P (a)

P (b)
—R (b)
—R (C)

Vx.P(x) VR (x)

M

\

J

|

Build interpretation M of predicates

This interpretation must satisfy E



Model-based Instantiation

—P(a), P(b), —R(b), —R(c)
Vx.P(x) VR(X)

Conflict-Based

Ground

Model-Based

Solver

I
ZORN S BV
Aaoon

il

Vx.P(x) VR (x)

M

J

|

Build interpretation M of predicates

This interpretation must satisfy E
Missing values may be filled in arbitrarily



Model-based Instantiation

“B(a), Pio), “R(0), R(c)
o odel-base
Ground Vx.P(x) VR (x)
Solver

Conflict-Based

|

o O W

(a)
(b)
(b)
(c)

[
——
PR

@]

il

Q{ Vx.P(x) VR (x)

—> Does M satisfy Q?
* Check (un)satisfiability of: 3x.— (PM(x) VRM (x))




Model-based Instantiation

—P(a), P(b), —R(b), —R(c)
Vx.P(x) VR(X)

Ground

Conflict-Based

E-matching

Model-Based

Solver
P (b)
—R (b)
—|R(C)
Vx.P(x) VR (x) J

Check: 3x.— (PM (x) VRM (x))



Model-based Instantiation

—P(a), P(b), —R(b),
Vx.P(x) VR(X)

Ground

—lR(C)

Conflict-Based

1 —
1 —

Model-Based

Solver
P (b)
—R (b)
—|R(C)
Vx.P(x) VR (x) J

Check: = (PM (k) VvRM (k))

— Skolemize



Model-based Instantiation

Ground

Solver
—P (a)
P (b)
—R (b)
—R (C)

Vx.P(x) VR (x)

—P(a), P(b), —R(b), —R(c)
Vx.P(x) VR(X)

Conflict-Based

Model-Based

M

|

Check: — (ite(x=a,l,ite(k=b,T,T)))V
ite(k=b,Ll,ite(k=c,Ll,1))))

— Substitute



Model-based Instantiation

—lR(C)

Conflict-Based

Model-Based

—P(a), P(b), —R(b),
Ground Vx.P(x) VR(X)
Solver
P (b)
—R (b)
—|R(C)
Vx.P(x) VR (x) J

Check: = (k#a v 1)

= Simplify



Model-based Instantiation

—P(a), P(b), —R(b),
Vx.P(x) VR(X)

—lR(C)

Ground

Solver
—P (a)
P (b)
—R (b)
—R (C)

Vx.P(x) VR (x)

Model-Based

Conflict-Based

M

|

Check: k=a

= Simplify



Model-based Instantiation

—P(a), P(b), —R(b),
Vx.P(x) VR(X)

—lR(C)

Ground

Solver
—P (a)
P (b)
—R (b)
—R (C)

Vx.P(x) VR (x)

Model-Based

Conflict-Based

M

|

Check: k=a
—> Satisfiable! There are values k for which M does not satisfy O



Model-based Instantiation

Ground

Solver
—P (a)
P (b)
—R (b)
—R (C)

Vx.P(x) VR (x)

Conflict-Based

E-matching

—P(a), P(b), =R(b), —R(c)

Vx.P(x) VR (x) Model-Based

return

(Vx.P(x) VR(x))=P(a)VvR(a)

— Add one instance
for one such value of k

Check: k=a for which M did satisfy O



Model-based Instantiation

—P (a) ’

P(b), —R(b), —R(c)
Vx.P(x) VR(X)

—(Vx.P(x) VR(x))VP(a)VR(a)

Ground
Solver
—P (a)
P (b)
B { —R (b)
—R (C)

Q{ Vx.P(x) VR(x)

Conflict-Based

E-matching

Model-Based




Model-based Instantiation

=
o

Ground

—P(a), P(b), =aR(D), =R(c)

Vx.P(x) VR(X)
—(Vx.P(x) VR(x))VP(a)VR(a)

Conflict-Based

E-matching

Model-Based

Solver

] |
A 0 X oo
vOUO‘W

(]

Vx.P(x) VR (x)

—> Subsequent models must satisfy P (x) v R (x) for x—a




Model-based Instantiation

=
o

Conflict-Based

E-matching

—P (a) ’

P(b), —R(b), —R(c)
Vx.P(x) VR(X)
—(Vx.P(x) VR(x))VP(a)VR(a)
—(Vx.P(x) VR(x))VP(c)VR(c)

Model-Based

Ground

Solver
—P (a)
P (b)
—R (b)
—R (c)
R (a)

Vx.P(x) Vv R(x)

Repeat as necessary
—>Model refinement loop



Model-based Instantiation

E//{
Q//{

Ground

Solver

—-P(a), P(b), =RD), =R(c)
Vx.P(x) VR(X)
—(Vx.P(x) VR(x))VvP(a)VR(a)
—(Vx.P(x) VR(xX))VP(c)VR(c)

|

i

|
' U 0 X0 T T
o Q O O W

AA/_\AAA
N S S S S S

Q

Vx.P(x) VR (x)

Conflict-Based

E-matching

Model-Based




Model-based Instantiation T

—P(a), P(b), =R (b —R (c)

Ground

—(Vx.P(x) VR(x))VP
Solver —(Vx.P(x) VR (X)) VP

)
Vx.P(x) VR(x
(
(

|
Q O O o

il

P Y O e U e

Q

[
r—*\—\
e

0

M” { .
.P(x) VR(x) J

Check: 3x.— (PM" (x) VRM" (%))

Q//<|: v

X




Model-based Instantiation

EII{
Q//{

Conflict-Based
1
1

Model-Based

Ground
Solver
_IP
P
—R
_IR
R
P

Vx.P(x) VR (x)

Check: k=a A k#a



Model-based Instantiation

P(b), —R(
) Vv

—P (a) ’

Ground

Vx.P(x

—(Vx.P(x) VR(x
Solver —(Vx.P(x) VR (X

))
))

R
\%
\%

b)
(x
P (
P (

’
)

a
C

—P (a) 7’
P (b) M {
—R (b)
—R (C)
R (a)
P(c)
Vx.P(x) VR (x) J

Check: k=a A k#a

Conflict-Based

E-matching

1
Model-Based

—> Unsatisfiable, there are no values k for which M ” does not satisfy O



Model-based Instantiation

P(b), —R(
) Vv

Ground

Solver

—P (a) ’

—(Vx.P(x) VR(x
—(Vx.P(x) VR(x

Vx.P(x

))
))

R
\%
\%

b)
(x
P (
P (

’
)

a
C

|

1 ]
o 0 0 0 U Hd
Tv oo o

N’ @ S’ N e S S

Vx.P(x) VR (x)

MII {

Conflict-Based

E-matching

1
Model-Based




Model-based Instantiation: Completeness

e Seen techniques for which:

* Ground Solver may answer m
* Quantifiers Module (+ model-based instantiation) may answer

* Under what conditions are these techniques terminating?
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Model-based Instantiation: Completeness

* Seen techniques for which:

* Ground Solver may answer m
* Quantifiers Module (+ model-based instantiation) may answer

* Under what conditions are these techniques terminating?
A. If the domains of V¥ are interpreted as finite
e E.g. quantified bitvectors [Wintersteiger et al 13]
B. If the domains of ¥V may be interpreted as finite in a model
* Finite model finding [Reynolds et al 13]

C. If the domains of V are infinite
...but it can be argued that only finitely many instances will be generated

* E.g. essentially uninterpreted fragment [Ge+deMoura 09], ...



Model-based Instantiation: Impact

1E+10
1E+09
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10000000
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e 1203 satisfiable benchmarks from the TPTP library

* Graph shows # instances required by exhaustive instantiation
e Eg. Vxyz:U.P(x,v,z),Iif |U|=4, requires 43=64 instances

Conflict-Based

E-matching

Model-Based




Model-based Instantiation: Impact
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* CVC4 Finite Model Finding + Exhaustive instantiation
e Scales only up to ~150k instances with a 30 sec timeout

Conflict-Based

E-matching

Model-Based




Model-based Instantiation: Impact

1E+10
1E+09
100000000
10000000
1000000
100000
10000
1000

100

10

1

1 100 200 300 400 500 600 700 800 900 1000 1100 1200

Conflict-Based

E-matching

Model-Based

* CVC4 Finite Model Finding + Model-Based instantiation [Reynolds et al CADE13]
* Scales to >2 billion instances with a 30 sec timeout, only adds fraction of possible instances
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* Typically, build interpretations £M that are almost constant:
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Model-based Instantiation: Challenges

* How do we build interpretations M ?

(|
Model-Based

* Typically, build interpretations £M that are almost constant:

e e.g. tM:= Ax.ite (x=t{, vy, ite (x=t,, V,y, .., ite (X=t,, V , Vaee) ..) )

...but models may need to be more complex when theories are present:

Vxy:Int. (£ (X,V)2XAf(X,V)2V)

Vx:Int.3*g(x)+5*h (x)=x

Vxy:Int.u(x+ty)+11*v (W (X)) =xX+y

fM = KXY- 1te (XZYI Xy y)

gM:i=Ax.-3*x
hM:=Ax.2*x

EE
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Putting it Together
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1O

Putting it Together

* Input:
e Ground literals E
 Quantified formulas O




\

Putting it Together

P(a),

where E,—P (a) L ‘

EAQ is unsat

[

Q

b !

Quantifiers Module

}

|

where Vx.P (x) €0

Conflict-Based




Putting it Together

P(a), EAQ Is unsat

[

Q

b !

where E, —P (a) |=J_ ‘

P(b),P(c), pattern matching

P(d),P(e),P(f),... :

\

}

|
where Vx.P (x) €0

Quantifiers Module
Conflict-Based

E-matching




[

Q

b !

Putting it Together

Quantifiers Module

P(a), EAQ is unsat

where E, =P (a) |=J_ ‘

Conflict-Based

P(b),P(c), pattern matching

E-matching

M } model for E

y

\ }
|

where Vx.P (x) €Q




[

Q

b !

Putting it Together

Quantifiers Module

P(a), EAQ Is unsat

where E, —P (a) |=J_ ‘

Conflict-Based

P(b),P(c), pattern matching

E-matching

M } model for E

P(z), M is not a model for Q
where M}/ P (z) ‘

Model Based
\ /

Y l EUQ is sat,
where Vx.P (x) €0 model M




E-matching, Conflict-Based, Model-based:

 Common thread: satisfiability of V + UF + theories is hard!
* E-matching:
* Pattern selection, matching modulo theories

e Conflict-based:

* Matching is incomplete, entailment tests are expensive

* Model-based:

* Models are complex, interpreted domains (e.g. Int) may be infinite
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E-matching, Conflict-Based, Model-based:

 Common thread: satisfiability of V + UF + theories is hard!
* E-matching:
* Pattern selection, matching modulo theories

e Conflict-based:

* Matching is incomplete, entailment tests are expensive

* Model-based:

* Models are complex, interpreted domains (e.g. Int) may be infinite

—> But reasoning about V + pure theories isn’t as bad:

e (lassic V-elimination algorithms are decision procedures for V in:
*  LRA [Ferrante+Rackoff 79, Loos+Wiespfenning 93] , LIA [Cooper 72], datatypes, ...

* Can classic V-elimination algorithms be implemented in an SMT context?
* Yes: [Monniaux 2010, Bjorner 2012, Komuravelli et al 2014, Reynolds et al 2015, Bjorner/Janota 2016]



Techniques for QL

Instances of ¥V in Q

F, ..

Ground
Solver

antifier Instantiation

Satisfying
assignment

E,Q

Quantifiers Module

s

m Conflict-Based

m E-matching

CE-Guided

}

\
|

Generally,

used for quantifiers with UF

!

Generally,
used for quantifiers w/o UF

l EUQ is T-satisfiable




Techniques for Quantifier Instantiation

Instances of ¥V in Q

F, .. Quantifiers Module

Conflict-Based

E-matching CE-Guided

Satisfying Model Based
assignment

E 0 \ Y )

Ground
Solver

/
1l

A decision procedure

unsat for V in LIA, LRA, ...

: C . : EWQ is T-satisfiable
—> Classic V-elimination algorithms can be cast as l
counterexample-guided instantiation procedures



Counterexample-Guided Instantiation

—> Consider V in the theory of linear integer arithmetic LIA:
dabc. (a=b+5 A VX. (x>a Vv x<bv x-c<3))



Counterexample-Guided Instantiation

Ground | =D+ 5 }
Solver ‘ Vx. (x>a Vv x<b Vv x-c<3) F

—> Consider V in the theory of linear integer arithmetic LIA:
ja—lf. (a=b+5 A Vx. (x>a Vv x<bVv x-c<3))

Outermost existentials a, b, c are treated as free constants



Counterexample-Guided Instantiation

E

CE-Guided

Ground :
Solver

a=p+5

Vx.

a=b+5
(x>a v x<b v x-c<3)

Vx.

(x>a Vv x<b Vv x—-c<3)

- F




Counterexample-Guided Instantiation

CE-Guided

Ground

Solver

Vx.

a=b+5
(x>a v x<b v x-c<3)

—> Use counterexample-guided instantiation

| { a=p+5
CE-Guided
Instantiation
Q { Vx. (x>a Vv x<bvVv x-c<3)

- F




Counterexample-Guided Instantiation

Ground

CE-Guided

Solver

| { a=b+5

Q { Vx. (x>a Vv x<bvVv x-c<3)

Vx.

a=b+5
(x>a v x<b v x-c<3)

CE-Guided

Instantiation

l

Check dk.— (k>a vk<b v k-c<3)

—>With respect to model-based instantiation:
* Similar: check satisfiability of 3k . — (k>a v k<b v k-c<3)

- F




Counterexample-Guided Instantiation

=b+5

Ground 2

« Vx. (x>a Vv x<bvVvx-c<3) F
Solver C= (k>aVk<bvk-c<3)

| { a=b+5

Instantiation
Q { Vx. (x>a Vv x<bvVv x-c<3)

CE-Guided

—>With respect to model-based instantiation:
* Similar: check satisfiability of 3k . — (k>a v k<b v k-c<3)
 Key difference: use the same (ground) solver for F and counterexample k for Q



Counterexample-Guided Instantiation

CE-Guided

Ground |
Solver

a=p+b

Vx. (x>a Vv x<bvVvx-c<3)
C= (k<a A k=2b A k=>2c+3)

CE-Guided
Instantiation




Counterexample-Guided Instantiation

a=b+5
Vx. (x>a Vv x<bvVvx-c<3)

/ \
4

\

C= (kfa A k=2b A k=2c+3)
—

C is a fresh Boolean variable:
“A counterexample k exists for Vx. (x>a v x<b v x-c<3)”



Counterexample-Guided Instantiation

=b+5
Ground 2 P
. Vx. (X>aVX<b,t/X—C<3) F

ooliEs C= (k<ana kZ}?A k=2c+3)

/
/
/

. //instances
CE-Guided .

Instantiation

e Three cases:



CE-Guided

Counterexample-Guided Instantiation

1

a=p+5, ...,

unsat » bl « Vx. (x>a Vv x<bvVv x-c<3) F
Solver C= (k<a A k>b A k>c+3)

CE-Guided

Instantiation

* Three cases:
1. Fis unsatisfiable —> answer “unsat”



Counterexample-Guided Instantiation

CE-Guided

Ground

Solver

Vx.

a=p+5, ...,
(x>a Vv x<b Vv x-c<3)

C= (k<a A k=2b A k=2c+3)

E{ —C, ...

Q { Vx. (x>a Vv x<bvVv x-c<3)

CE-Guided

e Three cases:

2 . Fis satisfiable, =C€E for all assignhments E

Instantiation

—> answer “sat”

-




Counterexample-Guided Instantiation

Ground

CE-Guided

a=p+5, ..., }Fl

Solver

E{ —C, ...

Q { Vx. (x>a Vv x<bvVv x-c<3)

e Three cases:

Vx. (x>a Vv x<bvVvx-c<3)
C= (k<a Ak=b Ak=>c+3)

CE-Guided

Instantiation

2 . Fis satisfiable, =C€E for all assignhments E

F, issat, F;U (k<a A k=b A k=c+3) is unsat

= — (k<a A k=2b A k=2c+3)

= —dk. (k<a A k=b A k=2c+3)
(assuming kgFV (F1))

=Vx. (x>a Vv x<b v x-c<3)

—> answer “sat”



Counterexample-Guided Instantiation

Ground

CE-Guided

V' x

Solver

E{ C,...

Q { Vx. (x>a Vv x<bvVv x-c<3)

e Three cases:

a=p+5, ...,
. (x>a Vv x<bvx-c<3) F
C= (k<a A k=2b A k=2c+3)

CE-Guided [l

Instantiation

3. Fis satisfiable, CeE for some assignment E

3

...~>t>avt<bv t-c<3

—

where kgFV (t)

—> add an instance to F



Counterexample-Guided Instantiation

CE-Guided

V' x

-‘ Ground
unsat Solver

Q { Vx. (x>a Vv x<bvVv x-c<3)

* Three cases:
1. Fis unsatisfiable

a=p+5, ...,
. (x>a Vv x<bvx-c<3) F
C= (k<a A k=2b A k=2c+3)

CE-Guided [l

Instantiation

2 . Fis satisfiable, —=CeE for all assignments E
3. Fis satisfiable, CeE for some assignment E

3

...~>t>avit<bvt-c<3

— answer “unsat”
— answer “sat”
— add an instance to F



Counterexample-Guided Instantiation

CE-Guided

-‘ Ground
unsat Solver

Q { Vx. (x>a Vv x<bvVv x-c<3)

* Three cases:
1. Fis unsatisfiable

V' x

a=pb+5, ...,
. (x>a Vv x<bvx-c<3) F
C= (k<a A k=2b A k=2c+3)

CE-Guided [l

Instantiation

2 . Fis satisfiable, —=CeE for all assignments E
3. Fis satisfiable, CeE for some assignment E

3

...~>t>avt<bv t-c<3

— answer “unsat”
— answer “sat”

— add an instance to F
(...which t?)



CE-Guided

Counterexample-Guided Instantiation

=b+
Ground a=bto
< Vx. (x>a Vv x<bvVvx-c<3)
Solver C= (k<a A k>b A k>c+3)



Counterexample-Guided Instantiation

CE-Guided

Ground :
Solver

C, a=b+5,
k<a
k=b

k>c+3

Vx.

(x>a Vv x<b Vv x-c<3)

a=b+5
Vx. (x>a Vv x<bvVvx-c<3)

—C Vv (k<a A k=b A k=2c+3)




Counterexample-Guided Instantiation

Ground
Solver
C,a=b+5,
k<a
k=>b
k>c+3
Vx. (x>a Vv x<bvVvx-c<3)

CE-Guided

\

Vx.

—C

a=b+5
(x>a Vv x<b Vv x-c<3)
VvV (k<a A k=b A k=2c+3)

J

Build model M for E




Counterexample-Guided Instantiation

Ground
Solver
C,a=b+5,
k<a
k=>b
k=>c+3
Vx. (x>a Vv x<bvVvx-c<3)

CE-Guided

Vx.

a=p+b

(x>a Vv x<b Vv x-c<3)
—C Vv (k<a A k=b A k=2c+3)

k=b

k=>c+3

f

Take lower bounds of kin E




Counterexample-Guided Instantiation

Ground
Solver
C,a=b+5,
k<a
k=>b
k>c+3
Vx. (x>a Vv x<bvVvx-c<3)

CE-Guided

Vx.

a=p+b

(x>a Vv x<b Vv x-c<3)
—C Vv (k<a A k=b A k=2c+3)

k>b

k>c+3

Compute their value in M




Counterexample-Guided Instantiation

Ground
Solver
C,a=b+5,
k<a
k=>b
k>c+3
Vx. (x>aVv x<bvx-c<3)

CE-Guided

a=b+5
Vx. (x>a Vv x<bvVvx-c<3)
—C Vv (k<a A k=2b A k=2c+3)
aM=5
in M
M _
o™ =0 k>b | =
cM=( k>c+3 | =3
kM =3 Vx. (x>aVv x<bvVvx-c<3)=
c+3>ave+3<bve+3-c<3

\ J
|

Add instance for lower bound that is maximal in M



Counterexample-Guided Instantiation

Ground
Solver
C,a=b+5,
k<a
k=>b
k>c+3
Vx. (x>a Vv x<bvVvx-c<3)

CE-Guided

Vx.

a=p+b

(x>a Vv x<b Vv x-c<3)
—C Vv (k<a A k=b A k=2c+3)

in M
k=>b =
k>c+3 =3
Vx. (x>avx<bvVvx-c<3)=

c+3>a v c+3<b




Counterexample-Guided Instantiation

a=pb+5
Ground | —Vx. (x>aVvx<bvx-c<3) Vc+3>aVvc+3<b
Solver ‘ Vx. (x>a Vv x<bvx-c<3)
—C v (k<a /ﬂZb A k>c+3)

CEGQ



Counterexample-Guided Instantiation

Ground

Solver

| C,a=b+b, ct+3<b,

k<a
k>b
k>c+3

Q{ Vx.

(x>a Vv x<b Vv x-c<3)

CE-Guided

a=b+5
—Vx. (x>avx<bvx-c<3) Vc+3>avc+3<b
Vx. (x>a Vv x<bvx-c<3)
—C Vv (k<a A k=>b A k=2c+3)




Counterexample-Guided Instantiation

Ground

Solver

- C,a=b+5, ct+3<b,

k<a
k>b
k>c+3

Q{ Vx.

(x>a Vv x<b Vv x-c<3)

CE-Guided

a=b+5

—Vx. (x>avx<bvx-c<3) Vc+3>av c+3<b
Vx. (x>a Vv x<bvx-c<3)
—C Vv (kfa A k=2b A k=2c+3)

J

Build model M for E




Counterexample-Guided Instantiation

Ground

Solver

- C,a=b+5, ct+3<b,

k<a
k=>b
k=>c+3

Q{ Vx.

(x>a Vv x<b Vv x-c<3)

CE-Guided

a=b+5

—Vx. (x>avx<bvx-c<3) Vc+3>av c+3<b
Vx. (x>a Vv x<bvx-c<3)
—C Vv (kfa A k=2b A k=2c+3)

k>b
k=>c+3

Take lower bounds of kin E

f




Counterexample-Guided Instantiation

Ground

Solver

- C,a=b+5, ct+3<b,

k<a
k>b
k>c+3

Q{ Vx.

(x>a Vv x<b Vv x-c<3)

CE-Guided

a=b+5
—Vx. (x>avx<bvx-c<3) Vc+3>av c+3<b
Vx. (x>a Vv x<bvx-c<3)
—C Vv (k<a A k=b A k=2c+3)

ai=i5 ,

in M
b" =0 k>b | =0
cM=_4 k>c+3 | =-1
kM=3 \_Y_}

Compute their value in M



Counterexample-Guided Instantiation

Ground

Solver

- C,a=b+5, ct+3<b,

k<a
k>b
k>c+3

Q{ Vx.

(x>a Vv x<b Vv x-c<3)

CE-Guided

a=b+5
—Vx. (x>avx<bvx-c<3) Vc+3>avc+3<b
Vx. (x>a Vv x<bvx-c<3)
—C Vv (k<a A k=b A k=>2c+3)

aM=5 ,
in M

pM=0 k>b | =0

cM=_4 k>c+3 =-1

kM =3 Vx. (x>aVvx<bvVvx-c<3)=
b>a vb<bvb-c<3

\ J
|

Add instance for lower bound that is maximal in M



Counterexample-Guided Instantiation

Ground

Solver

- C,a=b+5, ct+3<b,

k<a
k>b
k>c+3

Q{ Vx.

(x>a Vv x<b Vv x-c<3)

CE-Guided

a=b+5
—Vx. (x>avx<bvx-c<3) Vc+3>avc+3<b
Vx. (x>a Vv x<bvx-c<3)
—C Vv (k<a A k=b A k=>2c+3)

aM=5 ,
in M
pM=0 k>b | =0
cM=_4 k>c+3 =-1
kM =3 Vx. (x>aVvx<bvVvx-c<3)=
b>a v b-c<3

\ J
|

Add instance for lower bound that is maximal in M



CE-Guided

Counterexample-Guided Instantiation

a=pb+5
—Vx. (x>aVvx<bvx-c<3)Vvc+3i>avc+3<b
—Vx. (x>avx<bvx-c<3) V b >avb<c+3
Vx. (x>aVv x<bVx-c<3)
—C Vv (k<a A k=2/A k=c+3)

Ground

Solver

CEGQ



Counterexample-Guided Instantiation

a=pb+5
—Vx. (x>aVvx<bvx-c<3)Vvc+3i>avc+3<b
—Vx. (x>avx<bvx-c<3)V b >avb<c+3
Vx. (x>aVv x<bvx-c<3)
—C v (kfa A k=>b A k=>c+3)

Ground

Solver

b a c+3
|

_ -




Counterexample-Guided Instantiation

Ground
Solver
_IC
a=b+5
c+3<a
b<c+3

Vx.

(x>a Vv x<b Vv x-c<3)

CE-Guided

a=b+5
—Vx. (x>aVvx<bvx-c<3)Vvc+3i>avc+3<b
—Vx. (x>avx<bvx-c<3)V b >avb<c+3
Vx. (x>aVv x<bvx-c<3)
—C v (k<a A k=2b A k2c+3)




Counterexample-Guided Instantiation

Ground
Solver
—C
a=b+5
c+3<a
b<c+3

Vx.

(x>a Vv x<b V x-c<3)

CE-Guided

a=b+5
—Vx. (x>aVvx<bvx-c<3)Vvc+3i>avc+3<b

—Vx. (x>avxx<bvx-c<3) Vv b >avb<c+3
Vx. (x>a Vv x<bvx—-c<3)
—C Vv (k<a A k=2b A k=2c+3)

b a c¢+3
| I |




Counterexample-Guided Instantiation

Ground
Solver
—C
a=b+5
c+3<a
b<c+3

Vx.

(x>a Vv x<b Vv x-c<3)

CE-Guided

a=b+5
—Vx. (x>aVvx<bvx-c<3)Vvc+3i>avct+3i<b

—Vx. (x>avxx<bvx-c<3) Vv b >avb<c+3
Vx. (x>aVv x<bvx-c<3)
—C Vv (k<a A k=2b A k=2c+3)

—=>dabc. (a=b+5 A Vx. (x>a Vv x<b Vv x—-c<3))
is LIA-satisfiable



Counterexample-Guided Instantiation

* Decision procedure for V in various theories:
 Linear real arithmetic (LRA)

* Maximal lower (minimal upper) bounds 1,<k, .., 1,<k —>{x—>1__.,.+0}
* [Loos+Wiespfenning 93] ...may involve virtual terms 6,
* Interior point method: 1. <k<u., > {x—> (1 0x—Uyin) /2}

* [Ferrante+Rackoff 79]

 Linear integer arithmetic (LIA)
* Maximal lower (minimal upper) bounds (+c) 1,<k, .., 1 <k —>{x—>1_ . +tc}
* [Cooper 72]

e Bitvectors/finite domains
e Value instantiations F[k] — {x—>kM}

* Datatypes, ...

= Termination argument for each: enumerate at most a finite number of instances



Counterexample-Guided Instantiation

Vx.y[x]

* Can be used for:

* Quantifier elimination
vit] A .. Ay[t,]is (un)sat
e dx.-—wy[x]is equivalent to —y[t,] v..Vvy[t,]
* Function Synthesis

vt A .. Ay[t,] is unsat
e Ax.ite(y[t,],t,,..,ite(v[t ], t,_1,t,)..) isasolutionfor £inVx.y[f (x)]



Counterexample-Guided Instantiation

* Challenge:



Counterexample-Guided Instantiation |

CE-Guided

* Challenge: does not work in presence of uninterpreted functions!

Ground B
Solver

Vx.x<av x<bvP(x)




Counterexample-Guided Instantiation

* Challenge: does not work in presence of uninterpreted functions!

Ground B Vx.x<a Vv x<b Vv P (x)
Solver —C v (k2a Akz2b A—=P(k))

CEGAQ



Counterexample-Guided Instantiation

* Challenge: does not work in presence of uninterpreted functions!
/ Ground P ‘v’x.x<a\;>.<;va(x)
Solver —CV (k=a A k>b A =P (k))

C, «..,
Q{ Vx. (x<a v x<b Vv P (x) )

k>a
k>b
—P (k)




Counterexample-Guided Instantiation

CE-Guided

* Challenge: does not work in presence of uninterpreted functions!

/ Ground

Solver

L C,...,
k=>a
B - k>b
| =P (k)
Q{ Vx. (x<a v x<b Vv P (x) )

Vx.x<avVv x<bvVv P (x)
—CvVv (kz2a Ak=2b A =P (k))

aM —1 in M

v k=a =
M =0 kK> | =
kM =1

Vx. (x>avx<bVvP(x))=
a<ava<bvP(a)




Counterexample-Guided Instantiation

* Challenge: does not work in presence of uninterpreted functions!

Ground . Vx. (x<avx<bv.P.(;<)) —=>a<b Vv P(a)
Solver Vx.x<avVv x<bvVv P (x)
—C v (k=a >b A—=P(k))
e /




Counterexample-Guided Instantiation

* Challenge: does not work in presence of uninterpreted functions!

/ Ground

. Solver
C , [ ) [ ) [ ) ’

k=a,k=b,
—P (k)

P(a)
‘

Q{ Vx. (x<a v x<b Vv P (x) )

Vx. (x<avx<bVvP(x)) =a<bvVvP(a)
Vx.x<avVv x<bvVv P (x)
—C Vv (k=za A k=zb A—P (k))




Counterexample-Guided Instantiation

* Challenge: does not work in presence of uninterpreted functions!

/- Ground

1

C, ..
k=>a,k=b,

M 4

P (k)
P(a)

Solver

CEGQ

Q{ Vx. (x<a v x<b Vv P (x) )

Vx.

(x<avx<bvP(x)) =Da<bvP(a)
Vx.x<avVv x<bvVv P (x)
—C Vv (k=za A k=zb A—P (k))

— a is stil

aM=1 in M
pM =0 k=a =1

k=>b =0
[ =7

the maximal lower bound in M !



Counterexample-Guided Instantiation

CE-Guided

* Challenge: does not work in presence of uninterpreted functions!

/- Ground

Vx.

(x<avx<bVvP(x)) =>a<bvP(a)
Vx.x<avVv x<bvVv P (x)
—CvVv (kza Akz2b A—=P (k))

Q{ Vx.

= Unlike the pure arithmetic case:
* Instance does not suffice to rule out a as maximal lower bound

- Solver
C, ...,
k=a,k=b,
—P (k) aM=1] in M
5 P(a) _
sdcoll | | DM =0 kza =1
k=b =0
(x<avx<bvP(x)) kM =9




Summary

* SMT solvers handle quantifiers+theories via combination of:

 DPLL(T)-based ground solver

* |nstantiation via:

* Conflict-based, E-matching, Model-Based Instantiation
e Effective in practice for V+UF, V+UFLIA, V+UFLRA, ...
e Can be decision procedure for limited fragments, e.g. Bernays-Shonfinkel
e Conflict-Based, E-matching are useful for “unsat”
 Model-Based is useful for “sat”

* Counterexample-guided Instantiation
e Decision procedure for V+LRA, V+LIA, V+BY, ...



In practice: Distribute V to proper strategy

Quantifiers Module

Conflict-Based
E-matching

Model Based




Summary: DPLL(T)+Instantiation

T-clauses F -

l

Lemmas

SAT
Solver

Conflict-Based

E-matching CE-Guided

T-Decision

Model-Based
Procedures

ground literals E
VY formulas Q




Summary: DPLL(T)+Instantiation

T-clauses F -

SMT Solver




