
CS:4350 Logic in Computer Science

Satisfiability Modulo Theories

Cesare Tinelli

Spring 2022

1 / 31

Credits

Some of these slides are based on slides originally developed by Albert Oliveras at
the Technical University of Barcelona and Dejan Jovanovic at the New York
University. Adapted by permission.

2 / 31

Introduction

Historically:
Automated logical reasoning achieved through uniform
theorem-proving procedures for First Order Logic
(e.g., resolution, tableaux calculi)

Some success:
However, uniform proof procedures for FOL are not always the best
compromise between expressiveness and efficiency

3 / 31

Introduction

Historically:
Automated logical reasoning achieved through uniform
theorem-proving procedures for First Order Logic
(e.g., resolution, tableaux calculi)

Some success:
However, uniform proof procedures for FOL are not always the best
compromise between expressiveness and efficiency

3 / 31

Introduction

Last 20 years: R&D has focused on
• expressive enough decidable fragments of various logics

• incorporating domain-specific reasoning, e.g., on:
• temporal reasoning
• arithmetic reasoning
• equality reasoning
• reasoning about certain data structures (arrays, lists, finite sets, . . .)

• combining specialized reasoners modularly

4 / 31

Introduction

Two successful examples of this trend:

SAT: propositional formalization,
boolean reasoning
+ high degree of efficiency
− expressive (all NP-complete problems) but involved encodings

SMT: first-order formalization,
boolean + domain-specific reasoning
+ improves expressivity and scalability
− some (but acceptable) loss of efficiency

5 / 31

Introduction

Two successful examples of this trend:

SAT: propositional formalization,
boolean reasoning
+ high degree of efficiency
− expressive (all NP-complete problems) but involved encodings

SMT: first-order formalization,
boolean + domain-specific reasoning
+ improves expressivity and scalability
− some (but acceptable) loss of efficiency

5 / 31

Introduction

Two successful examples of this trend:

SAT: propositional formalization,
boolean reasoning
+ high degree of efficiency
− expressive (all NP-complete problems) but involved encodings

SMT: first-order formalization,
boolean + domain-specific reasoning
+ improves expressivity and scalability
− some (but acceptable) loss of efficiency

5 / 31

Satisfiability Modulo Theories (SMT): Motivation

Some problems are more naturally expressed in logics other than
propositional or plain first-order logic

Ex: software verification needs efficient reasoning about equality, arithmetic,
memory, data structures, . . .

One needs to check the satisfiability of formulas with respect to, or
modulo one or more background theories

6 / 31

Satisfiability Modulo Theories (SMT): Motivation

Some problems are more naturally expressed in logics other than
propositional or plain first-order logic

Ex: software verification needs efficient reasoning about equality, arithmetic,
memory, data structures, . . .

One needs to check the satisfiability of formulas with respect to, or
modulo one or more background theories

6 / 31

The Basic SMT Problem

Determining the satisfiability of a logical formula wrt some
combination T of background theories

Example

n > 3 ∗ m + 1 ∧ (f (n) ≤ head (l1) ∨ l2 = f (n) :: l1)

Linear Arithm.
(LIA)

Equality
(EUF)

Lists
(ADT)

7 / 31

The Basic SMT Problem

Determining the satisfiability of a logical formula wrt some
combination T of background theories

Example

n > 3 ∗ m + 1 ∧ (f (n) ≤ head (l1) ∨ l2 = f (n) :: l1)

Linear Arithm.
(LIA)

Equality
(EUF)

Lists
(ADT)

7 / 31

The Basic SMT Problem

Determining the satisfiability of a logical formula wrt some
combination T of background theories

Example

n > 3 ∗ m + 1 ∧ (f (n) ≤ head (l1) ∨ l2 = f (n) :: l1)

Linear Arithm.
(LIA)

Equality
(EUF)

Lists
(ADT)

7 / 31

The Basic SMT Problem

Determining the satisfiability of a logical formula wrt some
combination T of background theories

Example

n > 3 ∗ m + 1 ∧ (f (n) ≤ head (l1) ∨ l2 = f (n) :: l1)

Linear Arithm.
(LIA)

Equality
(EUF)

Lists
(ADT)

7 / 31

The Basic SMT Problem

Determining the satisfiability of a logical formula wrt some
combination T of background theories

Example

n > 3 ∗ m + 1 ∧ (f (n) ≤ head (l1) ∨ l2 = f (n) :: l1)

Linear Arithm.
(LIA)

Equality
(EUF)

Lists
(ADT)

7 / 31

Satisfiability Modulo Theories

Given

1. a (many-sorted) logical theory T

2. a first-order formula F

is F satisfiable in a model of T?

8 / 31

SMT Semantics

The theory T can be defined

• axiomatically, as set A of first-order sentences

• algebraically, as a class C of interpretations

We call models of T the interpretations that satisfy A / are in C

9 / 31

Some Background Theories of Interest

Uninterpreted Functions x = y → f (x) = f (y)
Integer/Real Arithmetic 2x + y = 0 ∧ 2x − y = 4 → x = 1

Floating Point Arithmetic x + 1 ̸= NaN ∧ x < ∞ → x + 1 > x
Bit-vectors 4 ◦ (x ≫ 2) = (x &∼3) + 1

Strings and RegExs x = y · z ∧ z ∈ ab∗ → |x| > |y|
Arrays i = j → read(write(a, i, x), j) = x

Algebraic Data Types x ̸= Leaf → ∃ l, r : Tree(α). ∃ a : α.
x = Node(l, a, r)

Finite Sets e1 ∈ x ∧ e2 ∈ x \ e1 → ∃y, z : Set(α).
|y| = |z| ∧ x = y ∪ z ∧ y ̸= ∅

Finite Relations (x, y) ∈ r ∧ (y, z) ∈ r → (x, z) ∈ r ▷◁ s

10 / 31

Equality and Uninterpreted Functions (EUF)

Simplest first-order theory with equality, applications of
uninterpreted functions, and variables of uninterpreted sorts

For all sorts σ, σ′ and function symbols f : σ → σ′

Reflexivity: ∀x : σ x = x
Symmetry: ∀x : σ (x = y → y = x)

Transitivity: ∀x, y : σ (x = y ∧ y = z → x = z)
Congruence: ∀x, y : σ (x = y → f (x) = f (y))

Example

f (f (f (a))) = b ∧ g(f (a), b) = a ∧ f (a) ̸= a

11 / 31

Arrays

Operates over sorts Array(σi, σe), σi, σe and function symbols

read : Array(σi, σe)× σi → σe

write : Array(σi, σe)× σi × σ → Array(σi, σe)

For any index sort σi and element sort σe

Read-Over-Write-1: ∀a, i, e. read(write(a, i, e), i) = e
Read-Over-Write-2: ∀a, i, j, e. (i ̸= j → read(write(a, i, e), j) = read(a, j))

Extensionality: ∀a, b, i. (a ̸= b → ∃i. read(a, i) ̸= read(b, i))

Example

write(write(a, i, read(a, j)), j, read(a, i)) =
write(write(a, j, read(a, i)), i, read(a, j))

12 / 31

Arithmetics

Restricted fragments, over the reals or the integers, support efficient
methods:

• Bounds: x ▷◁ k with ▷◁ ∈ {<, >, ≤, ≥, =}

• Difference constraints: x − y ▷◁ k, with ▷◁ ∈ {<, >, ≤, ≥, =}

• UTVPI: ±x ± y ▷◁ k, with ▷◁ ∈ {<, >, ≤, ≥, =}

• Linear arithmetic, e.g: 2x − 3y + 4z ≤ 5

• Non-linear arithmetic, e.g: 2xy + 4xz2 − 5y ≤ 10

13 / 31

Algebraic Data Types

Family of user-definable theories

Example

Color := red | green | blue
List(α) := nil | (head : α) :: (tail : List(α))

Distinctiveness: ∀h, t nil ̸= h :: t
Exhaustiveness: ∀l (l = nil ∨ ∃h, t. h :: t)

Injectivity: ∀h1, h2, t1, t2
(h1 :: t1 = h2 :: t2 → h1 = h2 ∧ t1 = t2)

Selectors: ∀h, t (head(h :: t) = h ∧ tail(h :: t) = t)
Non-circularity: ∀l, x1, . . . , xn l ̸= x1 :: · · · :: xn :: l

14 / 31

Other Interesting Theories

• Floating point arithmetic

• Strings and regular expressions

• Sequences

• Finite sets with cardinality

• Finite multisets

• Finite relations

• Transcendental Functions

• Ordinary differential equations

• . . .
15 / 31

Reasoning Modulo Theories, Example

f (read(write(a, i, 3), c − 2)) ̸= f (c − i + 1)

∧ l1 = c :: d :: e :: nil

∧ i + 2 = head(l1 @ l2)

Theory of

Unsatisfiable!

16 / 31

Reasoning Modulo Theories, Example

f (read(write(a, i, 3), c − 2)) ̸= f (c − i + 1)

∧ l1 = c :: d :: e :: nil

∧ i + 2 = head(l1 @ l2)

Theory of Linear Integer Arithmetic

Unsatisfiable!

16 / 31

Reasoning Modulo Theories, Example

f (read(write(a, i, 3), c − 2)) ̸= f (c − i + 1)

∧ l1 = c :: d :: e :: nil

∧ i + 2 = head(l1 @ l2)

Theory of Algebraic Data Types

Unsatisfiable!

16 / 31

Reasoning Modulo Theories, Example

f (read(write(a, i, 3), c − 2)) ̸= f (c − i + 1)

∧ l1 = c :: d :: e :: nil

∧ i + 2 = head(l1 @ l2)

Theory of Arrays

Unsatisfiable!

16 / 31

Reasoning Modulo Theories, Example

f (read(write(a, i, 3), c − 2)) ̸= f (c − i + 1)

∧ l1 = c :: d :: e :: nil

∧ i + 2 = head(l1 @ l2)

Theory of Equality and Uninterpreted Functions

Unsatisfiable!

16 / 31

Reasoning Modulo Theories, Example

f (read(write(a, i, 3), c − 2)) ̸= f (c − i + 1)

∧ l1 = c :: d :: e :: nil

∧ i + 2 = head(l1 @ l2)

Unsatisfiable!

16 / 31

Reasoning Modulo Theories, Example

f (read(write(a, i, 3), c − 2)) ̸= f (c − i + 1)

∧ l1 = c :: d :: e :: nil

∧ i + 2 = head(l1 @ l2)

l1 = c :: d :: e :: nil |=ADT head(l1 @ l2) = c

Unsatisfiable!

16 / 31

Reasoning Modulo Theories, Example

f (read(write(a, i, 3), c − 2)) ̸= f (c − i + 1)

∧ l1 = c :: d :: e :: nil

∧ i + 2 = c

Unsatisfiable!

16 / 31

Reasoning Modulo Theories, Example

f (read(write(a, i, 3), c − 2)) ̸= f (c − i + 1)

∧ l1 = c :: d :: e :: nil

∧ i + 2 = c

i + 2 = c |=EUF
c − 2 = i + 2 − 2

c − i + 1 = i + 2 − i + 1

Unsatisfiable!

16 / 31

Reasoning Modulo Theories, Example

f (read(write(a, i, 3), i + 2 − 2)) ̸= f (i + 2 − i + 1)

∧ l1 = c :: d :: e :: nil

∧ c = i + 2

Unsatisfiable!

16 / 31

Reasoning Modulo Theories, Example

f (read(write(a, i, 3), i + 2 − 2)) ̸= f (i + 2 − i + 1)

∧ l1 = c :: d :: e :: nil

∧ c = i + 2

|=LIA
i + 2 − 2 = i

i + 2 − i + 1 = 3

Unsatisfiable!

16 / 31

Reasoning Modulo Theories, Example

f (read(write(a, i, 3), i)) ̸= f (3)

∧ l1 = c :: d :: e :: nil

∧ c = i + 2

Unsatisfiable!

16 / 31

Reasoning Modulo Theories, Example

f (read(write(a, i, 3), i)) ̸= f (3)

∧ l1 = c :: d :: e :: nil

∧ c = i + 2

|=A read(write(a, i, 3), i) = 3

Unsatisfiable!

16 / 31

Reasoning Modulo Theories, Example

f (3) ̸= f (3)

∧ l1 = c :: d :: e :: nil

∧ c = i + 2

Unsatisfiable!

16 / 31

Reasoning Modulo Theories, Example

f (3) ̸= f (3)

∧ l1 = c :: d :: e :: nil

∧ c = i + 2

f (3) ̸= f (3) |=EUF ⊥

Unsatisfiable!

16 / 31

Reasoning Modulo Theories, Example

f (3) ̸= f (3)

∧ l1 = c :: d :: e :: nil

∧ c = i + 2

Unsatisfiable!

16 / 31

Solving SMT Problems

Fact: Many theories have efficient decision procedures
for the satisfiability of conjunctions of literals

Problem: In practice, we need to deal with
1. arbitrary Boolean combinations of literals
2. literals over more than one theory
3. formulas with quantifiers

17 / 31

Solving SMT Problems

Fact: Many theories have efficient decision procedures
for the satisfiability of conjunctions of literals

Problem: In practice, we need to deal with
1. arbitrary Boolean combinations of literals
2. literals over more than one theory
3. formulas with quantifiers

17 / 31

Solving SMT Problems

Fact: Many theories have efficient decision procedures
for the satisfiability of conjunctions of literals

Problem: In practice, we need to deal with
1. arbitrary Boolean combinations of literals
2. literals over more than one theory
3. formulas with quantifiers

17 / 31

Satisfiability Modulo a Theory T

F, F1, . . . , Fn formulas, T a theory

F is satisfiable in T, or T-satisfiable, if it is satisfiable in a model of T

F is unsatisfiable in T, or T-unsatisfiable, if it is not T satisfiable

F1, . . . , Fn entail F in T, or T-entail F, written F1, . . . , Fn |=T F
if F1 ∧ · · · ∧ Fn ∧ F is T-unsatisfiable

18 / 31

Satisfiability Modulo a Theory T

Note:
The T-satisfiability of quantifier-free formulas is decidable iff
the T-satisfiability of conjunctions/sets of literals is decidable

Problem: In practice, dealing with Boolean combinations of literals
is as hard as in propositional logic

Solution: Exploit propositional satisfiability technology

19 / 31

Satisfiability Modulo a Theory T

Note:
The T-satisfiability of quantifier-free formulas is decidable iff
the T-satisfiability of conjunctions/sets of literals is decidable
(Convert the formula in DNF and check if any of its disjuncts is T-sat)

Problem: In practice, dealing with Boolean combinations of literals is as hard as in
propositional logic

Solution: Exploit propositional satisfiability technology

19 / 31

Satisfiability Modulo a Theory T

Note:
The T-satisfiability of quantifier-free formulas is decidable iff
the T-satisfiability of conjunctions/sets of literals is decidable

Problem: In practice, dealing with Boolean combinations of literals
is as hard as in propositional logic

Solution: Exploit propositional satisfiability technology

19 / 31

Satisfiability Modulo a Theory T

Note:
The T-satisfiability of quantifier-free formulas is decidable iff
the T-satisfiability of conjunctions/sets of literals is decidable

Problem: In practice, dealing with Boolean combinations of literals
is as hard as in propositional logic

Solution: Exploit propositional satisfiability technology

19 / 31

Lifting SAT Technology to SMT

Two main approaches:

20 / 31

Lifting SAT Technology to SMT

Two main approaches:

1. Eager
• translate the input formula F to an equisatisfiable propositional

formula P
• feed P to any SAT solver

20 / 31

Lifting SAT Technology to SMT

Two main approaches:

2. Lazy
• abstract the input formula F to a propositional formula A in CNF
• feed A to a DPLL-based SAT solver
• use a theory-specific solver to refine the abstraction and guide

the SAT solver

20 / 31

Lifting SAT Technology to SMT

Two main approaches:

2. Lazy
• abstract the input formula F to a propositional formula A in CNF
• feed A to a DPLL-based SAT solver
• use a theory-specific solver to refine the abstraction and guide

the SAT solver

We will focus on the lazy approach here

20 / 31

(Very) Lazy Approach for SMT, Example

g(a) = c ∧ f (g(a)) ̸= f (c) ∨ g(a) = d ∧ c ̸= d

Theory T: Equality with Uninterpreted Functions

21 / 31

(Very) Lazy Approach for SMT, Example

g(a) = c ∧ f (g(a)) ̸= f (c) ∨ g(a) = d ∧ c ̸= d

Simplest setting:

• Off-line SAT solver
• Non-incremental theory solver

for conjunctions of equalities and disequalities
• Theory atoms abstracted to propositional atoms

(e.g., g(a) = c abstracted to p1)

21 / 31

(Very) Lazy Approach for SMT – Example

g(a) = c︸ ︷︷ ︸
p1

∧ f (g(a)) ̸= f (c)︸ ︷︷ ︸
p2

∨ g(a) = d︸ ︷︷ ︸
p3

∧ c ̸= d︸ ︷︷ ︸
p4

Notation:
• a def

= ¬a
• a def

= a
• { p1, p2, p3, p4 }

def
= { p1 7→ 1, p2 7→ 0, p3 7→ 0, p4 7→ 1 }

22 / 31

(Very) Lazy Approach for SMT – Example

g(a) = c︸ ︷︷ ︸
p1

∧ f (g(a)) ̸= f (c)︸ ︷︷ ︸
p2

∨ g(a) = d︸ ︷︷ ︸
p3

∧ c ̸= d︸ ︷︷ ︸
p4

1. Send {p1, p2 ∨ p3, p4} to SAT solver

2. SAT solver returns satisfying assignment {p1, p2, p4}

Theory solver finds concretization of {p1, p2, p4}
({ g(a) = c, f(g(a)) ̸= f(c), c ̸= d }) unsat

3. Send {p1, p2 ∨ p3, p4, p1 ∨ p2 ∨ p4} to SAT solver

4. SAT solver returns new satisfying assignment {p1, p3, p4}

Theory solver finds {p1, p3, p4} unsat

5. Send {p1, p2 ∨ p3, p4, p1 ∨ p2, p1 ∨ p3 ∨ p4} to SAT solver

6. SAT solver finds {p1, p2 ∨ p3, p4, p1 ∨ p2 ∨ p4, p1 ∨ p3 ∨ p4} unsat
22 / 31

(Very) Lazy Approach for SMT – Example

g(a) = c︸ ︷︷ ︸
p1

∧ f (g(a)) ̸= f (c)︸ ︷︷ ︸
p2

∨ g(a) = d︸ ︷︷ ︸
p3

∧ c ̸= d︸ ︷︷ ︸
p4

1. Send {p1, p2 ∨ p3, p4} to SAT solver

2. SAT solver returns satisfying assignment {p1, p2, p4}

Theory solver finds concretization of {p1, p2, p4}
({ g(a) = c, f(g(a)) ̸= f(c), c ̸= d }) unsat

3. Send {p1, p2 ∨ p3, p4, p1 ∨ p2 ∨ p4} to SAT solver

4. SAT solver returns new satisfying assignment {p1, p3, p4}

Theory solver finds {p1, p3, p4} unsat

5. Send {p1, p2 ∨ p3, p4, p1 ∨ p2, p1 ∨ p3 ∨ p4} to SAT solver

6. SAT solver finds {p1, p2 ∨ p3, p4, p1 ∨ p2 ∨ p4, p1 ∨ p3 ∨ p4} unsat
22 / 31

(Very) Lazy Approach for SMT – Example

g(a) = c︸ ︷︷ ︸
p1

∧ f (g(a)) ̸= f (c)︸ ︷︷ ︸
p2

∨ g(a) = d︸ ︷︷ ︸
p3

∧ c ̸= d︸ ︷︷ ︸
p4

1. Send {p1, p2 ∨ p3, p4} to SAT solver

2. SAT solver returns satisfying assignment {p1, p2, p4}
Theory solver finds concretization of {p1, p2, p4}
({ g(a) = c, f(g(a)) ̸= f(c), c ̸= d }) unsat

3. Send {p1, p2 ∨ p3, p4, p1 ∨ p2 ∨ p4} to SAT solver

4. SAT solver returns new satisfying assignment {p1, p3, p4}

Theory solver finds {p1, p3, p4} unsat

5. Send {p1, p2 ∨ p3, p4, p1 ∨ p2, p1 ∨ p3 ∨ p4} to SAT solver

6. SAT solver finds {p1, p2 ∨ p3, p4, p1 ∨ p2 ∨ p4, p1 ∨ p3 ∨ p4} unsat
22 / 31

(Very) Lazy Approach for SMT – Example

g(a) = c︸ ︷︷ ︸
p1

∧ f (g(a)) ̸= f (c)︸ ︷︷ ︸
p2

∨ g(a) = d︸ ︷︷ ︸
p3

∧ c ̸= d︸ ︷︷ ︸
p4

1. Send {p1, p2 ∨ p3, p4} to SAT solver

2. SAT solver returns satisfying assignment {p1, p2, p4}
Theory solver finds concretization of {p1, p2, p4}
({ g(a) = c, f(g(a)) ̸= f(c), c ̸= d }) unsat

3. Send {p1, p2 ∨ p3, p4, p1 ∨ p2 ∨ p4} to SAT solver

4. SAT solver returns new satisfying assignment {p1, p3, p4}

Theory solver finds {p1, p3, p4} unsat

5. Send {p1, p2 ∨ p3, p4, p1 ∨ p2, p1 ∨ p3 ∨ p4} to SAT solver

6. SAT solver finds {p1, p2 ∨ p3, p4, p1 ∨ p2 ∨ p4, p1 ∨ p3 ∨ p4} unsat
22 / 31

(Very) Lazy Approach for SMT – Example

g(a) = c︸ ︷︷ ︸
p1

∧ f (g(a)) ̸= f (c)︸ ︷︷ ︸
p2

∨ g(a) = d︸ ︷︷ ︸
p3

∧ c ̸= d︸ ︷︷ ︸
p4

1. Send {p1, p2 ∨ p3, p4} to SAT solver

2. SAT solver returns satisfying assignment {p1, p2, p4}
Theory solver finds concretization of {p1, p2, p4}
({ g(a) = c, f(g(a)) ̸= f(c), c ̸= d }) unsat

3. Send {p1, p2 ∨ p3, p4, p1 ∨ p2 ∨ p4} to SAT solver

4. SAT solver returns new satisfying assignment {p1, p3, p4}

Theory solver finds {p1, p3, p4} unsat

5. Send {p1, p2 ∨ p3, p4, p1 ∨ p2, p1 ∨ p3 ∨ p4} to SAT solver

6. SAT solver finds {p1, p2 ∨ p3, p4, p1 ∨ p2 ∨ p4, p1 ∨ p3 ∨ p4} unsat
22 / 31

New clause blocks previous assignment

(Very) Lazy Approach for SMT – Example

g(a) = c︸ ︷︷ ︸
p1

∧ f (g(a)) ̸= f (c)︸ ︷︷ ︸
p2

∨ g(a) = d︸ ︷︷ ︸
p3

∧ c ̸= d︸ ︷︷ ︸
p4

1. Send {p1, p2 ∨ p3, p4} to SAT solver

2. SAT solver returns satisfying assignment {p1, p2, p4}
Theory solver finds concretization of {p1, p2, p4}
({ g(a) = c, f(g(a)) ̸= f(c), c ̸= d }) unsat

3. Send {p1, p2 ∨ p3, p4, p1 ∨ p2 ∨ p4} to SAT solver

4. SAT solver returns new satisfying assignment {p1, p3, p4}

Theory solver finds {p1, p3, p4} unsat

5. Send {p1, p2 ∨ p3, p4, p1 ∨ p2, p1 ∨ p3 ∨ p4} to SAT solver

6. SAT solver finds {p1, p2 ∨ p3, p4, p1 ∨ p2 ∨ p4, p1 ∨ p3 ∨ p4} unsat
22 / 31

(Very) Lazy Approach for SMT – Example

g(a) = c︸ ︷︷ ︸
p1

∧ f (g(a)) ̸= f (c)︸ ︷︷ ︸
p2

∨ g(a) = d︸ ︷︷ ︸
p3

∧ c ̸= d︸ ︷︷ ︸
p4

1. Send {p1, p2 ∨ p3, p4} to SAT solver

2. SAT solver returns satisfying assignment {p1, p2, p4}
Theory solver finds concretization of {p1, p2, p4}
({ g(a) = c, f(g(a)) ̸= f(c), c ̸= d }) unsat

3. Send {p1, p2 ∨ p3, p4, p1 ∨ p2 ∨ p4} to SAT solver

4. SAT solver returns new satisfying assignment {p1, p3, p4}
Theory solver finds {p1, p3, p4} unsat

5. Send {p1, p2 ∨ p3, p4, p1 ∨ p2, p1 ∨ p3 ∨ p4} to SAT solver

6. SAT solver finds {p1, p2 ∨ p3, p4, p1 ∨ p2 ∨ p4, p1 ∨ p3 ∨ p4} unsat
22 / 31

(Very) Lazy Approach for SMT – Example

g(a) = c︸ ︷︷ ︸
p1

∧ f (g(a)) ̸= f (c)︸ ︷︷ ︸
p2

∨ g(a) = d︸ ︷︷ ︸
p3

∧ c ̸= d︸ ︷︷ ︸
p4

1. Send {p1, p2 ∨ p3, p4} to SAT solver

2. SAT solver returns satisfying assignment {p1, p2, p4}
Theory solver finds concretization of {p1, p2, p4}
({ g(a) = c, f(g(a)) ̸= f(c), c ̸= d }) unsat

3. Send {p1, p2 ∨ p3, p4, p1 ∨ p2 ∨ p4} to SAT solver

4. SAT solver returns new satisfying assignment {p1, p3, p4}
Theory solver finds {p1, p3, p4} unsat

5. Send {p1, p2 ∨ p3, p4, p1 ∨ p2, p1 ∨ p3 ∨ p4} to SAT solver

6. SAT solver finds {p1, p2 ∨ p3, p4, p1 ∨ p2 ∨ p4, p1 ∨ p3 ∨ p4} unsat
22 / 31

(Very) Lazy Approach for SMT – Example

g(a) = c︸ ︷︷ ︸
p1

∧ f (g(a)) ̸= f (c)︸ ︷︷ ︸
p2

∨ g(a) = d︸ ︷︷ ︸
p3

∧ c ̸= d︸ ︷︷ ︸
p4

1. Send {p1, p2 ∨ p3, p4} to SAT solver

2. SAT solver returns satisfying assignment {p1, p2, p4}
Theory solver finds concretization of {p1, p2, p4}
({ g(a) = c, f(g(a)) ̸= f(c), c ̸= d }) unsat

3. Send {p1, p2 ∨ p3, p4, p1 ∨ p2 ∨ p4} to SAT solver

4. SAT solver returns new satisfying assignment {p1, p3, p4}
Theory solver finds {p1, p3, p4} unsat

5. Send {p1, p2 ∨ p3, p4, p1 ∨ p2, p1 ∨ p3 ∨ p4} to SAT solver

6. SAT solver finds {p1, p2 ∨ p3, p4, p1 ∨ p2 ∨ p4, p1 ∨ p3 ∨ p4} unsat
22 / 31

(Very) Lazy Approach for SMT – Example

g(a) = c︸ ︷︷ ︸
p1

∧ f (g(a)) ̸= f (c)︸ ︷︷ ︸
p2

∨ g(a) = d︸ ︷︷ ︸
p3

∧ c ̸= d︸ ︷︷ ︸
p4

1. Send {p1, p2 ∨ p3, p4} to SAT solver

2. SAT solver returns satisfying assignment {p1, p2, p4}
Theory solver finds concretization of {p1, p2, p4}
({ g(a) = c, f(g(a)) ̸= f(c), c ̸= d }) unsat

3. Send {p1, p2 ∨ p3, p4, p1 ∨ p2 ∨ p4} to SAT solver

4. SAT solver returns new satisfying assignment {p1, p3, p4}
Theory solver finds {p1, p3, p4} unsat

5. Send {p1, p2 ∨ p3, p4, p1 ∨ p2, p1 ∨ p3 ∨ p4} to SAT solver

6. SAT solver finds {p1, p2 ∨ p3, p4, p1 ∨ p2 ∨ p4, p1 ∨ p3 ∨ p4} unsat
22 / 31

Done! The original formula is unsatisfiable in EUF!

Lazy Approach – Enhancements

Several enhancements are possible to increase efficiency:

• Check T-satisfiability only of full propositional model
• Check T-satisfiability of partial assignment M as it grows

• If M is T-unsatisfiable, add ¬M as a clause
• If M is T-unsatisfiable, identify a T-unsatisfiable subset M0 of M

and add ¬M0 as a clause

• If M is T-unsatisfiable, add clause and restart
• If M is T-unsatisfiable, bactrack to some point where the

assignment was still T-satisfiable

23 / 31

Lazy Approach – Enhancements

Several enhancements are possible to increase efficiency:

• Check T-satisfiability only of full propositional model
• Check T-satisfiability of partial assignment M as it grows

• If M is T-unsatisfiable, add ¬M as a clause
• If M is T-unsatisfiable, identify a T-unsatisfiable subset M0 of M

and add ¬M0 as a clause

• If M is T-unsatisfiable, add clause and restart
• If M is T-unsatisfiable, bactrack to some point where the

assignment was still T-satisfiable

23 / 31

Lazy Approach – Enhancements

Several enhancements are possible to increase efficiency:

• Check T-satisfiability only of full propositional model
• Check T-satisfiability of partial assignment M as it grows

• If M is T-unsatisfiable, add ¬M as a clause
• If M is T-unsatisfiable, identify a T-unsatisfiable subset M0 of M

and add ¬M0 as a clause

• If M is T-unsatisfiable, add clause and restart
• If M is T-unsatisfiable, bactrack to some point where the

assignment was still T-satisfiable

23 / 31

Lazy Approach – Enhancements

Several enhancements are possible to increase efficiency:

• Check T-satisfiability only of full propositional model
• Check T-satisfiability of partial assignment M as it grows

• If M is T-unsatisfiable, add ¬M as a clause
• If M is T-unsatisfiable, identify a T-unsatisfiable subset M0 of M

and add ¬M0 as a clause

• If M is T-unsatisfiable, add clause and restart
• If M is T-unsatisfiable, bactrack to some point where the

assignment was still T-satisfiable

23 / 31

Lazy Approach – Enhancements

Several enhancements are possible to increase efficiency:

• Check T-satisfiability only of full propositional model
• Check T-satisfiability of partial assignment M as it grows

• If M is T-unsatisfiable, add ¬M as a clause
• If M is T-unsatisfiable, identify a T-unsatisfiable subset M0 of M

and add ¬M0 as a clause

• If M is T-unsatisfiable, add clause and restart
• If M is T-unsatisfiable, bactrack to some point where the

assignment was still T-satisfiable

23 / 31

Lazy Approach – Enhancements

Several enhancements are possible to increase efficiency:

• Check T-satisfiability only of full propositional model
• Check T-satisfiability of partial assignment M as it grows

• If M is T-unsatisfiable, add ¬M as a clause
• If M is T-unsatisfiable, identify a T-unsatisfiable subset M0 of M

and add ¬M0 as a clause

• If M is T-unsatisfiable, add clause and restart
• If M is T-unsatisfiable, bactrack to some point where the

assignment was still T-satisfiable

23 / 31

Lazy Approach – Enhancements

Several enhancements are possible to increase efficiency:

• Check T-satisfiability only of full propositional model
• Check T-satisfiability of partial assignment M as it grows

• If M is T-unsatisfiable, add ¬M as a clause
• If M is T-unsatisfiable, identify a T-unsatisfiable subset M0 of M

and add ¬M0 as a clause

• If M is T-unsatisfiable, add clause and restart
• If M is T-unsatisfiable, bactrack to some point where the

assignment was still T-satisfiable

23 / 31

Lazy Approach, Main Benefits

Every tool does what it is good at:

• SAT solver takes care of Boolean information

• Theory solver takes care of theory information

The SAT solver works only with propositional clauses

The theory solver works only with conjunctions of (FOL) literals

24 / 31

Lazy Approach, Main Benefits

Every tool does what it is good at:

• SAT solver takes care of Boolean information

• Theory solver takes care of theory information

The SAT solver works only with propositional clauses

The theory solver works only with conjunctions of (FOL) literals

24 / 31

Lazy Approach, Main Benefits

Every tool does what it is good at:

• SAT solver takes care of Boolean information

• Theory solver takes care of theory information

The SAT solver works only with propositional clauses

The theory solver works only with conjunctions of (FOL) literals

24 / 31

The Original DPLL Procedure

Recall

Modern SAT solvers are based on the DPLL procedure

DPLL tries to build incrementally a satisfying truth assignment M for
a formula F in CNF

M is grown by
• deducing by unit propagation the truth value of a literal from M and F, or
• guessing a truth value

The procedure backtracks on each wrong guess and tries the
opposite value

25 / 31

An Abstract Transition System for DPLL

States:
fail or ⟨M, F⟩

where
• M is a sequence of literals and decision points •

denoting a partial truth assignment
• F is a set of clauses denoting a CNF formula

Definition If M = M0 • M1 • · · · • Mn where each Mi contains no decision points
1. Mi is decision level i of M

2. M[i] def
= M0 • · · · • Mi

26 / 31

An Abstract Transition System for DPLL

States:
fail or ⟨M, F⟩

Initial state:

⟨ε, F0⟩ where ε is the empty sequence and F0 is the input CNF

Expected final states:

fail if F0 is unsatisfiable
⟨M,G⟩ otherwise, where
• G is equivalent to F0 and
• M satisfies G

26 / 31

Transition Rule Notation

Transition rules in guarded assignment form

P1 · · · Pn

M′ = e1 F′ = e2

updating M, F or both when premises P1, . . . , Pn all hold

Note: When convenient, will treat M as the set of its literals

27 / 31

Transition Rules for Original DPLL

Extending M

l1 ∨ · · · ∨ ln ∨ l ∈ F l1, . . . , ln ∈ M l /∈ M l /∈ M
M′ = M l

Propagate

Note: The order of literal in clauses is not meaningful

l ∈ Lit(F) l /∈ M l /∈ M
M′ = M • l

Decide

Notation: Lit(F) def
= {l | l literal of F} ∪ {l | l literal of F}

28 / 31

Transition Rules for Original DPLL

Extending M

l1 ∨ · · · ∨ ln ∨ l ∈ F l1, . . . , ln ∈ M l /∈ M l /∈ M
M′ = M l

Propagate

Note: The order of literal in clauses is not meaningful

l ∈ Lit(F) l /∈ M l /∈ M
M′ = M • l

Decide

Notation: Lit(F) def
= {l | l literal of F} ∪ {l | l literal of F}

28 / 31

Transition Rules for Original DPLL

Repairing M

l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M • /∈ M
fail

Fail

l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M M = M • l N • /∈ N
M′ = M l

Backtrack

Note: Last premise of Backtrack enforces chronological backtracking

29 / 31

Transition Rules for Original DPLL

Repairing M

l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M • /∈ M
fail

Fail

l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M M = M • l N • /∈ N
M′ = M l

Backtrack

Note: Last premise of Backtrack enforces chronological backtracking

29 / 31

DPLL Execution, Example 1

l1 ∨ · · · ∨ ln ∨ l ∈ F l1, . . . , ln ∈ M l /∈ M l /∈ M
M′ = M l

Propagate

l ∈ Lit(F) l /∈ M l /∈ M
M′ = M • l

Decide
l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M • /∈ M

fail
Fail

l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M M = M • l N • /∈ N
M′ = M l

Backtrack

F0 = a ∨ e ∨ c, a ∨ e, a ∨ c ∨ r, r ∨ a ∨ e, e ∨ c, a ∨ e ∨ c, r

30 / 31

DPLL Execution, Example 1

l1 ∨ · · · ∨ ln ∨ l ∈ F l1, . . . , ln ∈ M l /∈ M l /∈ M
M′ = M l

Propagate

l ∈ Lit(F) l /∈ M l /∈ M
M′ = M • l

Decide
l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M • /∈ M

fail
Fail

l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M M = M • l N • /∈ N
M′ = M l

Backtrack

F0 = a ∨ e ∨ c, a ∨ e, a ∨ c ∨ r, r ∨ a ∨ e, e ∨ c, a ∨ e ∨ c, r

One execution:

M F Rule
1 ε F0

Propagate on r
2 r F0 Decide a
3 r • a F0 Propagate on r ∨ a ∨ e
4 r • a e F0 Propagate on a ∨ e ∨ c
5 r • a e c F0 Backtrack on a ∨ c ∨ r

M F Rule

6 r a F0 Propagate on a ∨ e
7 r a e F0 Propagate on e ∨ c
8 r a e c F0 Fail on a ∨ e ∨ c
9 fail

30 / 31

DPLL Execution, Example 1

l1 ∨ · · · ∨ ln ∨ l ∈ F l1, . . . , ln ∈ M l /∈ M l /∈ M
M′ = M l

Propagate

l ∈ Lit(F) l /∈ M l /∈ M
M′ = M • l

Decide
l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M • /∈ M

fail
Fail

l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M M = M • l N • /∈ N
M′ = M l

Backtrack

F0 = a ∨ e ∨ c, a ∨ e, a ∨ c ∨ r, r ∨ a ∨ e, e ∨ c, a ∨ e ∨ c, r

One execution:

M F Rule
1 ε F0 Propagate on r
2 r F0

Decide a
3 r • a F0 Propagate on r ∨ a ∨ e
4 r • a e F0 Propagate on a ∨ e ∨ c
5 r • a e c F0 Backtrack on a ∨ c ∨ r

M F Rule

6 r a F0 Propagate on a ∨ e
7 r a e F0 Propagate on e ∨ c
8 r a e c F0 Fail on a ∨ e ∨ c
9 fail

30 / 31

DPLL Execution, Example 1

l1 ∨ · · · ∨ ln ∨ l ∈ F l1, . . . , ln ∈ M l /∈ M l /∈ M
M′ = M l

Propagate

l ∈ Lit(F) l /∈ M l /∈ M
M′ = M • l

Decide
l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M • /∈ M

fail
Fail

l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M M = M • l N • /∈ N
M′ = M l

Backtrack

F0 = a ∨ e ∨ c, a ∨ e, a ∨ c ∨ r, r ∨ a ∨ e, e ∨ c, a ∨ e ∨ c, r

One execution:

M F Rule
1 ε F0 Propagate on r
2 r F0 Decide a
3 r • a F0

Propagate on r ∨ a ∨ e
4 r • a e F0 Propagate on a ∨ e ∨ c
5 r • a e c F0 Backtrack on a ∨ c ∨ r

M F Rule

6 r a F0 Propagate on a ∨ e
7 r a e F0 Propagate on e ∨ c
8 r a e c F0 Fail on a ∨ e ∨ c
9 fail

30 / 31

DPLL Execution, Example 1

l1 ∨ · · · ∨ ln ∨ l ∈ F l1, . . . , ln ∈ M l /∈ M l /∈ M
M′ = M l

Propagate

l ∈ Lit(F) l /∈ M l /∈ M
M′ = M • l

Decide
l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M • /∈ M

fail
Fail

l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M M = M • l N • /∈ N
M′ = M l

Backtrack

F0 = a ∨ e ∨ c, a ∨ e, a ∨ c ∨ r, r ∨ a ∨ e, e ∨ c, a ∨ e ∨ c, r

One execution:

M F Rule
1 ε F0 Propagate on r
2 r F0 Decide a
3 r • a F0 Propagate on r ∨ a ∨ e
4 r • a e F0

Propagate on a ∨ e ∨ c
5 r • a e c F0 Backtrack on a ∨ c ∨ r

M F Rule

6 r a F0 Propagate on a ∨ e
7 r a e F0 Propagate on e ∨ c
8 r a e c F0 Fail on a ∨ e ∨ c
9 fail

30 / 31

DPLL Execution, Example 1

l1 ∨ · · · ∨ ln ∨ l ∈ F l1, . . . , ln ∈ M l /∈ M l /∈ M
M′ = M l

Propagate

l ∈ Lit(F) l /∈ M l /∈ M
M′ = M • l

Decide
l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M • /∈ M

fail
Fail

l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M M = M • l N • /∈ N
M′ = M l

Backtrack

F0 = a ∨ e ∨ c, a ∨ e, a ∨ c ∨ r, r ∨ a ∨ e, e ∨ c, a ∨ e ∨ c, r

One execution:

M F Rule
1 ε F0 Propagate on r
2 r F0 Decide a
3 r • a F0 Propagate on r ∨ a ∨ e
4 r • a e F0 Propagate on a ∨ e ∨ c
5 r • a e c F0

Backtrack on a ∨ c ∨ r

M F Rule

6 r a F0 Propagate on a ∨ e
7 r a e F0 Propagate on e ∨ c
8 r a e c F0 Fail on a ∨ e ∨ c
9 fail

30 / 31

DPLL Execution, Example 1

l1 ∨ · · · ∨ ln ∨ l ∈ F l1, . . . , ln ∈ M l /∈ M l /∈ M
M′ = M l

Propagate

l ∈ Lit(F) l /∈ M l /∈ M
M′ = M • l

Decide
l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M • /∈ M

fail
Fail

l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M M = M • l N • /∈ N
M′ = M l

Backtrack

F0 = a ∨ e ∨ c, a ∨ e, a ∨ c ∨ r, r ∨ a ∨ e, e ∨ c, a ∨ e ∨ c, r

One execution:

M F Rule
1 ε F0 Propagate on r
2 r F0 Decide a
3 r • a F0 Propagate on r ∨ a ∨ e
4 r • a e F0 Propagate on a ∨ e ∨ c
5 r • a e c F0 Backtrack on a ∨ c ∨ r

M F Rule
6 r a F0

Propagate on a ∨ e
7 r a e F0 Propagate on e ∨ c
8 r a e c F0 Fail on a ∨ e ∨ c
9 fail

30 / 31

DPLL Execution, Example 1

l1 ∨ · · · ∨ ln ∨ l ∈ F l1, . . . , ln ∈ M l /∈ M l /∈ M
M′ = M l

Propagate

l ∈ Lit(F) l /∈ M l /∈ M
M′ = M • l

Decide
l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M • /∈ M

fail
Fail

l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M M = M • l N • /∈ N
M′ = M l

Backtrack

F0 = a ∨ e ∨ c, a ∨ e, a ∨ c ∨ r, r ∨ a ∨ e, e ∨ c, a ∨ e ∨ c, r

One execution:

M F Rule
1 ε F0 Propagate on r
2 r F0 Decide a
3 r • a F0 Propagate on r ∨ a ∨ e
4 r • a e F0 Propagate on a ∨ e ∨ c
5 r • a e c F0 Backtrack on a ∨ c ∨ r

M F Rule
6 r a F0 Propagate on a ∨ e
7 r a e F0

Propagate on e ∨ c
8 r a e c F0 Fail on a ∨ e ∨ c
9 fail

30 / 31

DPLL Execution, Example 1

l1 ∨ · · · ∨ ln ∨ l ∈ F l1, . . . , ln ∈ M l /∈ M l /∈ M
M′ = M l

Propagate

l ∈ Lit(F) l /∈ M l /∈ M
M′ = M • l

Decide
l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M • /∈ M

fail
Fail

l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M M = M • l N • /∈ N
M′ = M l

Backtrack

F0 = a ∨ e ∨ c, a ∨ e, a ∨ c ∨ r, r ∨ a ∨ e, e ∨ c, a ∨ e ∨ c, r

One execution:

M F Rule
1 ε F0 Propagate on r
2 r F0 Decide a
3 r • a F0 Propagate on r ∨ a ∨ e
4 r • a e F0 Propagate on a ∨ e ∨ c
5 r • a e c F0 Backtrack on a ∨ c ∨ r

M F Rule
6 r a F0 Propagate on a ∨ e
7 r a e F0 Propagate on e ∨ c
8 r a e c F0

Fail on a ∨ e ∨ c
9 fail

30 / 31

DPLL Execution, Example 1

l1 ∨ · · · ∨ ln ∨ l ∈ F l1, . . . , ln ∈ M l /∈ M l /∈ M
M′ = M l

Propagate

l ∈ Lit(F) l /∈ M l /∈ M
M′ = M • l

Decide
l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M • /∈ M

fail
Fail

l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M M = M • l N • /∈ N
M′ = M l

Backtrack

F0 = a ∨ e ∨ c, a ∨ e, a ∨ c ∨ r, r ∨ a ∨ e, e ∨ c, a ∨ e ∨ c, r

One execution:

M F Rule
1 ε F0 Propagate on r
2 r F0 Decide a
3 r • a F0 Propagate on r ∨ a ∨ e
4 r • a e F0 Propagate on a ∨ e ∨ c
5 r • a e c F0 Backtrack on a ∨ c ∨ r

M F Rule
6 r a F0 Propagate on a ∨ e
7 r a e F0 Propagate on e ∨ c
8 r a e c F0 Fail on a ∨ e ∨ c
9 fail

30 / 31

DPLL Execution, Example 1

l1 ∨ · · · ∨ ln ∨ l ∈ F l1, . . . , ln ∈ M l /∈ M l /∈ M
M′ = M l

Propagate

l ∈ Lit(F) l /∈ M l /∈ M
M′ = M • l

Decide
l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M • /∈ M

fail
Fail

l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M M = M • l N • /∈ N
M′ = M l

Backtrack

F0 = a ∨ e ∨ c, a ∨ e, a ∨ c ∨ r, r ∨ a ∨ e, e ∨ c, a ∨ e ∨ c, r

Another execution:

M F Rule
1 ε F0

Propagate on r
2 r F0 Decide e
3 r • e F0 Propagate on e ∨ c
4 r • e c F0 Propagate on a ∨ e ∨ c
5 r • e c a F0 Backtrack on a ∨ c ∨ r

M F Rule

6 r e F0 Propagate on a ∨ e
7 r e a F0 Propagate on a ∨ e ∨ c
8 r e a c F0 Fail on a ∨ c ∨ r
9 fail

30 / 31

DPLL Execution, Example 1

l1 ∨ · · · ∨ ln ∨ l ∈ F l1, . . . , ln ∈ M l /∈ M l /∈ M
M′ = M l

Propagate

l ∈ Lit(F) l /∈ M l /∈ M
M′ = M • l

Decide
l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M • /∈ M

fail
Fail

l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M M = M • l N • /∈ N
M′ = M l

Backtrack

F0 = a ∨ e ∨ c, a ∨ e, a ∨ c ∨ r, r ∨ a ∨ e, e ∨ c, a ∨ e ∨ c, r

Another execution:

M F Rule
1 ε F0 Propagate on r
2 r F0

Decide e
3 r • e F0 Propagate on e ∨ c
4 r • e c F0 Propagate on a ∨ e ∨ c
5 r • e c a F0 Backtrack on a ∨ c ∨ r

M F Rule

6 r e F0 Propagate on a ∨ e
7 r e a F0 Propagate on a ∨ e ∨ c
8 r e a c F0 Fail on a ∨ c ∨ r
9 fail

30 / 31

DPLL Execution, Example 1

l1 ∨ · · · ∨ ln ∨ l ∈ F l1, . . . , ln ∈ M l /∈ M l /∈ M
M′ = M l

Propagate

l ∈ Lit(F) l /∈ M l /∈ M
M′ = M • l

Decide
l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M • /∈ M

fail
Fail

l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M M = M • l N • /∈ N
M′ = M l

Backtrack

F0 = a ∨ e ∨ c, a ∨ e, a ∨ c ∨ r, r ∨ a ∨ e, e ∨ c, a ∨ e ∨ c, r

Another execution:

M F Rule
1 ε F0 Propagate on r
2 r F0 Decide e
3 r • e F0

Propagate on e ∨ c
4 r • e c F0 Propagate on a ∨ e ∨ c
5 r • e c a F0 Backtrack on a ∨ c ∨ r

M F Rule

6 r e F0 Propagate on a ∨ e
7 r e a F0 Propagate on a ∨ e ∨ c
8 r e a c F0 Fail on a ∨ c ∨ r
9 fail

30 / 31

DPLL Execution, Example 1

l1 ∨ · · · ∨ ln ∨ l ∈ F l1, . . . , ln ∈ M l /∈ M l /∈ M
M′ = M l

Propagate

l ∈ Lit(F) l /∈ M l /∈ M
M′ = M • l

Decide
l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M • /∈ M

fail
Fail

l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M M = M • l N • /∈ N
M′ = M l

Backtrack

F0 = a ∨ e ∨ c, a ∨ e, a ∨ c ∨ r, r ∨ a ∨ e, e ∨ c, a ∨ e ∨ c, r

Another execution:

M F Rule
1 ε F0 Propagate on r
2 r F0 Decide e
3 r • e F0 Propagate on e ∨ c
4 r • e c F0

Propagate on a ∨ e ∨ c
5 r • e c a F0 Backtrack on a ∨ c ∨ r

M F Rule

6 r e F0 Propagate on a ∨ e
7 r e a F0 Propagate on a ∨ e ∨ c
8 r e a c F0 Fail on a ∨ c ∨ r
9 fail

30 / 31

DPLL Execution, Example 1

l1 ∨ · · · ∨ ln ∨ l ∈ F l1, . . . , ln ∈ M l /∈ M l /∈ M
M′ = M l

Propagate

l ∈ Lit(F) l /∈ M l /∈ M
M′ = M • l

Decide
l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M • /∈ M

fail
Fail

l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M M = M • l N • /∈ N
M′ = M l

Backtrack

F0 = a ∨ e ∨ c, a ∨ e, a ∨ c ∨ r, r ∨ a ∨ e, e ∨ c, a ∨ e ∨ c, r

Another execution:

M F Rule
1 ε F0 Propagate on r
2 r F0 Decide e
3 r • e F0 Propagate on e ∨ c
4 r • e c F0 Propagate on a ∨ e ∨ c
5 r • e c a F0

Backtrack on a ∨ c ∨ r

M F Rule

6 r e F0 Propagate on a ∨ e
7 r e a F0 Propagate on a ∨ e ∨ c
8 r e a c F0 Fail on a ∨ c ∨ r
9 fail

30 / 31

DPLL Execution, Example 1

l1 ∨ · · · ∨ ln ∨ l ∈ F l1, . . . , ln ∈ M l /∈ M l /∈ M
M′ = M l

Propagate

l ∈ Lit(F) l /∈ M l /∈ M
M′ = M • l

Decide
l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M • /∈ M

fail
Fail

l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M M = M • l N • /∈ N
M′ = M l

Backtrack

F0 = a ∨ e ∨ c, a ∨ e, a ∨ c ∨ r, r ∨ a ∨ e, e ∨ c, a ∨ e ∨ c, r

Another execution:

M F Rule
1 ε F0 Propagate on r
2 r F0 Decide e
3 r • e F0 Propagate on e ∨ c
4 r • e c F0 Propagate on a ∨ e ∨ c
5 r • e c a F0 Backtrack on a ∨ c ∨ r

M F Rule
6 r e F0

Propagate on a ∨ e
7 r e a F0 Propagate on a ∨ e ∨ c
8 r e a c F0 Fail on a ∨ c ∨ r
9 fail

30 / 31

DPLL Execution, Example 1

l1 ∨ · · · ∨ ln ∨ l ∈ F l1, . . . , ln ∈ M l /∈ M l /∈ M
M′ = M l

Propagate

l ∈ Lit(F) l /∈ M l /∈ M
M′ = M • l

Decide
l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M • /∈ M

fail
Fail

l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M M = M • l N • /∈ N
M′ = M l

Backtrack

F0 = a ∨ e ∨ c, a ∨ e, a ∨ c ∨ r, r ∨ a ∨ e, e ∨ c, a ∨ e ∨ c, r

Another execution:

M F Rule
1 ε F0 Propagate on r
2 r F0 Decide e
3 r • e F0 Propagate on e ∨ c
4 r • e c F0 Propagate on a ∨ e ∨ c
5 r • e c a F0 Backtrack on a ∨ c ∨ r

M F Rule
6 r e F0 Propagate on a ∨ e
7 r e a F0

Propagate on a ∨ e ∨ c
8 r e a c F0 Fail on a ∨ c ∨ r
9 fail

30 / 31

DPLL Execution, Example 1

l1 ∨ · · · ∨ ln ∨ l ∈ F l1, . . . , ln ∈ M l /∈ M l /∈ M
M′ = M l

Propagate

l ∈ Lit(F) l /∈ M l /∈ M
M′ = M • l

Decide
l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M • /∈ M

fail
Fail

l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M M = M • l N • /∈ N
M′ = M l

Backtrack

F0 = a ∨ e ∨ c, a ∨ e, a ∨ c ∨ r, r ∨ a ∨ e, e ∨ c, a ∨ e ∨ c, r

Another execution:

M F Rule
1 ε F0 Propagate on r
2 r F0 Decide e
3 r • e F0 Propagate on e ∨ c
4 r • e c F0 Propagate on a ∨ e ∨ c
5 r • e c a F0 Backtrack on a ∨ c ∨ r

M F Rule
6 r e F0 Propagate on a ∨ e
7 r e a F0 Propagate on a ∨ e ∨ c
8 r e a c F0

Fail on a ∨ c ∨ r
9 fail

30 / 31

DPLL Execution, Example 1

l1 ∨ · · · ∨ ln ∨ l ∈ F l1, . . . , ln ∈ M l /∈ M l /∈ M
M′ = M l

Propagate

l ∈ Lit(F) l /∈ M l /∈ M
M′ = M • l

Decide
l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M • /∈ M

fail
Fail

l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M M = M • l N • /∈ N
M′ = M l

Backtrack

F0 = a ∨ e ∨ c, a ∨ e, a ∨ c ∨ r, r ∨ a ∨ e, e ∨ c, a ∨ e ∨ c, r

Another execution:

M F Rule
1 ε F0 Propagate on r
2 r F0 Decide e
3 r • e F0 Propagate on e ∨ c
4 r • e c F0 Propagate on a ∨ e ∨ c
5 r • e c a F0 Backtrack on a ∨ c ∨ r

M F Rule
6 r e F0 Propagate on a ∨ e
7 r e a F0 Propagate on a ∨ e ∨ c
8 r e a c F0 Fail on a ∨ c ∨ r
9 fail

30 / 31

DPLL Execution, Example 2

l1 ∨ · · · ∨ ln ∨ l ∈ F l1, . . . , ln ∈ M l /∈ M l /∈ M
M′ = M l

Propagate

l ∈ Lit(F) l /∈ M l /∈ M
M′ = M • l

Decide
l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M • /∈ M

fail
Fail

l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M M = M • l N • /∈ N
M′ = M l

Backtrack

F0 = a ∨ e ∨ c, a ∨ e, a ∨ c ∨ r, r ∨ a ∨ e, e ∨ c, a ∨ e ∨ c

31 / 31

DPLL Execution, Example 2

l1 ∨ · · · ∨ ln ∨ l ∈ F l1, . . . , ln ∈ M l /∈ M l /∈ M
M′ = M l

Propagate

l ∈ Lit(F) l /∈ M l /∈ M
M′ = M • l

Decide
l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M • /∈ M

fail
Fail

l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M M = M • l N • /∈ N
M′ = M l

Backtrack

F0 = a ∨ e ∨ c, a ∨ e, a ∨ c ∨ r, r ∨ a ∨ e, e ∨ c, a ∨ e ∨ c

One execution:

M F Rule
1 ε F0

Decide c
2 • c F0 Propagate on e ∨ c
3 • c e F0 Propagate on a ∨ e ∨ c
4 • c e a F0 Backtrack on a ∨ e

M F Rule

5 c F0 Decide on e
6 c • e F0 Propagate on a ∨ e
7 c • e a F0 Decide on r
8 c • e a • r F0

F0 satisfied by { a 7→ 0, c 7→ 1, e 7→ 0, r 7→ 1 }

31 / 31

DPLL Execution, Example 2

l1 ∨ · · · ∨ ln ∨ l ∈ F l1, . . . , ln ∈ M l /∈ M l /∈ M
M′ = M l

Propagate

l ∈ Lit(F) l /∈ M l /∈ M
M′ = M • l

Decide
l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M • /∈ M

fail
Fail

l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M M = M • l N • /∈ N
M′ = M l

Backtrack

F0 = a ∨ e ∨ c, a ∨ e, a ∨ c ∨ r, r ∨ a ∨ e, e ∨ c, a ∨ e ∨ c

One execution:

M F Rule
1 ε F0 Decide c
2 • c F0

Propagate on e ∨ c
3 • c e F0 Propagate on a ∨ e ∨ c
4 • c e a F0 Backtrack on a ∨ e

M F Rule

5 c F0 Decide on e
6 c • e F0 Propagate on a ∨ e
7 c • e a F0 Decide on r
8 c • e a • r F0

F0 satisfied by { a 7→ 0, c 7→ 1, e 7→ 0, r 7→ 1 }

31 / 31

DPLL Execution, Example 2

l1 ∨ · · · ∨ ln ∨ l ∈ F l1, . . . , ln ∈ M l /∈ M l /∈ M
M′ = M l

Propagate

l ∈ Lit(F) l /∈ M l /∈ M
M′ = M • l

Decide
l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M • /∈ M

fail
Fail

l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M M = M • l N • /∈ N
M′ = M l

Backtrack

F0 = a ∨ e ∨ c, a ∨ e, a ∨ c ∨ r, r ∨ a ∨ e, e ∨ c, a ∨ e ∨ c

One execution:

M F Rule
1 ε F0 Decide c
2 • c F0 Propagate on e ∨ c
3 • c e F0

Propagate on a ∨ e ∨ c
4 • c e a F0 Backtrack on a ∨ e

M F Rule

5 c F0 Decide on e
6 c • e F0 Propagate on a ∨ e
7 c • e a F0 Decide on r
8 c • e a • r F0

F0 satisfied by { a 7→ 0, c 7→ 1, e 7→ 0, r 7→ 1 }

31 / 31

DPLL Execution, Example 2

l1 ∨ · · · ∨ ln ∨ l ∈ F l1, . . . , ln ∈ M l /∈ M l /∈ M
M′ = M l

Propagate

l ∈ Lit(F) l /∈ M l /∈ M
M′ = M • l

Decide
l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M • /∈ M

fail
Fail

l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M M = M • l N • /∈ N
M′ = M l

Backtrack

F0 = a ∨ e ∨ c, a ∨ e, a ∨ c ∨ r, r ∨ a ∨ e, e ∨ c, a ∨ e ∨ c

One execution:

M F Rule
1 ε F0 Decide c
2 • c F0 Propagate on e ∨ c
3 • c e F0 Propagate on a ∨ e ∨ c
4 • c e a F0

Backtrack on a ∨ e

M F Rule

5 c F0 Decide on e
6 c • e F0 Propagate on a ∨ e
7 c • e a F0 Decide on r
8 c • e a • r F0

F0 satisfied by { a 7→ 0, c 7→ 1, e 7→ 0, r 7→ 1 }

31 / 31

DPLL Execution, Example 2

l1 ∨ · · · ∨ ln ∨ l ∈ F l1, . . . , ln ∈ M l /∈ M l /∈ M
M′ = M l

Propagate

l ∈ Lit(F) l /∈ M l /∈ M
M′ = M • l

Decide
l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M • /∈ M

fail
Fail

l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M M = M • l N • /∈ N
M′ = M l

Backtrack

F0 = a ∨ e ∨ c, a ∨ e, a ∨ c ∨ r, r ∨ a ∨ e, e ∨ c, a ∨ e ∨ c

One execution:

M F Rule
1 ε F0 Decide c
2 • c F0 Propagate on e ∨ c
3 • c e F0 Propagate on a ∨ e ∨ c
4 • c e a F0 Backtrack on a ∨ e

M F Rule
5 c F0

Decide on e
6 c • e F0 Propagate on a ∨ e
7 c • e a F0 Decide on r
8 c • e a • r F0

F0 satisfied by { a 7→ 0, c 7→ 1, e 7→ 0, r 7→ 1 }

31 / 31

DPLL Execution, Example 2

l1 ∨ · · · ∨ ln ∨ l ∈ F l1, . . . , ln ∈ M l /∈ M l /∈ M
M′ = M l

Propagate

l ∈ Lit(F) l /∈ M l /∈ M
M′ = M • l

Decide
l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M • /∈ M

fail
Fail

l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M M = M • l N • /∈ N
M′ = M l

Backtrack

F0 = a ∨ e ∨ c, a ∨ e, a ∨ c ∨ r, r ∨ a ∨ e, e ∨ c, a ∨ e ∨ c

One execution:

M F Rule
1 ε F0 Decide c
2 • c F0 Propagate on e ∨ c
3 • c e F0 Propagate on a ∨ e ∨ c
4 • c e a F0 Backtrack on a ∨ e

M F Rule
5 c F0 Decide on e
6 c • e F0

Propagate on a ∨ e
7 c • e a F0 Decide on r
8 c • e a • r F0

F0 satisfied by { a 7→ 0, c 7→ 1, e 7→ 0, r 7→ 1 }

31 / 31

DPLL Execution, Example 2

l1 ∨ · · · ∨ ln ∨ l ∈ F l1, . . . , ln ∈ M l /∈ M l /∈ M
M′ = M l

Propagate

l ∈ Lit(F) l /∈ M l /∈ M
M′ = M • l

Decide
l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M • /∈ M

fail
Fail

l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M M = M • l N • /∈ N
M′ = M l

Backtrack

F0 = a ∨ e ∨ c, a ∨ e, a ∨ c ∨ r, r ∨ a ∨ e, e ∨ c, a ∨ e ∨ c

One execution:

M F Rule
1 ε F0 Decide c
2 • c F0 Propagate on e ∨ c
3 • c e F0 Propagate on a ∨ e ∨ c
4 • c e a F0 Backtrack on a ∨ e

M F Rule
5 c F0 Decide on e
6 c • e F0 Propagate on a ∨ e
7 c • e a F0

Decide on r
8 c • e a • r F0

F0 satisfied by { a 7→ 0, c 7→ 1, e 7→ 0, r 7→ 1 }

31 / 31

DPLL Execution, Example 2

l1 ∨ · · · ∨ ln ∨ l ∈ F l1, . . . , ln ∈ M l /∈ M l /∈ M
M′ = M l

Propagate

l ∈ Lit(F) l /∈ M l /∈ M
M′ = M • l

Decide
l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M • /∈ M

fail
Fail

l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M M = M • l N • /∈ N
M′ = M l

Backtrack

F0 = a ∨ e ∨ c, a ∨ e, a ∨ c ∨ r, r ∨ a ∨ e, e ∨ c, a ∨ e ∨ c

One execution:

M F Rule
1 ε F0 Decide c
2 • c F0 Propagate on e ∨ c
3 • c e F0 Propagate on a ∨ e ∨ c
4 • c e a F0 Backtrack on a ∨ e

M F Rule
5 c F0 Decide on e
6 c • e F0 Propagate on a ∨ e
7 c • e a F0 Decide on r
8 c • e a • r F0

F0 satisfied by { a 7→ 0, c 7→ 1, e 7→ 0, r 7→ 1 }

31 / 31

DPLL Execution, Example 2

l1 ∨ · · · ∨ ln ∨ l ∈ F l1, . . . , ln ∈ M l /∈ M l /∈ M
M′ = M l

Propagate

l ∈ Lit(F) l /∈ M l /∈ M
M′ = M • l

Decide
l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M • /∈ M

fail
Fail

l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M M = M • l N • /∈ N
M′ = M l

Backtrack

F0 = a ∨ e ∨ c, a ∨ e, a ∨ c ∨ r, r ∨ a ∨ e, e ∨ c, a ∨ e ∨ c

One execution:

M F Rule
1 ε F0 Decide c
2 • c F0 Propagate on e ∨ c
3 • c e F0 Propagate on a ∨ e ∨ c
4 • c e a F0 Backtrack on a ∨ e

M F Rule
5 c F0 Decide on e
6 c • e F0 Propagate on a ∨ e
7 c • e a F0 Decide on r
8 c • e a • r F0

F0 satisfied by { a 7→ 0, c 7→ 1, e 7→ 0, r 7→ 1 }

31 / 31

DPLL Execution, Example 2

l1 ∨ · · · ∨ ln ∨ l ∈ F l1, . . . , ln ∈ M l /∈ M l /∈ M
M′ = M l

Propagate

l ∈ Lit(F) l /∈ M l /∈ M
M′ = M • l

Decide
l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M • /∈ M

fail
Fail

l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M M = M • l N • /∈ N
M′ = M l

Backtrack

F0 = a ∨ e ∨ c, a ∨ e, a ∨ c ∨ r, r ∨ a ∨ e, e ∨ c, a ∨ e ∨ c

Another execution:

M F Rule
1 ε F0

Decide a
2 • a F0 Propagate on a ∨ e
3 • a e F0 Propagate on e ∨ c
4 • a e c F0 Decide r
5 • a e c • r F0

F0 satisfied by
{ a 7→ 1, c 7→ 1, e 7→ 1, r 7→ 1 }

31 / 31

DPLL Execution, Example 2

l1 ∨ · · · ∨ ln ∨ l ∈ F l1, . . . , ln ∈ M l /∈ M l /∈ M
M′ = M l

Propagate

l ∈ Lit(F) l /∈ M l /∈ M
M′ = M • l

Decide
l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M • /∈ M

fail
Fail

l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M M = M • l N • /∈ N
M′ = M l

Backtrack

F0 = a ∨ e ∨ c, a ∨ e, a ∨ c ∨ r, r ∨ a ∨ e, e ∨ c, a ∨ e ∨ c

Another execution:

M F Rule
1 ε F0 Decide a
2 • a F0

Propagate on a ∨ e
3 • a e F0 Propagate on e ∨ c
4 • a e c F0 Decide r
5 • a e c • r F0

F0 satisfied by
{ a 7→ 1, c 7→ 1, e 7→ 1, r 7→ 1 }

31 / 31

DPLL Execution, Example 2

l1 ∨ · · · ∨ ln ∨ l ∈ F l1, . . . , ln ∈ M l /∈ M l /∈ M
M′ = M l

Propagate

l ∈ Lit(F) l /∈ M l /∈ M
M′ = M • l

Decide
l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M • /∈ M

fail
Fail

l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M M = M • l N • /∈ N
M′ = M l

Backtrack

F0 = a ∨ e ∨ c, a ∨ e, a ∨ c ∨ r, r ∨ a ∨ e, e ∨ c, a ∨ e ∨ c

Another execution:

M F Rule
1 ε F0 Decide a
2 • a F0 Propagate on a ∨ e
3 • a e F0

Propagate on e ∨ c
4 • a e c F0 Decide r
5 • a e c • r F0

F0 satisfied by
{ a 7→ 1, c 7→ 1, e 7→ 1, r 7→ 1 }

31 / 31

DPLL Execution, Example 2

l1 ∨ · · · ∨ ln ∨ l ∈ F l1, . . . , ln ∈ M l /∈ M l /∈ M
M′ = M l

Propagate

l ∈ Lit(F) l /∈ M l /∈ M
M′ = M • l

Decide
l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M • /∈ M

fail
Fail

l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M M = M • l N • /∈ N
M′ = M l

Backtrack

F0 = a ∨ e ∨ c, a ∨ e, a ∨ c ∨ r, r ∨ a ∨ e, e ∨ c, a ∨ e ∨ c

Another execution:

M F Rule
1 ε F0 Decide a
2 • a F0 Propagate on a ∨ e
3 • a e F0 Propagate on e ∨ c
4 • a e c F0

Decide r
5 • a e c • r F0

F0 satisfied by
{ a 7→ 1, c 7→ 1, e 7→ 1, r 7→ 1 }

31 / 31

DPLL Execution, Example 2

l1 ∨ · · · ∨ ln ∨ l ∈ F l1, . . . , ln ∈ M l /∈ M l /∈ M
M′ = M l

Propagate

l ∈ Lit(F) l /∈ M l /∈ M
M′ = M • l

Decide
l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M • /∈ M

fail
Fail

l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M M = M • l N • /∈ N
M′ = M l

Backtrack

F0 = a ∨ e ∨ c, a ∨ e, a ∨ c ∨ r, r ∨ a ∨ e, e ∨ c, a ∨ e ∨ c

Another execution:

M F Rule
1 ε F0 Decide a
2 • a F0 Propagate on a ∨ e
3 • a e F0 Propagate on e ∨ c
4 • a e c F0 Decide r
5 • a e c • r F0

F0 satisfied by
{ a 7→ 1, c 7→ 1, e 7→ 1, r 7→ 1 }

31 / 31

DPLL Execution, Example 2

l1 ∨ · · · ∨ ln ∨ l ∈ F l1, . . . , ln ∈ M l /∈ M l /∈ M
M′ = M l

Propagate

l ∈ Lit(F) l /∈ M l /∈ M
M′ = M • l

Decide
l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M • /∈ M

fail
Fail

l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M M = M • l N • /∈ N
M′ = M l

Backtrack

F0 = a ∨ e ∨ c, a ∨ e, a ∨ c ∨ r, r ∨ a ∨ e, e ∨ c, a ∨ e ∨ c

Another execution:

M F Rule
1 ε F0 Decide a
2 • a F0 Propagate on a ∨ e
3 • a e F0 Propagate on e ∨ c
4 • a e c F0 Decide r
5 • a e c • r F0

F0 satisfied by
{ a 7→ 1, c 7→ 1, e 7→ 1, r 7→ 1 }

31 / 31

From DPLL to CDCL Solvers

Modern SAT solvers have more sophisticated ways to recover from
wrong decisions

They implement
• conflict-driven (CD) backjumping

instead of (chronological) backtracking
• selective clause learning (CL)

to help focus later search
• restart strategies

to get out of unproductive search paths

32 / 31

An Abstract Transition System for CDCL

States:
fail or ⟨M, C, F⟩

Extend DPLL state with a component C
whose value is either none or a conflict clause

33 / 31

An Abstract Transition System for CDCL

States:
fail or ⟨M, C, F⟩

Initial state:

⟨ε, none, F0⟩ where F0 is the input CNF

Expected final states:

fail if F0 is unsatisfiable
⟨M, none,G⟩ otherwise, where
• G is equivalent to F0 and
• M satisfies G

33 / 31

From DPLL to CDCL rules

Replace Backtrack with

C = none l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M
C′ = l1 ∨ · · · ∨ ln

Conflict

C = l ∨ D l1 ∨ · · · ∨ ln ∨ l ∈ F l1, . . . , ln ≺M l
C′ = l1 ∨ · · · ∨ ln ∨ D

Explain

C = l1 ∨ · · · ∨ ln ∨ l lev l1, . . . , lev ln ≤ i < lev l
C′ = none M′ = M[i] l

Backjump

34 / 31

From DPLL to CDCL rules

Replace Backtrack with

C = none l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M
C′ = l1 ∨ · · · ∨ ln

Conflict

C = l ∨ D l1 ∨ · · · ∨ ln ∨ l ∈ F l1, . . . , ln ≺M l
C′ = l1 ∨ · · · ∨ ln ∨ D

Explain

C = l1 ∨ · · · ∨ ln ∨ l lev l1, . . . , lev ln ≤ i < lev l
C′ = none M′ = M[i] l

Backjump

Notation: l ≺M l′ if l occurs before l′ in M
lev l = i iff l occurs in decision level i of M

34 / 31

From DPLL to CDCL rules

Replace Backtrack with

C = none l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M
C′ = l1 ∨ · · · ∨ ln

Conflict

C = l ∨ D l1 ∨ · · · ∨ ln ∨ l ∈ F l1, . . . , ln ≺M l
C′ = l1 ∨ · · · ∨ ln ∨ D

Explain

C = l1 ∨ · · · ∨ ln ∨ l lev l1, . . . , lev ln ≤ i < lev l
C′ = none M′ = M[i] l

Backjump

Maintain invariant: F |=p C and M ̸|=p C when C ̸= none
where |=p denotes propositional entailment

34 / 31

From DPLL to CDCL rules

Modify Fail to

C ̸= none • /∈ M
fail

Fail

35 / 31

CDCL Execution Example

C = none l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M
C′ = l1 ∨ · · · ∨ ln

Conflict

C = l ∨ D l1 ∨ · · · ∨ ln ∨ l ∈ F l1, . . . , ln ≺M l
C′ = l1 ∨ · · · ∨ ln ∨ D

Explain

C = l1 ∨ · · · ∨ ln ∨ l lev l1, . . . , lev ln ≤ i < lev l
C′ = none M′ = M[i] l

Backjump
C ̸= none • /∈ M

fail
Fail

F0 = p1, p1 ∨ p2, p3 ∨ p4, p5 ∨ p6, p1 ∨ p5 ∨ p7, p2 ∨ p5 ∨ p6 ∨ p7

36 / 31

CDCL Execution Example

C = none l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M
C′ = l1 ∨ · · · ∨ ln

Conflict

C = l ∨ D l1 ∨ · · · ∨ ln ∨ l ∈ F l1, . . . , ln ≺M l
C′ = l1 ∨ · · · ∨ ln ∨ D

Explain

C = l1 ∨ · · · ∨ ln ∨ l lev l1, . . . , lev ln ≤ i < lev l
C′ = none M′ = M[i] l

Backjump
C ̸= none • /∈ M

fail
Fail

F0 = p1, p1 ∨ p2, p3 ∨ p4, p5 ∨ p6, p1 ∨ p5 ∨ p7, p2 ∨ p5 ∨ p6 ∨ p7

M F C Rule
1 ε F0 none Propagate on p1
2 p1 F0 none Propagate on p1 ∨ p2
3 p1 p2 F0 none Decide p3
4 p1 p2 • p3 F0 none Propagate on p3 ∨ p4
5 p1 p2 • p3 p4 F0 none Decide p5
6 p1 p2 • p3 p4 • p5 F0 none Propagate on p5 ∨ p6
7 p1 p2 • p3 p4 • p5 p6 F0 none Propagate on p1 ∨ p4 ∨ p7

36 / 31

CDCL Execution Example

C = none l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M
C′ = l1 ∨ · · · ∨ ln

Conflict

C = l ∨ D l1 ∨ · · · ∨ ln ∨ l ∈ F l1, . . . , ln ≺M l
C′ = l1 ∨ · · · ∨ ln ∨ D

Explain

C = l1 ∨ · · · ∨ ln ∨ l lev l1, . . . , lev ln ≤ i < lev l
C′ = none M′ = M[i] l

Backjump
C ̸= none • /∈ M

fail
Fail

F0 = p1, p1 ∨ p2, p3 ∨ p4, p5 ∨ p6, p1 ∨ p5 ∨ p7, p2 ∨ p5 ∨ p6 ∨ p7

M F C Rule
7 p1 p2 • p3 p4 • p5 p6 F0 none Propagate on p1 ∨ p4 ∨ p7
8 p1 p2 • p3 p4 • p5 p6 p7 F0 none Conflict on p2 ∨ p5 ∨ p6 ∨ p7
9 p1 p2 • p3 p4 • p5 p6 p7 F0 p2 ∨ p5 ∨ p6 ∨ p7 Explain with p1 ∨ p5 ∨ p7

10 p1 p2 • p3 p4 • p5 p6 p7 F0 p1 ∨ p2 ∨ p5 ∨ p6 Explain with p5 ∨ p6
11 p1 p2 • p3 p4 • p5 p6 p7 F0 p1 ∨ p2 ∨ p5 Backjump
12 p1 p2 p5 F0 none Decide p3
13 p1 p2 p5 • p3 F0 none . . .

36 / 31

CDCL rules with learning

Also add

F |=p C C /∈ F
F′ = F ∪ {C}

Learn

C = none F = G ∪ {C} G |=p C
F′ = G

Forget

M′ = M[0] C′ = none
Restart

Note: Learn can be applied to any clause stored in C when C ̸= none

37 / 31

Modeling Modern SAT Solvers

At their core, modern SAT solvers are implementations of the CDCL
transition system with rules

Propagate, Decide, Conflict, Explain, Backjump,

Learn, Forget, Restart

Basic CDCL def
= { Propagate, Decide, Conflict, Explain, Backjump }

CDCL def
= Basic CDCL + { Learn, Forget, Restart }

38 / 31

Modeling Modern SAT Solvers

At their core, modern SAT solvers are implementations of the CDCL
transition system with rules

Propagate, Decide, Conflict, Explain, Backjump,

Learn, Forget, Restart

Basic CDCL def
= { Propagate, Decide, Conflict, Explain, Backjump }

CDCL def
= Basic CDCL + { Learn, Forget, Restart }

38 / 31

The Basic CDCL System – Correctness
Irreducible state: state to which no Basic CDCL rules apply

Execution: sequence of transitions allowed by the rules and
starting with M = ε and C = none

Exhausted execution: execution ending in an irreducible state

39 / 31

The Basic CDCL System – Correctness
Irreducible state: state to which no Basic CDCL rules apply

Execution: sequence of transitions allowed by the rules and
starting with M = ε and C = none

Exhausted execution: execution ending in an irreducible state

Theorem 1 (Strong Termination)
Every execution in Basic CDCL is finite.

Note: This is not so immediate, because of Backjump

39 / 31

The Basic CDCL System – Correctness
Irreducible state: state to which no Basic CDCL rules apply

Execution: sequence of transitions allowed by the rules and
starting with M = ε and C = none

Exhausted execution: execution ending in an irreducible state

Theorem 1 (Strong Termination)
Every execution in Basic CDCL is finite.

Lemma 2
Every exhausted execution ends with either C = none or fail.

39 / 31

The Basic CDCL System – Correctness
Irreducible state: state to which no Basic CDCL rules apply

Execution: sequence of transitions allowed by the rules and
starting with M = ε and C = none

Exhausted execution: execution ending in an irreducible state

Theorem 1 (Soundness)
For every exhausted execution starting with F = F0 and ending
with fail, the clause set F0 is unsatisfiable.

39 / 31

The Basic CDCL System – Correctness
Irreducible state: state to which no Basic CDCL rules apply

Execution: sequence of transitions allowed by the rules and
starting with M = ε and C = none

Exhausted execution: execution ending in an irreducible state

Theorem 1 (Soundness)
For every exhausted execution starting with F = F0 and ending
with fail, the clause set F0 is unsatisfiable.

Theorem 2 (Completeness)
For every exhausted execution starting with F = F0 and ending
with C = none, the clause set F0 is satisfied by M.

39 / 31

The CDCL System – Strategies

Applying
• one Basic CDCL rule between each two Learn applications and
• Restart less and less often

ensures termination

40 / 31

The CDCL System – Strategies

A common basic strategy applies the rules with the following
priorities:

1. If n > 0 conflicts have been found so far,
increase n and apply Restart

2. If a clause is falsified by M, apply Conflict
3. Keep applying Explain until Backjump is applicable
4. Apply Learn
5. Apply Backjump
6. Apply Propagate to completion
7. Apply Decide

40 / 31

The CDCL System – Correctness

Theorem 3 (Termination)
Every execution in which
(a) Learn/Forget are applied only finitely many times and
(b) Restart is applied with increased periodicity
is finite.

Theorem 4 (Soundness)
As before.

Theorem 5 (Completeness)
As before.

41 / 31

The CDCL System – Correctness

Theorem 3 (Termination)
Every execution in which
(a) Learn/Forget are applied only finitely many times and
(b) Restart is applied with increased periodicity
is finite.

Theorem 4 (Soundness)
As before.

Theorem 5 (Completeness)
As before.

41 / 31

From SAT to SMT

Same sort of states ⟨M,C, F⟩ and transitions as in CDCL system

Differences:
• F contains quantifier-free clauses from some theory T

• M is a sequence of theory literals and decision points

• the CDCL system augmented with rules
T-Conflict, T-Propagate, T-Explain

• maintains invariant: F |=T C and M |=p ¬C when C ̸= none

Recall: F |=T G iff every model of T that satisfies F satisfies G as well

42 / 31

SMT-level Rules

A theory T

C = none l1, . . . , ln ∈ M l1, . . . , ln |=T ⊥
C := l1 ∨ · · · ∨ ln

T-Conflict

l ∈ Lit(F) M |=T l l, l /∈ M
M := M l

T-Propagate

C = l ∨ D l1, . . . , ln |=T l l1, . . . , ln ≺M l
C := l1 ∨ · · · ∨ ln ∨ D

T-Explain

Note: |=T is decided by theory solver

43 / 31

SMT-level Rules

A theory T

C = none l1, . . . , ln ∈ M l1, . . . , ln |=T ⊥
C := l1 ∨ · · · ∨ ln

T-Conflict

l ∈ Lit(F) M |=T l l, l /∈ M
M := M l

T-Propagate

C = l ∨ D l1, . . . , ln |=T l l1, . . . , ln ≺M l
C := l1 ∨ · · · ∨ ln ∨ D

T-Explain

Note: |=T is decided by theory solver

43 / 31

SMT-level Rules

A theory T

C = none l1, . . . , ln ∈ M l1, . . . , ln |=T ⊥
C := l1 ∨ · · · ∨ ln

T-Conflict

l ∈ Lit(F) M |=T l l, l /∈ M
M := M l

T-Propagate

C = l ∨ D l1, . . . , ln |=T l l1, . . . , ln ≺M l
C := l1 ∨ · · · ∨ ln ∨ D

T-Explain

Note: |=T is decided by theory solver

43 / 31

SMT-level Rules

A theory T

C = none l1, . . . , ln ∈ M l1, . . . , ln |=T ⊥
C := l1 ∨ · · · ∨ ln

T-Conflict

l ∈ Lit(F) M |=T l l, l /∈ M
M := M l

T-Propagate

C = l ∨ D l1, . . . , ln |=T l l1, . . . , ln ≺M l
C := l1 ∨ · · · ∨ ln ∨ D

T-Explain

Note: |=T is decided by theory solver

43 / 31

Modeling the Very Lazy Theory Approach

T-Conflict is enough to model the naive integration
of SAT solvers and theory solvers seen in the earlier EUF example

44 / 31

Modeling the Very Lazy Theory Approach
g(a) = c︸ ︷︷ ︸

p1

∧ f(g(a)) ̸= f(c)︸ ︷︷ ︸
p2

∨ g(a) = d︸ ︷︷ ︸
p3

∧ c ̸= d︸ ︷︷ ︸
p4

F0 = p1, p2 ∨ p3, p4

M F C rule
0 ε F0 none Propagate+

1 p1 p4 F0 none Decide
2 p1 p4 • p2 F0 none T-Conflict
3 p1 p4 • p2 F0 p1 ∨ p2 ∨ p4 Learn
4 p1 p4 • p2 F0, p1 ∨ p2 ∨ p4 p1 ∨ p2 ∨ p4 Restart
5 p1 p4 F0, p1 ∨ p2 ∨ p4 none Propagate+

6 p1 p4 p2 p3 F0, p1 ∨ p2 ∨ p4 none T-Conflict
7 p1 p4 p2 p3 F0, p1 ∨ p2 ∨ p4 p1 ∨ p3 ∨ p4 Learn
8 p1 p4 p2 p3 F0, p1 ∨ p2 ∨ p4, p1 ∨ p3 ∨ p4 p1 ∨ p3 ∨ p4 Restart
9 p1 p4 p2 p3 F0, p1 ∨ p2 ∨ p4, p1 ∨ p3 ∨ p4 none Conflict

10 p1 p4 p2 p3 F0, p1 ∨ p2 ∨ p4, p1 ∨ p3 ∨ p4 p1 ∨ p3 ∨ p4 Fail
11 fail

44 / 31

Modeling the Very Lazy Theory Approach
g(a) = c︸ ︷︷ ︸

p1

∧ f(g(a)) ̸= f(c)︸ ︷︷ ︸
p2

∨ g(a) = d︸ ︷︷ ︸
p3

∧ c ̸= d︸ ︷︷ ︸
p4

F0 = p1, p2 ∨ p3, p4
M F C rule

0 ε F0 none Propagate+

1 p1 p4 F0 none Decide
2 p1 p4 • p2 F0 none T-Conflict
3 p1 p4 • p2 F0 p1 ∨ p2 ∨ p4 Learn
4 p1 p4 • p2 F0, p1 ∨ p2 ∨ p4 p1 ∨ p2 ∨ p4 Restart
5 p1 p4 F0, p1 ∨ p2 ∨ p4 none Propagate+

6 p1 p4 p2 p3 F0, p1 ∨ p2 ∨ p4 none T-Conflict
7 p1 p4 p2 p3 F0, p1 ∨ p2 ∨ p4 p1 ∨ p3 ∨ p4 Learn
8 p1 p4 p2 p3 F0, p1 ∨ p2 ∨ p4, p1 ∨ p3 ∨ p4 p1 ∨ p3 ∨ p4 Restart
9 p1 p4 p2 p3 F0, p1 ∨ p2 ∨ p4, p1 ∨ p3 ∨ p4 none Conflict

10 p1 p4 p2 p3 F0, p1 ∨ p2 ∨ p4, p1 ∨ p3 ∨ p4 p1 ∨ p3 ∨ p4 Fail
11 fail

44 / 31

A Better Lazy Approach

The very lazy approach can be improved considerably with

• An on-line SAT engine,
which can accept new input clauses on the fly

• an incremental and explicating T-solver,
which can

1. check the T-satisfiability of M as it is extended and
2. identify a small T-unsatisfiable subset of M

once M becomes T-unsatisfiable

45 / 31

A Better Lazy Approach

The very lazy approach can be improved considerably with

• An on-line SAT engine,
which can accept new input clauses on the fly

• an incremental and explicating T-solver,
which can

1. check the T-satisfiability of M as it is extended and
2. identify a small T-unsatisfiable subset of M

once M becomes T-unsatisfiable

45 / 31

A Better Lazy Approach

The very lazy approach can be improved considerably with

• An on-line SAT engine,
which can accept new input clauses on the fly

• an incremental and explicating T-solver,
which can

1. check the T-satisfiability of M as it is extended and
2. identify a small T-unsatisfiable subset of M

once M becomes T-unsatisfiable

45 / 31

A Better Lazy Approach

The very lazy approach can be improved considerably with

• An on-line SAT engine,
which can accept new input clauses on the fly

• an incremental and explicating T-solver,
which can

1. check the T-satisfiability of M as it is extended and
2. identify a small T-unsatisfiable subset of M

once M becomes T-unsatisfiable

45 / 31

A Better Lazy Approach

The very lazy approach can be improved considerably with

• An on-line SAT engine,
which can accept new input clauses on the fly

• an incremental and explicating T-solver,
which can

1. check the T-satisfiability of M as it is extended and
2. identify a small T-unsatisfiable subset of M

once M becomes T-unsatisfiable

45 / 31

A Better Lazy Approach

g(a) = c︸ ︷︷ ︸
p1

∧ f(g(a)) ̸= f(c)︸ ︷︷ ︸
p2

∨ g(a) = d︸ ︷︷ ︸
p3

∧ c ̸= d︸ ︷︷ ︸
p4

F0 = p1, p2 ∨ p3, p4

M F C rule
1 ε F0 none Propagate+

2 p1 p4 F0 none Decide
3 p1 p4 • p2 F0 none T-Conflict
4 p1 p4 • p2 F0 p1 ∨ p2 Backjump
5 p1 p4 p2 F0 none Propagate
6 p1 p4 p2 p3 F0 none T-Conflict
7 p1 p4 p2 p3 F0 p1 ∨ p3 ∨ p4 Fail
8 fail

46 / 31

Lazy Approach – Strategies

Ignoring Restart, for simplicity,
a common strategy is to apply the rules using the following
priorities:

1. If a clause is falsified by the current assignment M,
apply Conflict

2. If M is T-unsatisfiable, apply T-Conflict
3. Apply Fail or Explain+Learn+Backjump as appropriate
4. Apply Propagate
5. Apply Decide

Note: Depending on the cost of checking the T-satisfiability of M,
Step (2) can be applied with lower frequency or priority

47 / 31

Lazy Approach – Strategies

Ignoring Restart, for simplicity,
a common strategy is to apply the rules using the following
priorities:

1. If a clause is falsified by the current assignment M,
apply Conflict

2. If M is T-unsatisfiable, apply T-Conflict
3. Apply Fail or Explain+Learn+Backjump as appropriate
4. Apply Propagate
5. Apply Decide

Note: Depending on the cost of checking the T-satisfiability of M,
Step (2) can be applied with lower frequency or priority

47 / 31

Theory Propagation

With T-Conflict as the only theory rule, the theory solver is used just
to validate the choices of the SAT solver

With T-Propagate and T-Explain, it can also be used to guide the
solver search

l ∈ Lit(F) M |=T l l, l /∈ M
M := M l

T-Propagate

C = l ∨ D l1, . . . , ln |=T l l1, . . . , ln ≺M l
C := l1 ∨ · · · ∨ ln ∨ D

T-Explain

48 / 31

Theory Propagation

With T-Conflict as the only theory rule, the theory solver is used just
to validate the choices of the SAT solver

With T-Propagate and T-Explain, it can also be used to guide the
solver search

l ∈ Lit(F) M |=T l l, l /∈ M
M := M l

T-Propagate

C = l ∨ D l1, . . . , ln |=T l l1, . . . , ln ≺M l
C := l1 ∨ · · · ∨ ln ∨ D

T-Explain

48 / 31

Theory Propagation Example

g(a) = c︸ ︷︷ ︸
p1

∧ f(g(a)) ̸= f(c)︸ ︷︷ ︸
p2

∨ g(a) = d︸ ︷︷ ︸
p3

∧ c ̸= d︸ ︷︷ ︸
p4

F0 = p1, p2 ∨ p3, p4

M F C rule
1 ε F0 none Propagate
1 p1 F0 none Propagate
1 p1 p4 F0 none T-Propagate (p1 |=T p2)
1 p1 p4 p2 F0 none T-Propagate (p1, p4 |=T p3)
1 p1 p4 p2 p3 F0 none Conflict
1 p1 p4 p2 p3 F0 p2 ∨ p3 Fail

fail

Note: T-propagation eliminates search altogether in this case,
no applications of Decide are needed!

49 / 31

Theory Propagation Example

g(a) = c︸ ︷︷ ︸
p1

∧ f(g(a)) ̸= f(c)︸ ︷︷ ︸
p2

∨ g(a) = d︸ ︷︷ ︸
p3

∧ c ̸= d︸ ︷︷ ︸
p4

F0 = p1, p2 ∨ p3, p4

M F C rule
1 ε F0 none Propagate
1 p1 F0 none Propagate
1 p1 p4 F0 none T-Propagate (p1 |=T p2)
1 p1 p4 p2 F0 none T-Propagate (p1, p4 |=T p3)
1 p1 p4 p2 p3 F0 none Conflict
1 p1 p4 p2 p3 F0 p2 ∨ p3 Fail

fail

Note: T-propagation eliminates search altogether in this case,
no applications of Decide are needed!

49 / 31

Theory Propagation Example

g(a) = c︸ ︷︷ ︸
p1

∧ f(g(a)) ̸= f(c)︸ ︷︷ ︸
p2

∨ g(a) = d︸ ︷︷ ︸
p3

∧ c ̸= d︸ ︷︷ ︸
p4

F0 = p1, p2 ∨ p3, p4

M F C rule
1 ε F0 none Propagate
1 p1 F0 none Propagate
1 p1 p4 F0 none T-Propagate (p1 |=T p2)
1 p1 p4 p2 F0 none T-Propagate (p1, p4 |=T p3)
1 p1 p4 p2 p3 F0 none Conflict
1 p1 p4 p2 p3 F0 p2 ∨ p3 Fail

fail

Note: T-propagation eliminates search altogether in this case,
no applications of Decide are needed!

49 / 31

Theory Propagation Example 2

g(a) = e︸ ︷︷ ︸
p0

∨ g(a) = c︸ ︷︷ ︸
p1

∧ f(g(a)) ̸= f(c)︸ ︷︷ ︸
p2

∨ g(a) = d︸ ︷︷ ︸
p3

∧ c ̸= d︸ ︷︷ ︸
p4

F0 = p0 ∨ p1, p2 ∨ p3, p4

M F C rule
1 ε F0 none Propagate
2 p4 F0 none Decide
3 p4 • p1 F0 none T-Propagate (p1 |=T p2)
4 p4 • p1 p2 F0 none T-Propagate (p1, p4 |=T p3)
5 p4 • p1 p2 p3 F0 none Conflict
6 p4 • p1 p2 p3 F0 p2 ∨ p3 T-Explain
7 p4 • p1 p2 p3 F0 p1 ∨ p3 T-Explain
8 p4 • p1 p2 p3 F0 p1 ∨ p4 Backjump
9 p4 p1 F0 none · · ·

· · ·

50 / 31

Theory Propagation Example 2

g(a) = e︸ ︷︷ ︸
p0

∨ g(a) = c︸ ︷︷ ︸
p1

∧ f(g(a)) ̸= f(c)︸ ︷︷ ︸
p2

∨ g(a) = d︸ ︷︷ ︸
p3

∧ c ̸= d︸ ︷︷ ︸
p4

F0 = p0 ∨ p1, p2 ∨ p3, p4

M F C rule
1 ε F0 none Propagate
2 p4 F0 none Decide
3 p4 • p1 F0 none T-Propagate (p1 |=T p2)
4 p4 • p1 p2 F0 none T-Propagate (p1, p4 |=T p3)
5 p4 • p1 p2 p3 F0 none Conflict
6 p4 • p1 p2 p3 F0 p2 ∨ p3 T-Explain
7 p4 • p1 p2 p3 F0 p1 ∨ p3 T-Explain
8 p4 • p1 p2 p3 F0 p1 ∨ p4 Backjump
9 p4 p1 F0 none · · ·

· · ·

50 / 31

Theory Propagation Features

• With exhaustive theory propagation every assignment M is
T-satisfiable (since M l is T-unsatisfiable iff M |=T l)

• For theory propagation to be effective in practice, it needs
specialized theory solvers

• For some theories, e.g., difference logic, detecting T-entailed
literals is cheap and so theory propagation is extremely effective

• For others, e.g., the theory of equality, detecting all T-entailed
literals is too expensive

• If T-Propagate is not applied exhaustively, T-Conflict is needed
to repair T-unsatisfiable assignments

51 / 31

Theory Propagation Features

• With exhaustive theory propagation every assignment M is
T-satisfiable (since M l is T-unsatisfiable iff M |=T l)

• For theory propagation to be effective in practice, it needs
specialized theory solvers

• For some theories, e.g., difference logic, detecting T-entailed
literals is cheap and so theory propagation is extremely effective

• For others, e.g., the theory of equality, detecting all T-entailed
literals is too expensive

• If T-Propagate is not applied exhaustively, T-Conflict is needed
to repair T-unsatisfiable assignments

51 / 31

Theory Propagation Features

• With exhaustive theory propagation every assignment M is
T-satisfiable (since M l is T-unsatisfiable iff M |=T l)

• For theory propagation to be effective in practice, it needs
specialized theory solvers

• For some theories, e.g., difference logic, detecting T-entailed
literals is cheap and so theory propagation is extremely effective

• For others, e.g., the theory of equality, detecting all T-entailed
literals is too expensive

• If T-Propagate is not applied exhaustively, T-Conflict is needed
to repair T-unsatisfiable assignments

51 / 31

Theory Propagation Features

• With exhaustive theory propagation every assignment M is
T-satisfiable (since M l is T-unsatisfiable iff M |=T l)

• For theory propagation to be effective in practice, it needs
specialized theory solvers

• For some theories, e.g., difference logic, detecting T-entailed
literals is cheap and so theory propagation is extremely effective

• For others, e.g., the theory of equality, detecting all T-entailed
literals is too expensive

• If T-Propagate is not applied exhaustively, T-Conflict is needed
to repair T-unsatisfiable assignments

51 / 31

Theory Propagation Features

• With exhaustive theory propagation every assignment M is
T-satisfiable (since M l is T-unsatisfiable iff M |=T l)

• For theory propagation to be effective in practice, it needs
specialized theory solvers

• For some theories, e.g., difference logic, detecting T-entailed
literals is cheap and so theory propagation is extremely effective

• For others, e.g., the theory of equality, detecting all T-entailed
literals is too expensive

• If T-Propagate is not applied exhaustively, T-Conflict is needed
to repair T-unsatisfiable assignments

51 / 31

Modeling Modern Lazy SMT Solvers

At their core,
modern lazy SMT solvers are implementations of the transition
system with rules

(1) Propagate, Decide, Conflict, Explain, Backjump, Fail

(2) T-Conflict, T-Propagate, T-Explain

(3) Learn, Forget, Restart

Basic CDCL Modulo Theories def
= (1) + (2)

CDCL Modulo Theories def
= (1) + (2) + (3)

52 / 31

Modeling Modern Lazy SMT Solvers

At their core,
modern lazy SMT solvers are implementations of the transition
system with rules

(1) Propagate, Decide, Conflict, Explain, Backjump, Fail

(2) T-Conflict, T-Propagate, T-Explain

(3) Learn, Forget, Restart

Basic CDCL Modulo Theories def
= (1) + (2)

CDCL Modulo Theories def
= (1) + (2) + (3)

52 / 31

Correctness of CDCL Modulo Theories
Irreducible state: state to which no Basic CDCL MT rules apply

Execution: sequence of transitions allowed by the rules and
starting with M = ε and C = none

Exhausted execution: execution ending in an irreducible state

53 / 31

Correctness of CDCL Modulo Theories
Irreducible state: state to which no Basic CDCL MT rules apply

Execution: sequence of transitions allowed by the rules and
starting with M = ε and C = none

Exhausted execution: execution ending in an irreducible state

Theorem 6 (Termination)
Every execution in which
(a) Learn/Forget are applied only finitely many times and
(b) Restart is applied with increased periodicity
is finite.

Lemma 7
Every exhausted execution ends with either C = none or fail.

53 / 31

Correctness of CDCL Modulo Theories
Irreducible state: state to which no Basic CDCL MT rules apply

Execution: sequence of transitions allowed by the rules and
starting with M = ε and C = none

Exhausted execution: execution ending in an irreducible state

Theorem 6 (Soundness)
For every exhausted execution starting with F = F0 and ending with fail, the
clause set F0 is T-unsatisfiable.

Theorem 7 (Completeness)
For every exhausted execution starting with F = F0 and ending with C = none,
F0 is T-satisfiable; specifically, M is T-satisfiable and M |=p F0.

53 / 31

