CS:4350 Logic in Computer Science Satisfiability Modulo Theories

Cesare Tinelli

Spring 2022

Credits

Some of these slides are based on slides originally developed by Albert Oliveras at the Technical University of Barcelona and Dejan Jovanovic at the New York University. Adapted by permission.

Introduction

Historically:
Automated logical reasoning achieved through uniform theorem-proving procedures for First Order Logic (e.g., resolution, tableaux calculi)

Introduction

Historically:
Automated logical reasoning achieved through uniform
theorem-proving procedures for First Order Logic
(e.g., resolution, tableaux calculi)

Some success:

However, uniform proof procedures for FOL are not always the best compromise between expressiveness and efficiency

Introduction

Last 20 years: R\&D has focused on

- expressive enough decidable fragments of various logics
- incorporating domain-specific reasoning, e.g., on:
- temporal reasoning
- arithmetic reasoning
- equality reasoning
- reasoning about certain data structures (arrays, lists, finite sets, ...)
- combining specialized reasoners modularly

Introduction

Two successful examples of this trend:
SAT: propositional formalization,
boolean reasoning

+ high degree of efficiency
- expressive (all NP-complete problems) but involved encodings

Introduction

Two successful examples of this trend:
SAT: propositional formalization, boolean reasoning

+ high degree of efficiency
- expressive (all NP-complete problems) but involved encodings

SMT: first-order formalization, boolean + domain-specific reasoning

+ improves expressivity and scalability
- some (but acceptable) loss of efficiency

Introduction

Two successful examples of this trend:
SAT: propositional formalization, boolean reasoning

+ high degree of efficiency
- expressive (all NP-complete problems) but involved encodings

SMT: first-order formalization, boolean + domain-specific reasoning

+ improves expressivity and scalability
- some (but acceptable) loss of efficiency

Satisfiability Modulo Theories (SMT): Motivation

Some problems are more naturally expressed in logics other than propositional or plain first-order logic

Ex: software verification needs efficient reasoning about equality, arithmetic, memory, data structures, ...

Satisfiability Modulo Theories (SMT): Motivation

Some problems are more naturally expressed in logics other than propositional or plain first-order logic

Ex: software verification needs efficient reasoning about equality, arithmetic, memory, data structures, ...

One needs to check the satisfiability of formulas with respect to, or modulo one or more background theories

The Basic SMT Problem

Determining the satisfiability of a logical formula wrt some combination T of background theories

Example

$$
n>3 * m+1 \wedge\left(f(n) \leq \text { head }\left(l_{1}\right) \vee l_{2}=f(n):: l_{1}\right)
$$

The Basic SMT Problem

Determining the satisfiability of a logical formula wrt some combination T of background theories

Example
$n>3 * m+1 \wedge\left(f(n) \leq\right.$ head $\left.\left(l_{1}\right) \vee l_{2}=f(n):: l_{1}\right)$

The Basic SMT Problem

Determining the satisfiability of a logical formula wrt some combination T of background theories

Example

The Basic SMT Problem

Determining the satisfiability of a logical formula wrt some combination T of background theories

Example

The Basic SMT Problem

Determining the satisfiability of a logical formula wrt some combination T of background theories

Example

Satisfiability Modulo Theories

Given

1. a (many-sorted) logical theory T
2. a first-order formula F
is F satisfiable in a model of T ?

SMT Semantics

The theory T can be defined

- axiomatically, as set A of first-order sentences
- algebraically, as a class \mathcal{C} of interpretations

We call models of T the interpretations that satisfy A / are in \mathcal{C}

Some Background Theories of Interest

Uninterpreted Functions $\quad x=y \rightarrow f(x)=f(y)$
Integer/Real Arithmetic $2 x+y=0 \wedge 2 x-y=4 \rightarrow x=1$
Floating Point Arithmetic $\quad x+1 \neq \mathrm{NaN} \wedge x<\infty \rightarrow x+1>x$
Bit-vectors $4 \circ(x \gg 2)=(x \& \sim 3)+1$
Strings and RegExs $\quad x=y \cdot z \wedge z \in a b^{*} \rightarrow|x|>|y|$
Arrays $\quad i=j \rightarrow \operatorname{read}($ write $(a, i, x), j)=x$
Algebraic Data Types $\quad x \neq$ Leaf $\rightarrow \exists l, r: \operatorname{Tree}(\alpha) . \exists a: \alpha$. $x=\operatorname{Node}(l, a, r)$
Finite Sets $\quad e_{1} \in x \wedge e_{2} \in x \backslash e_{1} \rightarrow \exists y, z: \operatorname{Set}(\alpha)$. $|y|=|z| \wedge x=y \cup z \wedge y \neq \emptyset$
Finite Relations $\quad(x, y) \in r \wedge(y, z) \in r \rightarrow(x, z) \in r \bowtie s$

Equality and Uninterpreted Functions (EUF)

Simplest first-order theory with equality, applications of uninterpreted functions, and variables of uninterpreted sorts

For all sorts σ, σ^{\prime} and function symbols $f: \sigma \rightarrow \sigma^{\prime}$
Reflexivity: $\forall x: \sigma x=x$
Symmetry: $\forall x: \sigma(x=y \rightarrow y=x)$
Transitivity: $\forall x, y: \sigma(x=y \wedge y=z \rightarrow x=z)$
Congruence: $\forall \boldsymbol{x}, \boldsymbol{y}: \sigma(\boldsymbol{x}=\boldsymbol{y} \rightarrow f(\boldsymbol{x})=f(\boldsymbol{y}))$

Example

$$
f(f(f(a)))=b \wedge g(f(a), b)=a \wedge f(a) \neq a
$$

Arrays

Operates over sorts $\operatorname{Array}\left(\sigma_{i}, \sigma_{e}\right), \sigma_{i}, \sigma_{e}$ and function symbols

$$
\begin{aligned}
& \text { read : } \operatorname{Array}\left(\sigma_{i}, \sigma_{e}\right) \times \sigma_{i} \rightarrow \sigma_{e} \\
& \text { write }: \operatorname{Array}\left(\sigma_{i}, \sigma_{e}\right) \times \sigma_{i} \times \sigma \rightarrow \operatorname{Array}\left(\sigma_{i}, \sigma_{e}\right)
\end{aligned}
$$

For any index sort σ_{i} and element sort σ_{e}
Read-Over-Write-1: $\forall a, i, e$. read(write $(a, i, e), i)=e$
Read-Over-Write-2: $\forall a, i, j, e .(i \neq j \rightarrow \operatorname{read}(w r i t e(a, i, e), j)=\operatorname{read}(a, j))$
Extensionality: $\forall a, b, i .(a \neq b \rightarrow \exists i . \operatorname{read}(a, i) \neq \operatorname{read}(b, i))$

Example

write $(w r i t e(a, i, \operatorname{read}(a, j)), j, \operatorname{read}(a, i))=$ write $(w r i t e(a, j, \operatorname{read}(a, i)), i, \operatorname{read}(a, j))$

Arithmetics

Restricted fragments, over the reals or the integers, support efficient methods:

- Bounds: $x \bowtie k$ with $\bowtie \in\{<,>, \leq, \geq,=\}$
- Difference constraints: $x-y \bowtie k$, with $\bowtie \in\{<,>, \leq, \geq,=\}$
- UTVPI: $\pm x \pm y \bowtie k$, with $\bowtie \in\{<,>, \leq, \geq,=\}$
- Linear arithmetic, e.g: $2 x-3 y+4 z \leq 5$
- Non-linear arithmetic, e.g: $2 x y+4 x z^{2}-5 y \leq 10$

Algebraic Data Types

Family of user-definable theories
Example

$$
\begin{array}{ll}
\text { Color }:=\text { red } \mid \text { green | blue } \\
\operatorname{List}(\alpha) & :=\text { nil } \mid(\text { head }: \alpha)::(\text { tail : List }(\alpha))
\end{array}
$$

Distinctiveness: $\forall h, t$ nil $\neq h:: t$
Exhaustiveness: $\forall l(l=$ nil $\vee \exists h, t . h:: t)$
Injectivity: $\forall h_{1}, h_{2}, t_{1}, t_{2}$

$$
\left(h_{1}: \because t_{1}=h_{2} \because: t_{2} \rightarrow h_{1}=h_{2} \wedge t_{1}=t_{2}\right)
$$

Selectors: $\forall h, t(\operatorname{head}(h:: t)=h \wedge \operatorname{tail}(h:: t)=t)$
Non-circularity: $\forall l, x_{1}, \ldots, x_{n} l \neq x_{1}:: \cdots:: x_{n}:: l$

Other Interesting Theories

- Floating point arithmetic
- Strings and regular expressions
- Sequences
- Finite sets with cardinality
- Finite multisets
- Finite relations
- Transcendental Functions
- Ordinary differential equations
- ...

Reasoning Modulo Theories, Example

$$
\begin{aligned}
& f(\text { read }(\text { write }(a, i, 3), c-2)) \neq f(c-i+1) \\
& \wedge l_{1}=c:: d:: e:: \text { nil } \\
& \wedge i+2=\operatorname{head}\left(l_{1} @ l_{2}\right)
\end{aligned}
$$

Reasoning Modulo Theories, Example

$$
\begin{aligned}
& f(\text { read }(\text { write }(a, i, 3), c-2)) \neq f(c-i+1) \\
& \wedge l_{1}=c:: d:: e:: \text { nil } \\
& \wedge i+2=\operatorname{head}\left(l_{1} @ l_{2}\right)
\end{aligned}
$$

Theory of Linear Integer Arithmetic

Reasoning Modulo Theories, Example

$$
\begin{aligned}
& f(\text { read }(\text { write }(a, i, 3), c-2)) \neq f(c-i+1) \\
& \wedge l_{1}=c:: d:: \text { e }:: \text { nil } \\
& \wedge i+2=\operatorname{head}\left(l_{1} @ l_{2}\right)
\end{aligned}
$$

Theory of Algebraic Data Types

Reasoning Modulo Theories, Example

$$
\begin{aligned}
& f(\operatorname{read}(\text { write }(a, i, 3), c-2)) \neq f(c-i+1) \\
& \wedge l_{1}=c:: d:: e ~:: \text { nil } \\
& \wedge i+2=\operatorname{head}\left(l_{1} @ l_{2}\right)
\end{aligned}
$$

Theory of Arrays

Reasoning Modulo Theories, Example

$$
\begin{aligned}
& f(\operatorname{read}(\text { write }(a, i, 3), c-2)) \neq f(c-i+1) \\
& \wedge l_{1}=c:: d:: e:: \text { nil } \\
& \wedge i+2=\operatorname{head}\left(l_{1} @ l_{2}\right)
\end{aligned}
$$

Theory of Equality and Uninterpreted Functions

Reasoning Modulo Theories, Example

$$
\begin{aligned}
& f(\operatorname{read}(\text { write }(a, i, 3), c-2)) \neq f(c-i+1) \\
& \wedge l_{1}=c:: d:: e:: \text { nil } \\
& \wedge i+2=\operatorname{head}\left(l_{1} @ l_{2}\right)
\end{aligned}
$$

Reasoning Modulo Theories, Example

$$
\begin{aligned}
& f(\operatorname{read}(\text { write }(a, i, 3), c-2)) \neq f(c-i+1) \\
& \wedge l_{1}=c:: d:: e:: \text { nil } \\
& \wedge i+2=\operatorname{head}\left(l_{1} @ l_{2}\right)
\end{aligned}
$$

$$
l_{1}=c:: d:: e ~:: \text { nil } \models_{\text {ADT }} \operatorname{head}\left(l_{1} @ l_{2}\right)=c
$$

Reasoning Modulo Theories, Example

$$
\begin{aligned}
& f(\text { read }(\text { write }(a, i, 3), c-2)) \neq f(c-i+1) \\
& \wedge l_{1}=c:: d:: e ~:: \text { nil } \\
& \wedge i+2=c
\end{aligned}
$$

Reasoning Modulo Theories, Example

$$
\begin{aligned}
& f(\operatorname{read}(\text { write }(a, i, 3), c-2)) \neq f(c-i+1) \\
& \wedge I_{1}=c:: d:: e ~:: \text { nil } \\
& \wedge i+2=c
\end{aligned}
$$

$$
i+2=c \models_{\mathrm{EUF}} \quad \begin{aligned}
c-2 & =i+2-2 \\
c-i+1 & =i+2-i+1
\end{aligned}
$$

Reasoning Modulo Theories, Example

$$
\begin{aligned}
& f(\operatorname{read}(\text { write }(a, i, 3), i+2-2)) \neq f(i+2-i+1) \\
& \wedge l_{1}=c:: d:: e:: \text { nil } \\
& \wedge c=i+2
\end{aligned}
$$

Reasoning Modulo Theories, Example

$$
\begin{aligned}
& f(\operatorname{read}(\text { write }(a, i, 3), i+2-2)) \neq f(i+2-i+1) \\
& \wedge l_{1}=c:: d:: e:: \text { nil } \\
& \wedge c=i+2
\end{aligned}
$$

$$
\begin{array}{r}
i+2-2=i \\
=\mathrm{LIA} \quad \\
i+2-i+1=3
\end{array}
$$

Reasoning Modulo Theories, Example

$$
\begin{aligned}
& f(\text { read }(\text { write }(a, i, 3), i)) \neq f(3) \\
& \wedge l_{1}=c:: d:: e ~:: \text { nil } \\
& \wedge c=i+2
\end{aligned}
$$

Reasoning Modulo Theories, Example

$$
\begin{aligned}
& f(\text { read }(\text { write }(a, i, 3), i)) \neq f(3) \\
& \wedge I_{1}=c:: d:: e ~:: \text { nil } \\
& \wedge c=i+2
\end{aligned}
$$

$$
\models_{\mathrm{A}} \operatorname{read}(\text { write }(a, i, 3), i)=3
$$

Reasoning Modulo Theories, Example

$$
\begin{aligned}
& f(3) \neq f(3) \\
& \wedge l_{1}=c:: d:: e:: \text { nil } \\
& \wedge c=i+2
\end{aligned}
$$

Reasoning Modulo Theories, Example

$$
\begin{aligned}
& f(3) \neq f(3) \\
& \wedge l_{1}=c:: d:: e:: \text { nil } \\
& \wedge c=i+2
\end{aligned}
$$

$$
f(3) \neq f(3) \models_{\text {EUF }} \perp
$$

Reasoning Modulo Theories, Example

$$
\begin{aligned}
& f(3) \neq f(3) \\
& \wedge l_{1}=c:: d:: e:: \text { nil } \\
& \wedge c=i+2
\end{aligned}
$$

Unsatisfiable!

Solving SMT Problems

Fact: Many theories have efficient decision procedures for the satisfiability of conjunctions of literals

Solving SMT Problems

Fact: Many theories have efficient decision procedures for the satisfiability of conjunctions of literals

Problem: In practice, we need to deal with

1. arbitrary Boolean combinations of literals
2. literals over more than one theory
3. formulas with quantifiers

Solving SMT Problems

Fact: Many theories have efficient decision procedures for the satisfiability of conjunctions of literals

Problem: In practice, we need to deal with

1. arbitrary Boolean combinations of literals
2.
3.

literals over more than one theory
formulas with quantifiers

Satisfiability Modulo a Theory T

$$
F, F_{1}, \ldots, F_{n} \text { formulas, } T \text { a theory }
$$

F is satisfiable in T, or T-satisfiable, if it is satisfiable in a model of T
F is unsatisfiable in T, or T-unsatisfiable, if it is not T satisfiable
F_{1}, \ldots, F_{n} entail F in T, or T-entail F, written $F_{1}, \ldots, F_{n} \models_{T} F$
if $F_{1} \wedge \cdots \wedge F_{n} \wedge F$ is T-unsatisfiable

Satisfiability Modulo a Theory T

Note:
The T-satisfiability of quantifier-free formulas is decidable iff the T-satisfiability of conjunctions/sets of literals is decidable

Satisfiability Modulo a Theory T

Note:

The T-satisfiability of quantifier-free formulas is decidable iff the T-satisfiability of conjunctions/sets of literals is decidable
(Convert the formula in DNF and check if any of its disjuncts is T-sat)

Satisfiability Modulo a Theory T

Abstract

Note: The T-satisfiability of quantifier-free formulas is decidable iff the T-satisfiability of conjunctions/sets of literals is decidable

Problem: In practice, dealing with Boolean combinations of literals is as hard as in propositional logic

Satisfiability Modulo a Theory T

Abstract

Note: The T-satisfiability of quantifier-free formulas is decidable iff the T-satisfiability of conjunctions/sets of literals is decidable

Problem: In practice, dealing with Boolean combinations of literals is as hard as in propositional logic

Solution: Exploit propositional satisfiability technology

Lifting SAT Technology to SMT

Two main approaches:

Lifting SAT Technology to SMT

Two main approaches:

1. Eager

- translate the input formula F to an equisatisfiable propositional formula P
- feed P to any SAT solver

Lifting SAT Technology to SMT

Two main approaches:
2. Lazy

- abstract the input formula F to a propositional formula A in CNF
- feed A to a DPLL-based SAT solver
- use a theory-specific solver to refine the abstraction and guide the SAT solver

Lifting SAT Technology to SMT

Two main approaches:
2. Lazy

- abstract the input formula F to a propositional formula A in CNF
- feed A to a DPLL-based SAT solver
- use a theory-specific solver to refine the abstraction and guide the SAT solver

> We will focus on the lazy approach here

(Very) Lazy Approach for SMT, Example

$$
g(a)=c \quad \wedge \quad f(g(a)) \neq f(c) \vee g(a)=d \wedge c \neq d
$$

Theory T: Equality with Uninterpreted Functions

(Very) Lazy Approach for SMT, Example

$$
g(a)=c \quad \wedge \quad f(g(a)) \neq f(c) \vee g(a)=d \wedge c \neq d
$$

Simplest setting:

- Off-line SAT solver
- Non-incremental theory solver for conjunctions of equalities and disequalities
- Theory atoms abstracted to propositional atoms (e.g., $g(a)=c$ abstracted to p_{1})

(Very) Lazy Approach for SMT - Example

$$
\underbrace{g(a)=c}_{p_{1}} \wedge \underbrace{f(g(a)) \neq f(c)}_{\bar{p}_{2}} \vee \underbrace{g(a)=d}_{p_{3}} \wedge \underbrace{c \neq d}_{\bar{p}_{4}}
$$

Notation:

- $\bar{a} \stackrel{\text { def }}{=} \neg a$
- $\overline{\bar{a}} \stackrel{\text { def }}{=} a$
- $\left\{p_{1}, \bar{p}_{2}, \bar{p}_{3}, p_{4}\right\} \stackrel{\text { def }}{=}\left\{p_{1} \mapsto 1, p_{2} \mapsto 0, p_{3} \mapsto 0, \bar{p}_{4} \mapsto 1\right\}$

(Very) Lazy Approach for SMT - Example

$$
\underbrace{g(a)=c}_{p_{1}} \wedge \underbrace{f(g(a)) \neq f(c)}_{\bar{p}_{2}} \vee \underbrace{g(a)=d}_{p_{3}} \wedge \underbrace{c \neq d}_{\bar{p}_{4}}
$$

1. Send $\left\{p_{1}, \bar{p}_{2} \vee p_{3}, \bar{p}_{4}\right\}$ to SAT solver

(Very) Lazy Approach for SMT - Example

1. Send $\left\{p_{1}, \bar{p}_{2} \vee p_{3}, \bar{p}_{4}\right\}$ to SAT solver
2. SAT solver returns satisfying assignment $\left\{p_{1}, \bar{p}_{2}, \bar{p}_{4}\right\}$

(Very) Lazy Approach for SMT - Example

$$
\underbrace{g(a)=c}_{p_{1}} \wedge \underbrace{f(g(a)) \neq f(c)}_{\bar{p}_{2}} \vee \underbrace{g(a)=d}_{p_{3}} \wedge \underbrace{c \neq d}_{\bar{p}_{4}}
$$

1. Send $\left\{p_{1}, \bar{p}_{2} \vee p_{3}, \bar{p}_{4}\right\}$ to SAT solver
2. SAT solver returns satisfying assignment $\left\{p_{1}, \bar{p}_{2}, \bar{p}_{4}\right\}$ Theory solver finds concretization of $\left\{p_{1}, \bar{p}_{2}, \bar{p}_{4}\right\}$ $(\{g(a)=c, f(g(a)) \neq f(c), c \neq d\})$ unsat

(Very) Lazy Approach for SMT - Example

1. Send $\left\{p_{1}, \bar{p}_{2} \vee p_{3}, \bar{p}_{4}\right\}$ to SAT solver
2. SAT solver returns satisfying assignment $\left\{p_{1}, \bar{p}_{2}, \bar{p}_{4}\right\}$ Theory solver finds concretization of $\left\{p_{1}, \bar{p}_{2}, \bar{p}_{4}\right\}$ $(\{g(a)=c, f(g(a)) \neq f(c), c \neq d\})$ unsat
3. Send $\left\{p_{1}, \bar{p}_{2} \vee p_{3}, \bar{p}_{4}, \bar{p}_{1} \vee p_{2} \vee p_{4}\right\}$ to SAT solver

(Very) Lazy Approach for SMT - Example

1. Send $\left\{p_{1}, \bar{p}_{2} \vee p_{3}, \bar{p}_{4}\right\}$ to SAT solver
2. SAT solver returns satisfying assignment $\left\{p_{1}, \bar{p}_{2}, \bar{p}_{4}\right\}$ Theory solver finds concretization of $\left\{p_{1}, \bar{p}_{2}, \bar{p}_{4}\right\}$

$$
(\{g(a)=c, f(g(a)) \neq f(c), c \neq d\}) \text { unsat }
$$

3. Send $\left\{p_{1}, \bar{p}_{2} \vee p_{3}, \bar{p}_{4}, \bar{p}_{1} \vee p_{2} \vee p_{4}\right\}$ to SAT solver

(Very) Lazy Approach for SMT - Example

1. Send $\left\{p_{1}, \bar{p}_{2} \vee p_{3}, \bar{p}_{4}\right\}$ to SAT solver
2. SAT solver returns satisfying assignment $\left\{p_{1}, \bar{p}_{2}, \bar{p}_{4}\right\}$ Theory solver finds concretization of $\left\{p_{1}, \bar{p}_{2}, \bar{p}_{4}\right\}$ $(\{g(a)=c, f(g(a)) \neq f(c), c \neq d\})$ unsat
3. Send $\left\{p_{1}, \bar{p}_{2} \vee p_{3}, \bar{p}_{4}, \bar{p}_{1} \vee p_{2} \vee p_{4}\right\}$ to SAT solver
4. SAT solver returns new satisfying assignment $\left\{p_{1}, p_{3}, \bar{p}_{4}\right\}$

(Very) Lazy Approach for SMT - Example

$$
\underbrace{g(a)=c}_{p_{1}} \wedge \underbrace{f(g(a)) \neq f(c)}_{\bar{p}_{2}} \vee \underbrace{g(a)=d}_{p_{3}} \wedge \underbrace{c \neq d}_{\bar{p}_{4}}
$$

1. Send $\left\{p_{1}, \bar{p}_{2} \vee p_{3}, \bar{p}_{4}\right\}$ to SAT solver
2. SAT solver returns satisfying assignment $\left\{p_{1}, \bar{p}_{2}, \bar{p}_{4}\right\}$ Theory solver finds concretization of $\left\{p_{1}, \bar{p}_{2}, \bar{p}_{4}\right\}$ $(\{g(a)=c, f(g(a)) \neq f(c), c \neq d\})$ unsat
3. Send $\left\{p_{1}, \bar{p}_{2} \vee p_{3}, \bar{p}_{4}, \bar{p}_{1} \vee p_{2} \vee p_{4}\right\}$ to SAT solver
4. SAT solver returns new satisfying assignment $\left\{p_{1}, p_{3}, \bar{p}_{4}\right\}$ Theory solver finds $\left\{p_{1}, p_{3}, \bar{p}_{4}\right\}$ unsat

(Very) Lazy Approach for SMT - Example

1. Send $\left\{p_{1}, \bar{p}_{2} \vee p_{3}, \bar{p}_{4}\right\}$ to SAT solver
2. SAT solver returns satisfying assignment $\left\{p_{1}, \bar{p}_{2}, \bar{p}_{4}\right\}$ Theory solver finds concretization of $\left\{p_{1}, \bar{p}_{2}, \bar{p}_{4}\right\}$ $(\{g(a)=c, f(g(a)) \neq f(c), c \neq d\})$ unsat
3. Send $\left\{p_{1}, \bar{p}_{2} \vee p_{3}, \bar{p}_{4}, \bar{p}_{1} \vee p_{2} \vee p_{4}\right\}$ to SAT solver
4. SAT solver returns new satisfying assignment $\left\{p_{1}, p_{3}, \bar{p}_{4}\right\}$ Theory solver finds $\left\{p_{1}, p_{3}, \bar{p}_{4}\right\}$ unsat
5. Send $\left\{p_{1}, \bar{p}_{2} \vee p_{3}, \bar{p}_{4}, \bar{p}_{1} \vee p_{2}, \bar{p}_{1} \vee \bar{p}_{3} \vee p_{4}\right\}$ to SAT solver

(Very) Lazy Approach for SMT - Example

1. Send $\left\{p_{1}, \bar{p}_{2} \vee p_{3}, \bar{p}_{4}\right\}$ to SAT solver
2. SAT solver returns satisfying assignment $\left\{p_{1}, \bar{p}_{2}, \bar{p}_{4}\right\}$ Theory solver finds concretization of $\left\{p_{1}, \bar{p}_{2}, \bar{p}_{4}\right\}$

$$
(\{g(a)=c, f(g(a)) \neq f(c), c \neq d\}) \text { unsat }
$$

3. Send $\left\{p_{1}, \bar{p}_{2} \vee p_{3}, \bar{p}_{4}, \bar{p}_{1} \vee p_{2} \vee p_{4}\right\}$ to SAT solver
4. SAT solver returns new satisfying assignment $\left\{p_{1}, p_{3}, \bar{p}_{4}\right\}$ Theory solver finds $\left\{p_{1}, p_{3}, \bar{p}_{4}\right\}$ unsat
5. Send $\left\{p_{1}, \bar{p}_{2} \vee p_{3}, \bar{p}_{4}, \bar{p}_{1} \vee p_{2}, \bar{p}_{1} \vee \bar{p}_{3} \vee p_{4}\right\}$ to SAT solver
6. SAT solver finds $\left\{p_{1}, \bar{p}_{2} \vee p_{3}, \bar{p}_{4}, \bar{p}_{1} \vee p_{2} \vee p_{4}, \bar{p}_{1} \vee \bar{p}_{3} \vee p_{4}\right\}$ unsat

(Very) Lazy Approach for SMT - Example

1. Send $\left\{p_{1}, \bar{p}_{2} \vee p_{3}, \bar{p}_{4}\right\}$ to SAT solver
2. SAT solver returns satisfying assignment $\left\{p_{1}, \bar{p}_{2}, \bar{p}_{4}\right\}$

Theory solver finds concretization of $\left\{p_{1}, \bar{p}_{2}, \bar{p}_{4}\right\}$
($\{g(a)=c, f(a(a)) \neq f(r) c \neq d\}$) unsat
3. Send $\left\{p_{1}, \vec{A}\right.$ Done! The original formula is unsatisfiable in EUF!
4. SAT solver returns new satisfying assignment $\left\{p_{1}, p_{3}, \bar{p}_{4}\right\}$ Theory solver finds $\left\{p_{1}, p_{3}, \bar{p}_{4}\right\}$ unsat
5. Send $\left\{p_{1}, \bar{p}_{2} \vee p_{3}, \bar{p}_{4}, \bar{p}_{1} \vee p_{2}, \bar{p}_{1} \vee \bar{p}_{3} \vee p_{4}\right\}$ to SAT solver
6. SAT solver finds $\left\{p_{1}, \bar{p}_{2} \vee p_{3}, \bar{p}_{4}, \bar{p}_{1} \vee p_{2} \vee p_{4}, \bar{p}_{1} \vee \bar{p}_{3} \vee p_{4}\right\}$ unsat

Lazy Approach - Enhancements

Several enhancements are possible to increase efficiency:

Lazy Approach - Enhancements

Several enhancements are possible to increase efficiency:

- Check T-satisfiability only of full propositional model

Lazy Approach - Enhancements

Several enhancements are possible to increase efficiency:

- Check T-satisfiability of partial assignment M as it grows

Lazy Approach - Enhancements

Several enhancements are possible to increase efficiency:

- Check T-satisfiability of partial assignment M as it grows
- If M is T-unsatisfiable, add $\neg M$ as a clause

Lazy Approach - Enhancements

Several enhancements are possible to increase efficiency:

- Check T-satisfiability of partial assignment M as it grows
- If M is T-unsatisfiable, identify a T-unsatisfiable subset M_{0} of M and add $\neg M_{0}$ as a clause

Lazy Approach - Enhancements

Several enhancements are possible to increase efficiency:

- Check T-satisfiability of partial assignment M as it grows
- If M is T-unsatisfiable, identify a T-unsatisfiable subset M_{0} of M and add $\neg M_{0}$ as a clause
- If M is T-unsatisfiable, add clause and restart

Lazy Approach - Enhancements

Several enhancements are possible to increase efficiency:

- Check T-satisfiability of partial assignment M as it grows
- If M is T-unsatisfiable, identify a T-unsatisfiable subset M_{0} of M and add $\neg M_{0}$ as a clause
- If M is T-unsatisfiable, bactrack to some point where the assignment was still T-satisfiable

Lazy Approach, Main Benefits

Every tool does what it is good at:

- SAT solver takes care of Boolean information
- Theory solver takes care of theory information

Lazy Approach, Main Benefits

Every tool does what it is good at:

- SAT solver takes care of Boolean information
- Theory solver takes care of theory information

The SAT solver works only with propositional clauses

Lazy Approach, Main Benefits

Every tool does what it is good at:

- SAT solver takes care of Boolean information
- Theory solver takes care of theory information

The SAT solver works only with propositional clauses
The theory solver works only with conjunctions of (FOL) literals

The Original DPLL Procedure

Recall

Modern SAT solvers are based on the DPLL procedure
DPLL tries to build incrementally a satisfying truth assignment M for a formula F in CNF
M is grown by

- deducing by unit propagation the truth value of a literal from M and F, or
- guessing a truth value

The procedure backtracks on each wrong guess and tries the opposite value

An Abstract Transition System for DPLL

States:

$$
\text { fail or }\langle M, F\rangle
$$

where

- M is a sequence of literals and decision points denoting a partial truth assignment
- F is a set of clauses denoting a CNF formula

Definition If $M=M_{0} \bullet M_{1} \bullet \cdots M_{n}$ where each M_{i} contains no decision points

1. M_{i} is decision level i of M
2. $M^{[i]} \stackrel{\text { def }}{=} M_{0} \bullet \cdots \bullet M_{i}$

An Abstract Transition System for DPLL

States:

$$
\text { fail or }\langle M, F\rangle
$$

Initial state:
$\left\langle\varepsilon, F_{0}\right\rangle$ where ε is the empty sequence and F_{0} is the input CNF
Expected final states:
fail if F_{0} is unsatisfiable
$\langle M, G\rangle$ otherwise, where

- G is equivalent to F_{0} and
- M satisfies G

Transition Rule Notation

Transition rules in guarded assignment form

updating M , F or both when premises P_{1}, \ldots, P_{n} all hold

Note: When convenient, will treat M as the set of its literals

Transition Rules for Original DPLL

Extending M

$\frac{l_{1} \vee \cdots \vee I_{n} \vee I \in \mathrm{~F} \quad \bar{l}_{1}, \ldots, \bar{l}_{n} \in \mathrm{M} \quad l \notin \mathrm{M} \quad \bar{l} \notin \mathrm{M}}{\mathrm{M}^{\prime}=\mathrm{M} l}$ Propagate

Note: The order of literal in clauses is not meaningful

Transition Rules for Original DPLL

Extending M

$\frac{l_{1} \vee \cdots \vee I_{n} \vee I \in \mathrm{~F} \quad \bar{l}_{1}, \ldots, \bar{l}_{n} \in \mathrm{M} \quad \mid \notin \mathrm{M} \quad \bar{l} \notin \mathrm{M}}{\mathrm{M}^{\prime}=\mathrm{M} l}$ Propagate

Note: The order of literal in clauses is not meaningful

$$
\frac{l \in \operatorname{Lit}(\mathrm{~F}) \quad l \notin \mathrm{M} \quad l \notin \mathrm{M}}{\mathrm{M}^{\prime}=\mathrm{M} \bullet l} \text { Decide }
$$

Notation: $\operatorname{Lit}(F) \stackrel{\text { def }}{=}\{l \mid l$ literal of $F\} \cup\{I \mid l$ literal of $F\}$

Transition Rules for Original DPLL

Repairing M
$\xrightarrow[\text { fail }]{I_{1} \vee \cdots \vee I_{n} \in \mathrm{~F} \quad \bar{l}_{1}, \ldots, \bar{l}_{n} \in \mathrm{M} \quad \bullet \notin \mathrm{M}}$ Fail

Transition Rules for Original DPLL

Repairing M
$\begin{array}{ll}I_{1} \vee \cdots \vee I_{n} \in \mathrm{~F} & \bar{l}_{1}, \ldots, \bar{I}_{n} \in \mathrm{M} \quad \bullet \notin \mathrm{M} \\ \text { fail }\end{array}$
$\frac{I_{1} \vee \cdots \vee I_{n} \in \mathrm{~F} \quad \bar{l}_{1}, \ldots, \bar{l}_{n} \in \mathrm{M} \quad \mathrm{M}=\mathrm{M} \bullet I N \quad \bullet \notin N}{\mathrm{M}^{\prime}=\mathrm{M} \bar{l}}$ Backtrack

Note: Last premise of Backtrack enforces chronological backtracking

DPLL Execution, Example 1

$$
F_{0} \quad=\quad a \vee e \vee c, \quad \bar{a} \vee e, \quad a \vee \bar{c} \vee \bar{r}, \quad \bar{r} \vee a \vee \bar{e}, \quad \bar{e} \vee c, \quad \bar{a} \vee \bar{e} \vee \bar{c}, \quad r
$$

$$
\begin{aligned}
& \frac{I_{1} \vee \cdots \vee I_{n} \vee I \in \mathrm{~F} \quad \bar{I}_{1}, \ldots, \bar{I}_{n} \in \mathrm{M} \quad \mid \notin \mathrm{M} \quad \bar{l} \notin \mathrm{M}}{\mathrm{M}^{\prime}=\mathrm{M} I} \text { Propagate } \\
& \frac{l \in \operatorname{Lit}(\mathrm{~F}) \quad l \notin \mathrm{M} \bar{l} \notin \mathrm{M}}{\mathrm{M}^{\prime}=\mathrm{M} \bullet l} \text { Decide } \quad \frac{l_{1} \vee \cdots \vee I_{n} \in \mathrm{~F} \quad \bar{l}_{1}, \ldots, \bar{l}_{n} \in \mathrm{M} \quad \bullet \notin \mathrm{M}}{\text { fail }} \text { Fail } \\
& \frac{l_{1} \vee \cdots \vee I_{n} \in \mathrm{~F} \quad \bar{l}_{1}, \ldots, \bar{l}_{n} \in \mathrm{M} \quad \mathrm{M}=\mathrm{M} \bullet \mid \mathrm{N} \quad \notin \mathrm{~N}}{\mathrm{M}^{\prime}=\mathrm{M} \bar{l}} \text { Backtrack }
\end{aligned}
$$

DPLL Execution, Example 1

$$
\begin{gathered}
\frac{l_{1} \vee \cdots \vee I_{n} \vee I \in \mathrm{~F} \quad \bar{l}_{1}, \ldots, \bar{l}_{n} \in \mathrm{M} \quad l \notin \mathrm{M} \quad \bar{l} \notin \mathrm{M}}{\mathrm{M}^{\prime}=\mathrm{M} l} \text { Propagate } \\
\begin{array}{l}
l \in \operatorname{Lit}(\mathrm{~F}) \quad l \notin \mathrm{M} \quad \bar{l} \notin \mathrm{M} \\
\mathrm{M}^{\prime}=\mathrm{M} \bullet l \\
\\
\frac{l_{1} \vee \cdots \vee l_{n} \in \mathrm{~F}}{} \quad \bar{I}_{1}, \ldots, \bar{l}_{n} \in \mathrm{M} \quad \mathrm{M}=\mathrm{M} \bullet l \mathrm{~N} \quad \bullet \notin \mathrm{~N} \\
\mathrm{M}^{\prime}=\mathrm{M} \bar{l}
\end{array} \text { Backtrack }
\end{gathered}
$$

$$
F_{0} \quad=\quad a \vee e \vee c, \quad \bar{a} \vee e, \quad a \vee \bar{c} \vee \bar{r}, \quad \bar{r} \vee a \vee \bar{e}, \quad \bar{e} \vee c, \quad \bar{a} \vee \bar{e} \vee \bar{c}, \quad r
$$

One execution:

	M	F	Rule
1	ε	F_{0}	

| M | F Rule |
| :---: | :---: | :---: |

DPLL Execution, Example 1

$$
F_{0} \quad=\quad a \vee e \vee c, \quad \bar{a} \vee e, \quad a \vee \bar{c} \vee \bar{r}, \quad \bar{r} \vee a \vee \bar{e}, \quad \bar{e} \vee c, \quad \bar{a} \vee \bar{e} \vee \bar{c}, \quad r
$$

One execution:

	M	F	Rule
1	ε	F_{0}	Propagate on r
2	r	F_{0}	

M F Rule

$$
\begin{aligned}
& \frac{I_{1} \vee \cdots \vee I_{n} \vee I \in \mathrm{~F} \quad \bar{I}_{1}, \ldots, \bar{I}_{n} \in \mathrm{M} \quad \mid \notin \mathrm{M} \quad \bar{l} \notin \mathrm{M}}{\mathrm{M}^{\prime}=\mathrm{M} I} \text { Propagate } \\
& \begin{array}{l}
l \in \operatorname{Lit}(\mathrm{~F}) \quad \mid \notin \mathrm{M} \quad \bar{l} \notin \mathrm{M} \\
\mathrm{M}^{\prime}=\mathrm{M} \bullet l \\
\text { Decide } \quad \\
\text { fail } \\
l_{1} \vee \cdots \vee l_{n} \in \mathrm{~F} \\
\bar{l}_{1}, \ldots, \bar{I}_{n} \in \mathrm{M} \bullet \notin \mathrm{M}
\end{array} \text { Fail } \\
& \frac{l_{1} \vee \cdots \vee I_{n} \in \mathrm{~F} \quad \bar{l}_{1}, \ldots, \bar{l}_{n} \in \mathrm{M} \quad \mathrm{M}=\mathrm{M} \bullet I N \quad \bullet \notin N}{\mathrm{M}^{\prime}=\mathrm{M} \bar{l}} \text { Backtrack }
\end{aligned}
$$

DPLL Execution, Example 1

$$
F_{0} \quad=\quad a \vee e \vee c, \quad \bar{a} \vee e, \quad a \vee \bar{c} \vee \bar{r}, \quad \bar{r} \vee a \vee \bar{e}, \quad \bar{e} \vee c, \quad \bar{a} \vee \bar{e} \vee \bar{c}, \quad r
$$

One execution:

	M	F	Rule
1	ε	F_{0}	Propagate on r
2	r	F_{0}	Decide \bar{a}
3	$r \bullet \bar{a}$	F_{0}	

M F Rule

$$
\begin{aligned}
& \frac{I_{1} \vee \cdots \vee I_{n} \vee I \in \mathrm{~F} \quad \bar{l}_{1}, \ldots, \bar{I}_{n} \in \mathrm{M} \quad \mid \notin \mathrm{M} \quad \bar{l} \notin \mathrm{M}}{\mathrm{M}^{\prime}=\mathrm{M} I} \text { Propagate } \\
& \frac{l \in \operatorname{Lit}(\mathrm{~F}) \quad \mid \notin \mathrm{M} \quad \bar{l} \notin \mathrm{M}}{\mathrm{M}^{\prime}=\mathrm{M} \bullet l} \text { Decide } \quad \frac{l_{1} \vee \cdots \vee l_{n} \in \mathrm{~F}}{\bar{l}_{1}, \ldots, \bar{l}_{n} \in \mathrm{M} \bullet \notin \mathrm{M}} \text { fail Fail } \\
& \frac{l_{1} \vee \cdots \vee I_{n} \in \mathrm{~F} \quad \bar{l}_{1}, \ldots, \bar{l}_{n} \in \mathrm{M} \quad \mathrm{M}=\mathrm{M} \bullet I N \quad \bullet \notin N}{\mathrm{M}^{\prime}=\mathrm{M} \bar{l}} \text { Backtrack }
\end{aligned}
$$

DPLL Execution, Example 1

$$
F_{0} \quad=\quad a \vee e \vee c, \quad \bar{a} \vee e, \quad a \vee \bar{c} \vee \bar{r}, \quad \bar{r} \vee a \vee \bar{e}, \quad \bar{e} \vee c, \quad \bar{a} \vee \bar{e} \vee \bar{c}, \quad r
$$

One execution:

	M	F	Rule
1	ε	F_{0}	Propagate on r
2	r	F_{0}	Decide \bar{a}
3	$r \bullet \bar{a}$	F_{0}	Propagate on $\bar{r} \vee a \vee \bar{e}$
4	$r \bullet \bar{a} \bar{e}$	F_{0}	

$$
\begin{aligned}
& \frac{I_{1} \vee \cdots \vee I_{n} \vee I \in \mathrm{~F} \quad \bar{l}_{1}, \ldots, \bar{I}_{n} \in \mathrm{M} \quad l \notin \mathrm{M} \quad \bar{l} \notin \mathrm{M}}{\mathrm{M}^{\prime}=\mathrm{M} I} \text { Propagate } \\
& \frac{l \in \operatorname{Lit}(\mathrm{~F}) \quad \mid \notin \mathrm{M} \quad \bar{l} \notin \mathrm{M}}{\mathrm{M}^{\prime}=\mathrm{M} \bullet l} \text { Decide } \quad \frac{l_{1} \vee \cdots \vee l_{n} \in \mathrm{~F} \bar{I}_{1}, \ldots, \bar{l}_{n} \in \mathrm{M} \bullet \notin \mathrm{M}}{\text { fail }} \text { Fail } \\
& \frac{I_{1} \vee \cdots \vee I_{n} \in \mathrm{~F} \quad \bar{l}_{1}, \ldots, \bar{l}_{n} \in \mathrm{M} \quad \mathrm{M}=\mathrm{M} \bullet I N \quad \bullet \notin N}{\mathrm{M}^{\prime}=\mathrm{M} \bar{l}} \text { Backtrack }
\end{aligned}
$$

DPLL Execution, Example 1

$$
F_{0} \quad=\quad a \vee e \vee c, \quad \bar{a} \vee e, \quad a \vee \bar{c} \vee \bar{r}, \quad \bar{r} \vee a \vee \bar{e}, \quad \bar{e} \vee c, \quad \bar{a} \vee \bar{e} \vee \bar{c}, \quad r
$$

One execution:

	M	F	Rule
1	ε	F_{0}	Propagate on r
2	r	F_{0}	Decide \bar{a}
3	$r \bullet \bar{a}$	F_{0}	Propagate on $\bar{r} \vee a \vee \bar{e}$
4	$r \bullet \bar{a} \bar{e}$	F_{0}	Propagate on $a \vee e \vee c$
5	$r \bullet \bar{a} \bar{e} c$	F_{0}	

$$
\begin{aligned}
& \frac{I_{1} \vee \cdots \vee I_{n} \vee I \in \mathrm{~F} \quad \bar{l}_{1}, \ldots, \bar{I}_{n} \in \mathrm{M} \quad l \notin \mathrm{M} \quad \bar{l} \notin \mathrm{M}}{\mathrm{M}^{\prime}=\mathrm{M} I} \text { Propagate } \\
& \frac{l \in \operatorname{Lit}(\mathrm{~F}) \quad \mid \notin \mathrm{M} \quad \bar{l} \notin \mathrm{M}}{\mathrm{M}^{\prime}=\mathrm{M} \bullet l} \text { Decide } \quad \frac{l_{1} \vee \cdots \vee l_{n} \in \mathrm{~F} \bar{I}_{1}, \ldots, \bar{l}_{n} \in \mathrm{M} \bullet \notin \mathrm{M}}{\text { fail }} \text { Fail } \\
& \frac{I_{1} \vee \cdots \vee I_{n} \in \mathrm{~F} \quad \bar{l}_{1}, \ldots, \bar{I}_{n} \in \mathrm{M} \quad \mathrm{M}=\mathrm{M} \bullet I N \quad \notin N}{\mathrm{M}^{\prime}=\mathrm{M} \bar{l}} \text { Backtrack }
\end{aligned}
$$

DPLL Execution, Example 1

$$
F_{0} \quad=\quad a \vee e \vee c, \quad \bar{a} \vee e, \quad a \vee \bar{c} \vee \bar{r}, \quad \bar{r} \vee a \vee \bar{e}, \quad \bar{e} \vee c, \quad \bar{a} \vee \bar{e} \vee \bar{c}, \quad r
$$

One execution:

	M	F	Rule
1	ε	F_{0}	Propagate on r
2	r	F_{0}	Decide \bar{a}
3	$r \bullet \bar{a}$	F_{0}	Propagate on $\bar{r} \vee a \vee \bar{e}$
4	$r \bullet \bar{a} \bar{e}$	F_{0}	Propagate on $a \vee e \vee c$
5	$r \bullet \bar{a} \bar{e} c$	F_{0}	Backtrack on $a \vee \bar{c} \vee \bar{r}$

	M	F	Rule
6	$r a$	F_{0}	

$2 \quad r \quad F_{0}$ Decide \bar{a}
$3 \quad r \bullet a \quad F_{0}$ Propagate on $r \vee a \vee e$
$5 r \bullet \bar{a} \bar{e} c \quad F_{0} \quad$ Backtrack on $a \vee \bar{c} \vee \bar{r}$

$$
\begin{aligned}
& \frac{I_{1} \vee \cdots \vee I_{n} \vee I \in \mathrm{~F} \quad \bar{l}_{1}, \ldots, \bar{l}_{n} \in \mathrm{M} \quad \mid \notin \mathrm{M} \quad \bar{l} \notin \mathrm{M}}{\mathrm{M}^{\prime}=\mathrm{M} I} \text { Propagate } \\
& \frac{l \in \operatorname{Lit}(\mathrm{~F}) \quad \mid \notin \mathrm{M} \quad \bar{l} \notin \mathrm{M}}{\mathrm{M}^{\prime}=\mathrm{M} \bullet l} \text { Decide } \quad \frac{l_{1} \vee \cdots \vee l_{n} \in \mathrm{~F} \bar{I}_{1}, \ldots, \bar{l}_{n} \in \mathrm{M} \bullet \notin \mathrm{M}}{\text { fail }} \text { Fail } \\
& \frac{I_{1} \vee \cdots \vee I_{n} \in \mathrm{~F} \quad \bar{I}_{1}, \ldots, \bar{I}_{n} \in \mathrm{M} \quad \mathrm{M}=\mathrm{M} \bullet I N \quad \bullet \notin N}{\mathrm{M}^{\prime}=\mathrm{M} \bar{l}} \text { Backtrack }
\end{aligned}
$$

DPLL Execution, Example 1

$$
F_{0} \quad=\quad a \vee e \vee c, \quad \bar{a} \vee e, \quad a \vee \bar{c} \vee \bar{r}, \quad \bar{r} \vee a \vee \bar{e}, \quad \bar{e} \vee c, \quad \bar{a} \vee \bar{e} \vee \bar{c}, \quad r
$$

One execution:

	M	F	Rule
1	ε	F_{0}	Propagate on r
2	r	F_{0}	Decide \bar{a}
3	$r \bullet \bar{a}$	F_{0}	Propagate on $\bar{r} \vee a \vee \bar{e}$
4	$r \bullet \bar{a} \bar{e}$	F_{0}	Propagate on $a \vee e \vee c$
5	$r \bullet \bar{a} \bar{e} c$	F_{0}	Backtrack on $a \vee \bar{c} \vee \bar{r}$

	M	F	Rule
6	$\mathrm{r} a$	F_{0}	Propagate on $\bar{a} \vee e$
7	rae	F_{0}	

. c

$$
\begin{aligned}
& \frac{l_{1} \vee \cdots \vee I_{n} \vee I \in \mathrm{~F} \quad \bar{I}_{1}, \ldots, \bar{I}_{n} \in \mathrm{M} \quad \mid \notin \mathrm{M} \quad \bar{l} \notin \mathrm{M}}{\mathrm{M}^{\prime}=\mathrm{M} l} \text { Propagate } \\
& \frac{l \in \operatorname{Lit}(\mathrm{~F}) \quad \mid \notin \mathrm{M} \quad \bar{l} \notin \mathrm{M}}{\mathrm{M}^{\prime}=\mathrm{M} \bullet l} \text { Decide } \quad \frac{l_{1} \vee \cdots \vee l_{n} \in \mathrm{~F} \bar{I}_{1}, \ldots, \bar{l}_{n} \in \mathrm{M} \bullet \notin \mathrm{M}}{\text { fail }} \text { Fail } \\
& \frac{I_{1} \vee \cdots \vee I_{n} \in \mathrm{~F} \quad \bar{l}_{1}, \ldots, \bar{I}_{n} \in \mathrm{M} \quad \mathrm{M}=\mathrm{M} \bullet I N \quad \notin N}{\mathrm{M}^{\prime}=\mathrm{M} \bar{l}} \text { Backtrack }
\end{aligned}
$$

DPLL Execution, Example 1

$$
F_{0} \quad=\quad a \vee e \vee c, \quad \bar{a} \vee e, \quad a \vee \bar{c} \vee \bar{r}, \quad \bar{r} \vee a \vee \bar{e}, \quad \bar{e} \vee c, \quad \bar{a} \vee \bar{e} \vee \bar{c}, \quad r
$$

One execution:

	M	F	Rule
1	ε	F_{0}	Propagate on r
2	r	F_{0}	Decide \bar{a}
3	$r \bullet \bar{a}$	F_{0}	Propagate on $\bar{r} \vee a \vee \bar{e}$
4	$r \bullet \bar{a} \bar{e}$	F_{0}	Propagate on $a \vee e \vee c$
5	$r \bullet \bar{a} \bar{e} c$	F_{0}	Backtrack on $a \vee \bar{c} \vee \bar{r}$

	M	F	Rule
6	$r a$	F_{0}	Propagate on $\overline{\bar{a}} \vee e$
7	rae	F_{0}	Propagate on $\bar{e} \vee c$
8	raec	F_{0}	

$$
\begin{aligned}
& \frac{I_{1} \vee \cdots \vee I_{n} \vee I \in \mathrm{~F} \quad \bar{l}_{1}, \ldots, \bar{I}_{n} \in \mathrm{M} \quad l \notin \mathrm{M} \quad \bar{l} \notin \mathrm{M}}{\mathrm{M}^{\prime}=\mathrm{M} I} \text { Propagate } \\
& \frac{l \in \operatorname{Lit}(\mathrm{~F}) \quad \mid \notin \mathrm{M} \quad \bar{l} \notin \mathrm{M}}{\mathrm{M}^{\prime}=\mathrm{M} \bullet l} \text { Decide } \quad \frac{l_{1} \vee \cdots \vee l_{n} \in \mathrm{~F}}{\bar{l}_{1}, \ldots, \bar{I}_{n} \in \mathrm{M} \bullet \notin \mathrm{M}} \text { fail } \text { Fail } \\
& \frac{I_{1} \vee \cdots \vee I_{n} \in \mathrm{~F} \quad \bar{l}_{1}, \ldots, \bar{I}_{n} \in \mathrm{M} \quad \mathrm{M}=\mathrm{M} \bullet I N \quad \notin N}{\mathrm{M}^{\prime}=\mathrm{M} \bar{l}} \text { Backtrack }
\end{aligned}
$$

DPLL Execution, Example 1

$$
F_{0} \quad=\quad a \vee e \vee c, \quad \bar{a} \vee e, \quad a \vee \bar{c} \vee \bar{r}, \quad \bar{r} \vee a \vee \bar{e}, \quad \bar{e} \vee c, \quad \bar{a} \vee \bar{e} \vee \bar{c}, \quad r
$$

One execution:

	M	F	Rule
1	ε	F_{0}	Propagate on r
2	r	F_{0}	Decide \bar{a}
3	$r \bullet \bar{a}$	F_{0}	Propagate on $\bar{r} \vee a \vee \bar{e}$
4	$r \bullet \bar{a} \bar{e}$	F_{0}	Propagate on $a \vee e \vee c$
5	$r \bullet \bar{a} \bar{e} c$	F_{0}	Backtrack on $a \vee \bar{c} \vee \bar{r}$

	M	F	Rule
6	$r a$	F_{0}	Propagate on $\bar{a} \vee e$
7	$r a e$	F_{0}	Propagate on $\bar{e} \vee c$
8	$r a e c$	F_{0}	Fail on $\bar{a} \vee \bar{e} \vee \bar{c}$
9	fail		

$$
\begin{aligned}
& \frac{l_{1} \vee \cdots \vee I_{n} \vee I \in \mathrm{~F} \quad \bar{I}_{1}, \ldots, \bar{I}_{n} \in \mathrm{M} \quad \mid \notin \mathrm{M} \quad \bar{l} \notin \mathrm{M}}{\mathrm{M}^{\prime}=\mathrm{M} l} \text { Propagate } \\
& \frac{l \in \operatorname{Lit}(\mathrm{~F}) \quad \mid \notin \mathrm{M} \quad \bar{l} \notin \mathrm{M}}{\mathrm{M}^{\prime}=\mathrm{M} \bullet l} \text { Decide } \quad \frac{l_{1} \vee \cdots \vee l_{n} \in \mathrm{~F}}{\bar{l}_{1}, \ldots, \bar{I}_{n} \in \mathrm{M} \bullet \notin \mathrm{M}} \text { fail } \text { Fail } \\
& \frac{I_{1} \vee \cdots \vee I_{n} \in \mathrm{~F} \quad \bar{l}_{1}, \ldots, \bar{I}_{n} \in \mathrm{M} \quad \mathrm{M}=\mathrm{M} \bullet I \mathrm{~N} \bullet \notin N}{\mathrm{M}^{\prime}=\mathrm{M} \bar{l}} \text { Backtrack }
\end{aligned}
$$

DPLL Execution, Example 1

$$
F_{0} \quad=\quad a \vee e \vee c, \quad \bar{a} \vee e, \quad a \vee \bar{c} \vee \bar{r}, \quad \bar{r} \vee a \vee \bar{e}, \quad \bar{e} \vee c, \quad \bar{a} \vee \bar{e} \vee \bar{c}, \quad r
$$

Another execution:

	M	F	Rule
1	ε	F_{0}	

M F Rule

$$
\begin{aligned}
& \frac{l_{1} \vee \cdots \vee I_{n} \vee I \in \mathrm{~F} \quad \bar{l}_{1}, \ldots, \bar{I}_{n} \in \mathrm{M} \quad \mid \notin \mathrm{M} \quad \bar{l} \notin \mathrm{M}}{\mathrm{M}^{\prime}=\mathrm{M} \mid} \text { Propagate } \\
& \frac{l \in \operatorname{Lit}(\mathrm{~F}) \quad \mid \notin \mathrm{M} \quad \bar{l} \notin \mathrm{M}}{\mathrm{M}^{\prime}=\mathrm{M} \bullet l} \text { Decide } \quad \begin{array}{l}
l_{1} \vee \cdots \vee I_{n} \in \mathrm{~F} \bar{I}_{1}, \ldots, \bar{I}_{n} \in \mathrm{M} \bullet \notin \mathrm{M} \\
\text { fail }
\end{array} \text { Fail } \\
& \frac{I_{1} \vee \cdots \vee I_{n} \in \mathrm{~F} \quad \bar{l}_{1}, \ldots, \bar{I}_{n} \in \mathrm{M} \quad \mathrm{M}=\mathrm{M} \bullet I N \quad \bullet \notin N}{\mathrm{M}^{\prime}=\mathrm{M} \bar{l}} \text { Backtrack }
\end{aligned}
$$

DPLL Execution, Example 1

$$
F_{0} \quad=\quad a \vee e \vee c, \quad \bar{a} \vee e, \quad a \vee \bar{c} \vee \bar{r}, \quad \bar{r} \vee a \vee \bar{e}, \quad \bar{e} \vee c, \quad \bar{a} \vee \bar{e} \vee \bar{c}, \quad r
$$

Another execution:

	M	F	Rule
1	ε	F_{0}	Propagate on r
2	r	F_{0}	

M F Rule

$$
\begin{aligned}
& \frac{I_{1} \vee \cdots \vee I_{n} \vee I \in \mathrm{~F} \quad \bar{l}_{1}, \ldots, \bar{I}_{n} \in \mathrm{M} \quad \mid \notin \mathrm{M} \quad \bar{l} \notin \mathrm{M}}{\mathrm{M}^{\prime}=\mathrm{M} \mid} \text { Propagate } \\
& \frac{l \in \operatorname{Lit}(\mathrm{~F}) \quad \mid \notin \mathrm{M} \quad \bar{l} \notin \mathrm{M}}{\mathrm{M}^{\prime}=\mathrm{M} \bullet l} \text { Decide } \quad \begin{array}{l}
l_{1} \vee \cdots \vee I_{n} \in \mathrm{~F} \bar{I}_{1}, \ldots, \bar{I}_{n} \in \mathrm{M} \bullet \notin \mathrm{M} \\
\text { fail }
\end{array} \text { Fail } \\
& \frac{l_{1} \vee \cdots \vee I_{n} \in \mathrm{~F} \quad \bar{l}_{1}, \ldots, \bar{l}_{n} \in \mathrm{M} \quad \mathrm{M}=\mathrm{M} \bullet I N \quad \bullet \notin N}{\mathrm{M}^{\prime}=\mathrm{M} \bar{l}} \text { Backtrack }
\end{aligned}
$$

DPLL Execution, Example 1

$$
F_{0} \quad=\quad a \vee e \vee c, \quad \bar{a} \vee e, \quad a \vee \bar{c} \vee \bar{r}, \quad \bar{r} \vee a \vee \bar{e}, \quad \bar{e} \vee c, \quad \bar{a} \vee \bar{e} \vee \bar{c}, \quad r
$$

Another execution:

	M	F	Rule
1	ε	F_{0}	Propagate on r
2	r	F_{0}	Decide e
3	$r \bullet e$	F_{0}	

M F Rule

$$
\begin{aligned}
& \frac{I_{1} \vee \cdots \vee I_{n} \vee I \in F \quad \bar{I}_{1}, \ldots, \bar{I}_{n} \in \mathrm{M} \quad \mid \notin \mathrm{M} \quad \bar{l} \notin \mathrm{M}}{\mathrm{M}^{\prime}=\mathrm{M} I} \text { Propagate } \\
& \frac{l \in \operatorname{Lit}(\mathrm{~F}) \quad \mid \notin \mathrm{M} \quad \bar{l} \notin \mathrm{M}}{\mathrm{M}^{\prime}=\mathrm{M} \bullet l} \text { Decide } \quad \frac{l_{1} \vee \cdots \vee l_{n} \in \mathrm{~F} \bar{I}_{1}, \ldots, \bar{l}_{n} \in \mathrm{M} \bullet \notin \mathrm{M}}{\text { fail }} \text { Fail } \\
& \frac{l_{1} \vee \cdots \vee I_{n} \in \mathrm{~F} \quad \bar{l}_{1}, \ldots, \bar{l}_{n} \in \mathrm{M} \quad \mathrm{M}=\mathrm{M} \bullet I N \quad \bullet \notin N}{\mathrm{M}^{\prime}=\mathrm{M} \bar{l}} \text { Backtrack }
\end{aligned}
$$

DPLL Execution, Example 1

$$
F_{0} \quad=\quad a \vee e \vee c, \quad \bar{a} \vee e, \quad a \vee \bar{c} \vee \bar{r}, \quad \bar{r} \vee a \vee \bar{e}, \quad \bar{e} \vee c, \quad \bar{a} \vee \bar{e} \vee \bar{c}, \quad r
$$

Another execution:

	M	F	Rule
1	ε	F_{0}	Propagate on r
2	r	F_{0}	Decide e
3	$r \bullet e$	F_{0}	Propagate on $\bar{e} \vee c$
4	$r \bullet e c$	F_{0}	

M F Rule

$$
\begin{aligned}
& \frac{l_{1} \vee \cdots \vee I_{n} \vee I \in \mathrm{~F} \quad \bar{l}_{1}, \ldots, \bar{l}_{n} \in \mathrm{M} \quad \mid \notin \mathrm{M} \quad \bar{l} \notin \mathrm{M}}{\mathrm{M}^{\prime}=\mathrm{M} l} \text { Propagate } \\
& \frac{l \in \operatorname{Lit}(\mathrm{~F}) \quad \mid \notin \mathrm{M} \quad \bar{l} \notin \mathrm{M}}{\mathrm{M}^{\prime}=\mathrm{M} \bullet l} \text { Decide } \quad \frac{l_{1} \vee \cdots \vee l_{n} \in \mathrm{~F} \bar{I}_{1}, \ldots, \bar{l}_{n} \in \mathrm{M} \bullet \notin \mathrm{M}}{\text { fail }} \text { Fail } \\
& \frac{l_{1} \vee \cdots \vee I_{n} \in \mathrm{~F} \quad \bar{l}_{1}, \ldots, \bar{l}_{n} \in \mathrm{M} \quad \mathrm{M}=\mathrm{M} \bullet I N \quad \bullet \notin N}{\mathrm{M}^{\prime}=\mathrm{M} \bar{l}} \text { Backtrack }
\end{aligned}
$$

DPLL Execution, Example 1

$$
F_{0} \quad=\quad a \vee e \vee c, \quad \bar{a} \vee e, \quad a \vee \bar{c} \vee \bar{r}, \quad \bar{r} \vee a \vee \bar{e}, \quad \bar{e} \vee c, \quad \bar{a} \vee \bar{e} \vee \bar{c}, \quad r
$$

Another execution:

	M	F	Rule
1	ε	F_{0}	Propagate on r
2	r	F_{0}	Decide e
3	$r \bullet e$	F_{0}	Propagate on $\bar{e} \vee c$
4	$r \bullet e c$	F_{0}	Propagate on $\bar{a} \vee \bar{e} \vee \bar{c}$
5	$r \bullet e c \bar{a}$	F_{0}	

M F

$$
\begin{aligned}
& \frac{I_{1} \vee \cdots \vee I_{n} \vee I \in \mathrm{~F} \quad \bar{l}_{1}, \ldots, \bar{I}_{n} \in \mathrm{M} \quad l \notin \mathrm{M} \quad \bar{l} \notin \mathrm{M}}{\mathrm{M}^{\prime}=\mathrm{M} I} \text { Propagate } \\
& \frac{l \in \operatorname{Lit}(\mathrm{~F}) \quad \mid \notin \mathrm{M} \quad \bar{l} \notin \mathrm{M}}{\mathrm{M}^{\prime}=\mathrm{M} \bullet l} \text { Decide } \quad \frac{l_{1} \vee \cdots \vee l_{n} \in \mathrm{~F} \bar{I}_{1}, \ldots, \bar{l}_{n} \in \mathrm{M} \bullet \notin \mathrm{M}}{\text { fail }} \text { Fail } \\
& \frac{I_{1} \vee \cdots \vee I_{n} \in F \quad \bar{l}_{1}, \ldots, \bar{I}_{n} \in M \quad M=M \bullet I N \quad \bullet \notin N}{\mathrm{M}^{\prime}=M \bar{l}} \text { Backtrack }
\end{aligned}
$$

DPLL Execution, Example 1

$$
F_{0} \quad=\quad a \vee e \vee c, \quad \bar{a} \vee e, \quad a \vee \bar{c} \vee \bar{r}, \quad \bar{r} \vee a \vee \bar{e}, \quad \bar{e} \vee c, \quad \bar{a} \vee \bar{e} \vee \bar{c}, \quad r
$$

Another execution:

	M	F	Rule
1	ε	F_{0}	Propagate on r
2	r	F_{0}	Decide e
3	$r \bullet e$	F_{0}	Propagate on $\bar{e} \vee c$
4	$r \bullet e c$	F_{0}	Propagate on $\bar{a} \vee \bar{e} \vee \bar{c}$
$5 r \bullet e c \bar{a}$	F_{0}	Backtrack on $a \vee \bar{c} \vee \bar{r}$	

	M	F	Rule
6	$r \bar{e}$	F_{0}	

$$
\begin{aligned}
& \frac{I_{1} \vee \cdots \vee I_{n} \vee I \in \mathrm{~F} \quad \bar{l}_{1}, \ldots, \bar{I}_{n} \in \mathrm{M} \quad l \notin \mathrm{M} \quad \bar{l} \notin \mathrm{M}}{\mathrm{M}^{\prime}=\mathrm{M} I} \text { Propagate } \\
& \frac{l \in \operatorname{Lit}(\mathrm{~F}) \quad \mid \notin \mathrm{M} \quad \bar{l} \notin \mathrm{M}}{\mathrm{M}^{\prime}=\mathrm{M} \bullet l} \text { Decide } \quad \frac{l_{1} \vee \cdots \vee l_{n} \in \mathrm{~F}}{\bar{l}_{1}, \ldots, \bar{I}_{n} \in \mathrm{M} \bullet \notin \mathrm{M}} \text { fail } \text { Fail } \\
& \frac{I_{1} \vee \cdots \vee I_{n} \in \mathrm{~F} \quad \bar{l}_{1}, \ldots, \bar{I}_{n} \in \mathrm{M} \quad \mathrm{M}=\mathrm{M} \bullet \mid \mathrm{N} \quad \bullet \notin N}{\mathrm{M}^{\prime}=\mathrm{M} \bar{l}} \text { Backtrack }
\end{aligned}
$$

DPLL Execution, Example 1

$$
F_{0} \quad=\quad a \vee e \vee c, \quad \bar{a} \vee e, \quad a \vee \bar{c} \vee \bar{r}, \quad \bar{r} \vee a \vee \bar{e}, \quad \bar{e} \vee c, \quad \bar{a} \vee \bar{e} \vee \bar{c}, \quad r
$$

Another execution:

	M	F	Rule
1	ε	F_{0}	Propagate on r
2	r	F_{0}	Decide e
3	$r \bullet e$	F_{0}	Propagate on $\bar{e} \vee c$
4	$r \bullet e c$	F_{0}	Propagate on $\bar{a} \vee \bar{e} \vee \bar{c}$
$5 r \bullet e c \bar{a}$	F_{0}	Backtrack on $a \vee \bar{c} \vee \bar{r}$	

	M	F	Rule
6	$r \bar{e}$	F_{0}	Propagate on $\bar{a} \vee e$
7	$r \bar{e} \bar{a}$	F_{0}	

$3 \quad r \bullet e \quad F_{0} \quad$ Propagate on $\bar{e} \vee c$
$5 r \bullet e c \bar{a} \quad F_{0} \quad$ Backtrack on $a \vee \bar{c} \vee \bar{r}$

$$
\begin{aligned}
& \frac{l_{1} \vee \cdots \vee I_{n} \vee I \in \mathrm{~F} \quad \bar{I}_{1}, \ldots, \bar{I}_{n} \in \mathrm{M} \quad \mid \notin \mathrm{M} \quad \bar{l} \notin \mathrm{M}}{\mathrm{M}^{\prime}=\mathrm{M} l} \text { Propagate } \\
& \frac{l \in \operatorname{Lit}(\mathrm{~F}) \quad l \notin \mathrm{M} \quad \bar{l} \notin \mathrm{M}}{\mathrm{M}^{\prime}=\mathrm{M} \bullet l} \text { Decide } \quad \frac{l_{1} \vee \cdots \vee l_{n} \in \mathrm{~F}}{\bar{l}_{1}, \ldots, \bar{I}_{n} \in \mathrm{M} \bullet \notin \mathrm{M}} \text { fail } \text { Fail } \\
& \frac{I_{1} \vee \cdots \vee I_{n} \in \mathrm{~F} \quad \bar{l}_{1}, \ldots, \bar{I}_{n} \in \mathrm{M} \quad \mathrm{M}=\mathrm{M} \bullet \mid \mathrm{N} \quad \bullet \notin N}{\mathrm{M}^{\prime}=\mathrm{M} \bar{l}} \text { Backtrack }
\end{aligned}
$$

DPLL Execution, Example 1

$$
F_{0} \quad=\quad a \vee e \vee c, \quad \bar{a} \vee e, \quad a \vee \bar{c} \vee \bar{r}, \quad \bar{r} \vee a \vee \bar{e}, \quad \bar{e} \vee c, \quad \bar{a} \vee \bar{e} \vee \bar{c}, \quad r
$$

Another execution:

	M	F	Rule
1	ε	F_{0}	Propagate on r
2	r	F_{0}	Decide e
3	$r \bullet e$	F_{0}	Propagate on $\bar{e} \vee c$
4	$r \bullet e c$	F_{0}	Propagate on $\bar{a} \vee \bar{e} \vee \bar{c}$
5	$r \bullet e c \bar{a}$	F_{0}	Backtrack on $a \vee \bar{c} \vee \bar{r}$

	M	F	Rule
6	$r \bar{e}$	F_{0}	Propagate on $\bar{a} \vee e$
7	$r \bar{e} \bar{a}$	F_{0}	Propagate on $a \vee e \vee c$
$8 r \bar{e} \bar{a} c$	F_{0}		

$$
\begin{aligned}
& \frac{I_{1} \vee \cdots \vee I_{n} \vee I \in \mathrm{~F} \quad \bar{l}_{1}, \ldots, \bar{I}_{n} \in \mathrm{M} \quad l \notin \mathrm{M} \quad \bar{l} \notin \mathrm{M}}{\mathrm{M}^{\prime}=\mathrm{M} l} \text { Propagate } \\
& \frac{l \in \operatorname{Lit}(\mathrm{~F}) \quad l \notin \mathrm{M} \quad \bar{l} \notin \mathrm{M}}{\mathrm{M}^{\prime}=\mathrm{M} \bullet l} \text { Decide } \quad \frac{l_{1} \vee \cdots \vee l_{n} \in \mathrm{~F}}{\bar{l}_{1}, \ldots, \bar{I}_{n} \in \mathrm{M} \bullet \notin \mathrm{M}} \text { fail } \text { Fail } \\
& \frac{I_{1} \vee \cdots \vee I_{n} \in \mathrm{~F} \quad \bar{l}_{1}, \ldots, \bar{I}_{n} \in \mathrm{M} \quad \mathrm{M}=\mathrm{M} \bullet \mid \mathrm{N} \quad \bullet \notin N}{\mathrm{M}^{\prime}=\mathrm{M} \bar{l}} \text { Backtrack }
\end{aligned}
$$

DPLL Execution, Example 1

$$
F_{0} \quad=\quad a \vee e \vee c, \quad \bar{a} \vee e, \quad a \vee \bar{c} \vee \bar{r}, \quad \bar{r} \vee a \vee \bar{e}, \quad \bar{e} \vee c, \quad \bar{a} \vee \bar{e} \vee \bar{c}, \quad r
$$

Another execution:

	M	F	Rule
1	ε	F_{0}	Propagate on r
2	r	F_{0}	Decide e
3	$r \bullet e$	F_{0}	Propagate on $\bar{e} \vee c$
4	$r \bullet e c$	F_{0}	Propagate on $\bar{a} \vee \bar{e} \vee \bar{c}$
$5 r \bullet e c \bar{a}$	F_{0}	Backtrack on $a \vee \bar{c} \vee \bar{r}$	

	M	F	Rule
6	$r \bar{e}$	F_{0}	Propagate on $\bar{a} \vee e$
7	$r \overline{\bar{e}} \bar{a}$	F_{0}	Propagate on $a \vee e \vee c$
8	$r \bar{e} \bar{a} c$	F_{0}	Fail on $a \vee \bar{c} \vee \bar{r}$
9		fail	

$$
\begin{aligned}
& \frac{I_{1} \vee \cdots \vee I_{n} \vee I \in \mathrm{~F} \quad \bar{l}_{1}, \ldots, \bar{l}_{n} \in \mathrm{M} \quad l \notin \mathrm{M} \quad \bar{l} \notin \mathrm{M}}{\mathrm{M}^{\prime}=\mathrm{M} l} \text { Propagate } \\
& \frac{l \in \operatorname{Lit}(\mathrm{~F}) \quad \mid \notin \mathrm{M} \quad \bar{l} \notin \mathrm{M}}{\mathrm{M}^{\prime}=\mathrm{M} \bullet l} \text { Decide } \quad \frac{l_{1} \vee \cdots \vee l_{n} \in \mathrm{~F}}{\bar{I}_{1}, \ldots, \bar{I}_{n} \in \mathrm{M} \bullet \notin \mathrm{M}} \text { fail } \text { Fail } \\
& \frac{I_{1} \vee \cdots \vee I_{n} \in \mathrm{~F} \quad \bar{l}_{1}, \ldots, \bar{I}_{n} \in \mathrm{M} \quad \mathrm{M}=\mathrm{M} \bullet I N \quad \notin N}{\mathrm{M}^{\prime}=\mathrm{M} \bar{l}} \text { Backtrack }
\end{aligned}
$$

DPLL Execution, Example 2

$$
\begin{aligned}
& \frac{I_{1} \vee \cdots \vee I_{n} \vee I \in \mathrm{~F} \quad \bar{I}_{1}, \ldots, \bar{I}_{n} \in \mathrm{M} \quad \mid \notin \mathrm{M} \quad \bar{l} \notin \mathrm{M}}{\mathrm{M}^{\prime}=\mathrm{M} I} \text { Propagate } \\
& \frac{l \in \operatorname{Lit}(\mathrm{~F}) \quad \mid \notin \mathrm{M} \quad \bar{l} \notin \mathrm{M}}{\mathrm{M}^{\prime}=\mathrm{M} \bullet l} \text { Decide } \quad \frac{l_{1} \vee \cdots \vee l_{n} \in \mathrm{~F} \quad \bar{l}_{1}, \ldots, \bar{l}_{n} \in \mathrm{M} \bullet \notin \mathrm{M}}{\text { fail }} \text { Fail } \\
& \frac{I_{1} \vee \cdots \vee I_{n} \in \mathrm{~F} \quad \bar{I}_{1}, \ldots, \bar{I}_{n} \in \mathrm{M} \quad \mathrm{M}=\mathrm{M} \bullet I N \quad \notin N}{\mathrm{M}^{\prime}=\mathrm{M} \bar{l}} \text { Backtrack } \\
& F_{0} \quad=\quad a \vee e \vee c, \quad \bar{a} \vee e, \quad a \vee \bar{c} \vee \bar{r}, \quad \bar{r} \vee a \vee \bar{e}, \quad \bar{e} \vee c, \quad \bar{a} \vee \bar{e} \vee \bar{c}
\end{aligned}
$$

DPLL Execution, Example 2

One execution:

	M	F	Rule
1	ε	F_{0}	

DPLL Execution, Example 2

$$
\begin{aligned}
& \frac{l_{1} \vee \cdots \vee I_{n} \vee I \in \mathrm{~F} \quad \bar{l}_{1}, \ldots, \bar{I}_{n} \in \mathrm{M} \quad \mid \notin \mathrm{M} \quad \bar{l} \notin \mathrm{M}}{\mathrm{M}^{\prime}=\mathrm{M} I} \text { Propagate } \\
& \frac{l \in \operatorname{Lit}(\mathrm{~F}) \quad \mid \notin \mathrm{M} \quad \bar{l} \notin \mathrm{M}}{\mathrm{M}^{\prime}=\mathrm{M} \bullet l} \text { Decide } \quad \begin{array}{l}
l_{1} \vee \cdots \vee I_{n} \in \mathrm{~F} \bar{I}_{1}, \ldots, \bar{I}_{n} \in \mathrm{M} \bullet \notin \mathrm{M} \\
\text { fail }
\end{array} \text { Fail } \\
& \frac{I_{1} \vee \cdots \vee I_{n} \in \mathrm{~F} \quad \bar{I}_{1}, \ldots, \bar{I}_{n} \in \mathrm{M} \quad \mathrm{M}=\mathrm{M} \bullet I \mathrm{~N} \bullet \notin N}{\mathrm{M}^{\prime}=\mathrm{M} \bar{l}} \text { Backtrack }
\end{aligned}
$$

$F_{0} \quad=\quad a \vee e \vee c, \quad \bar{a} \vee e, \quad a \vee \bar{c} \vee \bar{r}, \quad \bar{r} \vee a \vee \bar{e}, \quad \bar{e} \vee c, \quad \bar{a} \vee \bar{e} \vee \bar{c}$
One execution:

	M	F	Rule
1	ε	F_{0}	Decide \bar{c}
2	$\bullet \bar{c}$	F_{0}	

DPLL Execution, Example 2

$$
\begin{aligned}
& \frac{l_{1} \vee \cdots \vee I_{n} \vee I \in \mathrm{~F} \quad \bar{l}_{1}, \ldots, \bar{I}_{n} \in \mathrm{M} \quad \mid \notin \mathrm{M} \quad \bar{l} \notin \mathrm{M}}{\mathrm{M}^{\prime}=\mathrm{M} l} \text { Propagate } \\
& \frac{l \in \operatorname{Lit}(\mathrm{~F}) \quad \mid \notin \mathrm{M} \quad \bar{l} \notin \mathrm{M}}{\mathrm{M}^{\prime}=\mathrm{M} \bullet l} \text { Decide } \quad \begin{array}{l}
l_{1} \vee \cdots \vee I_{n} \in \mathrm{~F} \bar{I}_{1}, \ldots, \bar{I}_{n} \in \mathrm{M} \bullet \notin \mathrm{M} \\
\text { fail }
\end{array} \text { Fail } \\
& \frac{I_{1} \vee \cdots \vee I_{n} \in \mathrm{~F} \quad \bar{I}_{1}, \ldots, \bar{I}_{n} \in \mathrm{M} \quad \mathrm{M}=\mathrm{M} \bullet I N \quad \notin N}{\mathrm{M}^{\prime}=\mathrm{M} \bar{l}} \text { Backtrack }
\end{aligned}
$$

$F_{0} \quad=\quad a \vee e \vee c, \quad \bar{a} \vee e, \quad a \vee \bar{c} \vee \bar{r}, \quad \bar{r} \vee a \vee \bar{e}, \quad \bar{e} \vee c, \quad \bar{a} \vee \bar{e} \vee \bar{c}$
One execution:

| | M | F | Rule |
| :--- | ---: | ---: | :--- |\quad| | ε | F_{0} | Decide \bar{c} |
| :--- | :--- | :--- | :--- |
| 1 | $\bullet \bar{c}$ | F_{0} | Propagate on $\bar{e} \vee c$ |
| 2 | $\bullet \bar{c} \bar{e}$ | F_{0} | |\quad| Rule |
| :--- |
| 3 |

DPLL Execution, Example 2

$$
\begin{aligned}
& \frac{I_{1} \vee \cdots \vee I_{n} \vee I \in \mathrm{~F} \quad \bar{I}_{1}, \ldots, \bar{I}_{n} \in \mathrm{M} \quad \mid \notin \mathrm{M} \quad \bar{l} \notin \mathrm{M}}{\mathrm{M}^{\prime}=\mathrm{M} l} \text { Propagate } \\
& \frac{l \in \operatorname{Lit}(\mathrm{~F}) \quad \mid \notin \mathrm{M} \quad \bar{l} \notin \mathrm{M}}{\mathrm{M}^{\prime}=\mathrm{M} \bullet l} \text { Decide } \quad \frac{l_{1} \vee \cdots \vee l_{n} \in \mathrm{~F} \quad \bar{l}_{1}, \ldots, \bar{l}_{n} \in \mathrm{M} \bullet \notin \mathrm{M}}{\text { fail }} \text { Fail } \\
& \frac{I_{1} \vee \cdots \vee I_{n} \in \mathrm{~F} \quad \bar{I}_{1}, \ldots, \bar{I}_{n} \in \mathrm{M} \quad \mathrm{M}=\mathrm{M} \bullet I \mathrm{~N} \bullet \notin N}{\mathrm{M}^{\prime}=\mathrm{M} \bar{l}} \text { Backtrack }
\end{aligned}
$$

$F_{0} \quad=\quad a \vee e \vee c, \quad \bar{a} \vee e, \quad a \vee \bar{c} \vee \bar{r}, \quad \bar{r} \vee a \vee \bar{e}, \quad \bar{e} \vee c, \quad \bar{a} \vee \bar{e} \vee \bar{c}$
One execution:

	M	F	Rule
1	ε	F_{0}	Decide \bar{c}
2	$\bullet \bar{c}$	F_{0}	Propagate on $\bar{e} \vee c$
3	$\bullet \bar{c} \bar{e}$	F_{0}	Propagate on $a \vee e \vee c$
4	$\bullet \bar{c} \bar{e} a$	F_{0}	

DPLL Execution, Example 2

$$
\begin{aligned}
& \frac{I_{1} \vee \cdots \vee I_{n} \vee I \in \mathrm{~F} \quad \bar{l}_{1}, \ldots, \bar{I}_{n} \in \mathrm{M} \quad \mid \notin \mathrm{M} \quad \bar{l} \notin \mathrm{M}}{\mathrm{M}^{\prime}=\mathrm{M} l} \text { Propagate } \\
& \frac{l \in \operatorname{Lit}(\mathrm{~F}) \quad \mid \notin \mathrm{M} \quad \bar{l} \notin \mathrm{M}}{\mathrm{M}^{\prime}=\mathrm{M} \bullet l} \text { Decide } \quad \frac{l_{1} \vee \cdots \vee l_{n} \in \mathrm{~F} \quad \bar{l}_{1}, \ldots, \bar{l}_{n} \in \mathrm{M} \bullet \notin \mathrm{M}}{\text { fail }} \text { Fail } \\
& \frac{l_{1} \vee \cdots \vee I_{n} \in \mathrm{~F} \quad \bar{l}_{1}, \ldots, \bar{l}_{n} \in \mathrm{M} \quad \mathrm{M}=\mathrm{M} \bullet \mid \mathrm{N} \bullet \notin N}{\mathrm{M}^{\prime}=\mathrm{M} \bar{l}} \text { Backtrack }
\end{aligned}
$$

$F_{0} \quad=\quad a \vee e \vee c, \quad \bar{a} \vee e, \quad a \vee \bar{c} \vee \bar{r}, \quad \bar{r} \vee a \vee \bar{e}, \quad \bar{e} \vee c, \quad \bar{a} \vee \bar{e} \vee \bar{c}$
One execution:

	M	F	Rule
1	ε	F_{0}	Decide \bar{c}
2	$\bullet \bar{c}$	F_{0}	Propagate on $\bar{e} \vee c$
3	$\bullet \bar{c} \bar{e}$	F_{0}	Propagate on $a \vee e \vee c$
4	$\bullet \bar{c} \bar{e} a$	F_{0}	Backtrack on $\bar{a} \vee e$

	M	F	Rule
5	C	F_{0}	

DPLL Execution, Example 2

$$
\begin{aligned}
& \frac{l_{1} \vee \cdots \vee I_{n} \vee I \in \mathrm{~F} \quad \bar{l}_{1}, \ldots, \bar{I}_{n} \in \mathrm{M} \quad \mid \notin \mathrm{M} \quad \bar{l} \notin \mathrm{M}}{\mathrm{M}^{\prime}=\mathrm{M} l} \text { Propagate } \\
& \frac{l \in \operatorname{Lit}(\mathrm{~F}) \quad \mid \notin \mathrm{M} \quad \bar{l} \notin \mathrm{M}}{\mathrm{M}^{\prime}=\mathrm{M} \bullet l} \text { Decide } \quad \frac{l_{1} \vee \cdots \vee l_{n} \in \mathrm{~F} \quad \bar{l}_{1}, \ldots, \bar{l}_{n} \in \mathrm{M} \bullet \notin \mathrm{M}}{\text { fail }} \text { Fail } \\
& \frac{l_{1} \vee \cdots \vee I_{n} \in \mathrm{~F} \quad \bar{l}_{1}, \ldots, \bar{l}_{n} \in \mathrm{M} \quad \mathrm{M}=\mathrm{M} \bullet \mid \mathrm{N} \bullet \notin N}{\mathrm{M}^{\prime}=\mathrm{M} \bar{l}} \text { Backtrack }
\end{aligned}
$$

$F_{0} \quad=\quad a \vee e \vee c, \quad \bar{a} \vee e, \quad a \vee \bar{c} \vee \bar{r}, \quad \bar{r} \vee a \vee \bar{e}, \quad \bar{e} \vee c, \quad \bar{a} \vee \bar{e} \vee \bar{c}$

One execution:

	M	F	Rule
1	ε	F_{0}	Decide \bar{c}
2	$\bullet \bar{c}$	F_{0}	Propagate on $\bar{e} \vee c$
3	$\bullet \bar{c} \bar{e}$	F_{0}	Propagate on $a \vee e \vee c$
4	$\bullet \bar{c} \bar{e} a$	F_{0}	Backtrack on $\bar{a} \vee e$

	M	F	Rule
5	c	F_{0}	Decide on \bar{e}
6	$c \bullet \bar{e}$	F_{0}	

- $\bar{c} \bar{e} a \quad F_{0} \quad$ Backtrack on $\bar{a} \vee e$

DPLL Execution, Example 2

$$
\begin{aligned}
& \frac{l_{1} \vee \cdots \vee I_{n} \vee I \in \mathrm{~F} \quad \bar{I}_{1}, \ldots, \bar{I}_{n} \in \mathrm{M} \quad \mid \notin \mathrm{M} \quad \bar{l} \notin \mathrm{M}}{\mathrm{M}^{\prime}=\mathrm{M} l} \text { Propagate } \\
& \frac{l \in \operatorname{Lit}(\mathrm{~F}) \quad \mid \notin \mathrm{M} \quad \bar{l} \notin \mathrm{M}}{\mathrm{M}^{\prime}=\mathrm{M} \bullet l} \text { Decide } \quad \frac{l_{1} \vee \cdots \vee l_{n} \in \mathrm{~F} \quad \bar{l}_{1}, \ldots, \bar{l}_{n} \in \mathrm{M} \bullet \notin \mathrm{M}}{\text { fail }} \text { Fail } \\
& \frac{l_{1} \vee \cdots \vee I_{n} \in \mathrm{~F} \quad \bar{l}_{1}, \ldots, \bar{I}_{n} \in \mathrm{M} \quad \mathrm{M}=\mathrm{M} \bullet I \mathrm{~N} \quad \bullet \notin N}{\mathrm{M}^{\prime}=\mathrm{M} \bar{l}} \text { Backtrack }
\end{aligned}
$$

$F_{0} \quad=\quad a \vee e \vee c, \quad \bar{a} \vee e, \quad a \vee \bar{c} \vee \bar{r}, \quad \bar{r} \vee a \vee \bar{e}, \quad \bar{e} \vee c, \quad \bar{a} \vee \bar{e} \vee \bar{c}$

One execution:

	M	F	Rule
1	ε	F_{0}	Decide \bar{c}
2	$\bullet \bar{c}$	F_{0}	Propagate on $\bar{e} \vee c$
3	$\bullet \bar{c} \bar{e}$	F_{0}	Propagate on $a \vee e \vee c$
4	$\bullet \bar{c} \bar{e} a$	F_{0}	Backtrack on $\bar{a} \vee e$

	M	F	Rule
5	c	F_{0}	Decide on \bar{e}
6	$c \bullet \bar{e}$	F_{0}	Propagate on $\bar{a} \vee e$
7	$c \bullet \bar{e} \bar{a}$	F_{0}	

- $\bar{c} \bar{e} a \quad F_{0} \quad$ Backtrack on $\bar{a} \vee e$

DPLL Execution, Example 2

$$
\begin{aligned}
& \frac{l_{1} \vee \cdots \vee I_{n} \vee I \in \mathrm{~F} \quad \bar{I}_{1}, \ldots, \bar{I}_{n} \in \mathrm{M} \quad \mid \notin \mathrm{M} \quad \bar{l} \notin \mathrm{M}}{\mathrm{M}^{\prime}=\mathrm{M} l} \text { Propagate } \\
& \frac{l \in \operatorname{Lit}(\mathrm{~F}) \quad \mid \notin \mathrm{M} \quad \bar{l} \notin \mathrm{M}}{\mathrm{M}^{\prime}=\mathrm{M} \bullet l} \text { Decide } \quad \frac{l_{1} \vee \cdots \vee l_{n} \in \mathrm{~F} \quad \bar{l}_{1}, \ldots, \bar{l}_{n} \in \mathrm{M} \bullet \notin \mathrm{M}}{\text { fail }} \text { Fail } \\
& \frac{l_{1} \vee \cdots \vee I_{n} \in \mathrm{~F} \quad \bar{l}_{1}, \ldots, \bar{I}_{n} \in \mathrm{M} \quad \mathrm{M}=\mathrm{M} \bullet I N \quad \bullet \notin N}{\mathrm{M}^{\prime}=M \bar{l}} \text { Backtrack }
\end{aligned}
$$

$F_{0} \quad=\quad a \vee e \vee c, \quad \bar{a} \vee e, \quad a \vee \bar{c} \vee \bar{r}, \quad \bar{r} \vee a \vee \bar{e}, \quad \bar{e} \vee c, \quad \bar{a} \vee \bar{e} \vee \bar{c}$

One execution:

	M	F	Rule
1	ε	F_{0}	Decide \bar{c}
2	$\bullet \bar{c}$	F_{0}	Propagate on $\bar{e} \vee c$
3	$\bullet \bar{c} \bar{e}$	F_{0}	Propagate on $a \vee e \vee c$
4	$\bullet \bar{c} \bar{e} a$	F_{0}	Backtrack on $\bar{a} \vee e$

	M	F	Rule
5	c	F_{0}	Decide on \bar{e}
6	$c \bullet \bar{e}$	F_{0}	Propagate on $\bar{a} \vee e$
7	$c \bullet \overline{\mathrm{e}} \bar{a}$	F_{0}	Decide on r
8	$c \bullet \overline{\mathrm{e}} \bar{a} \bullet r$	F_{0}	

DPLL Execution, Example 2

$$
F_{0} \quad=\quad a \vee e \vee c, \quad \bar{a} \vee e, \quad a \vee \bar{c} \vee \bar{r}, \quad \bar{r} \vee a \vee \bar{e}, \quad \bar{e} \vee c, \quad \bar{a} \vee \bar{e} \vee \bar{c}
$$

One execution:

	M	F	Rule
1	ε	F_{0}	Decide \bar{c}
2	$\bullet \bar{c}$	F_{0}	Propagate on $\bar{e} \vee c$
3	$\bullet \bar{c} \bar{e}$	F_{0}	Propagate on $a \vee e \vee c$
4	$\bullet \bar{c} \bar{e} a$	F_{0}	Backtrack on $\bar{a} \vee e$

	M	F	Rule
5	c	F_{0}	Decide on \bar{e}
6	$c \bullet \bar{e}$	F_{0}	Propagate on $\bar{a} \vee e$
7	$c \bullet \bar{e} \bar{a}$	F_{0}	Decide on r
8	$c \bullet \bar{e} \bar{a} \bullet r$	F_{0}	

$$
F_{0} \text { satisfied by }\{a \mapsto 0, c \mapsto 1, e \mapsto 0, r \mapsto 1\}
$$

DPLL Execution, Example 2

$$
\begin{aligned}
& \frac{I_{1} \vee \cdots \vee I_{n} \vee I \in \mathrm{~F} \quad \bar{l}_{1}, \ldots, \bar{I}_{n} \in \mathrm{M} \quad \mid \notin \mathrm{M} \quad \bar{l} \notin \mathrm{M}}{\mathrm{M}^{\prime}=\mathrm{M} I} \text { Propagate } \\
& \frac{l \in \operatorname{Lit}(\mathrm{~F}) \quad \mid \notin \mathrm{M} \quad \bar{l} \notin \mathrm{M}}{\mathrm{M}^{\prime}=\mathrm{M} \bullet l} \text { Decide } \quad \frac{l_{1} \vee \cdots \vee l_{n} \in \mathrm{~F} \quad \bar{l}_{1}, \ldots, \bar{l}_{n} \in \mathrm{M} \bullet \notin \mathrm{M}}{\text { fail }} \text { Fail } \\
& \frac{l_{1} \vee \cdots \vee I_{n} \in \mathrm{~F} \quad \bar{l}_{1}, \ldots, \bar{l}_{n} \in \mathrm{M} \quad \mathrm{M}=\mathrm{M} \bullet \mid \mathrm{N} \bullet \notin N}{\mathrm{M}^{\prime}=\mathrm{M} \bar{l}} \text { Backtrack } \\
& F_{0} \quad=\quad a \vee e \vee c, \quad \bar{a} \vee e, \quad a \vee \bar{c} \vee \bar{r}, \quad \bar{r} \vee a \vee \bar{e}, \quad \bar{e} \vee c, \quad \bar{a} \vee \bar{e} \vee \bar{c}
\end{aligned}
$$

Another execution:

	M	F	Rule
1	ε	F_{0}	

DPLL Execution, Example 2

$$
\begin{aligned}
& \frac{I_{1} \vee \cdots \vee I_{n} \vee I \in \mathrm{~F} \quad \bar{l}_{1}, \ldots, \bar{I}_{n} \in \mathrm{M} \quad \mid \notin \mathrm{M} \quad \bar{l} \notin \mathrm{M}}{\mathrm{M}^{\prime}=\mathrm{M} I} \text { Propagate } \\
& \frac{l \in \operatorname{Lit}(\mathrm{~F}) \quad \mid \notin \mathrm{M} \quad \bar{l} \notin \mathrm{M}}{\mathrm{M}^{\prime}=\mathrm{M} \bullet l} \text { Decide } \quad \frac{l_{1} \vee \cdots \vee l_{n} \in \mathrm{~F} \quad \bar{l}_{1}, \ldots, \bar{l}_{n} \in \mathrm{M} \bullet \notin \mathrm{M}}{\text { fail }} \text { Fail } \\
& \frac{l_{1} \vee \cdots \vee I_{n} \in \mathrm{~F} \quad \bar{l}_{1}, \ldots, \bar{l}_{n} \in \mathrm{M} \quad \mathrm{M}=\mathrm{M} \bullet \mid \mathrm{N} \bullet \notin N}{\mathrm{M}^{\prime}=\mathrm{M} \bar{l}} \text { Backtrack } \\
& F_{0} \quad=\quad a \vee e \vee c, \quad \bar{a} \vee e, \quad a \vee \bar{c} \vee \bar{r}, \quad \bar{r} \vee a \vee \bar{e}, \quad \bar{e} \vee c, \quad \bar{a} \vee \bar{e} \vee \bar{c}
\end{aligned}
$$

Another execution:

	M	F	Rule
1	ε	F_{0}	Decide a
2	$\bullet a$	F_{0}	

DPLL Execution, Example 2

$$
\begin{aligned}
& \frac{I_{1} \vee \cdots \vee I_{n} \vee I \in \mathrm{~F} \quad \bar{l}_{1}, \ldots, \bar{I}_{n} \in \mathrm{M} \quad \mid \notin \mathrm{M} \quad \bar{l} \notin \mathrm{M}}{\mathrm{M}^{\prime}=\mathrm{M} I} \text { Propagate } \\
& \frac{l \in \operatorname{Lit}(\mathrm{~F}) \quad \mid \notin \mathrm{M} \quad \bar{l} \notin \mathrm{M}}{\mathrm{M}^{\prime}=\mathrm{M} \bullet l} \text { Decide } \quad \frac{l_{1} \vee \cdots \vee l_{n} \in \mathrm{~F} \quad \bar{l}_{1}, \ldots, \bar{l}_{n} \in \mathrm{M} \bullet \notin \mathrm{M}}{\text { fail }} \text { Fail } \\
& \frac{l_{1} \vee \cdots \vee I_{n} \in \mathrm{~F} \quad \bar{l}_{1}, \ldots, \bar{l}_{n} \in \mathrm{M} \quad \mathrm{M}=\mathrm{M} \bullet \mid \mathrm{N} \bullet \notin N}{\mathrm{M}^{\prime}=\mathrm{M} \bar{l}} \text { Backtrack } \\
& F_{0} \quad=\quad a \vee e \vee c, \quad \bar{a} \vee e, \quad a \vee \bar{c} \vee \bar{r}, \quad \bar{r} \vee a \vee \bar{e}, \quad \bar{e} \vee c, \quad \bar{a} \vee \bar{e} \vee \bar{c}
\end{aligned}
$$

Another execution:

	M	F	Rule
1	ε	F_{0}	Decide a
2	$\bullet a$	F_{0}	Propagate on $\bar{a} \vee e$
3	$\bullet a e$	F_{0}	

DPLL Execution, Example 2

$$
\begin{aligned}
& \frac{I_{1} \vee \cdots \vee I_{n} \vee I \in \mathrm{~F} \quad \bar{l}_{1}, \ldots, \bar{I}_{n} \in \mathrm{M} \quad \mid \notin \mathrm{M} \quad \bar{l} \notin \mathrm{M}}{\mathrm{M}^{\prime}=\mathrm{M} I} \text { Propagate } \\
& \frac{l \in \operatorname{Lit}(\mathrm{~F}) \quad \mid \notin \mathrm{M} \quad \bar{l} \notin \mathrm{M}}{\mathrm{M}^{\prime}=\mathrm{M} \bullet l} \text { Decide } \quad \begin{array}{l}
l_{1} \vee \cdots \vee I_{n} \in \mathrm{~F} \\
\bar{I}_{1}, \ldots, \bar{I}_{n} \in \mathrm{M} \bullet \notin \mathrm{M} \\
\text { fail }
\end{array} \text { Fail } \\
& \frac{l_{1} \vee \cdots \vee I_{n} \in \mathrm{~F} \quad \bar{l}_{1}, \ldots, \bar{l}_{n} \in \mathrm{M} \quad \mathrm{M}=\mathrm{M} \bullet \mid \mathrm{N} \bullet \notin N}{\mathrm{M}^{\prime}=\mathrm{M} \bar{l}} \text { Backtrack } \\
& F_{0} \quad=\quad a \vee e \vee c, \quad \bar{a} \vee e, \quad a \vee \bar{c} \vee \bar{r}, \quad \bar{r} \vee a \vee \bar{e}, \quad \bar{e} \vee c, \quad \bar{a} \vee \bar{e} \vee \bar{c}
\end{aligned}
$$

Another execution:

	M	F	Rule
1	ε	F_{0}	Decide a
2	$\bullet a$	F_{0}	Propagate on $\bar{a} \vee e$
3	$\bullet a \mathrm{e}$	F_{0}	Propagate on $\bar{e} \vee c$
4	$\bullet a \operatorname{e} c$	F_{0}	

DPLL Execution, Example 2

$$
\begin{aligned}
& \frac{I_{1} \vee \cdots \vee I_{n} \vee I \in \mathrm{~F} \quad \bar{I}_{1}, \ldots, \bar{I}_{n} \in \mathrm{M} \quad l \notin \mathrm{M} \quad \bar{l} \notin \mathrm{M}}{\mathrm{M}^{\prime}=\mathrm{M} I} \text { Propagate } \\
& \frac{l \in \operatorname{Lit}(\mathrm{~F}) \quad l \notin \mathrm{M} \bar{l} \notin \mathrm{M}}{\mathrm{M}^{\prime}=\mathrm{M} \bullet l} \text { Decide } \quad \frac{l_{1} \vee \cdots \vee l_{n} \in \mathrm{~F} \quad \bar{l}_{1}, \ldots, \bar{l}_{n} \in \mathrm{M} \quad \bullet \notin \mathrm{M}}{\text { fail }} \text { Fail } \\
& \frac{l_{1} \vee \cdots \vee l_{n} \in \mathrm{~F} \quad \bar{l}_{1}, \ldots, \bar{l}_{n} \in \mathrm{M} \quad \mathrm{M}=\mathrm{M} \bullet \mid \mathrm{N} \quad \bullet \notin N}{\mathrm{M}^{\prime}=\mathrm{M} \bar{l}} \text { Backtrack } \\
& F_{0} \quad=\quad a \vee e \vee c, \quad \bar{a} \vee e, \quad a \vee \bar{c} \vee \bar{r}, \quad \bar{r} \vee a \vee \bar{e}, \quad \bar{e} \vee c, \quad \bar{a} \vee \bar{e} \vee \bar{c}
\end{aligned}
$$

Another execution:

	M	F	Rule
1	ε	F_{0}	Decide a
2	$\bullet a$	F_{0}	Propagate on $\bar{a} \vee e$
3	$\bullet a e$	F_{0}	Propagate on $\bar{e} \vee c$
4	$\bullet a e c$	F_{0}	Decide r
5	\bullet ecer	F_{0}	

DPLL Execution, Example 2

$F_{0}=a \vee e \vee c, \quad \bar{a} \vee e, \quad a \vee \bar{c} \vee \bar{r}, \quad \bar{r} \vee a \vee \bar{e}, \quad \bar{e} \vee c, \quad \bar{a} \vee \bar{e} \vee \bar{c}$

Another execution:

	M	F	Rule	
1	ε	F_{0}	Decide a	
2	$\bullet a$	F_{0}	Propagate on $\bar{a} \vee e$	
3	$\bullet a e$	F_{0}	Propagate on $\bar{e} \vee c$	
4	$\bullet a e c$	F_{0}	Decide r	
5	\bullet ecer satisfied by	F_{0}		$\{a \mapsto 1, c \mapsto 1, e \mapsto 1, r \mapsto 1\}$

From DPLL to CDCL Solvers

Modern SAT solvers have more sophisticated ways to recover from wrong decisions

They implement

- conflict-driven (CD) backjumping instead of (chronological) backtracking
- selective clause learning (CL) to help focus later search
- restart strategies to get out of unproductive search paths

An Abstract Transition System for CDCL

States:

$$
\text { fail or }\langle M, C, F\rangle
$$

Extend DPLL state with a component C whose value is either none or a conflict clause

An Abstract Transition System for CDCL

States:

$$
\text { fail or }\langle M, C, F\rangle
$$

Initial state:
$\left\langle\varepsilon\right.$, none, $\left.F_{0}\right\rangle$ where F_{0} is the input CNF
Expected final states:
fail if F_{0} is unsatisfiable
$\langle M$, none, $G\rangle$ otherwise, where

- G is equivalent to F_{0} and
- M satisfies G

From DPLL to CDCL rules

Replace Backtrack with

From DPLL to CDCL rules

Replace Backtrack with

$$
\begin{gathered}
\begin{array}{c}
C=\text { none } \quad I_{1} \vee \cdots \vee I_{n} \in \mathrm{~F} \quad \bar{l}_{1}, \ldots, \bar{I}_{n} \in \mathrm{M} \\
\mathrm{C}^{\prime}=I_{1} \vee \cdots \vee I_{n} \\
C=I \vee D \quad I_{1} \vee \cdots \vee I_{n} \vee \bar{l} \in \mathrm{~F} \quad \bar{l}_{1}, \ldots, \bar{I}_{n} \prec_{\mathrm{M}} \bar{l} \\
\mathrm{C}^{\prime}=I_{1} \vee \cdots \vee I_{n} \vee D
\end{array} \text { Explain } \\
\begin{array}{c}
C=I_{1} \vee \cdots \vee I_{n} \vee I \quad \text { lev } \bar{I}_{1}, \ldots, \text { lev } \bar{I}_{n} \leq i<\operatorname{lev} \bar{l} \\
\mathrm{C}^{\prime}=\text { none } \quad \mathrm{M}^{\prime}=\mathrm{M}^{[i]} l
\end{array} \text { Backjump }
\end{gathered}
$$

Notation: $l \prec_{\mathrm{M}} l^{\prime}$ if $/$ occurs before l^{\prime} in M lev $l=i$ iff l occurs in decision level i of M

From DPLL to CDCL rules

Replace Backtrack with

$$
\begin{gathered}
\begin{array}{c}
C=\text { none } \quad I_{1} \vee \cdots \vee I_{n} \in \mathrm{~F} \quad \bar{l}_{1}, \ldots, \bar{I}_{n} \in \mathrm{M} \\
\mathrm{C}^{\prime}=I_{1} \vee \cdots \vee I_{n} \\
C=I \vee D \quad I_{1} \vee \cdots \vee I_{n} \vee \bar{l} \in \mathrm{~F} \quad \bar{l}_{1}, \ldots, \bar{I}_{n} \prec_{\mathrm{M}} \bar{l} \\
\mathrm{C}^{\prime}=I_{1} \vee \cdots \vee I_{n} \vee D
\end{array} \text { Explain } \\
\begin{array}{c}
C=I_{1} \vee \cdots \vee I_{n} \vee I \quad \text { lev } \bar{I}_{1}, \ldots, \text { lev } \bar{I}_{n} \leq i<\operatorname{lev} \bar{l} \\
\mathrm{C}^{\prime}=\text { none } \quad \mathrm{M}^{\prime}=\mathrm{M}^{[i]} l
\end{array} \text { Backjump }
\end{gathered}
$$

Maintain invariant: $\mathrm{F} \neq_{\mathrm{p}} \mathrm{C}$ and $\mathrm{M} \not \vDash_{\mathrm{p}} \mathrm{C}$ when $\mathrm{C} \neq$ none where \models_{p} denotes propositional entailment

From DPLL to CDCL rules

Modify Fail to
$\frac{C \neq \text { none } \quad \bullet \notin M}{\text { fail }}$ Fail

CDCL Execution Example

$$
\begin{aligned}
& \frac{C=\text { none } \quad I_{1} \vee \cdots \vee I_{n} \in F \quad I_{1}, \ldots, \bar{I}_{n} \in M}{C^{\prime}=I_{1} \vee \cdots \vee I_{n}} \text { Conflict } \\
& \frac{C=I \vee D \quad I_{1} \vee \cdots \vee I_{n} \vee \bar{l} \in \mathrm{~F} \quad \bar{l}_{1}, \ldots, \bar{I}_{n} \prec_{M} \bar{l}}{\mathrm{C}^{\prime}=I_{1} \vee \cdots \vee I_{n} \vee D} \text { Explain } \\
& \frac{\mathrm{C}=I_{1} \vee \cdots \vee I_{n} \vee I \operatorname{lev} \bar{I}_{1}, \ldots, \operatorname{lev} \bar{I}_{n} \leq i<\operatorname{lev} \bar{l}}{\mathrm{C}^{\prime}=\text { none } \mathrm{M}^{\prime}=\mathrm{M}^{[\bar{j}]} l} \text { Backjump } \quad \frac{\mathrm{C} \neq \text { none } \bullet \notin \mathrm{M}}{\text { fail }} \text { Fail } \\
& F_{0}=p_{1}, \quad \bar{p}_{1} \vee p_{2}, \quad \bar{p}_{3} \vee p_{4}, \quad \bar{p}_{5} \vee \bar{p}_{6}, \quad \bar{p}_{1} \vee \bar{p}_{5} \vee p_{7}, \quad \bar{p}_{2} \vee \bar{p}_{5} \vee p_{6} \vee \bar{p}_{7}
\end{aligned}
$$

CDCL Execution Example

$$
\begin{aligned}
& \frac{C=\text { none } \quad I_{1} \vee \cdots \vee I_{n} \in F \quad I_{1}, \ldots, \bar{I}_{n} \in M}{C^{\prime}=I_{1} \vee \cdots \vee I_{n}} \text { Conflict } \\
& \frac{C=I \vee D \quad l_{1} \vee \cdots \vee I_{n} \vee \bar{l} \in F \quad \bar{l}_{1}, \ldots, \bar{I}_{n} \prec_{M} \bar{l}}{C^{\prime}=I_{1} \vee \cdots \vee I_{n} \vee D} \text { Explain } \\
& \frac{\mathrm{C}=I_{1} \vee \cdots \vee I_{n} \vee I \operatorname{lev} \bar{I}_{1}, \ldots, \operatorname{lev} \bar{I}_{n} \leq i<\operatorname{lev} \bar{l}}{\mathrm{C}^{\prime}=\text { none } \mathrm{M}^{\prime}=\mathrm{M}^{[\bar{l}]}} \text { Backjump } \quad \begin{array}{l}
\mathrm{C} \neq \text { none } \bullet \notin \mathrm{M} \\
\text { fail }
\end{array} \text { Fail } \\
& F_{0}=p_{1}, \quad \bar{p}_{1} \vee p_{2}, \quad \bar{p}_{3} \vee p_{4}, \quad \bar{p}_{5} \vee \bar{p}_{6}, \quad \bar{p}_{1} \vee \bar{p}_{5} \vee p_{7}, \quad \bar{p}_{2} \vee \bar{p}_{5} \vee p_{6} \vee \bar{p}_{7}
\end{aligned}
$$

CDCL Execution Example

F_{0}	$=p_{1}, \quad \bar{p}_{1} \vee p_{2}, \quad \bar{p}_{3} \vee p_{4}, \quad \bar{p}_{5} \vee \bar{p}_{6}, \quad \bar{p}_{1} \vee \bar{p}_{5} \vee p_{7}, \quad \bar{p}_{2} \vee \bar{p}_{5} \vee p_{6} \vee \bar{p}_{7}$			
7	$p_{1} p_{2} \bullet p_{3} p_{4} \bullet p_{5} \bar{p}_{6}$	F_{0}	none	Propagate on $\bar{p}_{1} \vee \bar{p}_{4} \vee p_{7}$
8	$p_{1} p_{2} \bullet p_{3} p_{4} \bullet p_{5} \bar{p}_{6} p_{7}$	F_{0}	none	Conflict on $\bar{p}_{2} \vee \bar{p}_{5} \vee p_{6} \vee \bar{p}_{7}$
9	$p_{1} p_{2} \bullet p_{3} p_{4} \bullet p_{5} \bar{p}_{6} p_{7}$	F_{0}	$\bar{p}_{2} \vee \bar{p}_{5} \vee p_{6} \vee \bar{p}_{7}$	Explain with $\bar{p}_{1} \vee \bar{p}_{5} \vee p_{7}$
10	$p_{1} p_{2} \bullet p_{3} p_{4} \bullet p_{5} \bar{p}_{6} p_{7}$	F_{0}	$\bar{p}_{1} \vee \bar{p}_{2} \vee \bar{p}_{5} \vee p_{6}$	Explain with $\bar{p}_{5} \vee \bar{p}_{6}$
11	$p_{1} p_{2} \bullet p_{3} p_{4} \bullet p_{5} \bar{p}_{6} p_{7}$	F_{0}	$\bar{p}_{1} \vee \bar{p}_{2} \vee \bar{p}_{5}$	Backjump
12	$p_{1} p_{2} \bar{p}_{5}$	F_{0}	none	Decide p_{3}
13	$p_{1} p_{2} \bar{p}_{5} \bullet p_{3}$	F_{0}	none	. .

CDCL rules with learning

Also add

$$
\begin{aligned}
& \frac{\mathrm{F} \models_{\mathrm{p}} C \quad C \notin \mathrm{~F}}{\mathrm{~F}^{\prime}=\mathrm{F} \cup\{C\}} \text { Learn } \\
& \frac{C=\text { none } \quad F=G \cup\{C\} \quad G \models_{\mathrm{p}} C}{F^{\prime}=G} \text { Forget }
\end{aligned}
$$

$$
\mathrm{M}^{\prime}=\mathrm{M}^{[0]} \quad \mathrm{C}^{\prime}=\text { none } \text { Restart }
$$

Note: Learn can be applied to any clause stored in C when $C \neq$ none

Modeling Modern SAT Solvers

At their core, modern SAT solvers are implementations of the CDCL transition system with rules

Propagate, Decide, Conflict, Explain, Backjump,
Learn, Forget, Restart

Modeling Modern SAT Solvers

At their core, modern SAT solvers are implementations of the CDCL transition system with rules

$$
\begin{aligned}
& \text { Propagate, Decide, Conflict, Explain, Backjump, } \\
& \text { Learn, Forget, Restart }
\end{aligned}
$$

Basic CDCL $\stackrel{\text { def }}{=}$ \{Propagate, Decide, Conflict, Explain, Backjump \}
$C D C L \stackrel{\text { def }}{=}$ Basic CDCL + \{ Learn, Forget, Restart \}

The Basic CDCL System - Correctness

Irreducible state: state to which no Basic CDCL rules apply
Execution: sequence of transitions allowed by the rules and starting with $M=\varepsilon$ and $C=$ none
Exhausted execution: execution ending in an irreducible state

The Basic CDCL System - Correctness

Irreducible state: state to which no Basic CDCL rules apply
Execution: sequence of transitions allowed by the rules and starting with $M=\varepsilon$ and $C=$ none

Exhausted execution: execution ending in an irreducible state

Theorem 1 (Strong Termination)
Every execution in Basic CDCL is finite.

Note: This is not so immediate, because of Backjump

The Basic CDCL System - Correctness

Irreducible state: state to which no Basic CDCL rules apply
Execution: sequence of transitions allowed by the rules and starting with $M=\varepsilon$ and $C=$ none

Exhausted execution: execution ending in an irreducible state

Theorem 1 (Strong Termination)
Every execution in Basic CDCL is finite.

Lemma 2
Every exhausted execution ends with either $\mathrm{C}=$ none or fail.

The Basic CDCL System - Correctness

Irreducible state: state to which no Basic CDCL rules apply
Execution: sequence of transitions allowed by the rules and starting with $M=\varepsilon$ and $C=$ none
Exhausted execution: execution ending in an irreducible state

Theorem 1 (Soundness)
For every exhausted execution starting with $\mathrm{F}=F_{0}$ and ending with fail, the clause set F_{0} is unsatisfiable.

The Basic CDCL System - Correctness

Irreducible state: state to which no Basic CDCL rules apply
Execution: sequence of transitions allowed by the rules and starting with $M=\varepsilon$ and $C=$ none

Exhausted execution: execution ending in an irreducible state

Theorem 1 (Soundness)
For every exhausted execution starting with $\mathrm{F}=F_{0}$ and ending with fail, the clause set F_{0} is unsatisfiable.

Theorem 2 (Completeness)
For every exhausted execution starting with $\mathrm{F}=F_{0}$ and ending with $\mathrm{C}=$ none, the clause set F_{0} is satisfied by M .

The CDCL System - Strategies

Applying

- one Basic CDCL rule between each two Learn applications and
- Restart less and less often
ensures termination

The CDCL System - Strategies

A common basic strategy applies the rules with the following priorities:

1. If $n>0$ conflicts have been found so far, increase n and apply Restart
2. If a clause is falsified by M , apply Conflict
3. Keep applying Explain until Backjump is applicable
4. Apply Learn
5. Apply Backjump
6. Apply Propagate to completion
7. Apply Decide

The CDCL System - Correctness

Theorem 3 (Termination)
Every execution in which
(a) Learn/Forget are applied only finitely many times and
(b) Restart is applied with increased periodicity
is finite.

The CDCL System - Correctness

Theorem 3 (Termination)
Every execution in which
(a) Learn/Forget are applied only finitely many times and
(b) Restart is applied with increased periodicity
is finite.

Theorem 4 (Soundness)
As before.

Theorem 5 (Completeness)
As before.

From SAT to SMT

Same sort of states $\langle M, C, F\rangle$ and transitions as in CDCL system

Differences:

- F contains quantifier-free clauses from some theory T
- M is a sequence of theory literals and decision points
- the CDCL system augmented with rules

$$
T \text {-Conflict, } T \text {-Propagate, } T \text {-Explain }
$$

- maintains invariant: $\mathrm{F} \models_{T} \mathrm{C}$ and $\mathrm{M} \models_{\mathrm{p}} \neg \mathrm{C}$ when $\mathrm{C} \neq$ none

Recall: $F \models_{T} \quad G$ iff every model of T that satisfies F satisfies G as well

SMT-level Rules

A theory T

SMT-level Rules

A theory T

$\frac{C=\text { none } \quad l_{1}, \ldots, I_{n} \in \mathrm{M} \quad l_{1}, \ldots, I_{n} \models_{T} \perp}{C:=\bar{I}_{1} \vee \cdots \vee \bar{I}_{n}} T$-Conflict

Note: \models_{T} is decided by theory solver

SMT-level Rules

A theory T
$\frac{C=\text { none } \quad l_{1}, \ldots, I_{n} \in \mathrm{M} \quad l_{1}, \ldots, I_{n} \models_{T} \perp}{C:=\bar{l}_{1} \vee \cdots \vee \bar{I}_{n}} T$-Conflict
$\frac{l \in \operatorname{Lit}(\mathrm{~F}) \quad \mathrm{M} \models_{T} l \quad l, \bar{l} \notin \mathrm{M}}{\mathrm{M}:=\mathrm{M} l} T$-Propagate

Note: \models_{T} is decided by theory solver

$$
\begin{gathered}
\frac{C=\text { none } \quad l_{1}, \ldots, I_{n} \in \mathrm{M} \quad l_{1}, \ldots, I_{n} \models_{T} \perp}{\mathrm{C}:=\bar{I}_{1} \vee \cdots \vee \bar{I}_{n}} T \text {-Conflict } \\
\frac{l \in \operatorname{Lit}(\mathrm{~F}) \quad \mathrm{M} \models_{T} l \quad l, \bar{l} \notin \mathrm{M}}{\mathrm{M}:=\mathrm{M} l} T \text {-Propagate } \\
\frac{\mathrm{C}=I \vee D \quad \bar{l}_{1}, \ldots, \bar{I}_{n} \models_{T} \bar{l} \quad \bar{l}_{1}, \ldots, \bar{I}_{n} \prec_{\mathrm{M}} \bar{l}}{\mathrm{C}:=I_{1} \vee \cdots \vee I_{n} \vee D} T \text {-Explain }
\end{gathered}
$$

Note: \models_{T} is decided by theory solver

Modeling the Very Lazy Theory Approach

T-Conflict is enough to model the naive integration
of SAT solvers and theory solvers seen in the earlier EUF example

Modeling the Very Lazy Theory Approach

$$
\begin{gathered}
\underbrace{g(a)=c}_{p_{1}} \wedge \underbrace{f(g(a)) \neq f(c)}_{\bar{p}_{2}} \vee \underbrace{g(a)=d}_{p_{3}} \wedge \underbrace{c \neq d}_{\bar{p}_{4}} \\
F_{0}=p_{1}, \quad \bar{p}_{2} \vee p_{3}, \quad \bar{p}_{4}
\end{gathered}
$$

Modeling the Very Lazy Theory Approach

$$
F_{0}=p_{1}, \quad \bar{p}_{2} \vee p_{3}, \quad \bar{p}_{4}
$$

	M	F	C	rule
0	ε	F_{0}	none	Propagate $^{+}$
1	$p_{1} \bar{p}_{4}$	F_{0}	none	Decide
2	$p_{1} \bar{p}_{4} \bullet \bar{p}_{2}$	F_{0}	none	T-Conflict
3	$p_{1} \bar{p}_{4} \vee \bar{p}_{2}$	F_{0}	$\bar{p}_{1} \vee p_{2} \vee p_{4}$	Learn
4	$p_{1} \bar{p}_{4} \vee \bar{p}_{2}$	$F_{0}, \bar{p}_{1} \vee p_{2} \vee p_{4}$	$\bar{p}_{1} \vee p_{2} \vee p_{4}$	Restart
5	$p_{1} \bar{p}_{4}$	$F_{0}, \bar{p}_{1} \vee p_{2} \vee p_{4}$	none	Propagate $^{+}$
6	$p_{1} \bar{p}_{4} p_{2} p_{3}$	$F_{0}, \bar{p}_{1} \vee p_{2} \vee p_{4}$	none	T-Conflict
7	$p_{1} \bar{p}_{4} p_{2} p_{3}$	$F_{0}, \bar{p}_{1} \vee p_{2} \vee p_{4}$	$\bar{p}_{1} \vee \bar{p}_{3} \vee p_{4}$	Learn
8	$p_{1} \bar{p}_{4} p_{2} p_{3}$	$F_{0}, \bar{p}_{1} \vee p_{2} \vee p_{4}, \bar{p}_{1} \vee \bar{p}_{3} \vee p_{4}$	$\bar{p}_{1} \vee \bar{p}_{3} \vee p_{4}$	Restart
9	$p_{1} \bar{p}_{4} p_{2} p_{3}$	$F_{0}, \bar{p}_{1} \vee p_{2} \vee p_{4}, \bar{p}_{1} \vee \bar{p}_{3} \vee p_{4}$	none	Conflict
10	$p_{1} \bar{p}_{4} p_{2} p_{3}$	$F_{0}, \bar{p}_{1} \vee p_{2} \vee p_{4}, \bar{p}_{1} \vee \bar{p}_{3} \vee p_{4}$	$\bar{p}_{1} \vee \bar{p}_{3} \vee p_{4}$	Fail
11		fail		

A Better Lazy Approach

The very lazy approach can be improved considerably with

A Better Lazy Approach

The very lazy approach can be improved considerably with

- An on-line SAT engine, which can accept new input clauses on the fly

A Better Lazy Approach

The very lazy approach can be improved considerably with

- An on-line SAT engine, which can accept new input clauses on the fly
- an incremental and explicating T-solver, which can

A Better Lazy Approach

The very lazy approach can be improved considerably with

- An on-line SAT engine, which can accept new input clauses on the fly
- an incremental and explicating T-solver, which can

1. check the T-satisfiability of M as it is extended and

A Better Lazy Approach

The very lazy approach can be improved considerably with

- An on-line SAT engine, which can accept new input clauses on the fly
- an incremental and explicating T-solver, which can

1. check the T-satisfiability of M as it is extended and
2. identify a small T-unsatisfiable subset of M once M becomes T-unsatisfiable

A Better Lazy Approach

Lazy Approach - Strategies

Ignoring Restart, for simplicity,
a common strategy is to apply the rules using the following priorities:

1. If a clause is falsified by the current assignment M , apply Conflict
2. If M is T-unsatisfiable, apply T-Conflict
3. Apply Fail or Explain+Learn+Backjump as appropriate
4. Apply Propagate
5. Apply Decide

Lazy Approach - Strategies

Ignoring Restart, for simplicity,
a common strategy is to apply the rules using the following priorities:

1. If a clause is falsified by the current assignment M , apply Conflict
2. If M is T-unsatisfiable, apply T-Conflict
3. Apply Fail or Explain+Learn+Backjump as appropriate
4. Apply Propagate
5. Apply Decide

Note: Depending on the cost of checking the T-satisfiability of M , Step (2) can be applied with lower frequency or priority

Theory Propagation

With T-Conflict as the only theory rule, the theory solver is used just to validate the choices of the SAT solver

Theory Propagation

With T-Conflict as the only theory rule, the theory solver is used just to validate the choices of the SAT solver

With T-Propagate and T-Explain, it can also be used to guide the solver search

$$
\begin{aligned}
& \frac{l \in \operatorname{Lit}(\mathrm{~F}) \quad \mathrm{M} \models_{T} l \quad l, \bar{l} \notin \mathrm{M}}{\mathrm{M}:=\mathrm{M} l} T \text {-Propagate } \\
& \frac{C=I \vee D \quad \bar{l}_{1}, \ldots, \bar{l}_{n} \models_{T} \bar{l} \quad \bar{l}_{1}, \ldots, \bar{l}_{n} \prec_{\mathrm{M}} \bar{l}}{\mathrm{C}:=l_{1} \vee \cdots \vee I_{n} \vee D} T \text {-Explain }
\end{aligned}
$$

Theory Propagation Example

$$
\begin{gathered}
\underbrace{g(a)=c}_{p_{1}} \wedge \underbrace{f(g(a)) \neq f(c)}_{\bar{p}_{2}} \vee \underbrace{g(a)=d}_{p_{3}} \wedge \underbrace{c \neq d}_{\bar{p}_{4}} \\
F_{0}=p_{1}, \quad \bar{p}_{2} \vee p_{3}, \quad \bar{p}_{4}
\end{gathered}
$$

Theory Propagation Example

$$
F_{0}=p_{1}, \quad \bar{p}_{2} \vee p_{3}, \quad \bar{p}_{4}
$$

	M	F	C	rule
1	ε	F_{0}	none	Propagate
1	p_{1}	F_{0}	none	Propagate
1	$p_{1} \bar{p}_{4}$	F_{0}	none	T-Propagate $\left(p_{1} \models_{T} p_{2}\right)$
1	$p_{1} \bar{p}_{4} p_{2}$	F_{0}	none	T-Propagate $\left(p_{1}, \bar{p}_{4}=_{T} \bar{p}_{3}\right)$
1	$p_{1} \bar{p}_{4} p_{2} \bar{p}_{3}$	F_{0}	none	Conflict
1	$p_{1} \bar{p}_{4} p_{2} \bar{p}_{3}$	F_{0}	$\bar{p}_{2} \vee p_{3}$	Fail
		fail		

Theory Propagation Example

$F_{0}=p_{1}, \quad \bar{p}_{2} \vee p_{3}, \quad \bar{p}_{4}$

	M	F	C	rule
1	ε	F_{0}	none	Propagate
1	p_{1}	F_{0}	none	Propagate
1	$p_{1} \bar{p}_{4}$	F_{0}	none	T-Propagate $\left(p_{1} \neq_{T} p_{2}\right)$
1	$p_{1} \bar{p}_{4} p_{2}$	F_{0}	none	T-Propagate $\left(p_{1}, \bar{p}_{4}=_{T} \bar{p}_{3}\right)$
1	$p_{1} \bar{p}_{4} p_{2} \bar{p}_{3}$	F_{0}	none	Conflict
1	$p_{1} \bar{p}_{4} p_{2} \bar{p}_{3}$	F_{0}	$\bar{p}_{2} \vee p_{3}$	Fail
		fail		

Note: T-propagation eliminates search altogether in this case, no applications of Decide are needed!

Theory Propagation Example 2

$$
\left.\begin{array}{rl}
\underbrace{g(a)=e}_{p_{0}} & \underbrace{g(a)=c}_{p_{1}}
\end{array}\right) \underbrace{f(g(a)) \neq f(c)}_{\bar{p}_{2}} \vee \underbrace{g(a)=d}_{p_{3}} \wedge \underbrace{c \neq d}_{\bar{p}_{4}})
$$

Theory Propagation Example 2

$$
\underbrace{g(a)=e}_{p_{0}} \vee \underbrace{g(a)=c}_{p_{1}} \wedge \underbrace{f(g(a)) \neq f(c)}_{\bar{p}_{2}} \vee \underbrace{g(a)=d}_{p_{3}} \wedge \underbrace{c \neq d}_{\bar{p}_{4}}
$$

$$
F_{0}=p_{0} \vee p_{1}, \quad \bar{p}_{2} \vee p_{3}, \quad \bar{p}_{4}
$$

	M	F	C	rule
1	ε	F_{0}	none	Propagate
2	\bar{p}_{4}	F_{0}	none	Decide
3	$\bar{p}_{4} \bullet p_{1}$	F_{0}	none	T-Propagate $\left(p_{1} \models_{T} p_{2}\right)$
4	$\bar{p}_{4} \bullet p_{1} p_{2}$	F_{0}	none	T-Propagate $\left(p_{1}, \bar{p}_{4} \models_{T} \bar{p}_{3}\right)$
5	$\bar{p}_{4} \bullet p_{1} p_{2} \bar{p}_{3}$	F_{0}	none	Conflict
6	$\bar{p}_{4} \bullet p_{1} p_{2} \bar{p}_{3}$	F_{0}	$\bar{p}_{2} \vee p_{3}$	T-Explain
7	$\bar{p}_{4} \bullet p_{1} p_{2} \bar{p}_{3}$	F_{0}	$\bar{p}_{1} \vee p_{3}$	T-Explain
8	$\bar{p}_{4} \bullet p_{1} p_{2} \bar{p}_{3}$	F_{0}	$\bar{p}_{1} \vee p_{4}$	Backjump
9	$\bar{p}_{4} \bar{p}_{1}$	F_{0}	none	\cdots
\cdots				

Theory Propagation Features

- With exhaustive theory propagation every assignment M is T-satisfiable (since $M /$ is T-unsatisfiable iff $M \models_{T} l$)

Theory Propagation Features

- With exhaustive theory propagation every assignment M is T-satisfiable (since $M /$ is T-unsatisfiable iff $M \models_{T} l$)
- For theory propagation to be effective in practice, it needs specialized theory solvers

Theory Propagation Features

- With exhaustive theory propagation every assignment M is T-satisfiable (since $M /$ is T-unsatisfiable iff $M \models_{T} \bar{l}$)
- For theory propagation to be effective in practice, it needs specialized theory solvers
- For some theories, e.g., difference logic, detecting T-entailed literals is cheap and so theory propagation is extremely effective

Theory Propagation Features

- With exhaustive theory propagation every assignment M is T-satisfiable (since $M /$ is T-unsatisfiable iff $M \models_{T} \bar{l}$)
- For theory propagation to be effective in practice, it needs specialized theory solvers
- For some theories, e.g., difference logic, detecting T-entailed literals is cheap and so theory propagation is extremely effective
- For others, e.g., the theory of equality, detecting all T-entailed literals is too expensive

Theory Propagation Features

- With exhaustive theory propagation every assignment M is T-satisfiable (since $M /$ is T-unsatisfiable iff $M \models_{T} \bar{l}$)
- For theory propagation to be effective in practice, it needs specialized theory solvers
- For some theories, e.g., difference logic, detecting T-entailed literals is cheap and so theory propagation is extremely effective
- For others, e.g., the theory of equality, detecting all T-entailed literals is too expensive
- If T-Propagate is not applied exhaustively, T-Conflict is needed to repair T-unsatisfiable assignments

Modeling Modern Lazy SMT Solvers

At their core, modern lazy SMT solvers are implementations of the transition system with rules
(1) Propagate, Decide, Conflict, Explain, Backjump, Fail
(2) T-Conflict, T-Propagate, T-Explain
(3) Learn, Forget, Restart

Modeling Modern Lazy SMT Solvers

At their core, modern lazy SMT solvers are implementations of the transition system with rules
(1) Propagate, Decide, Conflict, Explain, Backjump, Fail
(2) T-Conflict, T-Propagate, T-Explain
(3) Learn, Forget, Restart

$$
\begin{aligned}
\text { Basic CDCL Modulo Theories } & \stackrel{\text { def }}{=}(1)+(2) \\
\text { CDCL Modulo Theories } & \stackrel{\text { def }}{=}(1)+(2)+(3)
\end{aligned}
$$

Correctness of CDCL Modulo Theories

Irreducible state: state to which no Basic CDCL MT rules apply
Execution: sequence of transitions allowed by the rules and starting with $M=\varepsilon$ and $C=$ none

Exhausted execution: execution ending in an irreducible state

Correctness of CDCL Modulo Theories

Irreducible state: state to which no Basic CDCL MT rules apply
Execution: sequence of transitions allowed by the rules and starting with $M=\varepsilon$ and $C=$ none

Exhausted execution: execution ending in an irreducible state

Theorem 6 (Termination)
Every execution in which
(a) Learn/Forget are applied only finitely many times and
(b) Restart is applied with increased periodicity
is finite.

Lemma 7
Every exhausted execution ends with either $\mathrm{C}=$ none or fail.

Correctness of CDCL Modulo Theories

Irreducible state: state to which no Basic CDCL MT rules apply
Execution: sequence of transitions allowed by the rules and starting with $M=\varepsilon$ and $C=$ none

Exhausted execution: execution ending in an irreducible state

Theorem 6 (Soundness)
For every exhausted execution starting with $\mathrm{F}=F_{0}$ and ending with fail, the clause set F_{0} is T-unsatisfiable.

Theorem 7 (Completeness)
For every exhausted execution starting with $\mathrm{F}=\mathrm{F}_{0}$ and ending with $\mathrm{C}=$ none, F_{0} is T-satisfiable; specifically, M is T-satisfiable and $\mathrm{M} \models{ }_{\mathrm{p}} F_{0}$.

