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Introduction

Historically:
Automated logical reasoning achieved through uniform
theorem-proving procedures for First Order Logic
(e.g., resolution, tableaux calculi)

Some success:
However, uniform proof procedures for FOL are not always the best
compromise between expressiveness and efficiency
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Introduction

Last 20 years: R&D has focused on
• expressive enough decidable fragments of various logics

• incorporating domain-specific reasoning, e.g., on:
• temporal reasoning
• arithmetic reasoning
• equality reasoning
• reasoning about certain data structures (arrays, lists, finite sets, . . . )

• combining specialized reasoners modularly
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Introduction

Two successful examples of this trend:

SAT: propositional formalization,
boolean reasoning
+ high degree of efficiency
− expressive (all NP-complete problems) but involved encodings

SMT: first-order formalization,
boolean + domain-specific reasoning
+ improves expressivity and scalability
− some (but acceptable) loss of efficiency
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Satisfiability Modulo Theories (SMT): Motivation

Some problems are more naturally expressed in logics other than
propositional or plain first-order logic

Ex: software verification needs efficient reasoning about equality, arithmetic,
memory, data structures, . . .

One needs to check the satisfiability of formulas with respect to, or
modulo one or more background theories
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The Basic SMT Problem

Determining the satisfiability of a logical formula wrt some
combination T of background theories

Example

n > 3 ∗ m + 1 ∧ ( f (n) ≤ head (l1) ∨ l2 = f (n) :: l1 )

Linear Arithm.
(LIA)

Equality
(EUF)

Lists
(ADT)

7 / 31



The Basic SMT Problem

Determining the satisfiability of a logical formula wrt some
combination T of background theories

Example

n > 3 ∗ m + 1 ∧ ( f (n) ≤ head (l1) ∨ l2 = f (n) :: l1 )

Linear Arithm.
(LIA)

Equality
(EUF)

Lists
(ADT)

7 / 31



The Basic SMT Problem

Determining the satisfiability of a logical formula wrt some
combination T of background theories

Example

n > 3 ∗ m + 1 ∧ ( f (n) ≤ head (l1) ∨ l2 = f (n) :: l1 )

Linear Arithm.
(LIA)

Equality
(EUF)

Lists
(ADT)

7 / 31



The Basic SMT Problem

Determining the satisfiability of a logical formula wrt some
combination T of background theories

Example

n > 3 ∗ m + 1 ∧ ( f (n) ≤ head (l1) ∨ l2 = f (n) :: l1 )

Linear Arithm.
(LIA)

Equality
(EUF)

Lists
(ADT)

7 / 31



The Basic SMT Problem

Determining the satisfiability of a logical formula wrt some
combination T of background theories

Example

n > 3 ∗ m + 1 ∧ ( f (n) ≤ head (l1) ∨ l2 = f (n) :: l1 )

Linear Arithm.
(LIA)

Equality
(EUF)

Lists
(ADT)

7 / 31



Satisfiability Modulo Theories

Given

1. a (many-sorted) logical theory T

2. a first-order formula F

is F satisfiable in a model of T?
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SMT Semantics

The theory T can be defined

• axiomatically, as set A of first-order sentences

• algebraically, as a class C of interpretations

We call models of T the interpretations that satisfy A / are in C
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Some Background Theories of Interest

Uninterpreted Functions x = y → f (x) = f (y)
Integer/Real Arithmetic 2x + y = 0 ∧ 2x − y = 4 → x = 1

Floating Point Arithmetic x + 1 ̸= NaN ∧ x < ∞ → x + 1 > x
Bit-vectors 4 ◦ (x ≫ 2) = (x &∼3) + 1

Strings and RegExs x = y · z ∧ z ∈ ab∗ → |x| > |y|
Arrays i = j → read(write(a, i, x), j) = x

Algebraic Data Types x ̸= Leaf → ∃ l, r : Tree(α). ∃ a : α.
x = Node(l, a, r)

Finite Sets e1 ∈ x ∧ e2 ∈ x \ e1 → ∃y, z : Set(α).
|y| = |z| ∧ x = y ∪ z ∧ y ̸= ∅

Finite Relations (x, y) ∈ r ∧ (y, z) ∈ r → (x, z) ∈ r ▷◁ s
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Equality and Uninterpreted Functions (EUF)

Simplest first-order theory with equality, applications of
uninterpreted functions, and variables of uninterpreted sorts

For all sorts σ, σ′ and function symbols f : σ → σ′

Reflexivity: ∀x : σ x = x
Symmetry: ∀x : σ (x = y → y = x)

Transitivity: ∀x, y : σ (x = y ∧ y = z → x = z)
Congruence: ∀x, y : σ (x = y → f (x) = f (y))

Example

f (f (f (a))) = b ∧ g(f (a), b) = a ∧ f (a) ̸= a
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Arrays

Operates over sorts Array(σi, σe), σi, σe and function symbols

read : Array(σi, σe)× σi → σe

write : Array(σi, σe)× σi × σ → Array(σi, σe)

For any index sort σi and element sort σe

Read-Over-Write-1: ∀a, i, e. read(write(a, i, e), i) = e
Read-Over-Write-2: ∀a, i, j, e. (i ̸= j → read(write(a, i, e), j) = read(a, j))

Extensionality: ∀a, b, i. (a ̸= b → ∃i. read(a, i) ̸= read(b, i))

Example

write(write(a, i, read(a, j)), j, read(a, i)) =
write(write(a, j, read(a, i)), i, read(a, j))
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Arithmetics

Restricted fragments, over the reals or the integers, support efficient
methods:

• Bounds: x ▷◁ k with ▷◁ ∈ {<, >, ≤, ≥, =}

• Difference constraints: x − y ▷◁ k, with ▷◁ ∈ {<, >, ≤, ≥, =}

• UTVPI: ±x ± y ▷◁ k, with ▷◁ ∈ {<, >, ≤, ≥, =}

• Linear arithmetic, e.g: 2x − 3y + 4z ≤ 5

• Non-linear arithmetic, e.g: 2xy + 4xz2 − 5y ≤ 10
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Algebraic Data Types

Family of user-definable theories

Example

Color := red | green | blue
List(α) := nil | (head : α) :: (tail : List(α))

Distinctiveness: ∀h, t nil ̸= h :: t
Exhaustiveness: ∀l (l = nil ∨ ∃h, t. h :: t)

Injectivity: ∀h1, h2, t1, t2
(h1 :: t1 = h2 :: t2 → h1 = h2 ∧ t1 = t2)

Selectors: ∀h, t (head(h :: t) = h ∧ tail(h :: t) = t)
Non-circularity: ∀l, x1, . . . , xn l ̸= x1 :: · · · :: xn :: l
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Other Interesting Theories

• Floating point arithmetic

• Strings and regular expressions

• Sequences

• Finite sets with cardinality

• Finite multisets

• Finite relations

• Transcendental Functions

• Ordinary differential equations

• . . .
15 / 31



Reasoning Modulo Theories, Example

f (read(write(a, i, 3), c − 2)) ̸= f (c − i + 1)

∧ l1 = c :: d :: e :: nil

∧ i + 2 = head(l1 @ l2)

Theory of

Unsatisfiable!
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Reasoning Modulo Theories, Example

f (read(write(a, i, 3), i + 2 − 2)) ̸= f (i + 2 − i + 1)

∧ l1 = c :: d :: e :: nil

∧ c = i + 2

Unsatisfiable!
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Reasoning Modulo Theories, Example

f (read(write(a, i, 3), i)) ̸= f (3)

∧ l1 = c :: d :: e :: nil

∧ c = i + 2

Unsatisfiable!
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Reasoning Modulo Theories, Example
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Reasoning Modulo Theories, Example
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Reasoning Modulo Theories, Example

f (3) ̸= f (3)

∧ l1 = c :: d :: e :: nil

∧ c = i + 2

f (3) ̸= f (3) |=EUF ⊥

Unsatisfiable!
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Reasoning Modulo Theories, Example

f (3) ̸= f (3)
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Solving SMT Problems

Fact: Many theories have efficient decision procedures
for the satisfiability of conjunctions of literals

Problem: In practice, we need to deal with
1. arbitrary Boolean combinations of literals
2. literals over more than one theory
3. formulas with quantifiers

17 / 31



Solving SMT Problems

Fact: Many theories have efficient decision procedures
for the satisfiability of conjunctions of literals

Problem: In practice, we need to deal with
1. arbitrary Boolean combinations of literals
2. literals over more than one theory
3. formulas with quantifiers

17 / 31



Solving SMT Problems

Fact: Many theories have efficient decision procedures
for the satisfiability of conjunctions of literals

Problem: In practice, we need to deal with
1. arbitrary Boolean combinations of literals
2. literals over more than one theory
3. formulas with quantifiers

17 / 31



Satisfiability Modulo a Theory T

F, F1, . . . , Fn formulas, T a theory

F is satisfiable in T, or T-satisfiable, if it is satisfiable in a model of T

F is unsatisfiable in T, or T-unsatisfiable, if it is not T satisfiable

F1, . . . , Fn entail F in T, or T-entail F, written F1, . . . , Fn |=T F
if F1 ∧ · · · ∧ Fn ∧ F is T-unsatisfiable
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Satisfiability Modulo a Theory T

Note:
The T-satisfiability of quantifier-free formulas is decidable iff
the T-satisfiability of conjunctions/sets of literals is decidable

Problem: In practice, dealing with Boolean combinations of literals
is as hard as in propositional logic

Solution: Exploit propositional satisfiability technology
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Lifting SAT Technology to SMT

Two main approaches:
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1. Eager
• translate the input formula F to an equisatisfiable propositional

formula P
• feed P to any SAT solver
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Lifting SAT Technology to SMT

Two main approaches:

2. Lazy
• abstract the input formula F to a propositional formula A in CNF
• feed A to a DPLL-based SAT solver
• use a theory-specific solver to refine the abstraction and guide

the SAT solver

We will focus on the lazy approach here
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(Very) Lazy Approach for SMT, Example

g(a) = c ∧ f (g(a)) ̸= f (c) ∨ g(a) = d ∧ c ̸= d

Theory T: Equality with Uninterpreted Functions
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(Very) Lazy Approach for SMT, Example

g(a) = c ∧ f (g(a)) ̸= f (c) ∨ g(a) = d ∧ c ̸= d

Simplest setting:

• Off-line SAT solver
• Non-incremental theory solver

for conjunctions of equalities and disequalities
• Theory atoms abstracted to propositional atoms

(e.g., g(a) = c abstracted to p1)
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(Very) Lazy Approach for SMT – Example

g(a) = c︸ ︷︷ ︸
p1

∧ f (g(a)) ̸= f (c)︸ ︷︷ ︸
p2

∨ g(a) = d︸ ︷︷ ︸
p3

∧ c ̸= d︸ ︷︷ ︸
p4

Notation:
• a def

= ¬a
• a def

= a
• { p1, p2, p3, p4 }

def
= { p1 7→ 1, p2 7→ 0, p3 7→ 0, p4 7→ 1 }
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(Very) Lazy Approach for SMT – Example

g(a) = c︸ ︷︷ ︸
p1

∧ f (g(a)) ̸= f (c)︸ ︷︷ ︸
p2

∨ g(a) = d︸ ︷︷ ︸
p3

∧ c ̸= d︸ ︷︷ ︸
p4

1. Send {p1, p2 ∨ p3, p4} to SAT solver

2. SAT solver returns satisfying assignment {p1, p2, p4}

Theory solver finds concretization of {p1, p2, p4}
({ g(a) = c, f(g(a)) ̸= f(c), c ̸= d }) unsat

3. Send {p1, p2 ∨ p3, p4, p1 ∨ p2 ∨ p4} to SAT solver

4. SAT solver returns new satisfying assignment {p1, p3, p4}

Theory solver finds {p1, p3, p4} unsat

5. Send {p1, p2 ∨ p3, p4, p1 ∨ p2, p1 ∨ p3 ∨ p4} to SAT solver

6. SAT solver finds {p1, p2 ∨ p3, p4, p1 ∨ p2 ∨ p4, p1 ∨ p3 ∨ p4} unsat
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Done! The original formula is unsatisfiable in EUF!



Lazy Approach – Enhancements

Several enhancements are possible to increase efficiency:

• Check T-satisfiability only of full propositional model
• Check T-satisfiability of partial assignment M as it grows

• If M is T-unsatisfiable, add ¬M as a clause
• If M is T-unsatisfiable, identify a T-unsatisfiable subset M0 of M

and add ¬M0 as a clause

• If M is T-unsatisfiable, add clause and restart
• If M is T-unsatisfiable, bactrack to some point where the

assignment was still T-satisfiable
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Lazy Approach, Main Benefits

Every tool does what it is good at:

• SAT solver takes care of Boolean information

• Theory solver takes care of theory information

The SAT solver works only with propositional clauses

The theory solver works only with conjunctions of (FOL) literals
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The Original DPLL Procedure

Recall

Modern SAT solvers are based on the DPLL procedure

DPLL tries to build incrementally a satisfying truth assignment M for
a formula F in CNF

M is grown by
• deducing by unit propagation the truth value of a literal from M and F, or
• guessing a truth value

The procedure backtracks on each wrong guess and tries the
opposite value
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An Abstract Transition System for DPLL

States:
fail or ⟨M, F⟩

where
• M is a sequence of literals and decision points •

denoting a partial truth assignment
• F is a set of clauses denoting a CNF formula

Definition If M = M0 • M1 • · · · • Mn where each Mi contains no decision points
1. Mi is decision level i of M

2. M[i] def
= M0 • · · · • Mi

26 / 31



An Abstract Transition System for DPLL

States:
fail or ⟨M, F⟩

Initial state:

⟨ε, F0⟩ where ε is the empty sequence and F0 is the input CNF

Expected final states:

fail if F0 is unsatisfiable
⟨M,G⟩ otherwise, where
• G is equivalent to F0 and
• M satisfies G
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Transition Rule Notation

Transition rules in guarded assignment form

P1 · · · Pn

M′ = e1 F′ = e2

updating M, F or both when premises P1, . . . , Pn all hold

Note: When convenient, will treat M as the set of its literals
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Transition Rules for Original DPLL

Extending M

l1 ∨ · · · ∨ ln ∨ l ∈ F l1, . . . , ln ∈ M l /∈ M l /∈ M
M′ = M l

Propagate

Note: The order of literal in clauses is not meaningful

l ∈ Lit(F) l /∈ M l /∈ M
M′ = M • l

Decide

Notation: Lit(F) def
= {l | l literal of F} ∪ {l | l literal of F}
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Transition Rules for Original DPLL

Repairing M

l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M • /∈ M
fail

Fail

l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M M = M • l N • /∈ N
M′ = M l

Backtrack

Note: Last premise of Backtrack enforces chronological backtracking
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DPLL Execution, Example 1

l1 ∨ · · · ∨ ln ∨ l ∈ F l1, . . . , ln ∈ M l /∈ M l /∈ M
M′ = M l

Propagate

l ∈ Lit(F) l /∈ M l /∈ M
M′ = M • l

Decide
l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M • /∈ M

fail
Fail

l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M M = M • l N • /∈ N
M′ = M l

Backtrack

F0 = a ∨ e ∨ c, a ∨ e, a ∨ c ∨ r, r ∨ a ∨ e, e ∨ c, a ∨ e ∨ c, r
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One execution:

M F Rule
1 ε F0

Propagate on r
2 r F0 Decide a
3 r • a F0 Propagate on r ∨ a ∨ e
4 r • a e F0 Propagate on a ∨ e ∨ c
5 r • a e c F0 Backtrack on a ∨ c ∨ r

M F Rule

6 r a F0 Propagate on a ∨ e
7 r a e F0 Propagate on e ∨ c
8 r a e c F0 Fail on a ∨ e ∨ c
9 fail
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From DPLL to CDCL Solvers

Modern SAT solvers have more sophisticated ways to recover from
wrong decisions

They implement
• conflict-driven (CD) backjumping

instead of (chronological) backtracking
• selective clause learning (CL)

to help focus later search
• restart strategies

to get out of unproductive search paths
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An Abstract Transition System for CDCL

States:
fail or ⟨M, C, F⟩

Extend DPLL state with a component C
whose value is either none or a conflict clause
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An Abstract Transition System for CDCL

States:
fail or ⟨M, C, F⟩

Initial state:

⟨ε, none, F0⟩ where F0 is the input CNF

Expected final states:

fail if F0 is unsatisfiable
⟨M, none,G⟩ otherwise, where
• G is equivalent to F0 and
• M satisfies G
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From DPLL to CDCL rules

Replace Backtrack with

C = none l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M
C′ = l1 ∨ · · · ∨ ln

Conflict

C = l ∨ D l1 ∨ · · · ∨ ln ∨ l ∈ F l1, . . . , ln ≺M l
C′ = l1 ∨ · · · ∨ ln ∨ D

Explain

C = l1 ∨ · · · ∨ ln ∨ l lev l1, . . . , lev ln ≤ i < lev l
C′ = none M′ = M[i] l

Backjump
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C′ = l1 ∨ · · · ∨ ln

Conflict

C = l ∨ D l1 ∨ · · · ∨ ln ∨ l ∈ F l1, . . . , ln ≺M l
C′ = l1 ∨ · · · ∨ ln ∨ D

Explain

C = l1 ∨ · · · ∨ ln ∨ l lev l1, . . . , lev ln ≤ i < lev l
C′ = none M′ = M[i] l

Backjump

Notation: l ≺M l′ if l occurs before l′ in M
lev l = i iff l occurs in decision level i of M
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From DPLL to CDCL rules

Replace Backtrack with

C = none l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M
C′ = l1 ∨ · · · ∨ ln

Conflict

C = l ∨ D l1 ∨ · · · ∨ ln ∨ l ∈ F l1, . . . , ln ≺M l
C′ = l1 ∨ · · · ∨ ln ∨ D

Explain

C = l1 ∨ · · · ∨ ln ∨ l lev l1, . . . , lev ln ≤ i < lev l
C′ = none M′ = M[i] l

Backjump

Maintain invariant: F |=p C and M ̸|=p C when C ̸= none
where |=p denotes propositional entailment
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From DPLL to CDCL rules

Modify Fail to

C ̸= none • /∈ M
fail

Fail
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CDCL Execution Example

C = none l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M
C′ = l1 ∨ · · · ∨ ln

Conflict

C = l ∨ D l1 ∨ · · · ∨ ln ∨ l ∈ F l1, . . . , ln ≺M l
C′ = l1 ∨ · · · ∨ ln ∨ D

Explain

C = l1 ∨ · · · ∨ ln ∨ l lev l1, . . . , lev ln ≤ i < lev l
C′ = none M′ = M[i] l

Backjump
C ̸= none • /∈ M

fail
Fail

F0 = p1, p1 ∨ p2, p3 ∨ p4, p5 ∨ p6, p1 ∨ p5 ∨ p7, p2 ∨ p5 ∨ p6 ∨ p7
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C = l1 ∨ · · · ∨ ln ∨ l lev l1, . . . , lev ln ≤ i < lev l
C′ = none M′ = M[i] l

Backjump
C ̸= none • /∈ M

fail
Fail

F0 = p1, p1 ∨ p2, p3 ∨ p4, p5 ∨ p6, p1 ∨ p5 ∨ p7, p2 ∨ p5 ∨ p6 ∨ p7

M F C Rule
1 ε F0 none Propagate on p1
2 p1 F0 none Propagate on p1 ∨ p2
3 p1 p2 F0 none Decide p3
4 p1 p2 • p3 F0 none Propagate on p3 ∨ p4
5 p1 p2 • p3 p4 F0 none Decide p5
6 p1 p2 • p3 p4 • p5 F0 none Propagate on p5 ∨ p6
7 p1 p2 • p3 p4 • p5 p6 F0 none Propagate on p1 ∨ p4 ∨ p7
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CDCL Execution Example

C = none l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M
C′ = l1 ∨ · · · ∨ ln

Conflict

C = l ∨ D l1 ∨ · · · ∨ ln ∨ l ∈ F l1, . . . , ln ≺M l
C′ = l1 ∨ · · · ∨ ln ∨ D

Explain

C = l1 ∨ · · · ∨ ln ∨ l lev l1, . . . , lev ln ≤ i < lev l
C′ = none M′ = M[i] l

Backjump
C ̸= none • /∈ M

fail
Fail

F0 = p1, p1 ∨ p2, p3 ∨ p4, p5 ∨ p6, p1 ∨ p5 ∨ p7, p2 ∨ p5 ∨ p6 ∨ p7

M F C Rule
7 p1 p2 • p3 p4 • p5 p6 F0 none Propagate on p1 ∨ p4 ∨ p7
8 p1 p2 • p3 p4 • p5 p6 p7 F0 none Conflict on p2 ∨ p5 ∨ p6 ∨ p7
9 p1 p2 • p3 p4 • p5 p6 p7 F0 p2 ∨ p5 ∨ p6 ∨ p7 Explain with p1 ∨ p5 ∨ p7

10 p1 p2 • p3 p4 • p5 p6 p7 F0 p1 ∨ p2 ∨ p5 ∨ p6 Explain with p5 ∨ p6
11 p1 p2 • p3 p4 • p5 p6 p7 F0 p1 ∨ p2 ∨ p5 Backjump
12 p1 p2 p5 F0 none Decide p3
13 p1 p2 p5 • p3 F0 none . . .
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CDCL rules with learning

Also add

F |=p C C /∈ F
F′ = F ∪ {C}

Learn

C = none F = G ∪ {C} G |=p C
F′ = G

Forget

M′ = M[0] C′ = none
Restart

Note: Learn can be applied to any clause stored in C when C ̸= none
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Modeling Modern SAT Solvers

At their core, modern SAT solvers are implementations of the CDCL
transition system with rules

Propagate, Decide, Conflict, Explain, Backjump,

Learn, Forget, Restart

Basic CDCL def
= { Propagate, Decide, Conflict, Explain, Backjump }

CDCL def
= Basic CDCL + { Learn, Forget, Restart }
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The Basic CDCL System – Correctness
Irreducible state: state to which no Basic CDCL rules apply

Execution: sequence of transitions allowed by the rules and
starting with M = ε and C = none

Exhausted execution: execution ending in an irreducible state
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The Basic CDCL System – Correctness
Irreducible state: state to which no Basic CDCL rules apply

Execution: sequence of transitions allowed by the rules and
starting with M = ε and C = none

Exhausted execution: execution ending in an irreducible state

Theorem 1 (Strong Termination)
Every execution in Basic CDCL is finite.

Note: This is not so immediate, because of Backjump
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The Basic CDCL System – Correctness
Irreducible state: state to which no Basic CDCL rules apply

Execution: sequence of transitions allowed by the rules and
starting with M = ε and C = none

Exhausted execution: execution ending in an irreducible state

Theorem 1 (Strong Termination)
Every execution in Basic CDCL is finite.

Lemma 2
Every exhausted execution ends with either C = none or fail.
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The Basic CDCL System – Correctness
Irreducible state: state to which no Basic CDCL rules apply

Execution: sequence of transitions allowed by the rules and
starting with M = ε and C = none

Exhausted execution: execution ending in an irreducible state

Theorem 1 (Soundness)
For every exhausted execution starting with F = F0 and ending
with fail, the clause set F0 is unsatisfiable.
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The Basic CDCL System – Correctness
Irreducible state: state to which no Basic CDCL rules apply

Execution: sequence of transitions allowed by the rules and
starting with M = ε and C = none

Exhausted execution: execution ending in an irreducible state

Theorem 1 (Soundness)
For every exhausted execution starting with F = F0 and ending
with fail, the clause set F0 is unsatisfiable.

Theorem 2 (Completeness)
For every exhausted execution starting with F = F0 and ending
with C = none, the clause set F0 is satisfied by M.

39 / 31



The CDCL System – Strategies

Applying
• one Basic CDCL rule between each two Learn applications and
• Restart less and less often

ensures termination

40 / 31



The CDCL System – Strategies

A common basic strategy applies the rules with the following
priorities:

1. If n > 0 conflicts have been found so far,
increase n and apply Restart

2. If a clause is falsified by M, apply Conflict
3. Keep applying Explain until Backjump is applicable
4. Apply Learn
5. Apply Backjump
6. Apply Propagate to completion
7. Apply Decide
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The CDCL System – Correctness

Theorem 3 (Termination)
Every execution in which
(a) Learn/Forget are applied only finitely many times and
(b) Restart is applied with increased periodicity
is finite.

Theorem 4 (Soundness)
As before.

Theorem 5 (Completeness)
As before.
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From SAT to SMT

Same sort of states ⟨M,C, F⟩ and transitions as in CDCL system

Differences:
• F contains quantifier-free clauses from some theory T

• M is a sequence of theory literals and decision points

• the CDCL system augmented with rules
T-Conflict, T-Propagate, T-Explain

• maintains invariant: F |=T C and M |=p ¬C when C ̸= none

Recall: F |=T G iff every model of T that satisfies F satisfies G as well
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SMT-level Rules

A theory T

C = none l1, . . . , ln ∈ M l1, . . . , ln |=T ⊥
C := l1 ∨ · · · ∨ ln

T-Conflict

l ∈ Lit(F) M |=T l l, l /∈ M
M := M l

T-Propagate

C = l ∨ D l1, . . . , ln |=T l l1, . . . , ln ≺M l
C := l1 ∨ · · · ∨ ln ∨ D

T-Explain

Note: |=T is decided by theory solver
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Modeling the Very Lazy Theory Approach

T-Conflict is enough to model the naive integration
of SAT solvers and theory solvers seen in the earlier EUF example
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Modeling the Very Lazy Theory Approach
g(a) = c︸ ︷︷ ︸

p1

∧ f(g(a)) ̸= f(c)︸ ︷︷ ︸
p2

∨ g(a) = d︸ ︷︷ ︸
p3

∧ c ̸= d︸ ︷︷ ︸
p4

F0 = p1, p2 ∨ p3, p4

M F C rule
0 ε F0 none Propagate+

1 p1 p4 F0 none Decide
2 p1 p4 • p2 F0 none T-Conflict
3 p1 p4 • p2 F0 p1 ∨ p2 ∨ p4 Learn
4 p1 p4 • p2 F0, p1 ∨ p2 ∨ p4 p1 ∨ p2 ∨ p4 Restart
5 p1 p4 F0, p1 ∨ p2 ∨ p4 none Propagate+

6 p1 p4 p2 p3 F0, p1 ∨ p2 ∨ p4 none T-Conflict
7 p1 p4 p2 p3 F0, p1 ∨ p2 ∨ p4 p1 ∨ p3 ∨ p4 Learn
8 p1 p4 p2 p3 F0, p1 ∨ p2 ∨ p4, p1 ∨ p3 ∨ p4 p1 ∨ p3 ∨ p4 Restart
9 p1 p4 p2 p3 F0, p1 ∨ p2 ∨ p4, p1 ∨ p3 ∨ p4 none Conflict

10 p1 p4 p2 p3 F0, p1 ∨ p2 ∨ p4, p1 ∨ p3 ∨ p4 p1 ∨ p3 ∨ p4 Fail
11 fail
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A Better Lazy Approach

The very lazy approach can be improved considerably with

• An on-line SAT engine,
which can accept new input clauses on the fly

• an incremental and explicating T-solver,
which can

1. check the T-satisfiability of M as it is extended and
2. identify a small T-unsatisfiable subset of M

once M becomes T-unsatisfiable
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A Better Lazy Approach

g(a) = c︸ ︷︷ ︸
p1

∧ f(g(a)) ̸= f(c)︸ ︷︷ ︸
p2

∨ g(a) = d︸ ︷︷ ︸
p3

∧ c ̸= d︸ ︷︷ ︸
p4

F0 = p1, p2 ∨ p3, p4

M F C rule
1 ε F0 none Propagate+

2 p1 p4 F0 none Decide
3 p1 p4 • p2 F0 none T-Conflict
4 p1 p4 • p2 F0 p1 ∨ p2 Backjump
5 p1 p4 p2 F0 none Propagate
6 p1 p4 p2 p3 F0 none T-Conflict
7 p1 p4 p2 p3 F0 p1 ∨ p3 ∨ p4 Fail
8 fail
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Lazy Approach – Strategies

Ignoring Restart, for simplicity,
a common strategy is to apply the rules using the following
priorities:

1. If a clause is falsified by the current assignment M,
apply Conflict

2. If M is T-unsatisfiable, apply T-Conflict
3. Apply Fail or Explain+Learn+Backjump as appropriate
4. Apply Propagate
5. Apply Decide

Note: Depending on the cost of checking the T-satisfiability of M,
Step (2) can be applied with lower frequency or priority
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Theory Propagation

With T-Conflict as the only theory rule, the theory solver is used just
to validate the choices of the SAT solver

With T-Propagate and T-Explain, it can also be used to guide the
solver search

l ∈ Lit(F) M |=T l l, l /∈ M
M := M l

T-Propagate

C = l ∨ D l1, . . . , ln |=T l l1, . . . , ln ≺M l
C := l1 ∨ · · · ∨ ln ∨ D

T-Explain
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Theory Propagation Example

g(a) = c︸ ︷︷ ︸
p1

∧ f(g(a)) ̸= f(c)︸ ︷︷ ︸
p2

∨ g(a) = d︸ ︷︷ ︸
p3

∧ c ̸= d︸ ︷︷ ︸
p4

F0 = p1, p2 ∨ p3, p4

M F C rule
1 ε F0 none Propagate
1 p1 F0 none Propagate
1 p1 p4 F0 none T-Propagate (p1 |=T p2)
1 p1 p4 p2 F0 none T-Propagate (p1, p4 |=T p3)
1 p1 p4 p2 p3 F0 none Conflict
1 p1 p4 p2 p3 F0 p2 ∨ p3 Fail

fail

Note: T-propagation eliminates search altogether in this case,
no applications of Decide are needed!
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Theory Propagation Example 2

g(a) = e︸ ︷︷ ︸
p0

∨ g(a) = c︸ ︷︷ ︸
p1

∧ f(g(a)) ̸= f(c)︸ ︷︷ ︸
p2

∨ g(a) = d︸ ︷︷ ︸
p3

∧ c ̸= d︸ ︷︷ ︸
p4

F0 = p0 ∨ p1, p2 ∨ p3, p4

M F C rule
1 ε F0 none Propagate
2 p4 F0 none Decide
3 p4 • p1 F0 none T-Propagate (p1 |=T p2)
4 p4 • p1 p2 F0 none T-Propagate (p1, p4 |=T p3)
5 p4 • p1 p2 p3 F0 none Conflict
6 p4 • p1 p2 p3 F0 p2 ∨ p3 T-Explain
7 p4 • p1 p2 p3 F0 p1 ∨ p3 T-Explain
8 p4 • p1 p2 p3 F0 p1 ∨ p4 Backjump
9 p4 p1 F0 none · · ·

· · ·
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Theory Propagation Features

• With exhaustive theory propagation every assignment M is
T-satisfiable (since M l is T-unsatisfiable iff M |=T l)

• For theory propagation to be effective in practice, it needs
specialized theory solvers

• For some theories, e.g., difference logic, detecting T-entailed
literals is cheap and so theory propagation is extremely effective

• For others, e.g., the theory of equality, detecting all T-entailed
literals is too expensive

• If T-Propagate is not applied exhaustively, T-Conflict is needed
to repair T-unsatisfiable assignments
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to repair T-unsatisfiable assignments
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Modeling Modern Lazy SMT Solvers

At their core,
modern lazy SMT solvers are implementations of the transition
system with rules

(1) Propagate, Decide, Conflict, Explain, Backjump, Fail

(2) T-Conflict, T-Propagate, T-Explain

(3) Learn, Forget, Restart

Basic CDCL Modulo Theories def
= (1) + (2)

CDCL Modulo Theories def
= (1) + (2) + (3)
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Correctness of CDCL Modulo Theories
Irreducible state: state to which no Basic CDCL MT rules apply

Execution: sequence of transitions allowed by the rules and
starting with M = ε and C = none

Exhausted execution: execution ending in an irreducible state
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Correctness of CDCL Modulo Theories
Irreducible state: state to which no Basic CDCL MT rules apply

Execution: sequence of transitions allowed by the rules and
starting with M = ε and C = none

Exhausted execution: execution ending in an irreducible state

Theorem 6 (Termination)
Every execution in which
(a) Learn/Forget are applied only finitely many times and
(b) Restart is applied with increased periodicity
is finite.

Lemma 7
Every exhausted execution ends with either C = none or fail.
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Correctness of CDCL Modulo Theories
Irreducible state: state to which no Basic CDCL MT rules apply

Execution: sequence of transitions allowed by the rules and
starting with M = ε and C = none

Exhausted execution: execution ending in an irreducible state

Theorem 6 (Soundness)
For every exhausted execution starting with F = F0 and ending with fail, the
clause set F0 is T-unsatisfiable.

Theorem 7 (Completeness)
For every exhausted execution starting with F = F0 and ending with C = none,
F0 is T-satisfiable; specifically, M is T-satisfiable and M |=p F0.
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