CS:4350 Logic in Computer Science
 Model Checking

Cesare Tinelli

Spring 2022

The Llilit
University
of lowa

Credits

These slides are largely based on slides originally developed by Andrei Voronkov at the University of Manchester. Adapted by permission.

Outline

Model Checking

Model Checking Problem
Reachability and Safety Propertiest
Reachability Checking
An Efficient Encoding of PLFD in Propositional Logic
Invariance Checking
Inductive Strengthening
k-Induction

Putting it All Together

When we design a computational system, we would like to be sure that it will satisfy all requirements, including safety requirements

Putting it All Together

When we design a computational system, we would like to be sure that it will satisfy all requirements, including safety requirements

Now we can treat the safety problem as a logical problem

Putting it All Together

When we design a computational system, we would like to be sure that it will satisfy all requirements, including safety requirements

Now we can treat the safety problem as a logical problem
We can

- formally represent our system as a transition system
- express desired properties of the system as temporal formulas

Putting it All Together

When we design a computational system, we would like to be sure that it will satisfy all requirements, including safety requirements

Now we can treat the safety problem as a logical problem
We can

- formally represent our system as a transition system
- express desired properties of the system as temporal formulas

What is missing?

The Model Checking Problem

Given

1. a symbolic representation \mathbb{S} of a transition system
2. an LTL formula F
check if every (some) computation of \mathbb{S} satisfies F, preferably fully automatically

The Model Checking Problem

Given

1. a symbolic representation \mathbb{S} of a transition system
2. an LTL formula F
check if every (some) computation of \mathbb{S} satisfies F, preferably fully automatically

Notation:
$\operatorname{Comp}(\mathbb{S})$: set of all computation paths of \mathbb{S}
$\mathbb{S} \mid=F: \quad$ holds if $\pi \mid=F$ for all $\pi \in \operatorname{Comp}(\mathbb{S})$

Symbolic Representation and Transition Systems

Consider the transition systems T_{1} and T_{2} :

T_{1} and T_{2} have the same symbolic representation but satisfy different LTL formulas (e.g., $\diamond \neg x$)

Symbolic Representation and Transition Systems

Consider the transition systems T_{1} and T_{2} :

T_{1} and T_{2} have the same symbolic representation but satisfy different LTL formulas (e.g., $\diamond \neg x$)

This happens only if one of the transition systems has two states with the same labelling function (e.g., s_{0} and s_{1} in T_{2})

Symbolic Representation and Transition Systems

Consider the transition systems T_{1} and T_{2} :

T_{1} and T_{2} have the same symbolic representation but satisfy different LTL formulas (e.g., $\diamond \neg x$)

This happens only if one of the transition systems has two states with the same labelling function (e.g., s_{0} and s_{1} in T_{2})

Such symbolic representations are inadequate: one cannot distinguish two different states by a state formula

Making an Adequate Representation

If a transition system has different states labeled by the same interpretation, introduce a new state variable to distinguish such states

Making an Adequate Representation

If a transition system has different states labeled by the same interpretation, introduce a new state variable to distinguish such states

Example: One can add a current state variable cs with a unique value for each state

Making an Adequate Representation

If a transition system has different states labeled by the same interpretation, introduce a new state variable to distinguish such states

Example: One can add a current state variable cs with a unique value for each state

We will assume that different states always have different labelings

Reachability and Safety Properties

Reachability property: expressed by a formula for the form
ΔF

Reachability and Safety Properties

Reachability property: expressed by a formula for the form

Safety/invariance property: expressed by a formula of the form

In both cases, F is a PLFD formula

Reachability and Safety Properties

Reachability property: expressed by a formula for the form

Safety/invariance property: expressed by a formula of the form

In both cases, F is a PLFD formula
These are the most common problems arising in model checking

Reachability and Safety Properties

Reachability property: expressed by a formula for the form

Safety/invariance property: expressed by a formula of the form

In both cases, F is a PLFD formula
These are the most common problems arising in model checking
Terminology: With $\diamond F$, usually F denotes a set of undesirable or bad states which a system should not reach

Reachability and Safety Properties

Reachability property: expressed by a formula for the form

Safety/invariance property: expressed by a formula of the form

In both cases, F is a PLFD formula
These are the most common problems arising in model checking
Note: $\mathbb{S} \not \vDash \square F \quad$ iff $\quad \pi \models\langle\neg F$ for some $\pi \in \operatorname{Comp}(\mathbb{S})$

Reachability

Fix a transition system \mathbb{S} with transition relation T over states S
We write $s_{0} \rightarrow s_{1}$ if $\left(s_{0}, s_{1}\right) \in T$, (i.e., if there is a transition from state s_{0} to state s_{1})

Let $s \in S$

Reachability

Fix a transition system \mathbb{S} with transition relation T over states S
We write $s_{0} \rightarrow s_{1}$ if $\left(s_{0}, s_{1}\right) \in T$, (i.e., if there is a transition from state s_{0} to state s_{1})

Let $s \in S$

- s is reachable in n steps from a state $s_{0} \in S$ if there exist states $s_{1}, \ldots, s_{n} \in S$ such that $s_{n}=s$ and $s_{0} \rightarrow s_{1} \rightarrow \cdots \rightarrow s_{n}$

Reachability

Fix a transition system \mathbb{S} with transition relation T over states S
We write $s_{0} \rightarrow s_{1}$ if $\left(s_{0}, s_{1}\right) \in T$, (i.e., if there is a transition from state s_{0} to state s_{1})

Let $s \in S$

- s is reachable in n steps from a state $s_{0} \in S$ if there exist states $s_{1}, \ldots, s_{n} \in S$ such that $s_{n}=s$ and $s_{0} \rightarrow s_{1} \rightarrow \cdots \rightarrow s_{n}$
- $s \in S$ is reachable from a state $s_{0} \in S$ if s is reachable from s_{0} in $n \geq 0$ steps

Reachability

Fix a transition system \mathbb{S} with transition relation T over states S
We write $s_{0} \rightarrow s_{1}$ if $\left(s_{0}, s_{1}\right) \in T$, (i.e., if there is a transition from state s_{0} to state s_{1})

Let $s \in S$

- s is reachable in n steps from a state $s_{0} \in S$ if there exist states $s_{1}, \ldots, s_{n} \in S$ such that $s_{n}=s$ and $s_{0} \rightarrow s_{1} \rightarrow \cdots \rightarrow s_{n}$
- $s \in S$ is reachable from a state $s_{0} \in S$ if s is reachable from s_{0} in $n \geq 0$ steps
- $s \in S$ is reachable in \mathbb{S} if s is reachable from some initial state of \mathbb{S}

Reachability Properties and Graph Reachability

Theorem 1
A reachability property $\diamond F$ holds on some computation path iff $s \models F$ for some reachable state s.

Reformulation of Reachability

\mathbb{S} transition system with state variables $\boldsymbol{x}=x_{1}, \ldots, x_{n}$
Given

1. An initial condition I(x),
2. A transition formula $T\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)$,
3. A final condition $F(x)$,
denoting the initial states of \mathbb{S} denoting the transition relation of \mathbb{S} denoting a set of final states
is any final state reachable from an initial state?

Notation:

- $A(x)$ indicates that x are the free variables of A
- $A\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)$ indicates that $\boldsymbol{x}, \boldsymbol{x}^{\prime}$ are the free variables of A with $\boldsymbol{x}^{\prime}=x_{1}^{\prime}, \ldots, x_{n}^{\prime}$

Reformulation of Reachability

\mathbb{S} transition system with state variables $\boldsymbol{x}=x_{1}, \ldots, x_{n}$

Given

1. An initial condition I(x),
2. A transition formula $T\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)$,
3. A final condition $F(x)$,
denoting the initial states of \mathbb{S} denoting the transition relation of \mathbb{S} denoting a set of final states
is any final state reachable from an initial state?

Note: this reformulation does not use temporal logic

Symbolic Reachability Checking

Main Idea: build a symbolic representation of the set of reachable states

Symbolic Reachability Checking

Main Idea: build a symbolic representation of the set of reachable states

Two main kinds of algorithm:

- forward reachability
- backward reachability

An Efficient Encoding of PLFD in Propositional Logic

To reason about reachability it is convenient to use SAT solvers

An Efficient Encoding of PLFD in Propositional Logic

To reason about reachability it is convenient to use SAT solvers
This requires an encoding of PLFD to propositional logic

An Efficient Encoding of PLFD in Propositional Logic

To reason about reachability it is convenient to use SAT solvers
This requires an encoding of PLFD to propositional logic
The encoding from the PLFD chapter does not scale well for large finite domains

An Efficient Encoding of PLFD in Propositional Logic

To reason about reachability it is convenient to use SAT solvers
This requires an encoding of PLFD to propositional logic
The encoding from the PLFD chapter does not scale well for large finite domains

An exponentially more compact encoding represents domains as sets of binary numbers

An Efficient Encoding of PLFD in Propositional Logic

To reason about reachability it is convenient to use SAT solvers
This requires an encoding of PLFD to propositional logic
The encoding from the PLFD chapter does not scale well for large finite domains

An exponentially more compact encoding represents domains as sets of binary numbers

Then, for a variable x with a domain of size 2^{n} for $n>1$,
n boolean variables are enough to represent x, instead of 2^{n}

An Efficient Encoding of PLFD in Propositional Logic

Suppose $|\operatorname{dom}(x)|=8$
Let $v_{0}, v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}$ be an arbitrary enumeration of $\operatorname{dom}(x)$

An Efficient Encoding of PLFD in Propositional Logic

Suppose $|\operatorname{dom}(x)|=8$
Let $v_{0}, v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}$ be an arbitrary enumeration of $\operatorname{dom}(x)$
Assign to each v_{i} the number i in binary:

$$
\begin{aligned}
& b_{x}=\quad\left\{\begin{array}{c}
v_{0}
\end{array}>000, v_{1} \mapsto 001, v_{2} \mapsto 010, v_{3} \mapsto 011,\right. \\
&\left.v_{4} \mapsto 100, v_{5} \mapsto 101, v_{6} \mapsto 110, v_{7} \mapsto 111\right\}
\end{aligned}
$$

An Efficient Encoding of PLFD in Propositional Logic

Suppose $|\operatorname{dom}(x)|=8$
Let $v_{0}, v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}$ be an arbitrary enumeration of $\operatorname{dom}(x)$
Assign to each v_{i} the number i in binary:

$$
\begin{aligned}
& b_{x}=\quad\left\{\begin{array}{c}
v_{0}
\end{array}>000, v_{1} \mapsto 001, v_{2} \mapsto 010, v_{3} \mapsto 011,\right. \\
&\left.v_{4} \mapsto 100, v_{5} \mapsto 101, v_{6} \mapsto 110, v_{7} \mapsto 111\right\}
\end{aligned}
$$

If b is a binary number, let $b[k]$ denote its k-th least significant bit (e.g., $001[2]=0,001[1]=0,001[0]=1$)

An Efficient Encoding of PLFD in Propositional Logic

Suppose $|\operatorname{dom}(x)|=8$
Let $v_{0}, v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}$ be an arbitrary enumeration of $\operatorname{dom}(x)$
Assign to each v_{i} the number i in binary:

$$
\begin{aligned}
& b_{x}=\quad\left\{v_{0} \mapsto 000, v_{1} \mapsto 001, v_{2} \mapsto 010, v_{3} \mapsto 011,\right. \\
&\left.v_{4} \mapsto 100, v_{5} \mapsto 101, v_{6} \mapsto 110, v_{7} \mapsto 111\right\}
\end{aligned}
$$

If b is a binary number, let $b[k]$ denote its k-th least significant bit (e.g., $001[2]=0,001[1]=0,001[0]=1$)

Encode atoms of the form $x=v_{i}$ as

$$
x_{2}=b_{x}\left(v_{i}\right)[2] \wedge x_{1}=b_{x}\left(v_{i}\right)[1] \wedge x_{0}=b_{x}\left(v_{i}\right)[0]
$$

where x_{2}, x_{1}, x_{0} are boolean variables for x

Binary Encoding Example

$$
\begin{aligned}
\text { dom(temp }) & =\{0,150,160,170,180,190,200,210\} \\
\text { dom(cont) }= & \{\text { none, burger, pizza, soup }\} \\
b_{\text {temp }}= & \{0 \mapsto 000,150 \mapsto 001,160 \mapsto 010,170 \mapsto 011 \\
& 180 \mapsto 100,190 \mapsto 101,200 \mapsto 110,210 \mapsto 111\} \\
b_{\text {cont }}= & \{\text { none } \mapsto 00, \text { pizza } \mapsto 01, \text { burger } \mapsto 10, \text { soup } \mapsto 11\}
\end{aligned}
$$

Binary Encoding Example

$$
\begin{aligned}
b_{\text {temp }}= & \{0 \mapsto 000,150 \mapsto 001,160 \mapsto 010,170 \mapsto 011 \\
& 180 \mapsto 100,190 \mapsto 101,200 \mapsto 110,210 \mapsto 111\} \\
b_{\text {cont }}= & \{\text { none } \mapsto 00, \text { pizza } \mapsto 01, \text { burger } \mapsto 10, \text { soup } \mapsto 11\}
\end{aligned}
$$

The PLFD formula

$$
\text { cont }=\text { pizza } \rightarrow \text { temp } \neq 200
$$

Binary Encoding Example

$$
\begin{aligned}
b_{\text {temp }}= & \{0 \mapsto 000,150 \mapsto 001,160 \mapsto 010,170 \mapsto 011 \\
& 180 \mapsto 100,190 \mapsto 101,200 \mapsto 110,210 \mapsto 111\} \\
b_{\text {cont }}= & \{\text { none } \mapsto 00, \text { pizza } \mapsto 01, \text { burger } \mapsto 10, \text { soup } \mapsto 11\}
\end{aligned}
$$

The PLFD formula

$$
\text { cont }=\text { pizza } \rightarrow \text { temp } \neq 200
$$

is encoded as

$$
\left(\text { cont }_{1}=0 \wedge \text { cont }_{0}=1\right) \rightarrow \neg\left(\text { temp }_{2}=1 \wedge \text { temp }_{1}=1 \wedge \text { temp }_{0}=0\right)
$$

(with cont ${ }_{1}$, cont ${ }_{0}$, temp ${ }_{2}$, temp ${ }_{1}$, temp ${ }_{0}$ boolean)

Binary Encoding Example

$$
\begin{aligned}
b_{\text {temp }}= & \{0 \mapsto 000,150 \mapsto 001,160 \mapsto 010,170 \mapsto 011 \\
& 180 \mapsto 100,190 \mapsto 101,200 \mapsto 110,210 \mapsto 111\} \\
b_{\text {cont }}= & \{\text { none } \mapsto 00, \text { pizza } \mapsto 01, \text { burger } \mapsto 10, \text { soup } \mapsto 11\}
\end{aligned}
$$

The PLFD formula

$$
\text { cont }=\text { pizza } \rightarrow \text { temp } \neq 200
$$

is encoded as

$$
\left(\text { cont }_{1}=0 \wedge \text { cont }_{0}=1\right) \rightarrow \neg\left(\text { temp }_{2}=1 \wedge \text { temp }_{1}=1 \wedge \text { temp }_{0}=0\right)
$$

(with cont ${ }_{1}$, cont ${ }_{0}$, temp ${ }_{2}$, temp ${ }_{1}$, temp ${ }_{0}$ boolean)
or, more compactly, as

$$
\left(\neg \text { cont }_{1} \wedge \text { cont }_{0}\right) \rightarrow \neg\left(\text { temp }_{2} \wedge \text { temp }_{1} \wedge \neg \text { temp }_{0}\right)
$$

Binary Encoding

The translation is similar for every domain of cardinality 2^{n} for some $n>1$

Binary Encoding

The translation is similar for every domain of cardinality 2^{n} for some $n>1$

What if the cardinality of a domain $\operatorname{dom}(x)$ is not a power of 2?

Binary Encoding

The translation is similar for every domain of cardinality 2^{n} for some $n>1$

What if the cardinality of a domain $\operatorname{dom}(x)$ is not a power of 2?

1. Let n be the smallest n such that $|\operatorname{dom}(x)|<2^{n}$
2. Encode as before but add constraint on x_{i} 's to discard spurious values

Binary Encoding

The translation is similar for every domain of cardinality 2^{n} for some $n>1$
What if the cardinality of a domain $\operatorname{dom}(x)$ is not a power of 2 ?

1. Let n be the smallest n such that $|\operatorname{dom}(x)|<2^{n}$
2. Encode as before but add constraint on x_{i} 's to discard spurious values

Example

$\|\operatorname{dom}(x)\|$	Constraint	Discarded values
7	$x_{2} \wedge x_{1} \rightarrow \neg x_{0}$	111
6	$x_{2} \rightarrow \neg x_{1}$	110,111
5	$x_{2} \rightarrow \neg\left(x_{1} \vee x_{0}\right)$	$101,110,111$
4	use only x_{1}, x_{0} for x	none
3	$x_{1} \rightarrow \neg x_{0}$	11
2	use only x_{0} for x	none

Binary Encoding of Transition System States

Consider states described by state variables x, y, z
A state is then just a value from domain

$$
S=\operatorname{dom}(x) \times \operatorname{dom}(y) \times \operatorname{dom}(z)
$$

Binary Encoding of Transition System States

Consider states described by state variables x, y, z
A state is then just a value from domain

$$
S=\operatorname{dom}(x) \times \operatorname{dom}(y) \times \operatorname{dom}(z)
$$

1. If $|S| \leq 2^{n}$, encode D in binary as described before
2. Use boolean variables x_{0}, \ldots, x_{n-1} to represent a state $s \in S$

Binary Encoding of Transition System States

Consider states described by state variables x, y, z
A state is then just a value from domain

$$
S=\operatorname{dom}(x) \times \operatorname{dom}(y) \times \operatorname{dom}(z)
$$

1. If $|S| \leq 2^{n}$, encode D in binary as described before
2. Use boolean variables x_{0}, \ldots, x_{n-1} to represent a state $s \in S$

We will consider only boolean state variables from now on

Reachability as a Decision Problem

$x=x_{1}, \ldots, x_{n}$ with each x_{i} a boolean state variable

Given

1. a formula $/(x)$, the initial condition
2. a formula $T\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)$, the transition formula
3. a formula $F(x)$, the final/reachability condition

Reachability as a Decision Problem

$$
x=x_{1}, \ldots, x_{n} \text { with each } x_{i} \text { a boolean state variable }
$$

Given

1. a formula $I(x)$, the initial condition
2. a formula $T\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)$, the transition formula
3. a formula $F(x)$, the final/reachability condition
is there a sequence of states s_{0}, \ldots, s_{k} such that
4. $s_{0} \models I(x)$
5. $\left(s_{i-1}, s_{i}\right) \models T\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)$ for all $i=0, \ldots, k-1$
6. $s_{k} \models F(\boldsymbol{x})$

Reachability as a Decision Problem

$$
x=x_{1}, \ldots, x_{n} \text { with each } x_{i} \text { a boolean state variable }
$$

Given

1. a formula $I(x)$, the initial condition
2. a formula $T\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)$, the transition formula
3. a formula $F(x)$, the final/reachability condition
is there a sequence of states s_{0}, \ldots, s_{k} such that
4. $s_{0} \models I(x)$
5. $\left(s_{i-1}, s_{i}\right) \models T\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)$ for all $i=0, \ldots, k-1$
6. $s_{k} \models F(\boldsymbol{x})$

Equivalently, is the following formula satisfiable for some $k \geq 0$?

$$
I\left(\boldsymbol{x}_{0}\right) \wedge T\left(\boldsymbol{x}_{0}, \boldsymbol{x}_{1}\right) \wedge \cdots \wedge T\left(\boldsymbol{x}_{k-1}, \boldsymbol{x}_{k}\right) \wedge F\left(\boldsymbol{x}_{k}\right)
$$

Reachability as a Decision Problem

$$
x=x_{1}, \ldots, x_{n} \text { with each } x_{i} \text { a boolean state variable }
$$

Given

1. a formula $I(x)$, the initial condition
2. a formula $T\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)$, the transition formula
3. a formula $F(x)$, the final/reachability condition
is there a sequence of states s_{0}, \ldots, s_{k} such that
4. $s_{0} \models I(x)$
5. $\left(s_{i-1}, s_{i}\right) \models T\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)$ for all $i=0, \ldots, k-1$
6. $s_{k} \models F(\boldsymbol{x})$

Note: When that in this case, s_{k} is reachable from s_{0} in k steps

Idea of Reachability-Checking Algorithms

Observation: If a final state is reachable from an initial state s_{0}, it is reachable from s_{0} in some finite number k of steps

Idea of Reachability-Checking Algorithms

Observation: If a final state is reachable from an initial state s_{0}, it is reachable from s_{0} in some finite number k of steps

Approach:

- Starting with $k=0$, construct a formula $R_{k}(x)$ denoting the set of states reachable in k steps

Idea of Reachability-Checking Algorithms

Observation: If a final state is reachable from an initial state s_{0}, it is reachable from s_{0} in some finite number k of steps

Approach:

- Starting with $k=0$, construct a formula $R_{k}(x)$ denoting the set of states reachable in k steps
- If $R_{k}(\boldsymbol{x})$ is not satisfied by a final state, increase k and start again

Idea of Reachability-Checking Algorithms

Observation: If a final state is reachable from an initial state s_{0}, it is reachable from s_{0} in some finite number k of steps

Approach:

- Starting with $k=0$, construct a formula $R_{k}(x)$ denoting the set of states reachable in k steps
- If $R_{k}(\boldsymbol{x})$ is not satisfied by a final state, increase k and start again

When does this process terminate?

Reachability in n steps

Reachability in n steps

States reachable in (exactly) 0 steps:

Reachability in n steps

States reachable in (exactly) 1 steps:

Reachability in n steps

States reachable in (exactly) 2 steps:

Reachability in n steps

States reachable in (exactly) 3 steps:

Reachability in n steps

States reachable in (exactly) 4 steps:

Simple Logical Analysis

Notation: If $z=\left(z_{1}, \ldots, z_{n}\right)$ is a tuple of variables, $\exists \mathbf{z} F$ abbreviates $\exists z_{1} \cdots \exists z_{n} F$

Lemma 2

Let $C(x)$ symbolically represent a set of states S_{C}. The formula

$$
F R(\boldsymbol{x}) \stackrel{\text { def }}{=} \exists \boldsymbol{z}(C(\boldsymbol{z}) \wedge T(\boldsymbol{z}, \boldsymbol{x}))
$$

denotes the set of states reachable from S_{C} in one step.

Simple Logical Analysis

Lemma 3

For all $n \geq 0$, the formula R_{n}, defined inductively by:

$$
R_{0}(\boldsymbol{x}) \stackrel{\text { def }}{=} I(\boldsymbol{x}) \quad R_{n+1}(\boldsymbol{x}) \stackrel{\text { def }}{=} \exists \boldsymbol{z}\left(R_{n}(\boldsymbol{z}) \wedge T(\boldsymbol{z}, \boldsymbol{x})\right)
$$

denotes the set of states reachable in exactly n steps.

Simple Logical Analysis

Lemma 3

For all $n \geq 0$, the formula R_{n}, defined inductively by:

$$
R_{0}(\boldsymbol{x}) \stackrel{\text { def }}{=} I(\boldsymbol{x}) \quad R_{n+1}(\boldsymbol{x}) \stackrel{\text { def }}{=} \exists \boldsymbol{z}\left(R_{n}(\boldsymbol{z}) \wedge T(\boldsymbol{z}, \boldsymbol{x})\right)
$$

denotes the set of states reachable in exactly n steps.

Note:

$$
\begin{aligned}
R_{n}\left(\boldsymbol{x}_{n}\right) & =\exists \boldsymbol{z}\left(R_{n-1}(\boldsymbol{z}) \wedge T\left(\boldsymbol{z}, \boldsymbol{x}_{n}\right)\right) \\
& \equiv \exists \boldsymbol{x}_{n-1}\left(R_{n-1}\left(\boldsymbol{x}_{n-1}\right) \wedge T\left(\boldsymbol{x}_{n-1}, \boldsymbol{x}_{n}\right)\right) \\
& \equiv \exists \boldsymbol{x}_{n-1}\left(\exists \boldsymbol{x}_{n-2}\left(R_{n-2}\left(\boldsymbol{x}_{n-2}\right) \wedge T\left(\boldsymbol{x}_{n-2}, \boldsymbol{x}_{n-1}\right)\right) \wedge T\left(\boldsymbol{x}_{n-1}, \boldsymbol{x}_{n}\right)\right) \\
& \equiv \exists \boldsymbol{x}_{n-1}\left(\exists \boldsymbol{x}_{n-2}\left(\cdots \exists \boldsymbol{x}_{0}\left(I\left(\boldsymbol{x}_{0}\right) \wedge T\left(\boldsymbol{x}_{0}, \boldsymbol{x}_{1}\right)\right) \cdots\right) \wedge T\left(\boldsymbol{x}_{n-1}, \boldsymbol{x}_{n}\right)\right)
\end{aligned}
$$

Simple Logical Analysis

Lemma 3

For all $n \geq 0$, the formula R_{n}, defined inductively by:

$$
R_{0}(\boldsymbol{x}) \stackrel{\text { def }}{=} I(\boldsymbol{x}) \quad R_{n+1}(\boldsymbol{x}) \stackrel{\text { def }}{=} \exists \boldsymbol{z}\left(R_{n}(\boldsymbol{z}) \wedge T(\boldsymbol{z}, \boldsymbol{x})\right)
$$

denotes the set of states reachable in exactly n steps.

Note:

$$
\begin{aligned}
R_{n}\left(\boldsymbol{x}_{n}\right) & =\exists \boldsymbol{z}\left(R_{n-1}(\boldsymbol{z}) \wedge T\left(\boldsymbol{z}, \boldsymbol{x}_{n}\right)\right) \\
& \equiv \exists \boldsymbol{x}_{n-1}\left(R_{n-1}\left(\boldsymbol{x}_{n-1}\right) \wedge T\left(\boldsymbol{x}_{n-1}, \boldsymbol{x}_{n}\right)\right) \\
& \equiv \exists \boldsymbol{x}_{n-1}\left(\exists \boldsymbol{x}_{n-2}\left(R_{n-2}\left(\boldsymbol{x}_{n-2}\right) \wedge T\left(\boldsymbol{x}_{n-2}, \boldsymbol{x}_{n-1}\right)\right) \wedge T\left(\boldsymbol{x}_{n-1}, \boldsymbol{x}_{n}\right)\right) \\
& \equiv \exists \boldsymbol{x}_{n-1}\left(\exists \boldsymbol{x}_{n-2}\left(\cdots \exists \boldsymbol{x}_{0}\left(I\left(\boldsymbol{x}_{0}\right) \wedge T\left(\boldsymbol{x}_{0}, \boldsymbol{x}_{1}\right)\right) \cdots\right) \wedge T\left(\boldsymbol{x}_{n-1}, \boldsymbol{x}_{n}\right)\right)
\end{aligned}
$$

$R_{n}\left(\boldsymbol{x}_{n}\right)$ is equisatisfiable with $I\left(\boldsymbol{x}_{0}\right) \wedge T\left(\boldsymbol{x}_{0}, \boldsymbol{x}_{1}\right) \wedge \cdots \wedge T\left(\boldsymbol{x}_{n-1}, \boldsymbol{x}_{n}\right)$

Simple Forward Reachability Algorithm

Checks that it is possible to reach a state that satisfies F

```
procedure SFReach(I,T,F)
input: formulas I(x),T(x, \mp@subsup{\boldsymbol{x}}{}{\prime}),F(\boldsymbol{x})
output: "yes" or "no" output
begin
    i := 0
    R := I( }\mp@subsup{\boldsymbol{x}}{0}{}
    loop
        if R\wedgeF(\mp@subsup{\boldsymbol{x}}{i}{})\mathrm{ is satisfiable}
        then return "yes"
```



```
    i := i+1
    end loop
end
```


Simple Forward Reachability Algorithm

Checks that it is possible to reach a state that satisfies F

```
procedure SFReach(I, T,F)
input: formulas I(\boldsymbol{x}),T(\boldsymbol{x},\mp@subsup{\boldsymbol{x}}{}{\prime}),F(\boldsymbol{x})
output: "yes" or "no" output
begin
    i := 0
    R := I( }\mp@subsup{\boldsymbol{x}}{0}{}
    loop
        if R\wedgeF(\mp@subsup{\boldsymbol{x}}{i}{})\mathrm{ is satisfiable}
        then return "yes"
    R := R\wedgeT(釉, 採隹)
    i := i+1
    end loop
end
```

How do we check the satisfiability of $R \wedge F\left(\boldsymbol{x}_{i}\right)$ ？

Simple Forward Reachability Algorithm

Checks that it is possible to reach a state that satisfies F

```
procedure SFReach(I, T,F)
input: formulas I(\boldsymbol{x}),T(\boldsymbol{x},\mp@subsup{\boldsymbol{x}}{}{\prime}),F(\boldsymbol{x})
output: "yes" or "no" output
begin
    i := 0
    R := I( }\mp@subsup{\boldsymbol{x}}{0}{}
    loop
        if R\wedgeF(\mp@subsup{\boldsymbol{x}}{i}{})\mathrm{ is satisfiable}
        then return "yes"
```



```
    i := i+1
    end loop
end
```


Termination

States reachable in (exactly) 0 steps:

Termination

States reachable in (exactly) 1 steps:

Termination

States reachable in (exactly) 2 steps:

Termination

States reachable in (exactly) 3 steps:

Termination

States reachable in (exactly) 4 steps:

Termination

States reachable in (exactly) 5 steps:

Termination

States reachable in (exactly) 6 steps:

Termination

States reachable in (exactly) 7 steps:

When no final state is reachable, the algorithm does not terminate!

Reachability in $\leq n$ steps

Define a sequence of formulas $R_{\leq n}$ for reachability in at most n states:

$$
\begin{aligned}
R_{\leq 0}(\boldsymbol{x}) & \stackrel{\text { def }}{=} I(\boldsymbol{x}) \\
R_{\leq n+1}(\boldsymbol{x}) & \stackrel{\text { def }}{=} R_{\leq n}(\boldsymbol{x}) \vee \exists \mathbf{z}\left(R_{\leq n}(\boldsymbol{z}) \wedge T(\boldsymbol{z}, \boldsymbol{x})\right)
\end{aligned}
$$

Reachability in $\leq n$ steps

States reachable in at most 0 steps:

Reachability in $\leq n$ steps

States reachable in at most 1 steps:

Reachability in $\leq n$ steps

States reachable in at most 2 steps:

Reachability in $\leq n$ steps

States reachable in at most 3 steps:

Reachability in $\leq n$ steps

States reachable in at most 4 steps:

Reachability in $\leq n$ steps

States reachable in at most 5 steps:

Full set of reachable states has been determined!

Termination

Let S_{n} the set of states reachable in $\leq n$ steps

Key properties for termination:

1. $S_{n} \subseteq S_{n+1}$ for all $n \leq 0$
2. the state space is finite

Termination

Let S_{n} the set of states reachable in $\leq n$ steps

Key properties for termination:

1. $S_{n} \subseteq S_{n+1}$ for all $n \leq 0$
2. the state space is finite

Consequences:

- there is k such that $S_{k}=S_{k+1}$
- for such k we have $R_{\leq k}(\boldsymbol{x}) \equiv R_{\leq k+1}(\boldsymbol{x})$

Forward Reachability Algorithm

procedure $\operatorname{FReach}(I, T, F)$
input: formulas $/(x), T\left(x, x^{\prime}\right), F(x)$
output: "yes" or "no"
begin

$$
R(x):=I(x)
$$

loop
if $R(x) \wedge F(x)$ is satisfiable then return "yes"
$R^{\prime}(\boldsymbol{x}):=R(\boldsymbol{x}) \vee \exists \mathbf{z}(R(\mathbf{z}) \wedge T(\mathbf{z}, \boldsymbol{x}))$
if $R(x) \equiv R^{\prime}(x)$ then return "no"
$R(x):=R^{\prime}(x)$
end loop
end

Forward Reachability Algorithm

procedure $\operatorname{FReach}(I, T, F)$
input: formulas $/(x), T\left(x, x^{\prime}\right), F(x)$
output: "yes" or "no"
Implementation?
begin

$$
R(\boldsymbol{x}):=I(\boldsymbol{x})
$$

loop
if $R(\boldsymbol{x}) \wedge F(\boldsymbol{x})$ is satisfiable then return "yes"
$R^{\prime}(\boldsymbol{x}):=R(\boldsymbol{x}) \vee \exists \boldsymbol{z}(R(\mathbf{z}) \wedge T(\boldsymbol{z}, \boldsymbol{x}))$
if $R(\boldsymbol{x}) \equiv R^{\prime}(\boldsymbol{x})$ then return "no"
$R(\boldsymbol{x}):=R^{\prime}(\boldsymbol{x})$
end loop
end

Forward Reachability Algorithm

procedure $\operatorname{FReach}(I, T, F)$
input: formulas $/(x), T\left(x, x^{\prime}\right), F(x)$
output: "yes" or "no"
Implementation?
begin
$R(x):=I(x)$
loop
if $R(x) \wedge F(x)$ is satisfiable then return "yes"

Conjunction and disjunction

```
    R'(\boldsymbol{x}):=R(\boldsymbol{x})\vee\exists\boldsymbol{z}(R(\boldsymbol{z})\wedgeT(\boldsymbol{z},\boldsymbol{x}))
    if R(x)\equiv\mp@subsup{R}{}{\prime}(x)\mathrm{ then return "no"}
    R(x) := R'(x)
    end loop
end
```


Forward Reachability Algorithm

procedure $\operatorname{FReach}(I, T, F)$
input: formulas $/(x), T\left(x, x^{\prime}\right), F(x)$
output: "yes" or "no"
Implementation?
begin
$R(\boldsymbol{x}):=I(\boldsymbol{x})$
loop
if $R(\boldsymbol{x}) \wedge F(\boldsymbol{x})$ is satisfiable then return "yes"

```
    R'(\boldsymbol{x}):=R(\boldsymbol{x})\vee\exists\boldsymbol{z}(R(\boldsymbol{z})\wedgeT(\boldsymbol{z},\boldsymbol{x}))
    if R(\boldsymbol{x})\equiv\mp@subsup{R}{}{\prime}(\boldsymbol{x})\mathrm{ then return "no"}
    R(x) := R'(x)
    end loop
end
```


Forward Reachability Algorithm

procedure $\operatorname{FReach}(I, T, F)$
input: formulas $/(x), T\left(x, x^{\prime}\right), F(x)$
output: "yes" or "no"
begin
$R(x):=I(x)$
loop
if $R(x) \wedge F(x)$ is satisfiable then return "yes"
$R^{\prime}(\boldsymbol{x}):=R(\boldsymbol{x}) \vee \exists \boldsymbol{z}(R(\boldsymbol{z}) \wedge T(\boldsymbol{z}, \boldsymbol{x}))$
if $R(x) \equiv R^{\prime}(x)$ then return "no" $R(\boldsymbol{x}):=R^{\prime}(\boldsymbol{x})$
end loop
end

Implementation?

Conjunction and disjunction Quantification Satisfiability checking

Forward Reachability Algorithm

procedure F Reach (I, T, F)
input: formulas /($\boldsymbol{x}), T\left(x, x^{\prime}\right), F(x)$
output: "yes" or "no"
Implementation?
begin
$R(\boldsymbol{x}):=I(\boldsymbol{x})$
loop
if $R(\boldsymbol{x}) \wedge F(\boldsymbol{x})$ is satisfiable then return "yes"
$R^{\prime}(\boldsymbol{x}):=R(\boldsymbol{x}) \vee \exists \mathbf{z}(R(\mathbf{z}) \wedge T(\mathbf{z}, \boldsymbol{x}))$
if $R(\boldsymbol{x}) \equiv R^{\prime}(\boldsymbol{x})$ then return "no" $R(\boldsymbol{x}):=R^{\prime}(\boldsymbol{x})$
end loop
end

Conjunction and disjunction Quantification Satisfiability checking Equivalence checking

Forward Reachability Algorithm

procedure F Reach (I, T, F)
input: formulas /($\boldsymbol{x}), T\left(x, x^{\prime}\right), F(x)$
output: "yes" or "no"
Implementation?
begin

$$
R(\boldsymbol{x}):=I(\boldsymbol{x})
$$

loop
if $R(\boldsymbol{x}) \wedge F(\boldsymbol{x})$ is satisfiable then return "yes"
$R^{\prime}(\boldsymbol{x}):=R(\boldsymbol{x}) \vee \exists \boldsymbol{z}(R(\boldsymbol{z}) \wedge T(\boldsymbol{z}, \boldsymbol{x}))$
if $R(\boldsymbol{x}) \equiv R^{\prime}(\boldsymbol{x})$ then return "no" $R(\boldsymbol{x}):=R^{\prime}(\boldsymbol{x})$
end loop
end

Main Issues with Forward Reachability Algorithms

Forward reachability behaves in the same way, independently of the set of final states

In other words, it is not goal oriented

Backward Reachability

Idea:

- instead of going forward in the state transition graph, go backward
- swap initial and final states and invert the transition relation

Backward Reachability in $\leq n$ steps

Idea:

- instead of going forward in the state transition graph, go backward
- swap initial and final states and invert the transition relation

Number of backward steps: 0

Backward Reachability in $\leq n$ steps

Idea:

- instead of going forward in the state transition graph, go backward
- swap initial and final states and invert the transition relation

Number of backward steps: 1

Backward Reachability in $\leq n$ steps

Idea:

- instead of going forward in the state transition graph, go backward
- swap initial and final states and invert the transition relation

Number of backward steps: 1

Backward Reachability in n steps

Number of backward steps: 0

Backward Reachability in n steps

Number of backward steps: 1

Backward Reachability in n steps

Number of backward steps: 2

Backward Reachability in n steps

Number of backward steps: 3

Backward Reachability in n steps

Number of backward steps: 4

Backward Reachability in n steps

Number of backward steps: 4

Backward Reachability

S_{0} is backward reachable from F in n steps
if F is reachable from S_{0} in n steps

Backward Reachability

S_{0} is backward reachable from F in n steps
if F is reachable from S_{0} in n steps

Lemma 4
Let $C(\boldsymbol{x})$ symbolically represent a set of states S_{C}. The formula

$$
B R(\boldsymbol{x}) \stackrel{\text { def }}{=} \exists \boldsymbol{z}(T(\boldsymbol{x}, \boldsymbol{z}) \wedge C(\boldsymbol{z}))
$$

denotes the set of states backward reachable from S_{C} in one step.

Backward Reachability Algorithm

Same as the forward reachability algorithms, but

- swap / with F
- invert the transition relation T

Backward Reachability Algorithm

Same as the forward reachability algorithms, but

- swap / with F
- invert the transition relation T

```
procedure BReach(I,T,F)
input: formulas I, T,F
output: "yes" or "no"
begin
    R(\boldsymbol{x}):= F(\boldsymbol{x})
    loop
    if }R(\boldsymbol{x})\wedgeI(\boldsymbol{x})\mathrm{ is satisfiable then
        return "yes"
    R'(\boldsymbol{x}):=R(\boldsymbol{x})\vee\exists\mathbf{z}(T(\boldsymbol{x},\mathbf{z})\wedgeR(\boldsymbol{z}))
    if R(\boldsymbol{x})\equiv\mp@subsup{R}{}{\prime}(\boldsymbol{x})\mathrm{ then return "no"}
    R(\boldsymbol{x}) := R'(x)
    end loop
end
```


Backward Reachability Algorithm

Same as the forward reachability algorithms, but

- swap / with F
- invert the transition relation T
procedure $B \operatorname{Reach}(I, T, F)$
input: formulas I, T,F
output: "yes" or "no"
begin
$R(\boldsymbol{x}):=F(\boldsymbol{x})$
loop
if $R(\boldsymbol{x}) \wedge I(\boldsymbol{x})$ is satisfiable then return "yes"
$R^{\prime}(\boldsymbol{x}):=R(\boldsymbol{x}) \vee \exists \boldsymbol{z}(T(\boldsymbol{x}, \boldsymbol{z}) \wedge R(\boldsymbol{z}))$
if $R(\boldsymbol{x}) \equiv R^{\prime}(\boldsymbol{x})$ then return "no"
$R(\boldsymbol{x}):=R^{\prime}(\boldsymbol{x})$
end loop
end

```
procedure FReach(I, T,F)
input: formulas I, T,F
output: "yes" or "no"
begin
R(\boldsymbol{x}):= I(\boldsymbol{x})
loop
    if }R(\boldsymbol{x})\wedgeF(\boldsymbol{x})\mathrm{ is satisfiable then
        return "yes"
    R'(\boldsymbol{x}):=R(\boldsymbol{x})\vee\exists\mathbf{z}(R(\mathbf{z})\wedgeT(\mathbf{z},\boldsymbol{x}))
    if R(x)\equiv\mp@subsup{R}{}{\prime}(\boldsymbol{x})\mathrm{ then return "no"}
    R(\boldsymbol{x})}:=\mp@subsup{R}{}{\prime}(\boldsymbol{x}
    end loop
end
```


Backward Reachability Algorithm

Same as the forward reachability algorithms, but

- swap / with F
- invert the transition relation T
procedure $B \operatorname{Reach}(I, T, F)$
input: formulas I, T,F
output: "yes" or "no"
begin
$R(\boldsymbol{x}):=F(\boldsymbol{x})$
loop
if $R(x) \wedge I(x)$ is satisfiable then return "yes"
$R^{\prime}(\boldsymbol{x}):=R(\boldsymbol{x}) \vee \exists \mathbf{z}(T(\boldsymbol{x}, \mathbf{z}) \wedge R(\mathbf{z}))$
if $R(\boldsymbol{x}) \equiv R^{\prime}(\boldsymbol{x})$ then return "no"
$R(\boldsymbol{x}):=R^{\prime}(\boldsymbol{x})$
end loop
end

```
procedure FReach(I, T,F)
input: formulas I, T,F
output: "yes" or "no"
begin
    R(\boldsymbol{x}) := I(\boldsymbol{x})
loop
    if }R(\boldsymbol{x})\wedgeF(\boldsymbol{x})\mathrm{ is satisfiable then
        return "yes"
    R'(\boldsymbol{x}):=R(\boldsymbol{x})\vee\exists\mathbf{z}(R(\mathbf{z})\wedgeT(\boldsymbol{z},\boldsymbol{x}))
    if R(\boldsymbol{x})\equiv\mp@subsup{R}{}{\prime}(\boldsymbol{x})\mathrm{ then return "no"}
    R(\boldsymbol{x})}:=\mp@subsup{R}{}{\prime}(\boldsymbol{x}
    end loop
end
```


Checking Invariant Properties

Reachability checking can be used to prove invariant properties too

Checking Invariant Properties

Reachability checking can be used to prove invariant properties too
To check whether a state property P is invariant for a system \mathbb{S} :

we can check the reachability in \mathbb{S} of $\neg P$

Checking Invariant Properties

Reachability checking can be used to prove invariant properties too
To check whether a state property P is invariant for a system \mathbb{S} :

we can check the reachability in \mathbb{S} of $\neg P$
Reason: F is invariant iff $\neg P$ is unreachable

Checking Invariant Properties

Reachability checking can be used to prove invariant properties too
To check whether a state property P is invariant for a system \mathbb{S} :

$$
\mathbb{S} \models \square P
$$

we can check the reachability in \mathbb{S} of $\neg P$
Reason: F is invariant iff $\neg P$ is unreachable
However, there are more direct and often more efficient ways to check for invariance

Invariant Checking by Temporal Induction

Consider system \mathbb{S} with initial condition $I(\boldsymbol{x})$ and transition formula $T\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)$

Invariant Checking by Temporal Induction

Consider system \mathbb{S} with initial condition $I(\boldsymbol{x})$ and transition formula $T\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)$

Theorem 5
$P(x)$ is invariant for \mathbb{S} if the following entailments hold in PLFD:
(base case) $\quad I(x) \models P(x)$
(inductive step) $\quad P(\boldsymbol{x}) \wedge T\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right) \models P\left(\boldsymbol{x}^{\prime}\right)$

Invariant Checking by Temporal Induction

Consider system \mathbb{S} with initial condition $I(\boldsymbol{x})$ and transition formula $T\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)$

Theorem 5

$P(x)$ is invariant for \mathbb{S} if the following entailments hold in PLFD:
(base case) $\quad I(x) \models P(x)$
(inductive step) $\quad P(\boldsymbol{x}) \wedge T\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right) \models P\left(\boldsymbol{x}^{\prime}\right)$
iff

- $I(x) \wedge \neg P(x)$ is unsatisfiable and
- $P(\boldsymbol{x}) \wedge T\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right) \wedge \neg P\left(\boldsymbol{x}^{\prime}\right)$ is unsatisfiable

Invariant Checking by Temporal Induction

Consider system \mathbb{S} with initial condition $I(\boldsymbol{x})$ and transition formula $T\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)$

Theorem 5

$P(\boldsymbol{x})$ is invariant for \mathbb{S} if the following entailments hold in PLFD:
(base case) $\quad I(x) \models P(x)$
(inductive step) $\quad P(\boldsymbol{x}) \wedge T\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right) \models P\left(\boldsymbol{x}^{\prime}\right)$
iff

- $I(x) \wedge \neg P(x)$ is unsatisfiable and
- $P(\boldsymbol{x}) \wedge T\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right) \wedge \neg P\left(\boldsymbol{x}^{\prime}\right)$ is unsatisfiable

In that case, P is (temporally) inductive for \mathbb{S}

Invariant Checking by Temporal Induction

Consider system \mathbb{S} with initial condition $I(\boldsymbol{x})$ and transition formula $T\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)$

```
Theorem 5
P(x) is invariant for $ if the following entailments hold in PLFD:
    (base case) I(x) \modelsP(x)
    (inductive step) P(\boldsymbol{x})\wedgeT(\boldsymbol{x},\mp@subsup{\boldsymbol{x}}{}{\prime})\modelsP(\mp@subsup{\boldsymbol{x}}{}{\prime})
```

Problem: Not all invariants are inductive

Example 1: Inductive vs. Invariant

$$
\begin{aligned}
& \operatorname{dom}\left(x_{1}\right)=\operatorname{dom}\left(x_{2}\right)=\{0,1,2,3,4,5,6,7\} \\
I\left(x_{1}, x_{2}\right) & \stackrel{\text { def }}{=} x_{1}=0 \wedge x_{2}=1 \\
T\left(x_{1}, x_{2}, x_{1}^{\prime}, x_{2}^{\prime}\right) & \stackrel{\text { def }}{=}\left(x_{2} \neq 3 \rightarrow x_{2}^{\prime}=x_{2}+1\right) \\
& \wedge\left(x_{2}=3 \rightarrow x_{2}^{\prime}=0\right) \\
& \wedge x_{1}^{\prime}=x_{2}
\end{aligned}
$$

Note: This system can be encoded faithfully in PLFD (and so in PL)

Example 1: Inductive vs. Invariant

$$
\operatorname{dom}\left(x_{1}\right)=\operatorname{dom}\left(x_{2}\right)=\{0,1,2,3,4,5,6,7\}
$$

$$
\begin{aligned}
I\left(x_{1}, x_{2}\right) & \stackrel{\text { def }}{=} x_{1}=0 \wedge x_{2}=1 \\
T\left(x_{1}, x_{2}, x_{1}^{\prime}, x_{2}^{\prime}\right) & \stackrel{\text { def }}{=}\left(x_{2} \neq 3 \rightarrow x_{2}^{\prime}=x_{2}+1\right) \\
& \wedge\left(x_{2}=3 \rightarrow x_{2}^{\prime}=0\right) \\
& \wedge x_{1}^{\prime}=x_{2} \\
P\left(x_{1}, x_{2}\right) & \stackrel{\text { def }}{=} 0 \leq x_{2} \wedge x_{2} \leq 3 \quad \text { Inductive? Invariant? }
\end{aligned}
$$

Example 1: Inductive vs. Invariant

$$
\begin{aligned}
& \qquad \operatorname{dom}\left(x_{1}\right)=\operatorname{dom}\left(x_{2}\right)=\{0,1,2,3,4,5,6,7\} \\
& I\left(x_{1}, x_{2}\right) \stackrel{\text { def }}{=} x_{1}=0 \wedge x_{2}=1 \\
& T\left(x_{1}, x_{2}, x_{1}^{\prime}, x_{2}^{\prime}\right) \stackrel{\text { def }}{=}\left(x_{2} \neq 3 \rightarrow x_{2}^{\prime}=x_{2}+1\right) \\
& \wedge\left(x_{2}=3 \rightarrow x_{2}^{\prime}=0\right) \\
& \wedge x_{1}^{\prime}=x_{2} \\
& P\left(x_{1}, x_{2}\right) \stackrel{\text { def }}{=} 0 \leq x_{2} \wedge x_{2} \leq 3 \quad \text { Inductive? Invariant? } \\
& \text { base) } \quad I\left(x_{1}, x_{2}\right) \models P\left(x_{1}, x_{2}\right) \text { ? } \\
& \text { step) } \quad P\left(x_{1}, x_{2}\right) \wedge T\left(x_{1}, x_{2}, x_{1}^{\prime}, x_{2}^{\prime}\right) \models P\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \text { ? }
\end{aligned}
$$

Example 1: Inductive vs. Invariant

$$
\begin{aligned}
& \operatorname{dom}\left(x_{1}\right)=\operatorname{dom}\left(x_{2}\right)=\{0,1,2,3,4,5,6,7\} \\
I\left(x_{1}, x_{2}\right) & \stackrel{\text { def }}{=} x_{1}=0 \wedge x_{2}=1 \\
T\left(x_{1}, x_{2}, x_{1}^{\prime}, x_{2}^{\prime}\right) & \stackrel{\text { def }}{=}\left(x_{2} \neq 3 \rightarrow x_{2}^{\prime}=x_{2}+1\right) \\
& \wedge\left(x_{2}=3 \rightarrow x_{2}^{\prime}=0\right) \\
& \wedge x_{1}^{\prime}=x_{2} \\
P\left(x_{1}, x_{2}\right) & \stackrel{\text { def }}{=} 0 \leq x_{2} \wedge x_{2} \leq 3 \quad \text { Inductive? Invariant? } \\
\text { base) } \quad I\left(x_{1}, x_{2}\right) & \models P\left(x_{1}, x_{2}\right) ? \\
\text { step) } \quad P\left(x_{1}, x_{2}\right) & \wedge T\left(x_{1}, x_{2}, x_{1}^{\prime}, x_{2}^{\prime}\right) \models P\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \text { ? }
\end{aligned}
$$

Example 1: Inductive vs. Invariant

$$
\begin{aligned}
& \operatorname{dom}\left(x_{1}\right)=\operatorname{dom}\left(x_{2}\right)=\{0,1,2,3,4,5,6,7\} \\
I\left(x_{1}, x_{2}\right) & \stackrel{\text { def }}{=} x_{1}=0 \wedge x_{2}=1 \\
T\left(x_{1}, x_{2}, x_{1}^{\prime}, x_{2}^{\prime}\right) & \stackrel{\text { def }}{=}\left(x_{2} \neq 3 \rightarrow x_{2}^{\prime}=x_{2}+1\right) \\
& \wedge\left(x_{2}=3 \rightarrow x_{2}^{\prime}=0\right) \\
& \wedge x_{1}^{\prime}=x_{2} \\
P\left(x_{1}, x_{2}\right) & \stackrel{\text { def }}{=} x_{2} \leq 4 \quad \text { Inductive? Invariant? } \\
\text { base) } \quad I\left(x_{1}, x_{2}\right) & \models P\left(x_{1}, x_{2}\right) ? \\
\text { step) } P\left(x_{1}, x_{2}\right) & \wedge T\left(x_{1}, x_{2}, x_{1}^{\prime}, x_{2}^{\prime}\right) \models P\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \text { ? }
\end{aligned}
$$

Example 1: Inductive vs. Invariant

$$
\begin{aligned}
& \operatorname{dom}\left(x_{1}\right)=\operatorname{dom}\left(x_{2}\right)=\{0,1,2,3,4,5,6,7\} \\
& I\left(x_{1}, x_{2}\right) \stackrel{\text { def }}{=} x_{1}=0 \wedge x_{2}=1 \\
& T\left(x_{1}, x_{2}, x_{1}^{\prime}, x_{2}^{\prime}\right) \stackrel{\text { def }}{=}\left(x_{2} \neq 3 \rightarrow x_{2}^{\prime}=x_{2}+1\right) \\
& \wedge\left(x_{2}=3 \rightarrow x_{2}^{\prime}=0\right) \\
& \wedge x_{1}^{\prime}=x_{2} \\
& P\left(x_{1}, x_{2}\right) \stackrel{\text { def }}{=} x_{2} \leq 4 \\
&\text { base }) \quad I\left(x_{1}, x_{2}\right) \not \models P\left(x_{1}, x_{2}\right) ? \\
& \text { step } \quad P\left(x_{1}, x_{2}\right) \wedge T\left(x_{1}, x_{2}, x_{1}^{\prime}, x_{2}^{\prime}\right) \models P\left(x_{1}^{\prime}, x_{2}^{\prime}\right) ? \\
& \quad\left\{x_{1} \mapsto 1, x_{2} \mapsto 4\right\},\left\{x_{1}^{\prime} \mapsto 4, x_{2}^{\prime} \mapsto 5\right\}
\end{aligned}
$$

Example 1: Inductive vs. Invariant

$$
\begin{aligned}
& \operatorname{dom}\left(x_{1}\right)=\operatorname{dom}\left(x_{2}\right)=\{0,1,2,3,4,5,6,7\} \\
& I\left(x_{1}, x_{2}\right) \stackrel{\text { def }}{=} x_{1}=0 \wedge x_{2}=1 \\
& T\left(x_{1}, x_{2}, x_{1}^{\prime}, x_{2}^{\prime}\right) \stackrel{\text { def }}{=}\left(x_{2} \neq 3 \rightarrow x_{2}^{\prime}=x_{2}+1\right) \\
& \wedge\left(x_{2}=3 \rightarrow x_{2}^{\prime}=0\right) \\
& \wedge x_{1}^{\prime}=x_{2} \\
& P\left(x_{1}, x_{2}\right) \stackrel{\text { def }}{=} x_{2} \leq 4 \\
&\text { base }) \quad I\left(x_{1}, x_{2}\right) \mid=P\left(x_{1}, x_{2}\right) ? \\
& \text { step } \quad P\left(x_{1}, x_{2}\right) \wedge T\left(x_{1}, x_{2}, x_{1}^{\prime}, x_{2}^{\prime}\right) \models P\left(x_{1}^{\prime}, x_{2}^{\prime}\right) ? \\
& \quad\left\{x_{1} \mapsto 1, x_{2} \mapsto 4\right\},\left\{x_{1}^{\prime} \mapsto 4, x_{2}^{\prime} \mapsto 5\right\} \\
& \text { Inductive? Invariant? } \\
& \text { state }\left\{x_{1} \mapsto 0, x_{2} \mapsto 4\right\} \text { is unreachable! }
\end{aligned}
$$

Example 1: Inductive vs. Invariant

$$
\begin{aligned}
& \operatorname{dom}\left(x_{1}\right)=\operatorname{dom}\left(x_{2}\right)=\{0,1,2,3,4,5,6,7\} \\
I\left(x_{1}, x_{2}\right) & \stackrel{\text { def }}{=} x_{1}=0 \wedge x_{2}=1 \\
T\left(x_{1}, x_{2}, x_{1}^{\prime}, x_{2}^{\prime}\right) & \stackrel{\text { def }}{=}\left(x_{2} \neq 3 \rightarrow x_{2}^{\prime}=x_{2}+1\right) \\
& \wedge\left(x_{2}=3 \rightarrow x_{2}^{\prime}=0\right) \\
& \wedge x_{1}^{\prime}=x_{2} \\
P\left(x_{1}, x_{2}\right) & \stackrel{\text { def }}{=} x_{1}<x_{2} \quad \text { Inductive? Invariant? } \\
\text { base } \quad I\left(x_{1}, x_{2}\right) & \models P\left(x_{1}, x_{2}\right) ? \\
\text { step) } P\left(x_{1}, x_{2}\right) & \wedge T\left(x_{1}, x_{2}, x_{1}^{\prime}, x_{2}^{\prime}\right) \models P\left(x_{1}^{\prime}, x_{2}^{\prime}\right) ?
\end{aligned}
$$

Example 1: Inductive vs. Invariant

$$
\begin{aligned}
& \\
& I\left(x_{1}, x_{2}\right) \stackrel{\text { def }}{=} x_{1}=0 \wedge x_{2}=1 \\
& T\left(x_{1}, x_{2}, x_{1}^{\prime}, x_{2}^{\prime}\right) \stackrel{\text { def }}{=}\left(x_{2} \neq 3 \rightarrow x_{2}^{\prime}=x_{2}+1\right) \\
& \wedge\left(x_{2}=3 \rightarrow x_{2}^{\prime}=0\right) \\
& \wedge x_{1}^{\prime}=x_{2} \\
& P\left(x_{1}, x_{2}\right)\left.\stackrel{\text { def }}{=} x_{1}<x_{2}\right) \\
&\text { base }) \quad I\left(x_{1}, x_{2}\right) \not \models P\left(x_{1}, x_{2}\right) ? \\
& \text { step } \quad P\left(x_{1}, x_{2}\right) \wedge T\left(x_{1}, x_{2}, x_{1}^{\prime}, x_{2}^{\prime}\right) \models P\left(x_{1}^{\prime}, x_{2}^{\prime}\right) ? \\
& \quad\left\{x_{1} \mapsto 2, x_{2} \mapsto 3\right\},\left\{x_{1}^{\prime} \mapsto 3, x_{2}^{\prime} \mapsto 0\right\}
\end{aligned}
$$

Example 1: Inductive vs. Invariant

$$
\begin{aligned}
& \operatorname{dom}\left(x_{1}\right)=\operatorname{dom}\left(x_{2}\right)=\{0,1,2,3,4,5,6,7\} \\
& I\left(x_{1}, x_{2}\right) \stackrel{\text { def }}{=} x_{1}=0 \wedge x_{2}=1 \\
& T\left(x_{1}, x_{2}, x_{1}^{\prime}, x_{2}^{\prime}\right) \stackrel{\text { def }}{=}\left(x_{2} \neq 3 \rightarrow x_{2}^{\prime}=x_{2}+1\right) \\
& \wedge\left(x_{2}=3 \rightarrow x_{2}^{\prime}=0\right) \\
& \wedge x_{1}^{\prime}=x_{2} \\
& P\left(x_{1}, x_{2}\right) \stackrel{\text { def }}{=} x_{1}<x_{2} \\
&\text { base }) \quad I\left(x_{1}, x_{2}\right) \neq P\left(x_{1}, x_{2}\right) ? \\
& \text { step } \quad P\left(x_{1}, x_{2}\right) \wedge T\left(x_{1}, x_{2}, x_{1}^{\prime}, x_{2}^{\prime}\right) \neq P\left(x_{1}^{\prime}, x_{2}^{\prime}\right) ? \\
& \quad\left\{x_{1} \mapsto 2, x_{2} \mapsto 3\right\},\left\{x_{1}^{\prime} \mapsto 3, x_{2}^{\prime} \mapsto 0\right\} \\
& \text { state }\left\{x_{1} \mapsto 2, x_{2} \mapsto 3\right\} \text { is reachable! }
\end{aligned}
$$

Example 1: Inductive vs. Invariant

$$
\begin{aligned}
& \operatorname{dom}\left(x_{1}\right)=\operatorname{dom}\left(x_{2}\right)=\{0,1,2,3,4,5,6,7\} \\
I\left(x_{1}, x_{2}\right) & \stackrel{\text { def }}{=} x_{1}=0 \wedge x_{2}=1 \\
T\left(x_{1}, x_{2}, x_{1}^{\prime}, x_{2}^{\prime}\right) & \stackrel{\text { def }}{=}\left(x_{2} \neq 3 \rightarrow x_{2}^{\prime}=x_{2}+1\right) \\
& \wedge\left(x_{2}=3 \rightarrow x_{2}^{\prime}=0\right) \\
& \wedge x_{1}^{\prime}=x_{2} \\
P\left(x_{1}, x_{2}\right) & \stackrel{\text { def }}{=} 0<x_{1} \quad \text { Inductive? Invariant? } \\
\text { base } \quad I\left(x_{1}, x_{2}\right) & \models P\left(x_{1}, x_{2}\right) ? \\
\text { step) } P\left(x_{1}, x_{2}\right) & \wedge T\left(x_{1}, x_{2}, x_{1}^{\prime}, x_{2}^{\prime}\right) \models P\left(x_{1}^{\prime}, x_{2}^{\prime}\right) ?
\end{aligned}
$$

Example 1: Inductive vs. Invariant

$$
\begin{aligned}
& \operatorname{dom}\left(x_{1}\right)=\operatorname{dom}\left(x_{2}\right)=\{0,1,2,3,4,5,6,7\} \\
I\left(x_{1}, x_{2}\right) & \stackrel{\text { def }}{=} x_{1}=0 \wedge x_{2}=1 \\
T\left(x_{1}, x_{2}, x_{1}^{\prime}, x_{2}^{\prime}\right) & \stackrel{\text { def }}{=}\left(x_{2} \neq 3 \rightarrow x_{2}^{\prime}=x_{2}+1\right) \\
& \wedge\left(x_{2}=3 \rightarrow x_{2}^{\prime}=0\right) \\
& \wedge x_{1}^{\prime}=x_{2} \\
P\left(x_{1}, x_{2}\right) & \stackrel{\text { def }}{=} 0<x_{1} \quad \text { Inductive? Invariant? } \\
\text { base } \quad I\left(x_{1}, x_{2}\right) & \models P\left(x_{1}, x_{2}\right) ? \\
\text { step } \quad P\left(x_{1}, x_{2}\right) & \wedge T\left(x_{1}, x_{2}, x_{1}^{\prime}, x_{2}^{\prime}\right) \models P\left(x_{1}^{\prime}, x_{2}^{\prime}\right) ? \\
& X
\end{aligned}
$$

Example 1

$$
\boldsymbol{x}=\left(x_{1}, x_{2}\right) \quad \operatorname{dom}\left(x_{1}\right)=\operatorname{dom}\left(x_{2}\right)=\{0,1,2,3,4,5,6,7\}
$$

$$
\begin{aligned}
I(\boldsymbol{x}) & \stackrel{\text { def }}{=} x_{1}=0 \wedge x_{2}=1 \\
T\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right) & \stackrel{\text { def }}{=} x_{1}^{\prime}=x_{2} \wedge\left(x_{2} \neq 3 \rightarrow x_{2}^{\prime}=x_{2}+1\right) \wedge\left(x_{2}=3 \rightarrow x_{2}^{\prime}=0\right)
\end{aligned}
$$

Transition graph fragment:

Example 1

$$
\boldsymbol{x}=\left(x_{1}, x_{2}\right) \quad \operatorname{dom}\left(x_{1}\right)=\operatorname{dom}\left(x_{2}\right)=\{0,1,2,3,4,5,6,7\}
$$

$$
\begin{aligned}
I(\boldsymbol{x}) & \stackrel{\text { def }}{=} x_{1}=0 \wedge x_{2}=1 \\
T\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right) & \stackrel{\text { def }}{=} x_{1}^{\prime}=x_{2} \wedge\left(x_{2} \neq 3 \rightarrow x_{2}^{\prime}=x_{2}+1\right) \wedge\left(x_{2}=3 \rightarrow x_{2}^{\prime}=0\right)
\end{aligned}
$$

Transition graph fragment:

Example 1

$$
\boldsymbol{x}=\left(x_{1}, x_{2}\right) \quad \operatorname{dom}\left(x_{1}\right)=\operatorname{dom}\left(x_{2}\right)=\{0,1,2,3,4,5,6,7\}
$$

$$
\begin{aligned}
I(\boldsymbol{x}) & \stackrel{\text { def }}{=} x_{1}=0 \wedge x_{2}=1 \\
T\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right) & \stackrel{\text { def }}{=} x_{1}^{\prime}=x_{2} \wedge\left(x_{2} \neq 3 \rightarrow x_{2}^{\prime}=x_{2}+1\right) \wedge\left(x_{2}=3 \rightarrow x_{2}^{\prime}=0\right)
\end{aligned}
$$

Transition graph fragment:

Improving Induction's Applicability

$$
\text { 1. } I(x) \models P(\boldsymbol{x}) \quad \text { 2. } P(x) \wedge T\left(\boldsymbol{x}, \boldsymbol{x}_{1}^{\prime}\right) \models P\left(\boldsymbol{x}_{1}^{\prime}\right)
$$

A couple of options:

Improving Induction's Applicability

$$
\text { 1. } I(x) \models P(\boldsymbol{x}) \quad \text { 2. } P(x) \wedge T\left(\boldsymbol{x}, \boldsymbol{x}_{1}^{\prime}\right) \models P\left(\boldsymbol{x}_{1}^{\prime}\right)
$$

A couple of options:

- Inductive strengthening: find an inductive property $Q(x)$ such that $Q(\boldsymbol{x}) \models P(\boldsymbol{x})$

Improving Induction's Applicability

$$
\text { 1. } I(x) \models P(\boldsymbol{x}) \quad \text { 2. } P(x) \wedge T\left(\boldsymbol{x}, \boldsymbol{x}_{1}^{\prime}\right) \models P\left(\boldsymbol{x}_{1}^{\prime}\right)
$$

A couple of options:

- Inductive strengthening: find an inductive property $Q(x)$ such that $Q(\boldsymbol{x}) \models P(\boldsymbol{x})$

General solution but often expensive

Improving Induction's Applicability

$$
\text { 1. } I(x) \models P(\boldsymbol{x}) \quad \text { 2. } P(x) \wedge T\left(\boldsymbol{x}, \boldsymbol{x}_{1}^{\prime}\right) \models P\left(\boldsymbol{x}_{1}^{\prime}\right)
$$

A couple of options:

- k-induction: Consider more than one transition step at a time

Improving Induction's Applicability

$$
\text { 1. } I(x) \models P(\boldsymbol{x}) \quad \text { 2. } P(x) \wedge T\left(\boldsymbol{x}, \boldsymbol{x}_{1}^{\prime}\right) \models P\left(\boldsymbol{x}_{1}^{\prime}\right)
$$

A couple of options:

- k-induction: Consider more than one transition step at a time

Easy to automate although fairly weak in its basic form

Improving Induction's Applicability

$$
\text { 1. } I(x) \models P(\boldsymbol{x}) \quad \text { 2. } P(x) \wedge T\left(x, x_{1}^{\prime}\right) \models P\left(\boldsymbol{x}_{1}^{\prime}\right)
$$

A couple of options:

- Inductive strengthening: find an inductive property $Q(x)$ such that $Q(\boldsymbol{x}) \models P(\boldsymbol{x})$

General solution but often expensive

- k-induction: Consider more than one transition step at a time

Easy to automate although fairly weak in its basic form

Inductive Strengthening

Find an inductive property $Q(\boldsymbol{x})$ such that $Q(\boldsymbol{x}) \models P(\boldsymbol{x})$

Inductive Strengthening

Find an inductive property $Q(\boldsymbol{x})$ such that $Q(\boldsymbol{x}) \models P(\boldsymbol{x})$

Example 1

$x_{2} \leq 4$ is not inductive
However, $x_{2} \leq 3$ is inductive and $x_{2} \leq 3 \models x_{2} \leq 4$

Inductive Strengthening

Find an inductive property $Q(\boldsymbol{x})$ such that $Q(\boldsymbol{x}) \models P(\boldsymbol{x})$

Theorem 6
If $Q(\boldsymbol{x})$ is inductive for \mathbb{S} and $Q(\boldsymbol{x}) \models P(\boldsymbol{x})$ then $\mathbb{S} \models \square P(\boldsymbol{x})$

Inductive Strengthening

Find an inductive property $Q(\boldsymbol{x})$ such that $Q(\boldsymbol{x}) \models P(\boldsymbol{x})$

Theorem 6
If $Q(\boldsymbol{x})$ is inductive for \mathbb{S} and $Q(\boldsymbol{x}) \models P(\boldsymbol{x})$ then $\mathbb{S} \models \square P(\boldsymbol{x})$

There is actually a Q that works for every P !

Inductive Strengthening

Find an inductive property $Q(\boldsymbol{x})$ such that $Q(\boldsymbol{x}) \models P(\boldsymbol{x})$

Theorem 6
If $Q(x)$ is inductive for \mathbb{S} and $Q(x) \models P(x)$ then $\mathbb{S} \models \square P(x)$

Consider smallest k such that $R_{\leq k}(\boldsymbol{x}) \equiv R_{\leq k+1}(\boldsymbol{x})$

Inductive Strengthening

Find an inductive property $Q(\boldsymbol{x})$ such that $Q(\boldsymbol{x}) \models P(\boldsymbol{x})$

Theorem 6
If $Q(\boldsymbol{x})$ is inductive for \mathbb{S} and $Q(\boldsymbol{x}) \models P(\boldsymbol{x})$ then $\mathbb{S} \models \square P(\boldsymbol{x})$

Consider smallest k such that $R_{\leq k}(\boldsymbol{x}) \equiv R_{\leq k+1}(\boldsymbol{x})$

Theorem 7
$R_{\leq k}(\boldsymbol{x})$ is the strongest inductive invariant for \mathbb{S} :

1. $R_{\leq k}(x)$ is inductive for \mathbb{S}
2. $P(\boldsymbol{x})$ is invariant for \mathbb{S} iff $R_{\leq k}(\boldsymbol{x}) \models P(\boldsymbol{x})$

Inductive Strengthening

Find an inductive property $Q(\boldsymbol{x})$ such that $Q(\boldsymbol{x}) \models P(\boldsymbol{x})$

> Theorem 6
> If $Q(\boldsymbol{x})$ is inductive for \mathbb{S} and $Q(\boldsymbol{x}) \models P(\boldsymbol{x})$ then $\mathbb{S} \models \square P(\boldsymbol{x})$

Consider smallest k such that $R_{\leq k}(\boldsymbol{x}) \equiv R_{\leq k+1}(\boldsymbol{x})$

Example 1

$k=3$
$R_{\leq 3}(\boldsymbol{x}) \equiv\left(x_{2}=0 \wedge x_{1}=3\right) \vee\left(x_{2} \in\{1,2,3\} \wedge x_{1}=x_{2}-1\right)$
$R_{\leq 3}(x) \mid=x \leq 4$, hence $x \leq 4$ is invariant

Issues with Strongest Inductive Invariant

Computing $R=R_{\leq k}(\boldsymbol{x})$ with $R_{\leq k}(\boldsymbol{x}) \equiv R_{\leq k+1}(\boldsymbol{x})$ is expensive
Boolean encodings of R (as a QBF or a OBDD) can be exponentially large in the size of x

Issues with Strongest Inductive Invariant

Computing $R=R_{\leq k}(\boldsymbol{x})$ with $R_{\leq k}(\boldsymbol{x}) \equiv R_{\leq k+1}(\boldsymbol{x})$ is expensive
Boolean encodings of R (as a QBF or a OBDD) can be exponentially large in the size of x

Good News:
Computing R to prove some P invariant is overkill in many cases

Issues with Strongest Inductive Invariant

Computing $R=R_{\leq k}(\boldsymbol{x})$ with $R_{\leq k}(x) \equiv R_{\leq k+1}(x)$ is expensive
Boolean encodings of R (as a QBF or a OBDD) can be exponentially large in the size of x

Good News:

Computing R to prove some P invariant is overkill in many cases
There are practically efficient methods that compute an inductive overapproximation R of R that entails P

Issues with Strongest Inductive Invariant

Computing $R=R_{\leq k}(\boldsymbol{x})$ with $R_{\leq k}(x) \equiv R_{\leq k+1}(x)$ is expensive
Boolean encodings of R (as a QBF or a OBDD) can be exponentially large in the size of x

Good News:

Computing R to prove some P invariant is overkill in many cases
There are practically efficient methods that compute an inductive overapproximation R of R that entails P

However, such methods are beyond the scope of this course

k-Induction

Consider more than one transition step at a time

k-Induction, Main Idea

Check that P is k-inductive for the system represented by / and T

If

$$
I\left(\boldsymbol{x}_{0}\right) \wedge T\left(\boldsymbol{x}_{0}, \boldsymbol{x}_{1}\right) \wedge \cdots \wedge T\left(\boldsymbol{x}_{i-1}, \boldsymbol{x}_{i}\right) \not \models P\left(\boldsymbol{x}_{i}\right) \text { for some } i \geq 0
$$

then
P is not invariant

k-Induction, Main Idea

Check that P is k-inductive for the system represented by / and T

If

$$
I\left(\boldsymbol{x}_{0}\right) \wedge T\left(\boldsymbol{x}_{0}, \boldsymbol{x}_{1}\right) \wedge \cdots \wedge T\left(\boldsymbol{x}_{i-1}, \boldsymbol{x}_{i}\right) \not \vDash P\left(\boldsymbol{x}_{i}\right) \text { for some } i \geq 0
$$

then
P is not invariant

If, for some $k \geq 0$,

$$
I\left(\boldsymbol{x}_{0}\right) \wedge T\left(\boldsymbol{x}_{0}, \boldsymbol{x}_{1}\right) \wedge \cdots \wedge T\left(\boldsymbol{x}_{i-1}, \boldsymbol{x}_{i}\right) \models P\left(\boldsymbol{x}_{i}\right) \text { for } i=0, \ldots, k
$$

and

$$
P\left(\boldsymbol{x}_{0}\right) \wedge \cdots \wedge P\left(\boldsymbol{x}_{k}\right) \wedge T\left(\boldsymbol{x}_{0}, \boldsymbol{x}_{1}\right) \wedge \cdots \wedge T\left(\boldsymbol{x}_{k}, \boldsymbol{x}_{k+1}\right) \models P\left(\boldsymbol{x}_{k+1}\right)
$$

then
P is k-inductive and hence invariant

k-Induction is Sufficient for Invariance

Theorem 7
Every state property P that is k-inductive for some $k \geq 0$ for a transition system \mathbb{S} is invariant for \mathbb{S}, i.e., $\mathbb{S} \vDash \square P$.

k-Induction is Sufficient for Invariance

Theorem 7
Every state property P that is k-inductive for some $k \geq 0$ for a transition system \mathbb{S} is invariant for \mathbb{S}, i.e., $\mathbb{S} \mid=\square P$.

Example 1

$P(\boldsymbol{x})=x_{2} \leq 4$ is not inductive but is 1-inductive:

$$
x_{2,0} \leq 4 \wedge x_{2,1} \leq 4 \wedge T\left(\boldsymbol{x}_{0}, \boldsymbol{x}_{1}\right) \wedge T\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right) \models x_{2,2} \leq 4
$$

k-Induction is Sufficient for Invariance

Theorem 7
Every state property P that is k-inductive for some $k \geq 0$ for a transition system \mathbb{S} is invariant for \mathbb{S}, i.e., $\mathbb{S} \models \square P$.

Example 1

$P(\boldsymbol{x})=x_{2} \leq 4$ is not inductive but is 1-inductive:

$$
x_{2,0} \leq 4 \wedge x_{2,1} \leq 4 \wedge T\left(\boldsymbol{x}_{0}, \boldsymbol{x}_{1}\right) \wedge T\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right) \models x_{2,2} \leq 4
$$

Path $(1,4) \rightarrow(4,5)$ is not a counterexample for 1-induction

k-Induction is Sufficient for Invariance

Theorem 7
Every state property P that is k-inductive for some $k \geq 0$ for a transition system \mathbb{S} is invariant for \mathbb{S}, i.e., $\mathbb{S} \models \square P$.

Example 1

$P(\boldsymbol{x})=x_{2} \leq 4$ is not inductive but is 1-inductive:

$$
x_{2,0} \leq 4 \wedge x_{2,1} \leq 4 \wedge T\left(\boldsymbol{x}_{0}, \boldsymbol{x}_{1}\right) \wedge T\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right) \models x_{2,2} \leq 4
$$

Path $(1,4) \rightarrow(4,5)$ is not a counterexample for 1-induction
$P(\boldsymbol{x})=x_{2} \leq 5$ is not 1-inductive but is 2-inductive

k-Induction is Sufficient for Invariance

```
Theorem 7
Every state property \(P\) that is \(k\)-inductive for some \(k \geq 0\) for a transition system \(\mathbb{S}\) is invariant for \(\mathbb{S}\), i.e., \(\mathbb{S}=\square P\).
```

Note:

- inductive $=0$-inductive
- k-inductive implies $(k+1)$-inductive
- k-induction is not necessary for invariance: some invariants are not k-inductive for any k

Basic k-Induction

```
procedure kInduction(I,T,P)
input: formulas I(x), \(T\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right), F(\boldsymbol{x})\)
output: "yes" or "no" output
begin
\(k:=0 ; \quad \hat{T}:=\top ; \quad \hat{P}:=P\left(x_{0}\right)\)
loop
    if \(/\left(x_{0}\right) \wedge \hat{T} \wedge \neg P\left(x_{k}\right)\) is satisfiable then return "no"
    if \(\hat{P} \wedge \hat{T} \wedge T\left(\boldsymbol{x}_{k}, \boldsymbol{x}_{k+1}\right) \wedge \neg P\left(\boldsymbol{x}_{k+1}\right)\) is unsatisfiable then return "yes"
    \(k:=k+1\)
    \(\hat{T}:=\hat{T} \wedge T\left(x_{k-1}, \boldsymbol{x}_{k}\right) \quad / / \hat{T}=T \wedge T\left(x_{0}, x_{1}\right) \wedge \cdots \wedge T\left(x_{k-1}, x_{k}\right)\)
    \(\hat{P}:=\hat{P} \wedge P\left(x_{k}\right) \quad / / \hat{P}=P\left(x_{0}\right) \wedge \cdots \wedge P\left(x_{k}\right)\)
    end loop
end
```


Basic k-Induction

procedure KInduction(I, T, P)
input: formulas $/(x), T\left(x, x^{\prime}\right), F(x)$
output: "yes" or "no" output
Will diverge if P is not k-inductive for any k begin

$$
k:=0 ; \quad \hat{T}:=\top ; \quad \hat{P}:=P\left(x_{0}\right)
$$

loop
if $/\left(\boldsymbol{x}_{0}\right) \wedge \hat{T} \wedge \neg P\left(\boldsymbol{x}_{k}\right)$ is satisfiable then return "no"
if $\hat{P} \wedge \hat{T} \wedge T\left(\boldsymbol{x}_{k}, \boldsymbol{x}_{k+1}\right) \wedge \neg P\left(\boldsymbol{x}_{k+1}\right)$ is unsatisfiable then return "yes"
$k:=k+1$
$\hat{T}:=\hat{T} \wedge T\left(x_{k-1}, x_{k}\right) \quad / / \hat{T}=T \wedge T\left(x_{0}, x_{1}\right) \wedge \cdots \wedge T\left(x_{k-1}, x_{k}\right)$
$\hat{P}:=\hat{P} \wedge P\left(x_{k}\right) \quad / / \hat{P}=P\left(x_{0}\right) \wedge \cdots \wedge P\left(x_{k}\right)$
end loop
end

Basic k-Induction with Termination Check

```
procedure kInduction(I,T,P)
input: formulas I(x),T(x, 利), P(x)
output: "yes" or "no" output
begin
k := 0; \hat{T}:= T; \hat{P}:=P(\mp@subsup{x}{0}{})
loop
    if /( }\mp@subsup{\boldsymbol{x}}{0}{})\wedge\hat{T}\wedge\negP(\mp@subsup{x}{k}{})\mathrm{ is satisfiable then return "no"
    if }\hat{P}\wedge\hat{T}\wedgeT(\mp@subsup{\boldsymbol{x}}{k}{},\mp@subsup{\boldsymbol{x}}{k+1}{\prime})\wedge\negP(\mp@subsup{\boldsymbol{x}}{k+1}{})\mathrm{ is unsatisfiable then return "yes"
    k := k+1
    \hat{T}:=\hat{T}\wedgeT(\mp@subsup{x}{k-1}{},\mp@subsup{\boldsymbol{x}}{k}{})\quad//\hat{T}=T\wedgeT(\mp@subsup{x}{0}{},\mp@subsup{x}{1}{})\wedge\cdots\wedgeT(\mp@subsup{x}{k-1}{},\mp@subsup{x}{k}{})
    \hat{P}:=\hat{P}\wedgeP(\mp@subsup{x}{k}{})\quad|\hat{P}=P(\mp@subsup{x}{0}{})\wedge\cdots\wedgeP(\mp@subsup{x}{k}{})
    if I(\mp@subsup{\boldsymbol{x}}{0}{})\wedge\hat{T}\wedge}\mp@subsup{\bigwedge}{0\leqi<j\leqk}{}\mp@subsup{\boldsymbol{x}}{i}{}\not=\mp@subsup{\boldsymbol{x}}{j}{}\mathrm{ is unsatisfiable then return "yes"
    end loop
end
```


Basic k-Induction with Termination Check

procedure kInduction(I,T,P) input: formulas I(x), $T\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right), P(\boldsymbol{x})$ output: "yes" or "no" output

Guaranteed to terminate with finite-state systems begin

$$
k:=0 ; \quad \hat{T}:=\top ; \quad \hat{P}:=P\left(x_{0}\right)
$$

loop
if $/\left(x_{0}\right) \wedge \hat{T} \wedge \neg P\left(x_{k}\right)$ is satisfiable then return "no"
if $\hat{P} \wedge \hat{T} \wedge T\left(\boldsymbol{x}_{k}, \boldsymbol{x}_{k+1}\right) \wedge \neg P\left(\boldsymbol{x}_{k+1}\right)$ is unsatisfiable then return "yes"
$k:=k+1$
$\hat{T}:=\hat{T} \wedge T\left(\boldsymbol{x}_{k-1}, \boldsymbol{x}_{k}\right) \quad / / \hat{T}=T \wedge T\left(x_{0}, x_{1}\right) \wedge \cdots \wedge T\left(x_{k-1}, x_{k}\right)$
$\hat{P}:=\hat{P} \wedge P\left(x_{k}\right) \quad / / \hat{P}=P\left(x_{0}\right) \wedge \cdots \wedge P\left(x_{k}\right)$
if $I\left(\boldsymbol{x}_{0}\right) \wedge \hat{T} \wedge \bigwedge_{0 \leq i<j \leq k} \boldsymbol{x}_{i} \neq \boldsymbol{x}_{j}$ is unsatisfiable then return "yes"
end loop
end

Extensions of Model Checking

- There are model-checking algorithms for temporal properties other than reachability and invariance

Extensions of Model Checking

- There are model-checking algorithms for temporal properties other than reachability and invariance
- There is a general model-checking algorithm for arbitrary LTL properties

Extensions of Model Checking

- There are model-checking algorithms for temporal properties other than reachability and invariance
- There is a general model-checking algorithm for arbitrary LTL properties
- There are extensions of model-checking techniques for infinite-state systems as well

Extensions of Model Checking

- There are model-checking algorithms for temporal properties other than reachability and invariance
- There is a general model-checking algorithm for arbitrary LTL properties
- There are extensions of model-checking techniques for infinite-state systems as well
- They will not be considered in this course

