
CS:4350 Logic in Computer Science

Model Checking

Cesare Tinelli

Spring 2022

1 / 45

Credits

These slides are largely based on slides originally developed by Andrei Voronkov
at the University of Manchester. Adapted by permission.

2 / 45

Outline

Model Checking
Model Checking Problem
Reachability and Safety Propertiest
Reachability Checking

An Efficient Encoding of PLFD in Propositional Logic
Invariance Checking

Inductive Strengthening
k-Induction

3 / 45

Putting it All Together

When we design a computational system, we would like to be sure
that it will satisfy all requirements, including safety requirements

Now we can treat the safety problem as a logical problem

We can
• formally represent our system as a transition system
• express desired properties of the system as temporal formulas

What is missing?

4 / 45

Putting it All Together

When we design a computational system, we would like to be sure
that it will satisfy all requirements, including safety requirements

Now we can treat the safety problem as a logical problem

We can
• formally represent our system as a transition system
• express desired properties of the system as temporal formulas

What is missing?

4 / 45

Putting it All Together

When we design a computational system, we would like to be sure
that it will satisfy all requirements, including safety requirements

Now we can treat the safety problem as a logical problem

We can
• formally represent our system as a transition system
• express desired properties of the system as temporal formulas

What is missing?

4 / 45

Putting it All Together

When we design a computational system, we would like to be sure
that it will satisfy all requirements, including safety requirements

Now we can treat the safety problem as a logical problem

We can
• formally represent our system as a transition system
• express desired properties of the system as temporal formulas

What is missing?

4 / 45

The Model Checking Problem

Given
1. a symbolic representation S of a transition system
2. an LTL formula F

check if every (some) computation of S satisfies F,
preferably fully automatically

Notation:
Comp(S): set of all computation paths of S

S |= F: holds if π |= F for all π ∈ Comp(S)

5 / 45

The Model Checking Problem

Given
1. a symbolic representation S of a transition system
2. an LTL formula F

check if every (some) computation of S satisfies F,
preferably fully automatically

Notation:
Comp(S): set of all computation paths of S

S |= F: holds if π |= F for all π ∈ Comp(S)

5 / 45

Symbolic Representation and Transition Systems

Consider the transition systems T1 and T2:

T1

x = 0x = 1s1 s2

T2

x = 0x = 1s1 s2

x = 1s0

T1 and T2 have the same symbolic representation but satisfy different LTL formulas
(e.g., ♢¬x)

This happens only if one of the transition systems has two states with the same
labelling function (e.g., s0 and s1 in T2)

Such symbolic representations are inadequate: one cannot distinguish two
different states by a state formula

6 / 45

Symbolic Representation and Transition Systems

Consider the transition systems T1 and T2:

T1

x = 0x = 1s1 s2

T2

x = 0x = 1s1 s2

x = 1s0

T1 and T2 have the same symbolic representation but satisfy different LTL formulas
(e.g., ♢¬x)

This happens only if one of the transition systems has two states with the same
labelling function (e.g., s0 and s1 in T2)

Such symbolic representations are inadequate: one cannot distinguish two
different states by a state formula

6 / 45

Symbolic Representation and Transition Systems

Consider the transition systems T1 and T2:

T1

x = 0x = 1s1 s2

T2

x = 0x = 1s1 s2

x = 1s0

T1 and T2 have the same symbolic representation but satisfy different LTL formulas
(e.g., ♢¬x)

This happens only if one of the transition systems has two states with the same
labelling function (e.g., s0 and s1 in T2)

Such symbolic representations are inadequate: one cannot distinguish two
different states by a state formula

6 / 45

Making an Adequate Representation

If a transition system has different states labeled by the same interpretation,
introduce a new state variable to distinguish such states

Example: One can add a current state variable cs with a unique value for each state

x = 0
cs = s2

x = 1
cs = s1

s1 s2

x = 1
cs = s0

s0

We will assume that different states always have different labelings

7 / 45

Making an Adequate Representation

If a transition system has different states labeled by the same interpretation,
introduce a new state variable to distinguish such states

Example: One can add a current state variable cs with a unique value for each state

x = 0
cs = s2

x = 1
cs = s1

s1 s2

x = 1
cs = s0

s0

We will assume that different states always have different labelings

7 / 45

Making an Adequate Representation

If a transition system has different states labeled by the same interpretation,
introduce a new state variable to distinguish such states

Example: One can add a current state variable cs with a unique value for each state

x = 0
cs = s2

x = 1
cs = s1

s1 s2

x = 1
cs = s0

s0

We will assume that different states always have different labelings

7 / 45

Reachability and Safety Properties

Reachability property: expressed by a formula for the form

♢F

Safety/invariance property: expressed by a formula of the form

F

In both cases, F is a PLFD formula

These are the most common problems arising in model checking

8 / 45

Reachability and Safety Properties

Reachability property: expressed by a formula for the form

♢F

Safety/invariance property: expressed by a formula of the form

F

In both cases, F is a PLFD formula

These are the most common problems arising in model checking

8 / 45

Reachability and Safety Properties

Reachability property: expressed by a formula for the form

♢F

Safety/invariance property: expressed by a formula of the form

F

In both cases, F is a PLFD formula

These are the most common problems arising in model checking

8 / 45

Reachability and Safety Properties

Reachability property: expressed by a formula for the form

♢F

Safety/invariance property: expressed by a formula of the form

F

In both cases, F is a PLFD formula

These are the most common problems arising in model checking

Terminology: With ♢F, usually F denotes a set of undesirable or bad
states which a system should not reach

8 / 45

Reachability and Safety Properties

Reachability property: expressed by a formula for the form

♢F

Safety/invariance property: expressed by a formula of the form

F

In both cases, F is a PLFD formula

These are the most common problems arising in model checking

Note: S ̸|= F iff π |= ♢¬F for some π ∈ Comp(S)

8 / 45

Reachability

Fix a transition system S with transition relation T over states S

We write s0 → s1 if (s0, s1) ∈ T, (i.e., if there is a transition from state s0 to
state s1)

Let s ∈ S
• s is reachable in n steps from a state s0 ∈ S if there exist states

s1, . . . , sn ∈ S such that sn = s and s0 → s1 → · · · → sn

• s ∈ S is reachable from a state s0 ∈ S if s is reachable from s0 in
n ≥ 0 steps

• s ∈ S is reachable in S if s is reachable from some initial state of S

9 / 45

Reachability

Fix a transition system S with transition relation T over states S

We write s0 → s1 if (s0, s1) ∈ T, (i.e., if there is a transition from state s0 to
state s1)

Let s ∈ S
• s is reachable in n steps from a state s0 ∈ S if there exist states

s1, . . . , sn ∈ S such that sn = s and s0 → s1 → · · · → sn

• s ∈ S is reachable from a state s0 ∈ S if s is reachable from s0 in
n ≥ 0 steps

• s ∈ S is reachable in S if s is reachable from some initial state of S

9 / 45

Reachability

Fix a transition system S with transition relation T over states S

We write s0 → s1 if (s0, s1) ∈ T, (i.e., if there is a transition from state s0 to
state s1)

Let s ∈ S
• s is reachable in n steps from a state s0 ∈ S if there exist states

s1, . . . , sn ∈ S such that sn = s and s0 → s1 → · · · → sn

• s ∈ S is reachable from a state s0 ∈ S if s is reachable from s0 in
n ≥ 0 steps

• s ∈ S is reachable in S if s is reachable from some initial state of S

9 / 45

Reachability

Fix a transition system S with transition relation T over states S

We write s0 → s1 if (s0, s1) ∈ T, (i.e., if there is a transition from state s0 to
state s1)

Let s ∈ S
• s is reachable in n steps from a state s0 ∈ S if there exist states

s1, . . . , sn ∈ S such that sn = s and s0 → s1 → · · · → sn

• s ∈ S is reachable from a state s0 ∈ S if s is reachable from s0 in
n ≥ 0 steps

• s ∈ S is reachable in S if s is reachable from some initial state of S

9 / 45

Reachability Properties and Graph Reachability

Theorem 1
A reachability property ♢F holds on some computation path iff
s |= F for some reachable state s.

10 / 45

Reformulation of Reachability

S transition system with state variables x = x1, . . . , xn

Given
1. An initial condition I(x), denoting the initial states of S
2. A transition formula T(x, x′), denoting the transition relation of S
3. A final condition F(x), denoting a set of final states

is any final state reachable from an initial state?

Notation:
• A(x) indicates that x are the free variables of A
• A(x, x′) indicates that x, x′ are the free variables of A with x′ = x′1, . . . , x′n

11 / 45

Reformulation of Reachability

S transition system with state variables x = x1, . . . , xn

Given
1. An initial condition I(x), denoting the initial states of S
2. A transition formula T(x, x′), denoting the transition relation of S
3. A final condition F(x), denoting a set of final states

is any final state reachable from an initial state?

Note: this reformulation does not use temporal logic

11 / 45

Symbolic Reachability Checking

Main Idea: build a symbolic representation of the set of reachable
states

Two main kinds of algorithm:
• forward reachability
• backward reachability

12 / 45

Symbolic Reachability Checking

Main Idea: build a symbolic representation of the set of reachable
states

Two main kinds of algorithm:
• forward reachability
• backward reachability

12 / 45

An Efficient Encoding of PLFD in Propositional Logic

To reason about reachability it is convenient to use SAT solvers

This requires an encoding of PLFD to propositional logic

The encoding from the PLFD chapter does not scale well for large
finite domains

An exponentially more compact encoding represents domains as
sets of binary numbers

Then, for a variable x with a domain of size 2n for n > 1,
n boolean variables are enough to represent x, instead of 2n

13 / 45

An Efficient Encoding of PLFD in Propositional Logic

To reason about reachability it is convenient to use SAT solvers

This requires an encoding of PLFD to propositional logic

The encoding from the PLFD chapter does not scale well for large
finite domains

An exponentially more compact encoding represents domains as
sets of binary numbers

Then, for a variable x with a domain of size 2n for n > 1,
n boolean variables are enough to represent x, instead of 2n

13 / 45

An Efficient Encoding of PLFD in Propositional Logic

To reason about reachability it is convenient to use SAT solvers

This requires an encoding of PLFD to propositional logic

The encoding from the PLFD chapter does not scale well for large
finite domains

An exponentially more compact encoding represents domains as
sets of binary numbers

Then, for a variable x with a domain of size 2n for n > 1,
n boolean variables are enough to represent x, instead of 2n

13 / 45

An Efficient Encoding of PLFD in Propositional Logic

To reason about reachability it is convenient to use SAT solvers

This requires an encoding of PLFD to propositional logic

The encoding from the PLFD chapter does not scale well for large
finite domains

An exponentially more compact encoding represents domains as
sets of binary numbers

Then, for a variable x with a domain of size 2n for n > 1,
n boolean variables are enough to represent x, instead of 2n

13 / 45

An Efficient Encoding of PLFD in Propositional Logic

To reason about reachability it is convenient to use SAT solvers

This requires an encoding of PLFD to propositional logic

The encoding from the PLFD chapter does not scale well for large
finite domains

An exponentially more compact encoding represents domains as
sets of binary numbers

Then, for a variable x with a domain of size 2n for n > 1,
n boolean variables are enough to represent x, instead of 2n

13 / 45

An Efficient Encoding of PLFD in Propositional Logic

Suppose |dom(x)| = 8

Let v0, v1, v2, v3, v4, v5, v6, v7 be an arbitrary enumeration of dom(x)

Assign to each vi the number i in binary:

bx = { v0 7→ 000, v1 7→ 001, v2 7→ 010, v3 7→ 011,
v4 7→ 100, v5 7→ 101, v6 7→ 110, v7 7→ 111 }

If b is a binary number, let b[k] denote its k-th least significant bit
(e.g., 001[2] = 0, 001[1] = 0, 001[0] = 1)

Encode atoms of the form x = vi as

x2 = bx(vi)[2] ∧ x1 = bx(vi)[1] ∧ x0 = bx(vi)[0]

where x2, x1, x0 are boolean variables for x

14 / 45

An Efficient Encoding of PLFD in Propositional Logic

Suppose |dom(x)| = 8

Let v0, v1, v2, v3, v4, v5, v6, v7 be an arbitrary enumeration of dom(x)

Assign to each vi the number i in binary:

bx = { v0 7→ 000, v1 7→ 001, v2 7→ 010, v3 7→ 011,
v4 7→ 100, v5 7→ 101, v6 7→ 110, v7 7→ 111 }

If b is a binary number, let b[k] denote its k-th least significant bit
(e.g., 001[2] = 0, 001[1] = 0, 001[0] = 1)

Encode atoms of the form x = vi as

x2 = bx(vi)[2] ∧ x1 = bx(vi)[1] ∧ x0 = bx(vi)[0]

where x2, x1, x0 are boolean variables for x

14 / 45

An Efficient Encoding of PLFD in Propositional Logic

Suppose |dom(x)| = 8

Let v0, v1, v2, v3, v4, v5, v6, v7 be an arbitrary enumeration of dom(x)

Assign to each vi the number i in binary:

bx = { v0 7→ 000, v1 7→ 001, v2 7→ 010, v3 7→ 011,
v4 7→ 100, v5 7→ 101, v6 7→ 110, v7 7→ 111 }

If b is a binary number, let b[k] denote its k-th least significant bit
(e.g., 001[2] = 0, 001[1] = 0, 001[0] = 1)

Encode atoms of the form x = vi as

x2 = bx(vi)[2] ∧ x1 = bx(vi)[1] ∧ x0 = bx(vi)[0]

where x2, x1, x0 are boolean variables for x

14 / 45

An Efficient Encoding of PLFD in Propositional Logic

Suppose |dom(x)| = 8

Let v0, v1, v2, v3, v4, v5, v6, v7 be an arbitrary enumeration of dom(x)

Assign to each vi the number i in binary:

bx = { v0 7→ 000, v1 7→ 001, v2 7→ 010, v3 7→ 011,
v4 7→ 100, v5 7→ 101, v6 7→ 110, v7 7→ 111 }

If b is a binary number, let b[k] denote its k-th least significant bit
(e.g., 001[2] = 0, 001[1] = 0, 001[0] = 1)

Encode atoms of the form x = vi as

x2 = bx(vi)[2] ∧ x1 = bx(vi)[1] ∧ x0 = bx(vi)[0]

where x2, x1, x0 are boolean variables for x

14 / 45

Binary Encoding Example

dom(temp) = { 0, 150, 160, 170, 180, 190, 200, 210 }
dom(cont) = { none, burger, pizza, soup }

btemp = { 0 7→ 000, 150 7→ 001, 160 7→ 010, 170 7→ 011
180 7→ 100, 190 7→ 101, 200 7→ 110, 210 7→ 111 }

bcont = { none 7→ 00, pizza 7→ 01, burger 7→ 10, soup 7→ 11}

The PLFD formula
cont = pizza → temp ̸= 200

is encoded as

(cont1 = 0 ∧ cont0 = 1) → ¬(temp2 = 1 ∧ temp1 = 1 ∧ temp0 = 0)

(with cont1, cont0, temp2, temp1, temp0 boolean)
or, more compactly, as

(¬cont1 ∧ cont0) → ¬(temp2 ∧ temp1 ∧ ¬temp0)

15 / 45

Binary Encoding Example

btemp = { 0 7→ 000, 150 7→ 001, 160 7→ 010, 170 7→ 011
180 7→ 100, 190 7→ 101, 200 7→ 110, 210 7→ 111 }

bcont = { none 7→ 00, pizza 7→ 01, burger 7→ 10, soup 7→ 11}

The PLFD formula
cont = pizza → temp ̸= 200

is encoded as

(cont1 = 0 ∧ cont0 = 1) → ¬(temp2 = 1 ∧ temp1 = 1 ∧ temp0 = 0)

(with cont1, cont0, temp2, temp1, temp0 boolean)
or, more compactly, as

(¬cont1 ∧ cont0) → ¬(temp2 ∧ temp1 ∧ ¬temp0)

15 / 45

Binary Encoding Example

btemp = { 0 7→ 000, 150 7→ 001, 160 7→ 010, 170 7→ 011
180 7→ 100, 190 7→ 101, 200 7→ 110, 210 7→ 111 }

bcont = { none 7→ 00, pizza 7→ 01, burger 7→ 10, soup 7→ 11}

The PLFD formula
cont = pizza → temp ̸= 200

is encoded as

(cont1 = 0 ∧ cont0 = 1) → ¬(temp2 = 1 ∧ temp1 = 1 ∧ temp0 = 0)

(with cont1, cont0, temp2, temp1, temp0 boolean)

or, more compactly, as

(¬cont1 ∧ cont0) → ¬(temp2 ∧ temp1 ∧ ¬temp0)

15 / 45

Binary Encoding Example

btemp = { 0 7→ 000, 150 7→ 001, 160 7→ 010, 170 7→ 011
180 7→ 100, 190 7→ 101, 200 7→ 110, 210 7→ 111 }

bcont = { none 7→ 00, pizza 7→ 01, burger 7→ 10, soup 7→ 11}

The PLFD formula
cont = pizza → temp ̸= 200

is encoded as

(cont1 = 0 ∧ cont0 = 1) → ¬(temp2 = 1 ∧ temp1 = 1 ∧ temp0 = 0)

(with cont1, cont0, temp2, temp1, temp0 boolean)
or, more compactly, as

(¬cont1 ∧ cont0) → ¬(temp2 ∧ temp1 ∧ ¬temp0)

15 / 45

Binary Encoding
The translation is similar for every domain of cardinality 2n for some n > 1

What if the cardinality of a domain dom(x) is not a power of 2?

1. Let n be the smallest n such that |dom(x)| < 2n

2. Encode as before but add constraint on xi’s to discard spurious values

Example

|dom(x)| Constraint Discarded values
7 x2 ∧ x1 → ¬x0 111
6 x2 → ¬x1 110, 111
5 x2 → ¬(x1 ∨ x0) 101, 110, 111
4 use only x1, x0 for x none
3 x1 → ¬x0 11
2 use only x0 for x none

16 / 45

Binary Encoding
The translation is similar for every domain of cardinality 2n for some n > 1

What if the cardinality of a domain dom(x) is not a power of 2?

1. Let n be the smallest n such that |dom(x)| < 2n

2. Encode as before but add constraint on xi’s to discard spurious values

Example

|dom(x)| Constraint Discarded values
7 x2 ∧ x1 → ¬x0 111
6 x2 → ¬x1 110, 111
5 x2 → ¬(x1 ∨ x0) 101, 110, 111
4 use only x1, x0 for x none
3 x1 → ¬x0 11
2 use only x0 for x none

16 / 45

Binary Encoding
The translation is similar for every domain of cardinality 2n for some n > 1

What if the cardinality of a domain dom(x) is not a power of 2?

1. Let n be the smallest n such that |dom(x)| < 2n

2. Encode as before but add constraint on xi’s to discard spurious values

Example

|dom(x)| Constraint Discarded values
7 x2 ∧ x1 → ¬x0 111
6 x2 → ¬x1 110, 111
5 x2 → ¬(x1 ∨ x0) 101, 110, 111
4 use only x1, x0 for x none
3 x1 → ¬x0 11
2 use only x0 for x none

16 / 45

Binary Encoding
The translation is similar for every domain of cardinality 2n for some n > 1

What if the cardinality of a domain dom(x) is not a power of 2?

1. Let n be the smallest n such that |dom(x)| < 2n

2. Encode as before but add constraint on xi’s to discard spurious values

Example

|dom(x)| Constraint Discarded values
7 x2 ∧ x1 → ¬x0 111
6 x2 → ¬x1 110, 111
5 x2 → ¬(x1 ∨ x0) 101, 110, 111
4 use only x1, x0 for x none
3 x1 → ¬x0 11
2 use only x0 for x none

16 / 45

Binary Encoding of Transition System States

Consider states described by state variables x, y, z

A state is then just a value from domain

S = dom(x)× dom(y)× dom(z)

1. If |S| ≤ 2n, encode D in binary as described before

2. Use boolean variables x0, . . . , xn−1 to represent a state s ∈ S

We will consider only boolean state variables from now on

17 / 45

Binary Encoding of Transition System States

Consider states described by state variables x, y, z

A state is then just a value from domain

S = dom(x)× dom(y)× dom(z)

1. If |S| ≤ 2n, encode D in binary as described before

2. Use boolean variables x0, . . . , xn−1 to represent a state s ∈ S

We will consider only boolean state variables from now on

17 / 45

Binary Encoding of Transition System States

Consider states described by state variables x, y, z

A state is then just a value from domain

S = dom(x)× dom(y)× dom(z)

1. If |S| ≤ 2n, encode D in binary as described before

2. Use boolean variables x0, . . . , xn−1 to represent a state s ∈ S

We will consider only boolean state variables from now on

17 / 45

Reachability as a Decision Problem

x = x1, . . . , xn with each xi a boolean state variable
Given

1. a formula I(x), the initial condition
2. a formula T(x, x′), the transition formula
3. a formula F(x), the final/reachability condition

is there a sequence of states s0, . . . , sk such that
1. s0 |= I(x)
2. (si−1, si) |= T(x, x′) for all i = 0, . . . , k − 1
3. sk |= F(x)

18 / 45

Reachability as a Decision Problem

x = x1, . . . , xn with each xi a boolean state variable
Given

1. a formula I(x), the initial condition
2. a formula T(x, x′), the transition formula
3. a formula F(x), the final/reachability condition

is there a sequence of states s0, . . . , sk such that
1. s0 |= I(x)
2. (si−1, si) |= T(x, x′) for all i = 0, . . . , k − 1
3. sk |= F(x)

18 / 45

Reachability as a Decision Problem

x = x1, . . . , xn with each xi a boolean state variable
Given

1. a formula I(x), the initial condition
2. a formula T(x, x′), the transition formula
3. a formula F(x), the final/reachability condition

is there a sequence of states s0, . . . , sk such that
1. s0 |= I(x)
2. (si−1, si) |= T(x, x′) for all i = 0, . . . , k − 1
3. sk |= F(x)

Equivalently, is the following formula satisfiable for some k ≥ 0?

I(x0) ∧ T(x0, x1) ∧ · · · ∧ T(xk−1, xk) ∧ F(xk)

18 / 45

Reachability as a Decision Problem

x = x1, . . . , xn with each xi a boolean state variable
Given

1. a formula I(x), the initial condition
2. a formula T(x, x′), the transition formula
3. a formula F(x), the final/reachability condition

is there a sequence of states s0, . . . , sk such that
1. s0 |= I(x)
2. (si−1, si) |= T(x, x′) for all i = 0, . . . , k − 1
3. sk |= F(x)

Note: When that in this case, sk is reachable from s0 in k steps

18 / 45

Idea of Reachability-Checking Algorithms

Observation: If a final state is reachable from an initial state s0, it is
reachable from s0 in some finite number k of steps

Approach:
• Starting with k = 0, construct a formula Rk(x)

denoting the set of states reachable in k steps

• If Rk(x) is not satisfied by a final state, increase k and start again

When does this process terminate?

19 / 45

Idea of Reachability-Checking Algorithms

Observation: If a final state is reachable from an initial state s0, it is
reachable from s0 in some finite number k of steps

Approach:
• Starting with k = 0, construct a formula Rk(x)

denoting the set of states reachable in k steps

• If Rk(x) is not satisfied by a final state, increase k and start again

When does this process terminate?

19 / 45

Idea of Reachability-Checking Algorithms

Observation: If a final state is reachable from an initial state s0, it is
reachable from s0 in some finite number k of steps

Approach:
• Starting with k = 0, construct a formula Rk(x)

denoting the set of states reachable in k steps

• If Rk(x) is not satisfied by a final state, increase k and start again

When does this process terminate?

19 / 45

Idea of Reachability-Checking Algorithms

Observation: If a final state is reachable from an initial state s0, it is
reachable from s0 in some finite number k of steps

Approach:
• Starting with k = 0, construct a formula Rk(x)

denoting the set of states reachable in k steps

• If Rk(x) is not satisfied by a final state, increase k and start again

When does this process terminate?

19 / 45

Reachability in n steps

States reachable in (exactly) steps:

BADs0

BADs1

BAD s2

BAD

s3

BAD

s4

BADs5

BADs6

BAD

s7

BAD

BAD

BAD

BADBADBAD

20 / 45

Reachability in n steps

States reachable in (exactly) 0 steps:

BADs0

BADs1

BAD s2

BAD

s3

BAD

s4

BADs5

BADs6

BAD

s7

BAD

BAD

BAD

BADBADBAD

20 / 45

Reachability in n steps

States reachable in (exactly) 1 steps:

BADs0

BADs1

BAD s2

BAD

s3

BAD

s4

BADs5

BADs6

BAD

s7

BAD

BAD

BAD

BADBADBAD

20 / 45

Reachability in n steps

States reachable in (exactly) 2 steps:

BADs0

BADs1

BAD s2

BAD

s3

BAD

s4

BADs5

BADs6

BAD

s7

BAD

BAD

BAD

BAD

BADBAD

20 / 45

Reachability in n steps

States reachable in (exactly) 3 steps:

BADs0

BADs1

BAD s2

BAD

s3

BAD

s4

BADs5

BADs6

BAD

s7

BAD

BAD

BAD

BADBAD

BAD

20 / 45

Reachability in n steps

States reachable in (exactly) 4 steps:

BADs0

BADs1

BAD s2

BAD

s3

BAD

s4

BADs5

BADs6

BAD

s7

BAD

BAD

BAD

BADBADBAD

20 / 45

Simple Logical Analysis

Notation: If z = (z1, . . . , zn) is a tuple of variables, ∃z F abbreviates ∃z1 · · · ∃zn F

Lemma 2
Let C(x) symbolically represent a set of states SC. The formula

FR(x) def
= ∃z (C(z) ∧ T(z, x))

denotes the set of states reachable from SC in one step.

21 / 45

Simple Logical Analysis

Lemma 3
For all n ≥ 0, the formula Rn, defined inductively by:

R0(x)
def
= I(x) Rn+1(x)

def
= ∃z (Rn(z) ∧ T(z, x))

denotes the set of states reachable in exactly n steps.

Note:
Rn(xn) = ∃z (Rn−1(z) ∧ T(z, xn))

≡ ∃xn−1 (Rn−1(xn−1) ∧ T(xn−1, xn))

≡ ∃xn−1 (∃xn−2 (Rn−2(xn−2) ∧ T(xn−2, xn−1)) ∧ T(xn−1, xn))

≡ ∃xn−1 (∃xn−2 (· · · ∃x0 (I(x0) ∧ T(x0, x1)) · · ·) ∧ T(xn−1, xn))

Rn(xn) is equisatisfiable with I(x0) ∧ T(x0, x1) ∧ · · · ∧ T(xn−1, xn)

22 / 45

Simple Logical Analysis

Lemma 3
For all n ≥ 0, the formula Rn, defined inductively by:

R0(x)
def
= I(x) Rn+1(x)

def
= ∃z (Rn(z) ∧ T(z, x))

denotes the set of states reachable in exactly n steps.

Note:
Rn(xn) = ∃z (Rn−1(z) ∧ T(z, xn))

≡ ∃xn−1 (Rn−1(xn−1) ∧ T(xn−1, xn))

≡ ∃xn−1 (∃xn−2 (Rn−2(xn−2) ∧ T(xn−2, xn−1)) ∧ T(xn−1, xn))

≡ ∃xn−1 (∃xn−2 (· · · ∃x0 (I(x0) ∧ T(x0, x1)) · · ·) ∧ T(xn−1, xn))

Rn(xn) is equisatisfiable with I(x0) ∧ T(x0, x1) ∧ · · · ∧ T(xn−1, xn)

22 / 45

Simple Logical Analysis

Lemma 3
For all n ≥ 0, the formula Rn, defined inductively by:

R0(x)
def
= I(x) Rn+1(x)

def
= ∃z (Rn(z) ∧ T(z, x))

denotes the set of states reachable in exactly n steps.

Note:
Rn(xn) = ∃z (Rn−1(z) ∧ T(z, xn))

≡ ∃xn−1 (Rn−1(xn−1) ∧ T(xn−1, xn))

≡ ∃xn−1 (∃xn−2 (Rn−2(xn−2) ∧ T(xn−2, xn−1)) ∧ T(xn−1, xn))

≡ ∃xn−1 (∃xn−2 (· · · ∃x0 (I(x0) ∧ T(x0, x1)) · · ·) ∧ T(xn−1, xn))

Rn(xn) is equisatisfiable with I(x0) ∧ T(x0, x1) ∧ · · · ∧ T(xn−1, xn)

22 / 45

Simple Forward Reachability Algorithm
Checks that it is possible to reach a state that satisfies F

procedure SFReach(I, T, F)
input: formulas I(x), T(x, x′), F(x)
output: “yes” or “no” output
begin

i := 0
R := I(x0)
loop

if R ∧ F(xi) is satisfiable
then return “yes”
R := R ∧ T(xi, xi+1)
i := i + 1

end loop
end

How do we check the
satisfiability of R ∧ F(xi)?

Using SAT solvers!

23 / 45

Simple Forward Reachability Algorithm
Checks that it is possible to reach a state that satisfies F

procedure SFReach(I, T, F)
input: formulas I(x), T(x, x′), F(x)
output: “yes” or “no” output
begin

i := 0
R := I(x0)
loop

if R ∧ F(xi) is satisfiable
then return “yes”
R := R ∧ T(xi, xi+1)
i := i + 1

end loop
end

How do we check the
satisfiability of R ∧ F(xi)?

Using SAT solvers!

23 / 45

Simple Forward Reachability Algorithm
Checks that it is possible to reach a state that satisfies F

procedure SFReach(I, T, F)
input: formulas I(x), T(x, x′), F(x)
output: “yes” or “no” output
begin

i := 0
R := I(x0)
loop

if R ∧ F(xi) is satisfiable
then return “yes”
R := R ∧ T(xi, xi+1)
i := i + 1

end loop
end

How do we check the
satisfiability of R ∧ F(xi)?

Using SAT solvers!

23 / 45

Termination
States reachable in (exactly) 0 steps:

BADs0

BADs1

BAD s2

BAD

s3

BAD

s4

BADs5

BADs6

BAD

s7

BAD

BAD

BAD

BADBADBAD

When no final state is reachable, the algorithm does not terminate!

24 / 45

Termination
States reachable in (exactly) 1 steps:

BADs0

BADs1

BAD s2

BAD

s3

BAD

s4

BADs5

BADs6

BAD

s7

BAD

BAD

BAD

BADBADBAD

When no final state is reachable, the algorithm does not terminate!

24 / 45

Termination
States reachable in (exactly) 2 steps:

BADs0

BADs1

BAD s2

BAD

s3

BAD

s4

BADs5

BADs6

BAD

s7

BAD

BAD

BAD

BAD

BADBAD

When no final state is reachable, the algorithm does not terminate!

24 / 45

Termination
States reachable in (exactly) 3 steps:

BADs0

BADs1

BAD s2

BAD

s3

BAD

s4

BADs5

BADs6

BAD

s7

BAD

BAD

BAD

BADBAD

BAD

When no final state is reachable, the algorithm does not terminate!

24 / 45

Termination
States reachable in (exactly) 4 steps:

BADs0

BADs1

BAD s2

BAD

s3

BAD

s4

BADs5

BADs6

BAD

s7

BAD

BAD

BAD

BADBADBAD

When no final state is reachable, the algorithm does not terminate!

24 / 45

Termination
States reachable in (exactly) 5 steps:

BADs0

BADs1

BAD s2

BAD

s3

BAD

s4

BADs5

BADs6

BAD

s7

BAD

BAD

BAD

BADBADBAD

When no final state is reachable, the algorithm does not terminate!

24 / 45

Termination
States reachable in (exactly) 6 steps:

BADs0

BADs1

BAD s2

BAD

s3

BAD

s4

BADs5

BADs6

BAD

s7

BAD

BAD

BAD

BADBADBAD

When no final state is reachable, the algorithm does not terminate!

24 / 45

Termination
States reachable in (exactly) 7 steps:

BADs0

BADs1

BAD s2

BAD

s3

BAD

s4

BADs5

BADs6

BAD

s7

BAD

BAD

BAD

BADBADBAD

When no final state is reachable, the algorithm does not terminate!

24 / 45

Reachability in ≤ n steps

Define a sequence of formulas R≤n for reachability in at most n states:

R≤0(x)
def
= I(x)

R≤n+1(x)
def
= R≤n(x) ∨ ∃z (R≤n(z) ∧ T(z, x))

25 / 45

Reachability in ≤ n steps
States reachable in at most 0 steps:

BADs0

BADs1

BAD s2

BAD

s3

BAD

s4

BADs5

BADs6

BAD

s7

BAD

BAD

BAD

BADBADBAD

Full set of reachable states has been determined!

26 / 45

Reachability in ≤ n steps
States reachable in at most 1 steps:

BADs0

BADs1

BAD s2

BAD

s3

BAD

s4

BADs5

BADs6

BAD

s7

BAD

BAD

BAD

BADBADBAD

Full set of reachable states has been determined!

26 / 45

Reachability in ≤ n steps
States reachable in at most 2 steps:

BADs0

BADs1

BAD s2

BAD

s3

BAD

s4

BADs5

BADs6

BAD

s7

BAD

BAD

BAD

BAD

BADBAD

Full set of reachable states has been determined!

26 / 45

Reachability in ≤ n steps
States reachable in at most 3 steps:

BADs0

BADs1

BAD s2

BAD

s3

BAD

s4

BADs5

BADs6

BAD

s7

BAD

BAD

BAD

BADBAD

BAD

Full set of reachable states has been determined!

26 / 45

Reachability in ≤ n steps
States reachable in at most 4 steps:

BADs0

BADs1

BAD s2

BAD

s3

BAD

s4

BADs5

BADs6

BAD

s7

BAD

BAD

BAD

BADBADBAD

Full set of reachable states has been determined!

26 / 45

Reachability in ≤ n steps
States reachable in at most 5 steps:

BADs0

BADs1

BAD s2

BAD

s3

BAD

s4

BADs5

BADs6

BAD

s7

BAD

BAD

BAD

BADBADBAD

Full set of reachable states has been determined!
26 / 45

Termination

Let Sn the set of states reachable in ≤ n steps

Key properties for termination:
1. Sn ⊆ Sn+1 for all n ≤ 0
2. the state space is finite

Consequences:
• there is k such that Sk = Sk+1

• for such k we have R≤k(x) ≡ R≤k+1(x)

27 / 45

Termination

Let Sn the set of states reachable in ≤ n steps

Key properties for termination:
1. Sn ⊆ Sn+1 for all n ≤ 0
2. the state space is finite

Consequences:
• there is k such that Sk = Sk+1

• for such k we have R≤k(x) ≡ R≤k+1(x)

27 / 45

Forward Reachability Algorithm

procedure FReach(I, T, F)
input: formulas I(x), T(x, x′), F(x)
output: “yes” or “no”
begin

R(x) := I(x)
loop

if R(x) ∧ F(x) is satisfiable
then return “yes”
R′(x) := R(x) ∨ ∃z (R(z) ∧ T(z, x))
if R(x) ≡ R′(x) then return “no”
R(x) := R′(x)

end loop
end

Implementation?

Use QBF techiques or
OBDDs and OBDD algorithms

Conjunction and disjunction
Quantification
Satisfiability checking
Equivalence checking

28 / 45

Forward Reachability Algorithm

procedure FReach(I, T, F)
input: formulas I(x), T(x, x′), F(x)
output: “yes” or “no”
begin

R(x) := I(x)
loop

if R(x) ∧ F(x) is satisfiable
then return “yes”
R′(x) := R(x) ∨ ∃z (R(z) ∧ T(z, x))
if R(x) ≡ R′(x) then return “no”
R(x) := R′(x)

end loop
end

Implementation?

Use QBF techiques or
OBDDs and OBDD algorithms

Conjunction and disjunction
Quantification
Satisfiability checking
Equivalence checking

28 / 45

Forward Reachability Algorithm

procedure FReach(I, T, F)
input: formulas I(x), T(x, x′), F(x)
output: “yes” or “no”
begin

R(x) := I(x)
loop

if R(x) ∧ F(x) is satisfiable
then return “yes”
R′(x) := R(x) ∨ ∃z (R(z) ∧ T(z, x))
if R(x) ≡ R′(x) then return “no”
R(x) := R′(x)

end loop
end

Implementation?

Use QBF techiques or
OBDDs and OBDD algorithms

Conjunction and disjunction

Quantification
Satisfiability checking
Equivalence checking

28 / 45

Forward Reachability Algorithm

procedure FReach(I, T, F)
input: formulas I(x), T(x, x′), F(x)
output: “yes” or “no”
begin

R(x) := I(x)
loop

if R(x) ∧ F(x) is satisfiable
then return “yes”
R′(x) := R(x) ∨ ∃z (R(z) ∧ T(z, x))
if R(x) ≡ R′(x) then return “no”
R(x) := R′(x)

end loop
end

Implementation?

Use QBF techiques or
OBDDs and OBDD algorithms

Conjunction and disjunction
Quantification

Satisfiability checking
Equivalence checking

28 / 45

Forward Reachability Algorithm

procedure FReach(I, T, F)
input: formulas I(x), T(x, x′), F(x)
output: “yes” or “no”
begin

R(x) := I(x)
loop

if R(x) ∧ F(x) is satisfiable
then return “yes”
R′(x) := R(x) ∨ ∃z (R(z) ∧ T(z, x))
if R(x) ≡ R′(x) then return “no”
R(x) := R′(x)

end loop
end

Implementation?

Use QBF techiques or
OBDDs and OBDD algorithms

Conjunction and disjunction
Quantification
Satisfiability checking

Equivalence checking

28 / 45

Forward Reachability Algorithm

procedure FReach(I, T, F)
input: formulas I(x), T(x, x′), F(x)
output: “yes” or “no”
begin

R(x) := I(x)
loop

if R(x) ∧ F(x) is satisfiable
then return “yes”
R′(x) := R(x) ∨ ∃z (R(z) ∧ T(z, x))
if R(x) ≡ R′(x) then return “no”
R(x) := R′(x)

end loop
end

Implementation?

Use QBF techiques or
OBDDs and OBDD algorithms

Conjunction and disjunction
Quantification
Satisfiability checking
Equivalence checking

28 / 45

Forward Reachability Algorithm

procedure FReach(I, T, F)
input: formulas I(x), T(x, x′), F(x)
output: “yes” or “no”
begin

R(x) := I(x)
loop

if R(x) ∧ F(x) is satisfiable
then return “yes”
R′(x) := R(x) ∨ ∃z (R(z) ∧ T(z, x))
if R(x) ≡ R′(x) then return “no”
R(x) := R′(x)

end loop
end

Implementation?
Use QBF techiques or
OBDDs and OBDD algorithms

Conjunction and disjunction
Quantification
Satisfiability checking
Equivalence checking

28 / 45

Main Issues with Forward Reachability Algorithms

Forward reachability behaves in the same way,
independently of the set of final states

In other words, it is not goal oriented

29 / 45

Backward Reachability

in ≤ n steps

Idea:
• instead of going forward in the state transition graph, go backward
• swap initial and final states and invert the transition relation

Number of backward steps:

BADs0

BADs1

BAD s2

BAD

s3

BAD

s4

BADs5

BADs6

BAD

s7

BAD

30 / 45

Bad states are unreachable!

Backward Reachability in ≤ n steps
Idea:

• instead of going forward in the state transition graph, go backward
• swap initial and final states and invert the transition relation

Number of backward steps: 0

BADs0

BADs1

BAD s2

BAD

s3

BAD

s4

BADs5

BADs6

BAD

s7

BAD

30 / 45

Bad states are unreachable!

Backward Reachability in ≤ n steps
Idea:

• instead of going forward in the state transition graph, go backward
• swap initial and final states and invert the transition relation

Number of backward steps: 1

BADs0

BADs1

BAD s2

BAD

s3

BAD

s4

BADs5

BADs6

BAD

s7BAD

30 / 45

Bad states are unreachable!

Backward Reachability in ≤ n steps
Idea:

• instead of going forward in the state transition graph, go backward
• swap initial and final states and invert the transition relation

Number of backward steps: 1

BADs0

BADs1

BAD s2

BAD

s3

BAD

s4

BADs5

BADs6

BAD

s7BAD

30 / 45

Bad states are unreachable!

Backward Reachability in n steps

Number of backward steps: 0

BADs0

BADs1

BAD s2

BAD

s3

BAD

s4

BADs5

BADs6

BAD

s7

BAD

BAD

BAD

BADBAD

BAD

31 / 45

Bad states are reachable!

Backward Reachability in n steps

Number of backward steps: 1

BADs0

BADs1

BAD s2

BAD

s3

BAD

s4

BADs5

BADs6

BAD

s7

BAD

BAD

BAD

BAD

BAD

BAD

31 / 45

Bad states are reachable!

Backward Reachability in n steps

Number of backward steps: 2

BADs0

BADs1

BAD s2

BAD

s3

BAD

s4

BADs5

BADs6

BAD

s7

BAD

BAD

BAD

BAD

BADBAD

31 / 45

Bad states are reachable!

Backward Reachability in n steps

Number of backward steps: 3

BADs0

BADs1

BAD s2

BAD

s3

BAD

s4

BADs5

BADs6

BAD

s7

BAD

BAD

BAD

BAD

BADBAD

31 / 45

Bad states are reachable!

Backward Reachability in n steps

Number of backward steps: 4

BADs0

BADs1

BAD s2

BAD

s3

BAD

s4

BADs5

BADs6

BAD

s7

BAD

BAD

BAD

BAD

BADBAD

31 / 45

Bad states are reachable!

Backward Reachability in n steps

Number of backward steps: 4

BADs0

BADs1

BAD s2

BAD

s3

BAD

s4

BADs5

BADs6

BAD

s7

BAD

BAD

BAD

BAD

BADBAD

31 / 45

Bad states are reachable!

Backward Reachability

S0 is backward reachable from F in n steps
if F is reachable from S0 in n steps

Lemma 4
Let C(x) symbolically represent a set of states SC. The formula

BR(x) def
= ∃z (T(x, z) ∧ C(z))

denotes the set of states backward reachable from SC in one step.

32 / 45

Backward Reachability

S0 is backward reachable from F in n steps
if F is reachable from S0 in n steps

Lemma 4
Let C(x) symbolically represent a set of states SC. The formula

BR(x) def
= ∃z (T(x, z) ∧ C(z))

denotes the set of states backward reachable from SC in one step.

32 / 45

Backward Reachability Algorithm
Same as the forward reachability algorithms, but

• swap I with F
• invert the transition relation T

procedure BReach(I, T, F)
input: formulas I, T, F
output: “yes” or “no”
begin

R(x) := F(x)
loop
if R(x) ∧ I(x) is satisfiable then
return “yes”

R′(x) := R(x) ∨ ∃z (T(x, z) ∧ R(z))
if R(x) ≡ R′(x) then return “no”
R(x) := R′(x)

end loop
end

procedure FReach(I, T, F)
input: formulas I, T, F
output: “yes” or “no”
begin
R(x) := I(x)
loop

if R(x) ∧ F(x) is satisfiable then
return “yes”

R′(x) := R(x) ∨ ∃z (R(z) ∧ T(z, x))
if R(x) ≡ R′(x) then return “no”
R(x) := R′(x)

end loop
end

33 / 45

Backward Reachability Algorithm
Same as the forward reachability algorithms, but

• swap I with F
• invert the transition relation T

procedure BReach(I, T, F)
input: formulas I, T, F
output: “yes” or “no”
begin

R(x) := F(x)
loop
if R(x) ∧ I(x) is satisfiable then

return “yes”
R′(x) := R(x) ∨ ∃z (T(x, z) ∧ R(z))
if R(x) ≡ R′(x) then return “no”
R(x) := R′(x)

end loop
end

procedure FReach(I, T, F)
input: formulas I, T, F
output: “yes” or “no”
begin
R(x) := I(x)
loop

if R(x) ∧ F(x) is satisfiable then
return “yes”

R′(x) := R(x) ∨ ∃z (R(z) ∧ T(z, x))
if R(x) ≡ R′(x) then return “no”
R(x) := R′(x)

end loop
end

33 / 45

Backward Reachability Algorithm
Same as the forward reachability algorithms, but

• swap I with F
• invert the transition relation T

procedure BReach(I, T, F)
input: formulas I, T, F
output: “yes” or “no”
begin

R(x) := F(x)
loop
if R(x) ∧ I(x) is satisfiable then

return “yes”
R′(x) := R(x) ∨ ∃z (T(x, z) ∧ R(z))
if R(x) ≡ R′(x) then return “no”
R(x) := R′(x)

end loop
end

procedure FReach(I, T, F)
input: formulas I, T, F
output: “yes” or “no”
begin

R(x) := I(x)
loop

if R(x) ∧ F(x) is satisfiable then
return “yes”

R′(x) := R(x) ∨ ∃z (R(z) ∧ T(z, x))
if R(x) ≡ R′(x) then return “no”
R(x) := R′(x)

end loop
end

33 / 45

Backward Reachability Algorithm
Same as the forward reachability algorithms, but

• swap I with F
• invert the transition relation T

procedure BReach(I, T, F)
input: formulas I, T, F
output: “yes” or “no”
begin

R(x) := F(x)
loop
if R(x) ∧ I(x) is satisfiable then

return “yes”
R′(x) := R(x) ∨ ∃z (T(x, z) ∧ R(z))
if R(x) ≡ R′(x) then return “no”
R(x) := R′(x)

end loop
end

procedure FReach(I, T, F)
input: formulas I, T, F
output: “yes” or “no”
begin

R(x) := I(x)
loop

if R(x) ∧ F(x) is satisfiable then
return “yes”

R′(x) := R(x) ∨ ∃z (R(z) ∧ T(z, x))
if R(x) ≡ R′(x) then return “no”
R(x) := R′(x)

end loop
end

33 / 45

Checking Invariant Properties

Reachability checking can be used to prove invariant properties too

To check whether a state property P is invariant for a system S:

S |= P

we can check the reachability in S of ¬P

Reason: F is invariant iff ¬P is unreachable

However, there are more direct and often more efficient ways to
check for invariance

34 / 45

Checking Invariant Properties

Reachability checking can be used to prove invariant properties too

To check whether a state property P is invariant for a system S:

S |= P

we can check the reachability in S of ¬P

Reason: F is invariant iff ¬P is unreachable

However, there are more direct and often more efficient ways to
check for invariance

34 / 45

Checking Invariant Properties

Reachability checking can be used to prove invariant properties too

To check whether a state property P is invariant for a system S:

S |= P

we can check the reachability in S of ¬P

Reason: F is invariant iff ¬P is unreachable

However, there are more direct and often more efficient ways to
check for invariance

34 / 45

Checking Invariant Properties

Reachability checking can be used to prove invariant properties too

To check whether a state property P is invariant for a system S:

S |= P

we can check the reachability in S of ¬P

Reason: F is invariant iff ¬P is unreachable

However, there are more direct and often more efficient ways to
check for invariance

34 / 45

Invariant Checking by Temporal Induction

Consider system S with initial condition I(x) and transition formula T(x, x′)

Theorem 5
P(x) is invariant for S if the following entailments hold in PLFD:

(base case) I(x) |= P(x)
(inductive step) P(x) ∧ T(x, x′) |= P(x′)

35 / 45

Invariant Checking by Temporal Induction

Consider system S with initial condition I(x) and transition formula T(x, x′)

Theorem 5
P(x) is invariant for S if the following entailments hold in PLFD:

(base case) I(x) |= P(x)
(inductive step) P(x) ∧ T(x, x′) |= P(x′)

35 / 45

Invariant Checking by Temporal Induction

Consider system S with initial condition I(x) and transition formula T(x, x′)

Theorem 5
P(x) is invariant for S if the following entailments hold in PLFD:

(base case) I(x) |= P(x)
(inductive step) P(x) ∧ T(x, x′) |= P(x′)

iff
• I(x) ∧ ¬P(x) is unsatisfiable and
• P(x) ∧ T(x, x′) ∧ ¬P(x′) is unsatisfiable

35 / 45

Invariant Checking by Temporal Induction

Consider system S with initial condition I(x) and transition formula T(x, x′)

Theorem 5
P(x) is invariant for S if the following entailments hold in PLFD:

(base case) I(x) |= P(x)
(inductive step) P(x) ∧ T(x, x′) |= P(x′)

iff
• I(x) ∧ ¬P(x) is unsatisfiable and
• P(x) ∧ T(x, x′) ∧ ¬P(x′) is unsatisfiable

In that case, P is (temporally) inductive for S
35 / 45

Invariant Checking by Temporal Induction

Consider system S with initial condition I(x) and transition formula T(x, x′)

Theorem 5
P(x) is invariant for S if the following entailments hold in PLFD:

(base case) I(x) |= P(x)
(inductive step) P(x) ∧ T(x, x′) |= P(x′)

Problem: Not all invariants are inductive

35 / 45

Example 1: Inductive vs. Invariant
dom(x1) = dom(x2) = { 0, 1, 2, 3, 4, 5, 6, 7 }

I(x1, x2)
def
= x1 = 0 ∧ x2 = 1

T(x1, x2, x′
1, x′

2)
def
= (x2 ̸= 3 → x′

2 = x2 + 1)
∧ (x2 = 3 → x′

2 = 0)
∧ x′

1 = x2

P(x1, x2)
def
= Inductive? Invariant?

Note: This system can be encoded faithfully in PLFD (and so in PL)

base) I(x1, x2) |= P(x1, x2)?

step) P(x1, x2) ∧ T(x1, x2, x′
1, x′

2) |= P(x′
1, x′

2)?

36 / 45

Example 1: Inductive vs. Invariant
dom(x1) = dom(x2) = { 0, 1, 2, 3, 4, 5, 6, 7 }

I(x1, x2)
def
= x1 = 0 ∧ x2 = 1

T(x1, x2, x′
1, x′

2)
def
= (x2 ̸= 3 → x′

2 = x2 + 1)
∧ (x2 = 3 → x′

2 = 0)
∧ x′

1 = x2

P(x1, x2)
def
= 0 ≤ x2 ∧ x2 ≤ 3 Inductive? Invariant?

base) I(x1, x2) |= P(x1, x2)?

step) P(x1, x2) ∧ T(x1, x2, x′
1, x′

2) |= P(x′
1, x′

2)?

36 / 45

Example 1: Inductive vs. Invariant
dom(x1) = dom(x2) = { 0, 1, 2, 3, 4, 5, 6, 7 }

I(x1, x2)
def
= x1 = 0 ∧ x2 = 1

T(x1, x2, x′
1, x′

2)
def
= (x2 ̸= 3 → x′

2 = x2 + 1)
∧ (x2 = 3 → x′

2 = 0)
∧ x′

1 = x2

P(x1, x2)
def
= 0 ≤ x2 ∧ x2 ≤ 3 Inductive? Invariant?

base) I(x1, x2) |= P(x1, x2)?

step) P(x1, x2) ∧ T(x1, x2, x′
1, x′

2) |= P(x′
1, x′

2)?

36 / 45

Example 1: Inductive vs. Invariant
dom(x1) = dom(x2) = { 0, 1, 2, 3, 4, 5, 6, 7 }

I(x1, x2)
def
= x1 = 0 ∧ x2 = 1

T(x1, x2, x′
1, x′

2)
def
= (x2 ̸= 3 → x′

2 = x2 + 1)
∧ (x2 = 3 → x′

2 = 0)
∧ x′

1 = x2

" "
P(x1, x2)

def
= 0 ≤ x2 ∧ x2 ≤ 3 Inductive? Invariant?

base) I(x1, x2) |= P(x1, x2)? "

step) P(x1, x2) ∧ T(x1, x2, x′
1, x′

2) |= P(x′
1, x′

2)? "

36 / 45

Example 1: Inductive vs. Invariant
dom(x1) = dom(x2) = { 0, 1, 2, 3, 4, 5, 6, 7 }

I(x1, x2)
def
= x1 = 0 ∧ x2 = 1

T(x1, x2, x′
1, x′

2)
def
= (x2 ̸= 3 → x′

2 = x2 + 1)
∧ (x2 = 3 → x′

2 = 0)
∧ x′

1 = x2

P(x1, x2)
def
= x2 ≤ 4 Inductive? Invariant?

base) I(x1, x2) |= P(x1, x2)?

step) P(x1, x2) ∧ T(x1, x2, x′
1, x′

2) |= P(x′
1, x′

2)?

36 / 45

Example 1: Inductive vs. Invariant
dom(x1) = dom(x2) = { 0, 1, 2, 3, 4, 5, 6, 7 }

I(x1, x2)
def
= x1 = 0 ∧ x2 = 1

T(x1, x2, x′
1, x′

2)
def
= (x2 ̸= 3 → x′

2 = x2 + 1)
∧ (x2 = 3 → x′

2 = 0)
∧ x′

1 = x2

%
P(x1, x2)

def
= x2 ≤ 4 Inductive? Invariant?

base) I(x1, x2) |= P(x1, x2)? "

step) P(x1, x2) ∧ T(x1, x2, x′
1, x′

2) |= P(x′
1, x′

2)? %
{ x1 7→ 1, x2 7→ 4 }, { x′1 7→ 4, x′2 7→ 5 }

36 / 45

Example 1: Inductive vs. Invariant
dom(x1) = dom(x2) = { 0, 1, 2, 3, 4, 5, 6, 7 }

I(x1, x2)
def
= x1 = 0 ∧ x2 = 1

T(x1, x2, x′
1, x′

2)
def
= (x2 ̸= 3 → x′

2 = x2 + 1)
∧ (x2 = 3 → x′

2 = 0)
∧ x′

1 = x2

% "
P(x1, x2)

def
= x2 ≤ 4 Inductive? Invariant?

base) I(x1, x2) |= P(x1, x2)? "

step) P(x1, x2) ∧ T(x1, x2, x′
1, x′

2) |= P(x′
1, x′

2)? %
{ x1 7→ 1, x2 7→ 4 }, { x′1 7→ 4, x′2 7→ 5 }
state { x1 7→ 0, x2 7→ 4 } is unreachable!

36 / 45

Example 1: Inductive vs. Invariant
dom(x1) = dom(x2) = { 0, 1, 2, 3, 4, 5, 6, 7 }

I(x1, x2)
def
= x1 = 0 ∧ x2 = 1

T(x1, x2, x′
1, x′

2)
def
= (x2 ̸= 3 → x′

2 = x2 + 1)
∧ (x2 = 3 → x′

2 = 0)
∧ x′

1 = x2

P(x1, x2)
def
= x1 < x2 Inductive? Invariant?

base) I(x1, x2) |= P(x1, x2)?

step) P(x1, x2) ∧ T(x1, x2, x′
1, x′

2) |= P(x′
1, x′

2)?

36 / 45

Example 1: Inductive vs. Invariant
dom(x1) = dom(x2) = { 0, 1, 2, 3, 4, 5, 6, 7 }

I(x1, x2)
def
= x1 = 0 ∧ x2 = 1

T(x1, x2, x′
1, x′

2)
def
= (x2 ̸= 3 → x′

2 = x2 + 1)
∧ (x2 = 3 → x′

2 = 0)
∧ x′

1 = x2

%
P(x1, x2)

def
= x1 < x2 Inductive? Invariant?

base) I(x1, x2) |= P(x1, x2)? "

step) P(x1, x2) ∧ T(x1, x2, x′
1, x′

2) |= P(x′
1, x′

2)? %
{ x1 7→ 2, x2 7→ 3 }, { x′1 7→ 3, x′2 7→ 0 }

36 / 45

Example 1: Inductive vs. Invariant
dom(x1) = dom(x2) = { 0, 1, 2, 3, 4, 5, 6, 7 }

I(x1, x2)
def
= x1 = 0 ∧ x2 = 1

T(x1, x2, x′
1, x′

2)
def
= (x2 ̸= 3 → x′

2 = x2 + 1)
∧ (x2 = 3 → x′

2 = 0)
∧ x′

1 = x2

% %
P(x1, x2)

def
= x1 < x2 Inductive? Invariant?

base) I(x1, x2) |= P(x1, x2)? "

step) P(x1, x2) ∧ T(x1, x2, x′
1, x′

2) |= P(x′
1, x′

2)? %
{ x1 7→ 2, x2 7→ 3 }, { x′1 7→ 3, x′2 7→ 0 }
state { x1 7→ 2, x2 7→ 3 } is reachable!

36 / 45

Example 1: Inductive vs. Invariant
dom(x1) = dom(x2) = { 0, 1, 2, 3, 4, 5, 6, 7 }

I(x1, x2)
def
= x1 = 0 ∧ x2 = 1

T(x1, x2, x′
1, x′

2)
def
= (x2 ̸= 3 → x′

2 = x2 + 1)
∧ (x2 = 3 → x′

2 = 0)
∧ x′

1 = x2

P(x1, x2)
def
= 0 < x1 Inductive? Invariant?

base) I(x1, x2) |= P(x1, x2)?

step) P(x1, x2) ∧ T(x1, x2, x′
1, x′

2) |= P(x′
1, x′

2)?

36 / 45

Example 1: Inductive vs. Invariant
dom(x1) = dom(x2) = { 0, 1, 2, 3, 4, 5, 6, 7 }

I(x1, x2)
def
= x1 = 0 ∧ x2 = 1

T(x1, x2, x′
1, x′

2)
def
= (x2 ̸= 3 → x′

2 = x2 + 1)
∧ (x2 = 3 → x′

2 = 0)
∧ x′

1 = x2

% %
P(x1, x2)

def
= 0 < x1 Inductive? Invariant?

base) I(x1, x2) |= P(x1, x2)? %

step) P(x1, x2) ∧ T(x1, x2, x′
1, x′

2) |= P(x′
1, x′

2)?

initial state { x1 7→ 0, x2 7→ 1 } is clearly reachable!
36 / 45

Example 1
x = (x1, x2) dom(x1) = dom(x2) = { 0, 1, 2, 3, 4, 5, 6, 7 }

I(x) def
= x1 = 0 ∧ x2 = 1

T(x, x′) def
= x′1 = x2 ∧ (x2 ̸= 3 → x′2 = x2 + 1) ∧ (x2 = 3 → x′2 = 0)

Transition graph fragment:

x1 = 1
x2 = 2

x1 = 0
x2 = 1

x1 = 2
x2 = 3

x1 = 3
x2 = 0

x1 = 6
x2 = 2

x1 = 1
x2 = 4

x1 = 4
x2 = 5

x1 = 5
x2 = 6 · · ·

· · ·

· · ·

· · ·

37 / 45

Example 1
x = (x1, x2) dom(x1) = dom(x2) = { 0, 1, 2, 3, 4, 5, 6, 7 }

I(x) def
= x1 = 0 ∧ x2 = 1

T(x, x′) def
= x′1 = x2 ∧ (x2 ̸= 3 → x′2 = x2 + 1) ∧ (x2 = 3 → x′2 = 0)

Transition graph fragment:

x1 = 1
x2 = 2

x1 = 0
x2 = 1

x1 = 2
x2 = 3

x1 = 3
x2 = 0

x1 = 6
x2 = 2

x1 = 1
x2 = 4

x1 = 4
x2 = 5

x1 = 5
x2 = 6 · · ·

· · ·

· · ·

· · ·

37 / 45

P(x) def
= x2 ≤ 3

Example 1
x = (x1, x2) dom(x1) = dom(x2) = { 0, 1, 2, 3, 4, 5, 6, 7 }

I(x) def
= x1 = 0 ∧ x2 = 1

T(x, x′) def
= x′1 = x2 ∧ (x2 ̸= 3 → x′2 = x2 + 1) ∧ (x2 = 3 → x′2 = 0)

Transition graph fragment:

x1 = 1
x2 = 2

x1 = 0
x2 = 1

x1 = 2
x2 = 3

x1 = 3
x2 = 0

x1 = 6
x2 = 2

x1 = 1
x2 = 4

x1 = 4
x2 = 5

x1 = 5
x2 = 6 · · ·

· · ·

· · ·

· · ·

37 / 45

P(x) def
= x2 ≤ 4

Improving Induction’s Applicability

1. I(x) |= P(x) 2. P(x) ∧ T(x, x′1) |= P(x′1)

A couple of options:

• Inductive strengthening: find an inductive property Q(x) such
that Q(x) |= P(x)

General solution but often expensive

• k-induction: Consider more than one transition step at a time

Easy to automate although fairly weak in its basic form

38 / 45

Improving Induction’s Applicability

1. I(x) |= P(x) 2. P(x) ∧ T(x, x′1) |= P(x′1)

A couple of options:

• Inductive strengthening: find an inductive property Q(x) such
that Q(x) |= P(x)

General solution but often expensive

• k-induction: Consider more than one transition step at a time

Easy to automate although fairly weak in its basic form

38 / 45

Improving Induction’s Applicability

1. I(x) |= P(x) 2. P(x) ∧ T(x, x′1) |= P(x′1)

A couple of options:

• Inductive strengthening: find an inductive property Q(x) such
that Q(x) |= P(x)

General solution but often expensive

• k-induction: Consider more than one transition step at a time

Easy to automate although fairly weak in its basic form

38 / 45

Improving Induction’s Applicability

1. I(x) |= P(x) 2. P(x) ∧ T(x, x′1) |= P(x′1)

A couple of options:

• Inductive strengthening: find an inductive property Q(x) such
that Q(x) |= P(x)

General solution but often expensive

• k-induction: Consider more than one transition step at a time

Easy to automate although fairly weak in its basic form

38 / 45

Improving Induction’s Applicability

1. I(x) |= P(x) 2. P(x) ∧ T(x, x′1) |= P(x′1)

A couple of options:

• Inductive strengthening: find an inductive property Q(x) such
that Q(x) |= P(x)

General solution but often expensive

• k-induction: Consider more than one transition step at a time

Easy to automate although fairly weak in its basic form

38 / 45

Improving Induction’s Applicability

1. I(x) |= P(x) 2. P(x) ∧ T(x, x′1) |= P(x′1)

A couple of options:

• Inductive strengthening: find an inductive property Q(x) such
that Q(x) |= P(x)

General solution but often expensive

• k-induction: Consider more than one transition step at a time

Easy to automate although fairly weak in its basic form

38 / 45

Inductive Strengthening

Find an inductive property Q(x) such that Q(x) |= P(x)

39 / 45

Inductive Strengthening

Find an inductive property Q(x) such that Q(x) |= P(x)

Example 1
x2 ≤ 4 is not inductive
However, x2 ≤ 3 is inductive and x2 ≤ 3 |= x2 ≤ 4

39 / 45

Inductive Strengthening

Find an inductive property Q(x) such that Q(x) |= P(x)

Theorem 6
If Q(x) is inductive for S and Q(x) |= P(x) then S |= P(x)

39 / 45

Inductive Strengthening

Find an inductive property Q(x) such that Q(x) |= P(x)

Theorem 6
If Q(x) is inductive for S and Q(x) |= P(x) then S |= P(x)

There is actually a Q that works for every P!

39 / 45

Inductive Strengthening

Find an inductive property Q(x) such that Q(x) |= P(x)

Theorem 6
If Q(x) is inductive for S and Q(x) |= P(x) then S |= P(x)

Consider smallest k such that R≤k(x) ≡ R≤k+1(x)

39 / 45

Inductive Strengthening

Find an inductive property Q(x) such that Q(x) |= P(x)

Theorem 6
If Q(x) is inductive for S and Q(x) |= P(x) then S |= P(x)

Consider smallest k such that R≤k(x) ≡ R≤k+1(x)

Theorem 7
R≤k(x) is the strongest inductive invariant for S:

1. R≤k(x) is inductive for S
2. P(x) is invariant for S iff R≤k(x) |= P(x)

39 / 45

Inductive Strengthening

Find an inductive property Q(x) such that Q(x) |= P(x)

Theorem 6
If Q(x) is inductive for S and Q(x) |= P(x) then S |= P(x)

Consider smallest k such that R≤k(x) ≡ R≤k+1(x)

Example 1

k = 3

R≤3(x) ≡ (x2 = 0 ∧ x1 = 3) ∨ (x2 ∈ {1, 2, 3} ∧ x1 = x2 − 1)

R≤3(x) |= x ≤ 4, hence x ≤ 4 is invariant

39 / 45

Issues with Strongest Inductive Invariant

Computing R = R≤k(x) with R≤k(x) ≡ R≤k+1(x) is expensive

Boolean encodings of R (as a QBF or a OBDD) can be exponentially
large in the size of x

Good News:
Computing R to prove some P invariant is overkill in many cases

There are practically efficient methods that compute an inductive
overapproximation R of R that entails P

However, such methods are beyond the scope of this course

40 / 45

Issues with Strongest Inductive Invariant

Computing R = R≤k(x) with R≤k(x) ≡ R≤k+1(x) is expensive

Boolean encodings of R (as a QBF or a OBDD) can be exponentially
large in the size of x

Good News:
Computing R to prove some P invariant is overkill in many cases

There are practically efficient methods that compute an inductive
overapproximation R of R that entails P

However, such methods are beyond the scope of this course

40 / 45

Issues with Strongest Inductive Invariant

Computing R = R≤k(x) with R≤k(x) ≡ R≤k+1(x) is expensive

Boolean encodings of R (as a QBF or a OBDD) can be exponentially
large in the size of x

Good News:
Computing R to prove some P invariant is overkill in many cases

There are practically efficient methods that compute an inductive
overapproximation R of R that entails P

However, such methods are beyond the scope of this course

40 / 45

Issues with Strongest Inductive Invariant

Computing R = R≤k(x) with R≤k(x) ≡ R≤k+1(x) is expensive

Boolean encodings of R (as a QBF or a OBDD) can be exponentially
large in the size of x

Good News:
Computing R to prove some P invariant is overkill in many cases

There are practically efficient methods that compute an inductive
overapproximation R of R that entails P

However, such methods are beyond the scope of this course

40 / 45

k-Induction

, Main Idea

Consider more than one transition step at a time
Check that P is k-inductive for the system represented by I and T

If
I(x0) ∧ T(x0, x1) ∧ · · · ∧ T(xi−1, xi) ̸|= P(xi) for some i ≥ 0

then
P is not invariant

If, for some k ≥ 0,
I(x0) ∧ T(x0, x1) ∧ · · · ∧ T(xi−1, xi) |= P(xi) for i = 0, . . . , k

and
P(x0) ∧ · · · ∧ P(xk) ∧ T(x0, x1) ∧ · · · ∧ T(xk, xk+1) |= P(xk+1)

then
P is k-inductive and hence invariant

41 / 45

k-Induction, Main Idea
Check that P is k-inductive for the system represented by I and T

If
I(x0) ∧ T(x0, x1) ∧ · · · ∧ T(xi−1, xi) ̸|= P(xi) for some i ≥ 0

then
P is not invariant

If, for some k ≥ 0,
I(x0) ∧ T(x0, x1) ∧ · · · ∧ T(xi−1, xi) |= P(xi) for i = 0, . . . , k

and
P(x0) ∧ · · · ∧ P(xk) ∧ T(x0, x1) ∧ · · · ∧ T(xk, xk+1) |= P(xk+1)

then
P is k-inductive and hence invariant

41 / 45

k-Induction, Main Idea
Check that P is k-inductive for the system represented by I and T

If
I(x0) ∧ T(x0, x1) ∧ · · · ∧ T(xi−1, xi) ̸|= P(xi) for some i ≥ 0

then
P is not invariant

If, for some k ≥ 0,
I(x0) ∧ T(x0, x1) ∧ · · · ∧ T(xi−1, xi) |= P(xi) for i = 0, . . . , k

and
P(x0) ∧ · · · ∧ P(xk) ∧ T(x0, x1) ∧ · · · ∧ T(xk, xk+1) |= P(xk+1)

then
P is k-inductive and hence invariant

41 / 45

k-Induction is Sufficient for Invariance

Theorem 7
Every state property P that is k-inductive for some k ≥ 0 for a
transition system S is invariant for S, i.e., S |= P .

42 / 45

k-Induction is Sufficient for Invariance

Theorem 7
Every state property P that is k-inductive for some k ≥ 0 for a
transition system S is invariant for S, i.e., S |= P .

Example 1
P(x) = x2 ≤ 4 is not inductive but is 1-inductive:

x2,0 ≤ 4 ∧ x2,1 ≤ 4 ∧ T(x0, x1) ∧ T(x1, x2) |= x2,2 ≤ 4

Path (1, 4) → (4, 5) is not a counterexample for 1-induction

P(x) = x2 ≤ 5 is not 1-inductive but is 2-inductive

42 / 45

k-Induction is Sufficient for Invariance

Theorem 7
Every state property P that is k-inductive for some k ≥ 0 for a
transition system S is invariant for S, i.e., S |= P .

Example 1
P(x) = x2 ≤ 4 is not inductive but is 1-inductive:

x2,0 ≤ 4 ∧ x2,1 ≤ 4 ∧ T(x0, x1) ∧ T(x1, x2) |= x2,2 ≤ 4

Path (1, 4) → (4, 5) is not a counterexample for 1-induction

P(x) = x2 ≤ 5 is not 1-inductive but is 2-inductive

42 / 45

k-Induction is Sufficient for Invariance

Theorem 7
Every state property P that is k-inductive for some k ≥ 0 for a
transition system S is invariant for S, i.e., S |= P .

Example 1
P(x) = x2 ≤ 4 is not inductive but is 1-inductive:

x2,0 ≤ 4 ∧ x2,1 ≤ 4 ∧ T(x0, x1) ∧ T(x1, x2) |= x2,2 ≤ 4

Path (1, 4) → (4, 5) is not a counterexample for 1-induction

P(x) = x2 ≤ 5 is not 1-inductive but is 2-inductive

42 / 45

k-Induction is Sufficient for Invariance

Theorem 7
Every state property P that is k-inductive for some k ≥ 0 for a
transition system S is invariant for S, i.e., S |= P .

Note:
• inductive = 0-inductive
• k-inductive implies (k + 1)-inductive
• k-induction is not necessary for invariance:

some invariants are not k-inductive for any k

42 / 45

Basic k-Induction

procedure kInduction(I, T, P)
input: formulas I(x), T(x, x′), F(x)
output: “yes” or “no” output
begin

k := 0 ; T̂ := ⊤ ; P̂ := P(x0)
loop

if I(x0) ∧ T̂ ∧ ¬P(xk) is satisfiable then return “no”
if P̂ ∧ T̂ ∧ T(xk, xk+1) ∧ ¬P(xk+1) is unsatisfiable then return “yes”
k := k + 1
T̂ := T̂ ∧ T(xk−1, xk) // T̂ = ⊤ ∧ T(x0, x1) ∧ · · · ∧ T(xk−1, xk)
P̂ := P̂ ∧ P(xk) // P̂ = P(x0) ∧ · · · ∧ P(xk)

end loop
end

43 / 45

Basic k-Induction

procedure kInduction(I, T, P)
input: formulas I(x), T(x, x′), F(x)
output: “yes” or “no” output
begin

k := 0 ; T̂ := ⊤ ; P̂ := P(x0)
loop

if I(x0) ∧ T̂ ∧ ¬P(xk) is satisfiable then return “no”
if P̂ ∧ T̂ ∧ T(xk, xk+1) ∧ ¬P(xk+1) is unsatisfiable then return “yes”
k := k + 1
T̂ := T̂ ∧ T(xk−1, xk) // T̂ = ⊤ ∧ T(x0, x1) ∧ · · · ∧ T(xk−1, xk)
P̂ := P̂ ∧ P(xk) // P̂ = P(x0) ∧ · · · ∧ P(xk)

end loop
end

43 / 45

Will diverge if P is not
k-inductive for any k

Basic k-Induction with Termination Check

procedure kInduction(I, T, P)
input: formulas I(x), T(x, x′), P(x)
output: “yes” or “no” output
begin

k := 0 ; T̂ := ⊤ ; P̂ := P(x0)
loop

if I(x0) ∧ T̂ ∧ ¬P(xk) is satisfiable then return “no”
if P̂ ∧ T̂ ∧ T(xk, xk+1) ∧ ¬P(xk+1) is unsatisfiable then return “yes”
k := k + 1
T̂ := T̂ ∧ T(xk−1, xk) // T̂ = ⊤ ∧ T(x0, x1) ∧ · · · ∧ T(xk−1, xk)
P̂ := P̂ ∧ P(xk) // P̂ = P(x0) ∧ · · · ∧ P(xk)
if I(x0) ∧ T̂ ∧

∧
0≤i<j≤k xi ̸= xj is unsatisfiable then return “yes”

end loop
end

44 / 45

Basic k-Induction with Termination Check

procedure kInduction(I, T, P)
input: formulas I(x), T(x, x′), P(x)
output: “yes” or “no” output
begin

k := 0 ; T̂ := ⊤ ; P̂ := P(x0)
loop

if I(x0) ∧ T̂ ∧ ¬P(xk) is satisfiable then return “no”
if P̂ ∧ T̂ ∧ T(xk, xk+1) ∧ ¬P(xk+1) is unsatisfiable then return “yes”
k := k + 1
T̂ := T̂ ∧ T(xk−1, xk) // T̂ = ⊤ ∧ T(x0, x1) ∧ · · · ∧ T(xk−1, xk)
P̂ := P̂ ∧ P(xk) // P̂ = P(x0) ∧ · · · ∧ P(xk)
if I(x0) ∧ T̂ ∧

∧
0≤i<j≤k xi ̸= xj is unsatisfiable then return “yes”

end loop
end

44 / 45

Guaranteed to terminate
with finite-state systems

Extensions of Model Checking

• There are model-checking algorithms for temporal properties
other than reachability and invariance

• There is a general model-checking algorithm for arbitrary LTL
properties

• There are extensions of model-checking techniques for
infinite-state systems as well

• They will not be considered in this course

45 / 45

Extensions of Model Checking

• There are model-checking algorithms for temporal properties
other than reachability and invariance

• There is a general model-checking algorithm for arbitrary LTL
properties

• There are extensions of model-checking techniques for
infinite-state systems as well

• They will not be considered in this course

45 / 45

Extensions of Model Checking

• There are model-checking algorithms for temporal properties
other than reachability and invariance

• There is a general model-checking algorithm for arbitrary LTL
properties

• There are extensions of model-checking techniques for
infinite-state systems as well

• They will not be considered in this course

45 / 45

Extensions of Model Checking

• There are model-checking algorithms for temporal properties
other than reachability and invariance

• There is a general model-checking algorithm for arbitrary LTL
properties

• There are extensions of model-checking techniques for
infinite-state systems as well

• They will not be considered in this course

45 / 45

	Model Checking
	Model Checking Problem
	Reachability and Safety Propertiest
	Reachability Checking
	Invariance Checking

