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Credits

These slides are largely based on slides originally developed by Andrei Voronkov
at the University of Manchester. Adapted by permission.
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Computation Tree

Let S = (S, In, T,X , dom, L) be a transition system and s0 ∈ S

Computation tree for S starting at s0:

Defined as the (possibly infinite) tree C such that

1. every node of C is labeled by a state in S
2. the root of C is labeled by s0

3. every node in the tree labeled by a state s has a child labeled by
a state s′ iff (s, s′) ∈ T

Computation path for S starting at s0: any branch s0, s1, . . . in C
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Computation Trees and Paths

xs1

¬xs2

xs1

xs1 ¬xs2

xs1 ¬xs2

xs1 ¬xs2

· · · · · · · · ·

xs1

xs1

· · · · · ·

· · · · · ·

computation path

5 / 35



Computation Trees and Paths

xs1

¬xs2

xs1

xs1 ¬xs2

xs1 ¬xs2

xs1 ¬xs2

· · · · · · · · ·

xs1

xs1

· · · · · ·

· · · · · ·

computation path

5 / 35



Computation Trees and Paths

xs1

¬xs2

xs1

xs1 ¬xs2

xs1 ¬xs2

xs1 ¬xs2

· · · · · · · · ·

xs1

xs1

· · · · · ·

· · · · · ·

computation path

5 / 35



Computation Trees and Paths

xs1

¬xs2

xs1

xs1 ¬xs2

xs1 ¬xs2

xs1 ¬xs2

· · · · · · · · ·

xs1

xs1

· · · · · ·

· · · · · ·

computation path

5 / 35



Computation Trees and Paths

xs1

¬xs2

xs1

xs1 ¬xs2

xs1 ¬xs2

xs1 ¬xs2

· · · · · · · · ·

xs1

xs1

· · · · · ·

· · · · · ·

computation path

5 / 35



Computation

Every path in the computation tree corresponds to a computation:
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Properties

S = (S, In, T,X , dom, L)xs1

xs1 ¬xs2

xs1 ¬xs2

xs1 ¬xs2

· · · · · · · · ·

xs1

xs1

· · · · · ·

· · · · · ·

1. The computation paths of S are exactly the branches in the
computation trees for S

2. If C is a computation tree for S, the subtree of C rooted at a state
s is the computation tree for S starting at s
(every subtree of a computation tree is itself a computation tree)

3. For all s ∈ S, there is a unique computation tree for S starting at s
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Representing system paths with ω-regular expressions

x = 1s1

x = 0s2

x = 1
y = 0

s1
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s4
x = 0
y = 0
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System paths
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(s1s2)

ω = s1s2s1s2 · · ·

not a system path: (s2s1)
ω

(s1s3)
ω

s1s4(s3s1)
ω

(s1s4s3)
ω

s1s4(s3s1)
ns4(s3s1)

ω for all n > 1

(s1s4s3)
ns1(s3s1)

ω for all n > 0

. . .

8 / 35



Representing system paths with ω-regular expressions

x = 1s1

x = 0s2

x = 1
y = 0

s1
x = 1
y = 1

s2

x = 0
y = 1

s4
x = 0
y = 0

s3

System paths

sω1 = s1s1s1 · · ·
(s1s2)

ω = s1s2s1s2 · · ·

not a system path: (s2s1)
ω

(s1s3)
ω

s1s4(s3s1)
ω

(s1s4s3)
ω

s1s4(s3s1)
ns4(s3s1)

ω for all n > 1

(s1s4s3)
ns1(s3s1)

ω for all n > 0

. . .

8 / 35



Representing system paths with ω-regular expressions

x = 1s1

x = 0s2

x = 1
y = 0

s1
x = 1
y = 1

s2

x = 0
y = 1

s4
x = 0
y = 0

s3

System paths

sω1 = s1s1s1 · · ·
(s1s2)

ω = s1s2s1s2 · · ·

not a system path: (s2s1)
ω

(s1s3)
ω

s1s4(s3s1)
ω

(s1s4s3)
ω

s1s4(s3s1)
ns4(s3s1)

ω for all n > 1

(s1s4s3)
ns1(s3s1)

ω for all n > 0

. . .

8 / 35



Representing system paths with ω-regular expressions

x = 1s1

x = 0s2

x = 1
y = 0

s1
x = 1
y = 1

s2

x = 0
y = 1

s4
x = 0
y = 0

s3

System paths

sω1 = s1s1s1 · · ·
(s1s2)

ω = s1s2s1s2 · · ·

not a system path: (s2s1)
ω

(s1s3)
ω

s1s4(s3s1)
ω

(s1s4s3)
ω

s1s4(s3s1)
ns4(s3s1)

ω for all n > 1

(s1s4s3)
ns1(s3s1)

ω for all n > 0

. . .

8 / 35



Linear Temporal Logic

Linear Temporal Logic (LTL) is a logic for reasoning about properties
of computation paths

Formulas are built in the same way as in PLFD, with the following
additions:

1. If F is a formula, then iF, F, and ♢F are formulas
2. If F and G are formulas, then F UG and F RG are formulasi next

always (in the future)
♢ eventually (in the future)
U until
R release
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Precedences of Connectives and Temporal Operators

Connective Precedence

¬, h,♢, 5
U,R 4
∧,∨ 3
→ 2
↔ 1

• unary temporal operators have the same precedence as ¬
• binary temporal operators have higher precedence than binary Boolean

connectives
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Semantics (intuitive)

next: hF

eventually: ♢F

always: F

until: F UG

release: F RG

F · · ·

· · · F · · ·

F F F · · · F F F · · ·

F F F · · · F G · · ·

G G G · · · G G G · · · or

G G G · · · G FG · · ·

11 / 35



Semantics

LTL formulas express properties of computations or computation paths

π = s0, s1, s2, . . ., sequence of states
πi = si, si+1, si+2, . . ., subsequence of π starting at i ≥ 0

F, an LTL formula

π

s0 s1 s2 s3 s4 s5 s6

π = π0 π1 π2 π3

F holds on π or π satisfies F, written π |= F, iff F holds on π0, written π0 |= F,
where πi |= F is defined for all i ≥ 0 by induction on F

We will informally say that F holds in si to mean that F holds on πi
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Semantics, formally

πi = si, si+1, si+2, . . .

Atomic formulas hold on πi iff they hold in si:
1. πi |= x = v if si |= x = v

The semantics of formulas whose top symbol is a propositional connective is the
same as in PL, with all subformulas also evaluated on πi

:

2. πi |= ⊤ and πi ̸|= ⊥
3. πi |= ¬F if πi ̸|= F
4. πi |= F1 ∧ · · · ∧ Fn if πi |= Fj for all j = 1, . . . , n

πi |= F1 ∨ · · · ∨ Fn if πi |= Fj for some j = 1, . . . , n
5. πi |= F → G if either πi ̸|= F or πi |= G

πi |= F ↔ G if either both πi ̸|= F and πi ̸|= G or both πi |= F and πi |= G
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Semantics, formally
6. πi |= hF if πi+1 |= F

πi |= ♢F if for some k ≥ i we have πk |= F
πi |= F if for all k ≥ i we have πk |= F

7. πi |= F UG if for some k ≥ i we have πk |= G and πi |= F, . . . , πk−1 |= F
πi |= F RG if either for all k ≥ i we have πi |= G

or for some k ≥ i and all j = i, . . . , k we have πj |= G and πk |= F

si si+1 si+2 sk−1 sk sk+1gF F · · ·

♢F · · · F · · ·

F F F F · · · F F F · · ·

F UG F F F · · · F G · · ·

F RG G G G · · · G G G · · · or

G G G · · · G FG · · ·
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Example

0 1 2 3 4 5 6 7 8 9 10 11 12 . . .
p 1 1 1 1 1 1 1 1 0 0 1 1 1 1ω

q 0 0 0 0 0 0 0 0 1 0 0 1 0 0ωhp 1 1 1 1 1 1 1 0 0 1 1 1 1 1ω

♢q 1 1 1 1 1 1 1 1 1 1 1 1 0 0ω

p 0 0 0 0 0 0 0 0 0 0 1 1 1 1ω

pU q 1 1 1 1 1 1 1 1 1 0 1 1 0 0ω

a 0 0 1 0 0 1 0 0 1 0 1 0 0 0ω

b 1 1 1 1 1 1 0 1 1 1 1 0 1 1ω

aR b 1 1 1 1 1 1 0 1 1 1 1 0 0 0ω

Notation: vω denotes the infinite repetition of v
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Standard properties?

Two LTL formulas F and G are equivalent, written F ≡ G, if for every path π
we have π |= F iff π |= G

We are not interested in satisfiability, validity etc. for temporal formulas

For an LTL formula F we can consider two kinds of properties of S:
1. does F hold on some computation path for S from an initial state of S?
2. does F hold on all computation paths for S from an initial state of S?
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Meaning of Some Formulas

• ♢ F

• (F → iF)

• ¬F U F

• F U¬F

• ♢F ∧ (F → iF)

• ♢F

• F ∧ (F ↔ ¬ iF)
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♢ (eventually) g(next)
(always) U (until)

R (release)
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Expressing Some Properties
1. F holds initially but not later

F ∧ h ¬F

2. F never holds in two consecutive states

(F → h¬F)

3. If F holds in a state s, it also holds in all states after s

(F → F)

4. F holds in at most one state

(F → h ¬F)

5. F holds in at least two states

♢(F ∧ h♢F)

6. F happens infinitely often

♢F

7. F holds in each even state and does not hold in each odd state (states are
counted from 0)

F ∧ (F ↔ h¬F)

8. Unless si is the first state of the path, if F holds in state si, then G must hold in
at least one of the two states just before si, that is, si−1 and si−2

( hF → G) ∧ ( hhF → hG ∨ G)
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Expressiveness of LTL

Not all reasonable properties are expressible in LTL

Example: p holds in all even states (and possibly in others)
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Equivalences: Unwinding Properties

♢F ≡ F ∨ i♢F

F ≡ F ∧ i F

F UG ≡ G ∨ (F ∧ i(F UG))

F RG ≡ G ∧ (F ∨ i(F RG))

20 / 35
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(always) U (until)

R (release)



Equivalences: Negation of Temporal Operators

¬ iF ≡ i¬F

¬♢F ≡ ¬F

¬ F ≡ ♢¬F

¬(F UG) ≡ ¬F R¬G

¬(F RG) ≡ ¬F U¬G

21 / 35

♢ (eventually) g(next)
(always) U (until)

R (release)



Expressing Temporal Operators UsingU

♢F ≡ ⊤U F

F ≡ ¬(⊤U¬F)

F RG ≡ ¬(¬F U¬G)

Hence, all operators can be expressed using iand U

22 / 35
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(always) U (until)
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Further Equivalences

♢(F ∨ G) ≡ ♢F ∨ ♢G

(F ∧ G) ≡ F ∧ G

But

(F ∨ G) ̸≡ F ∨ G

♢(F ∧ G) ̸≡ ♢F ∧ ♢G
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How to Show that Two Formulas are not Equivalent

Find a path that satisfies one of the formulas but not the other

Example 1: for (F ∨ G) and F ∨ G

F G F G · · ·

Example 2: for ♢(F ∧ G) and ♢F ∧ ♢G

G F · · ·

24 / 35



Back to the Vending Machine

variable domain explanation
st_coffee { 0, 1 } drink storage contains coffee
st_soda { 0, 1 } drink storage contains soda
disp { none, soda, coffee } content of drink dispenser
coins { 0, 1, 2, 3 } number of coins in the slot
customer { none, student, prof } customer

25 / 35



Talking about the vendingmachine in LTL, Examples
1. If the machine runs out of soda, it gets restocked immediately.

2. The machine eventually runs out of drinks.

3. The machine runs out of soda infinitely often.

4. Students never leave without a drink.

5. Professors sometimes leave a drink in the dispenser.

6. If students forget a coin in the coin slot, they (or other students) will use this coin to
get a drink before any professor does the same.

7. If professors forget coins or their drink in the machine, a student will immediately
arrive at the machine.

8. If there is a coin in the coin slot when a professor arrives, they will leave without
getting a drink.

9. If a professor is currently at the machine, there will be no student at the machine for at
least the next three transitions.

10. . . .
26 / 35



Transitions

1. Restock which results in the drink storage having both soda and coffee.
2. Customer_arrives, after which a customer appears at the machine.
3. Customer_leaves, after which the customer leaves.
4. Coin_insert, when the customer inserts a coin in the machine.
5. Dispense_soda, when the customer presses the button to get a can of soda.
6. Dispense_coffee, when the customer presses the button to get a cup of coffee.
7. Take_drink, when the customer removes a drink from the dispenser.

27 / 35



Reasoning About Transitions

Consider the following properties:
1. One cannot have two sodas in a row without inserting a coin.
2. If we never have two restock transitions in a row, then the next transition after a

restock must be a customer arrival.

Note that they are about transitions, not states

How can one represent these properties?

Introduce a state variable denoting the next transition
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Example
tr with domain { restock, customer_arrives, coin_insert, . . . }

Restock def
= tr = restock ∧ customer = none ∧

st_coffee′ ∧ st_soda′ ∧
only(st_coffee, st_soda, tr)

Customer_arrives def
= tr = customer_arrives ∧ customer = none ∧

customer′ ̸= none ∧
only(customer, tr)

Coin_insert def
= tr = coin_insert ∧

customer ̸= none ∧ coins ̸= 3 ∧
(coins = 0 → coins′ = 1)∧
(coins = 1 → coins′ = 2)∧
(coins = 2 → coins′ = 3)∧
only(coins, tr)

. . .
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Representing Temporal Properties of Transitions
1. One cannot have two sodas without inserting a coin in between getting them:

(tr = dispense_soda → h( (tr ̸= dispense_soda) ∨
(tr ̸= dispense_soda)U (tr = insert_coin)))

2. If we never have two restock transitions in a row, then the next transition after
a restock must be a customer arrival:

(tr = restock → gtr ̸= restock) →
(tr = restock → htr = customer_arrives)

3. The value of customer changes only as a result of either Customer_arrives or
Customer_leaves:

(
∧

v∈dom(customer)(customer = v ∧ gcustomer ̸= v) →

(

tr = customer_arrives ∨ tr = customer_leaves)
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3. The value of customer changes only as a result of either Customer_arrives or
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Representing Temporal Properties of Transitions

1. If somebody inserts a coin twice in a row and then immediately gets a soda,
the amount of coins in the slot will not change:

∧
v∈dom(coin) (coin = v ∧

∧
v∈dom(coin) (

tr = coin_insert ∧

∧
v∈dom(coin) (

gtr = coin_insert ∧

∧
v∈dom(coin) (

ggtr = dispense_soda →

∧
v∈dom(coin) (

gggcoin = v)

2. If the system is occasionally restocked, then after each dispense_soda the customer
will leave:

♢tr = restock →
(tr = dispense_soda → ♢tr = customer_leaves)
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Exercise, Dimmable Lamp
Device A lamp with two buttons that can be
• off
• on at medium intensity
• on at full intensity

Actions
1. pushing the first button (set): switches light from off to medium intensity or

from medium to full intensity
2. pushing the second button (reset): switches light off
3. doing nothing (none): results just in time passing

Constraints
1. Pushing the first button has no effect if done immediately after a reset
2. Pushing the second button has no effect if done immediately after a set
3. It is impossible to push both buttons at the same time
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state domain explanation
variable
a { set, reset, none } actions/transitions
s { off , on1, on2 } lamp status
st { 0, 1 } time counter for set
rt { 0, 1 } time counter for reset



Exercise, Modeling device as a transition system

Initial state formula
s = off ∧ st = 1 ∧ rt = 1

Transition formulas

Set def
= a = set ∧ rt = 1 ∧

(s = off ∧ s′ = on1 ∨ s ̸= off ∧ s′ = on2) ∧
st′ = 0 ∧ only(s, st, a)

Reset def
= a = reset ∧ st = 1 ∧

s′ = off ∧ rt′ = 0 ∧ only(s, rt, a)

None def
= a = none ∧

st′ = 1 ∧ rt′ = 1 ∧ only(st, rt, a)
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Exercise, Temporal properties about the lamp
1. The lamp is initially off.
2. Resetting when the lamp is on turns it off.
3. Resetting always turns the lamp off.
4. Setting when the lamp is off turns it on.
5. Setting when the lamp is half-on turns it fully on.
6. A reset cannot immediately follow a set and vice versa.
7. Setting when the lamp is fully on has no effect on the light.
8. The lamp is initially off and stays off until the first set.
9. Once off, the lamp stays off until the next set.

10. Two consecutive set actions are enough to turn the lamp fully on.
11. If the lamp is on at any point, it must have been turned on some time before.
12. If the lamp is on, it will eventually be off.
13. The lamp will be on repeatedly.
14. At some point the lamp will burn and stay permanently off.
15. If set occurs infinitely often the lamp will be on infinitely often.
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Exercise, formalization of properties
1. s = off
2. (a = reset ∧ s ̸= off → gs = off)
3. (a = reset → gs = off)
4. (a = set ∧ s = off → gs ̸= off)
5. (a = set ∧ s = on1 → gs = on2)
6. (a = set → ga ̸= reset) ∧ (a = reset → ga ̸= set)
7. (a = set ∧ s = on2 → gs = on2)
8. a = set R s = off
9. (s = off → a = set R s = off)

10. (a = set ∧ ga = set → ggs = on2), also
(a = set → g(a = set → gs = on2))

11. ¬(a ̸= set U s ̸= off)
12. (s ̸= off → ♢s = off)
13. (♢s ̸= off)
14. ♢( s = off)
15. ♢a ̸= set → ♢s ̸= off
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Which of these properties are satisfied by every
execution path of the transition system?
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