CS:4350 Logic in Computer Science Linear Temporal Logic

Cesare Tinelli

Spring 2022

The Lilili
University
of lowa

Credits

These slides are largely based on slides originally developed by Andrei Voronkov at the University of Manchester. Adapted by permission.

Outline

Linear Temporal Logic
Computation Tree
Linear Temporal Logic
Using Temporal Formulas
Equivalences of Temporal Formulas
Expressing Transitions
Full example

Computation Tree

Let $\mathbb{S}=(S, \operatorname{In}, T, \mathcal{X}, \operatorname{dom}, L)$ be a transition system and $s_{0} \in S$

Computation tree for \mathbb{S} starting at s_{0} :
Defined as the (possibly infinite) tree C such that

1. every node of C is labeled by a state in S
2. the root of C is labeled by s_{0}
3. every node in the tree labeled by a state s has a child labeled by a state s^{\prime} iff $\left(s, s^{\prime}\right) \in T$

Computation Tree

Let $\mathbb{S}=(S, \operatorname{In}, T, \mathcal{X}, \operatorname{dom}, L)$ be a transition system and $s_{0} \in S$

Computation tree for \mathbb{S} starting at s_{0} :
Defined as the (possibly infinite) tree C such that

1. every node of C is labeled by a state in S
2. the root of C is labeled by s_{0}
3. every node in the tree labeled by a state s has a child labeled by a state s^{\prime} iff $\left(s, s^{\prime}\right) \in T$

Computation path for \mathbb{S} starting at s_{0} : any branch s_{0}, s_{1}, \ldots in C

Computation Trees and Paths

Computation Trees and Paths

Computation Trees and Paths

Computation Trees and Paths

Computation Trees and Paths

Computation

Every path in the computation tree corresponds to a computation:

Computation

Every path in the computation tree corresponds to a computation:

Computation

Every path in the computation tree corresponds to a computation:

Computation

Every path in the computation tree corresponds to a computation:

Computation

Every path in the computation tree corresponds to a computation:

Properties

$$
\mathbb{S}=(S, \ln , T, \mathcal{X}, \operatorname{dom}, L)
$$

1. The computation paths of \mathbb{S} are exactly the branches in the computation trees for \mathbb{S}

Properties

$$
\mathbb{S}=(S, \operatorname{In}, T, \mathcal{X}, \operatorname{dom}, L)
$$

1. The computation paths of \mathbb{S} are exactly the branches in the computation trees for \mathbb{S}
2. If C is a computation tree for \mathbb{S}, the subtree of C rooted at a state s is the computation tree for \mathbb{S} starting at s (every subtree of a computation tree is itself a computation tree)

Properties

$$
\mathbb{S}=(S, \operatorname{In}, T, \mathcal{X}, \operatorname{dom}, L)
$$

1. The computation paths of \mathbb{S} are exactly the branches in the computation trees for \mathbb{S}
2. If C is a computation tree for \mathbb{S}, the subtree of C rooted at a state s is the computation tree for \mathbb{S} starting at s
(every subtree of a computation tree is itself a computation tree)
3. For all $s \in S$, there is a unique computation tree for \mathbb{S} starting at s

Representing system paths with ω-regular expressions

System paths

$$
\begin{aligned}
& s_{1}^{\omega}=s_{1} s_{1} s_{1} \cdots \\
& \left(s_{1} s_{2}\right)^{\omega}=s_{1} s_{2} s_{1} s_{2} \cdots
\end{aligned}
$$

Representing system paths with ω-regular expressions

System paths

Representing system paths with ω-regular expressions

System paths

$$
\begin{aligned}
& s_{1}^{\omega}=s_{1} s_{1} s_{1} \cdots \\
& \left(s_{1} s_{2}\right)^{\omega}=s_{1} s_{2} s_{1} s_{2} \cdots
\end{aligned}
$$

not a system path: $\left(s_{2} s_{1}\right)^{\omega}$

Representing system paths with ω-regular expressions

System paths

$$
\begin{aligned}
& s_{1}^{\omega}=s_{1} s_{1} s_{1} \cdots \\
& \left(s_{1} s_{2}\right)^{\omega}=s_{1} s_{2} s_{1} s_{2} \cdots
\end{aligned}
$$

not a system path: $\left(s_{2} s_{1}\right)^{\omega}$
$\left(s_{1} s_{3}\right)^{\omega}$
$s_{1} s_{4}\left(s_{3} s_{1}\right)^{\omega}$
$\left(s_{1} s_{4} s_{3}\right)^{\omega}$
$s_{1} s_{4}\left(s_{3} s_{1}\right)^{n} s_{4}\left(s_{3} s_{1}\right)^{\omega}$ for all $n>1$
$\left(s_{1} s_{4} s_{3}\right)^{n} s_{1}\left(s_{3} s_{1}\right)^{\omega}$ for all $n>0$

Linear Temporal Logic

Linear Temporal Logic (LTL) is a logic for reasoning about properties of computation paths

Linear Temporal Logic

Linear Temporal Logic (LTL) is a logic for reasoning about properties of computation paths

Formulas are built in the same way as in PLFD, with the following additions:

1. If F is a formula, then $\bigcirc F, \square F$, and $\diamond F$ are formulas
2. If F and G are formulas, then $F U G$ and $F R G$ are formulas

Linear Temporal Logic

Linear Temporal Logic (LTL) is a logic for reasoning about properties of computation paths

Formulas are built in the same way as in PLFD, with the following additions:

1. If F is a formula, then $\bigcirc F, \square F$, and $\diamond F$ are formulas
2. If F and G are formulas, then $F U G$ and $F R G$ are formulas
next
always (in the future)
eventually (in the future)
until
release

Precedences of Connectives and Temporal Operators

- unary temporal operators have the same precedence as \neg
- binary temporal operators have higher precedence than binary Boolean connectives

Semantics (intuitive)

Semantics

LTL formulas express properties of computations or computation paths

Semantics

LTL formulas express properties of computations or computation paths
$\pi=s_{0}, s_{1}, s_{2}, \ldots$, sequence of states
$\pi_{i}=s_{i}, s_{i+1}, s_{i+2}, \ldots$, subsequence of π starting at $i \geq 0$
F, an LTL formula

Semantics

LTL formulas express properties of computations or computation paths
$\pi=s_{0}, s_{1}, s_{2}, \ldots$, sequence of states
$\pi_{i}=s_{i}, s_{i+1}, s_{i+2}, \ldots$, subsequence of π starting at $i \geq 0$
F, an LTL formula

Semantics

LTL formulas express properties of computations or computation paths
$\pi=s_{0}, s_{1}, s_{2}, \ldots$, sequence of states
$\pi_{i}=s_{i}, s_{i+1}, s_{i+2}, \ldots$, subsequence of π starting at $i \geq 0$
F, an LTL formula

Semantics

LTL formulas express properties of computations or computation paths
$\pi=s_{0}, s_{1}, s_{2}, \ldots$, sequence of states
$\pi_{i}=s_{i}, s_{i+1}, s_{i+2}, \ldots$, subsequence of π starting at $i \geq 0$
F, an LTL formula

Semantics

LTL formulas express properties of computations or computation paths
$\pi=s_{0}, s_{1}, s_{2}, \ldots$, sequence of states
$\pi_{i}=s_{i}, s_{i+1}, s_{i+2}, \ldots$, subsequence of π starting at $i \geq 0$
F, an LTL formula

Semantics

LTL formulas express properties of computations or computation paths
$\pi=s_{0}, s_{1}, s_{2}, \ldots$, sequence of states
$\pi_{i}=s_{i}, s_{i+1}, s_{i+2}, \ldots$, subsequence of π starting at $i \geq 0$
F, an LTL formula

Semantics

LTL formulas express properties of computations or computation paths
$\pi=s_{0}, s_{1}, s_{2}, \ldots$, sequence of states
$\pi_{i}=s_{i}, s_{i+1}, s_{i+2}, \ldots$, subsequence of π starting at $i \geq 0$
F, an LTL formula

F holds on π or π satisfies F, written $\pi \models F$, iff F holds on π_{0}, written $\pi_{0} \models F$, where $\pi_{i} \models F$ is defined for all $i \geq 0$ by induction on F

Semantics

LTL formulas express properties of computations or computation paths
$\pi=s_{0}, s_{1}, s_{2}, \ldots$, sequence of states
$\pi_{i}=s_{i}, s_{i+1}, s_{i+2}, \ldots$, subsequence of π starting at $i \geq 0$
F, an LTL formula

F holds on π or π satisfies F, written $\pi \models F$, iff F holds on π_{0}, written $\pi_{0} \models F$, where $\pi_{i} \models F$ is defined for all $i \geq 0$ by induction on F

We will informally say that F holds in s_{i} to mean that F holds on π_{i}

Semantics, formally

$$
\pi_{i}=s_{i}, s_{i+1}, s_{i+2}, \ldots
$$

Atomic formulas hold on π_{i} iff they hold in s_{i} :

1. $\pi_{i} \mid=x=v$ if $s_{i} \mid=x=v$

Semantics, formally

$$
\pi_{i}=s_{i}, s_{i+1}, s_{i+2}, \ldots
$$

Atomic formulas hold on π_{i} iff they hold in s_{i} :

1. $\pi_{i} \mid=x=v$ if $s_{i} \mid=x=v$

The semantics of formulas whose top symbol is a propositional connective is the same as in PL, with all subformulas also evaluated on π_{i} :

Semantics, formally

$$
\pi_{i}=s_{i}, s_{i+1}, s_{i+2}, \ldots
$$

Atomic formulas hold on π_{i} iff they hold in s_{i} :

1. $\pi_{i} \mid=x=v$ if $s_{i} \mid=x=v$

The semantics of formulas whose top symbol is a propositional connective is the same as in PL, with all subformulas also evaluated on π_{i} :
2. $\pi_{i} \models \top$ and $\pi_{i} \not \vDash \perp$

Semantics, formally

$$
\pi_{i}=s_{i}, s_{i+1}, s_{i+2}, \ldots
$$

Atomic formulas hold on π_{i} iff they hold in s_{i} :

1. $\pi_{i} \mid=x=v$ if $s_{i} \mid=x=v$

The semantics of formulas whose top symbol is a propositional connective is the same as in PL, with all subformulas also evaluated on π_{i} :
2. $\pi_{i} \neq \top$ and $\pi_{i} \mid \neq \perp$
3. $\pi_{i} \models \neg F$ if $\pi_{i} \mid \neq F$

Semantics, formally

$$
\pi_{i}=s_{i}, s_{i+1}, s_{i+2}, \ldots
$$

Atomic formulas hold on π_{i} iff they hold in s_{i} :

1. $\pi_{i} \mid=x=v$ if $s_{i} \mid=x=v$

The semantics of formulas whose top symbol is a propositional connective is the same as in PL, with all subformulas also evaluated on π_{i} :
2. $\pi_{i} \neq \top$ and $\pi_{i} \not \neq \perp$
3. $\pi_{i} \mid=\neg F$ if $\pi_{i} \mid \neq F$
4. $\pi_{i}=F_{1} \wedge \cdots \wedge F_{n}$ if $\pi_{i}=F_{j}$ for all $j=1, \ldots, n$ $\pi_{i} \models F_{1} \vee \cdots \vee F_{n}$ if $\pi_{i} \models F_{j}$ for some $j=1, \ldots, n$

Semantics, formally

$$
\pi_{i}=s_{i}, s_{i+1}, s_{i+2}, \ldots
$$

Atomic formulas hold on π_{i} iff they hold in s_{i} :

1. $\pi_{i} \mid=x=v$ if $s_{i} \mid=x=v$

The semantics of formulas whose top symbol is a propositional connective is the same as in PL, with all subformulas also evaluated on π_{i} :
2. $\pi_{i} \neq \top$ and $\pi_{i} \not \neq \perp$
3. $\pi_{i} \mid=\neg F$ if $\pi_{i} \mid \neq F$
4. $\pi_{i}=F_{1} \wedge \cdots \wedge F_{n}$ if $\pi_{i}=F_{j}$ for all $j=1, \ldots, n$ $\pi_{i} \mid=F_{1} \vee \cdots \vee F_{n}$ if $\pi_{i}=F_{j}$ for some $j=1, \ldots, n$
5. $\pi_{i} \models F \rightarrow G$ if either $\pi_{i} \not \neq F$ or $\pi_{i} \models G$ $\pi_{i} \models F \leftrightarrow G$ if either both $\pi_{i} \not \models F$ and $\pi_{i} \not \models G$ or both $\pi_{i} \models F$ and $\pi_{i} \models G$

Semantics, formally

6. $\pi_{i}=\bigcirc F$ if $\pi_{i+1} \mid=F$

Semantics, formally

6. $\pi_{i}=\bigcirc F$ if $\pi_{i+1} \mid=F$
$\pi_{i} \models \diamond F$ if for some $k \geq i$ we have $\pi_{k} \models F$

Semantics, formally

6. $\pi_{i}=\bigcirc F$ if $\pi_{i+1} \mid=F$
$\pi_{i} \models \Delta F$ if for some $k \geq i$ we have $\pi_{k} \models F$
$\pi_{i}=\square F$ if for all $k \geq i$ we have $\pi_{k} \models F$

s_{k-1}
s_{k+1}

Semantics, formally

6. $\pi_{i} \mid=\bigcirc F$ if $\pi_{i+1} \mid=F$
$\pi_{i} \models \Delta F$ if for some $k \geq i$ we have $\pi_{k} \models F$
$\pi_{i}=\square F$ if for all $k \geq i$ we have $\pi_{k} \models F$
7. $\pi_{i} \models F U G$ if for some $k \geq i$ we have $\pi_{k} \models G$ and $\pi_{i} \models F, \ldots, \pi_{k-1} \models F$
S_{i+2}
s_{k-1}
S_{k+1}

FUG

Semantics, formally

6. $\pi_{i} \mid=\bigcirc F$ if $\pi_{i+1} \mid=F$
$\pi_{i} \vDash \diamond F$ if for some $k \geq i$ we have $\pi_{k} \vDash F$
$\pi_{i}=\square F$ if for all $k \geq i$ we have $\pi_{k} \models F$
7. $\pi_{i} \vDash F$ U G if for some $k \geq i$ we have $\pi_{k} \vDash G$ and $\pi_{i} \vDash F, \ldots, \pi_{k-1} \neq F$ $\pi_{i} \models F \mathrm{R} G$ if either for all $k \geq i$ we have $\pi_{i} \models G$ or for some $k \geq i$ and all $j=i, \ldots, k$ we have $\pi_{j} \models G$ and $\pi_{k} \models F$
$\begin{array}{clllll}s_{i} & s_{i+1} & s_{i+2} & s_{k-1} & s_{k} & s_{k+1}\end{array}$
$F R G$

or

Semantics, formally

6. $\pi_{i} \mid=\bigcirc F$ if $\pi_{i+1} \mid=F$
$\pi_{i} \vDash \Delta F$ if for some $k \geq i$ we have $\pi_{k} \models F$
$\pi_{i} \models \square F$ if for all $k \geq i$ we have $\pi_{k} \vDash F$
7. $\pi_{i} \vDash F$ U G if for some $k \geq i$ we have $\pi_{k} \vDash G$ and $\pi_{i} \vDash F, \ldots, \pi_{k-1} \neq F$
$\pi_{i} \models F \mathrm{R} G$ if either for all $k \geq i$ we have $\pi_{i} \models G$ or for some $k \geq i$ and all $j=i, \ldots, k$ we have $\pi_{j} \models G$ and $\pi_{k} \models F$

Example

	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	\cdots
p	1	1	1	1	1	1	1	1	0	0	1	1	1	1^{ω}
$q q$	0	0	0	0	0	0	0	0	1	0	0	1	0	0^{ω}
$\bigcirc p$	1	1	1	1	1	1	1	0	0	1	1	1	1	1^{ω}
$\diamond q$	1	1	1	1	1	1	1	1	1	1	1	1	0	0^{ω}
$\square p$	0	0	0	0	0	0	0	0	0	0	1	1	1	1^{ω}
$p \mathrm{U} q$	1	1	1	1	1	1	1	1	1	0	1	1	0	0^{ω}
a	0	0	1	0	0	1	0	0	1	0	1	0	0	0^{ω}
b	1	1	1	1	1	1	0	1	1	1	1	0	1	1^{ω}
$a \mathbf{R} b$	1	1	1	1	1	1	0	1	1	1	1	0	0	0^{ω}

Notation: v^{ω} denotes the infinite repetition of v

Standard properties?

Two LTL formulas F and G are equivalent, written $F \equiv G$, if for every path π we have $\pi \models F$ iff $\pi \models G$

Standard properties?

Two LTL formulas F and G are equivalent, written $F \equiv G$, if for every path π we have $\pi \models F$ iff $\pi \mid=G$

We are not interested in satisfiability, validity etc. for temporal formulas

Standard properties?

Two LTL formulas F and G are equivalent, written $F \equiv G$, if for every path π we have $\pi \models F$ iff $\pi \models G$

We are not interested in satisfiability, validity etc. for temporal formulas

For an LTL formula F we can consider two kinds of properties of \mathbb{S} :

1. does F hold on some computation path for \mathbb{S} from an initial state of \mathbb{S} ?
2. does F hold on all computation paths for \mathbb{S} from an initial state of \mathbb{S} ?

Meaning of Some Formulas

\diamond (eventually)	\bigcirc (next)
\square (always)	U (until)
R (release)	

Meaning of Some Formulas

\diamond (eventually)	\bigcirc (next)
\square (always)	U (until)
R (release)	

- $\Delta \square F$
- $\square(F \rightarrow O F)$

Meaning of Some Formulas

\diamond (eventually)	\bigcirc (next)
\square (always)	U (until)
R (release)	

- $\Delta \square F$
- $\square(F \rightarrow O F)$
- $\neg F$ U $\square F$

Meaning of Some Formulas

```
\diamond(eventually) \bigcirc (next)
(always)
    U (until)
R (release)
```

- $\Delta \square F$
- $\square(F \rightarrow O F)$
- $\neg F$ UI $\square F$
- F U \neg F

Meaning of Some Formulas

\diamond (eventually) \bigcirc (next)
(always)
U (until)
R (release)

- $\Delta \square F$
- $\square(F \rightarrow O F)$
- $\neg F$ UI $\square F$
- F U \neg F
- $\Delta F \wedge \square(F \rightarrow O F)$

Meaning of Some Formulas

\diamond (eventually) \bigcirc (next)
(always)
U (until)
R (release)

- $\Delta \square F$
- $\square(F \rightarrow O F)$
- $\neg F$ UI $\square F$
- F U $\neg F$
- $\Delta F \wedge \square(F \rightarrow \bigcirc F)$
- $\square \diamond F$

Meaning of Some Formulas

\diamond (eventually) \bigcirc (next)
(always)
U (until)
R (release)

- $\Delta \square F$
- $\square(F \rightarrow O F)$
- $\neg F$ UI $\square F$
- F U $\neg F$
- $\Delta F \wedge \square(F \rightarrow \bigcirc F)$
- $\square \diamond F$
- $F \wedge \square(F \leftrightarrow \neg \bigcirc F)$

Expressing Some Properties

1. F holds initially but not later
2. F never holds in two consecutive states
3. If F holds in a state s, it also holds in all states after s
4. F holds in at most one state
5. F holds in at least two states
6. F happens infinitely often
7. F holds in each even state and does not hold in each odd state (states are counted from 0)
8. Unless s_{i} is the first state of the path, if F holds in state s_{i}, then G must hold in at least one of the two states just before s_{i}, that is, s_{i-1} and s_{i-2}

Expressing Some Properties

Expressing Some Properties

1. F holds initially but not later

```
\diamond(eventually) \bigcirc (next)
(always)
U (until)
R (release)
```

2. F never holds in two consecutive states

Expressing Some Properties

1. F holds initially but not later \square
```
\diamond(eventually) \bigcirc (next)
    (always)
    U(until)
R (release)
```

2. F never holds in two consecutive states $\quad \square(F \rightarrow \bigcirc \neg F)$

Expressing Some Properties

```
\diamond(eventually) \bigcirc (next)
(always)
U(until)
1. \(F\) holds initially but not later \(F \wedge \bigcirc \square \neg F\)
2. \(F\) never holds in two consecutive states \(\quad \square(F \rightarrow \bigcirc \neg F)\)
3. If \(F\) holds in a state \(s\), it also holds in all states after \(s\)

\section*{Expressing Some Properties}
1. F holds initially but not later \(\square\)
```

\diamond(eventually) \bigcirc (next)
(always)
U(until)
R (release)

```
2. F never holds in two consecutive states \(\square\)
3. If \(F\) holds in a state \(s\), it also holds in all states after \(s \quad \square(F \rightarrow \square F)\)

\section*{Expressing Some Properties}
```

\diamond(eventually) \bigcirc (next)
(always)
U(until)

1. F holds initially but not later $F \wedge \bigcirc \square \neg F$
2. F never holds in two consecutive states \square
3. If F holds in a state s, it also holds in all states after s \square
$\square(F \rightarrow \square F)$
4. F holds in at most one state

Expressing Some Properties

```
\diamond(eventually) \bigcirc (next)
(always)
U(until)
1. \(F\) holds initially but not later \(F \wedge \bigcirc \square \neg F\)
2. F never holds in two consecutive states \(\square\)
3. If \(F\) holds in a state \(s\), it also holds in all states after \(s\) \(\square\)
\(\square(F \rightarrow \square F)\)
4. \(F\) holds in at most one state \(\quad \square(F \rightarrow \bigcirc \square \neg F)\)

\section*{Expressing Some Properties}
```

\diamond(eventually) \bigcirc (next)
(always)
U(until)

1. F holds initially but not later $F \wedge \bigcirc \square \neg F$
2. F never holds in two consecutive states \square
3. If F holds in a state s, it also holds in all states after s \square
$\square(F \rightarrow \square F)$
4. F holds in at most one state $\quad \square(F \rightarrow \bigcirc \square \neg F)$
5. F holds in at least two states

Expressing Some Properties

```
\diamond(eventually) \bigcirc (next)
(always)
U(until)
1. \(F\) holds initially but not later \(F \wedge \bigcirc \square \neg F\)
2. F never holds in two consecutive states \(\square\)
3. If \(F\) holds in a state \(s\), it also holds in all states after \(s\) \(\square\)
\(\square(F \rightarrow \square F)\)
4. \(F\) holds in at most one state \(\quad \square(F \rightarrow \bigcirc \square \neg F)\)
5. \(F\) holds in at least two states \(\diamond(F \wedge \bigcirc \diamond F)\)

\section*{Expressing Some Properties}
```

\diamond(eventually) \bigcirc (next)
(always)

1. F holds initially but not later $F \wedge \bigcirc \square \neg F$
2. F never holds in two consecutive states \square
3. If F holds in a state s, it also holds in all states after s \square
$\square(F \rightarrow \square F)$
4. F holds in at most one state $\quad \square(F \rightarrow \bigcirc \square \neg F)$
5. F holds in at least two states

6. F happens infinitely often

Expressing Some Properties

```
\diamond(eventually) \bigcirc (next)
\square(always)
1. \(F\) holds initially but not later \(F \wedge \bigcirc \square \neg F\)
2. F never holds in two consecutive states \(\square\)
3. If \(F\) holds in a state \(s\), it also holds in all states after \(s\) \(\square\)
4. \(F\) holds in at most one state \(\quad \square(F \rightarrow \bigcirc \square \neg F)\)
5. F holds in at least two states

6. F happens infinitely often


\section*{Expressing Some Properties}
```

\diamond(eventually) \bigcirc (next)
\square (always)

1. F holds initially but not later $F \wedge \bigcirc \square \neg F$
2. F never holds in two consecutive states \square
3. If F holds in a state s, it also holds in all states after s \square
4. F holds in at most one state $\quad \square(F \rightarrow \bigcirc \square \neg F)$
5. F holds in at least two states
6. F happens infinitely often

7. F holds in each even state and does not hold in each odd state (states are counted from 0)

Expressing Some Properties

```
\diamond(eventually) \bigcirc (next)
\square (always)
1. \(F\) holds initially but not later \(F \wedge \bigcirc \square \neg F\)
2. F never holds in two consecutive states \(\square\)
3. If \(F\) holds in a state \(s\), it also holds in all states after \(s\) \(\square\)
4. \(F\) holds in at most one state \(\quad \square(F \rightarrow \bigcirc \square \neg F)\)
5. F holds in at least two states
6. F happens infinitely often

7. \(F\) holds in each even state and does not hold in each odd state (states are counted from 0 ) \(F \wedge \square(F \leftrightarrow \bigcirc \neg F)\)

\section*{Expressing Some Properties}
1. F holds initially but not later \(F \wedge \bigcirc \square \neg F\)
```

\diamond(eventually) \bigcirc (next)
\square (always)
U(until)
R (release)

```
2. F never holds in two consecutive states \(\square\)
3. If \(F\) holds in a state \(s\), it also holds in all states after \(s\) \(\square\)
4. \(F\) holds in at most one state \(\quad \square(F \rightarrow \bigcirc \square \neg F)\)
5. \(F\) holds in at least two states \(\diamond(F \wedge \bigcirc \Delta F)\)
6. F happens infinitely often

7. \(F\) holds in each even state and does not hold in each odd state (states are counted from 0 ) \(F \wedge \square(F \leftrightarrow \bigcirc \neg F)\)
8. Unless \(s_{i}\) is the first state of the path, if \(F\) holds in state \(s_{i}\), then \(G\) must hold in at least one of the two states just before \(s_{i}\), that is, \(s_{i-1}\) and \(s_{i-2}\)

\section*{Expressing Some Properties}
1. F holds initially but not later \(F \wedge \bigcirc \square \neg F\)
```

\diamond(eventually) \bigcirc (next)
\square (always)
U(until)
R (release)

```
2. F never holds in two consecutive states \(\quad \square(F \rightarrow \bigcirc \neg F)\)
3. If \(F\) holds in a state \(s\), it also holds in all states after \(s \quad \square(F \rightarrow \square F)\)
4. \(F\) holds in at most one state \(\quad \square(F \rightarrow \bigcirc \square \neg F)\)
5. F holds in at least two states
6. F happens infinitely often

7. \(F\) holds in each even state and does not hold in each odd state (states are counted from 0 ) \(F \wedge \square(F \leftrightarrow \bigcirc \neg F)\)
8. Unless \(s_{i}\) is the first state of the path, if \(F\) holds in state \(s_{i}\), then \(G\) must hold in at least one of the two states just before \(s_{i}\), that is, \(s_{i-1}\) and \(s_{i-2}\)
\((\bigcirc F \rightarrow G) \wedge \square(\bigcirc \bigcirc F \rightarrow \bigcirc G \vee G)\)

\section*{Expressing Some Properties}
1. F holds initially but not later \(F \wedge \bigcirc \square \neg F\)
```

\diamond(eventually) \bigcirc (next)
\square (always)
U(until)
R (release)

```
2. F never holds in two consecutive states \(\quad \square(F \rightarrow \bigcirc \neg F)\)
3. If \(F\) holds in a state \(s\), it also holds in all states after \(s \quad \square(F \rightarrow \square F)\)
4. \(F\) holds in at most one state \(\quad \square(F \rightarrow \bigcirc \square \neg F)\)
5. F holds in at least two states
6. F happens infinitely often

7. \(F\) holds in each even state and does not hold in each odd state (states are counted from 0 ) \(F \wedge \square(F \leftrightarrow \bigcirc \neg F)\)
8. Unless \(s_{i}\) is the first state of the path, if \(F\) holds in state \(s_{i}\), then \(G\) must hold in at least one of the two states just before \(s_{i}\), that is, \(s_{i-1}\) and \(s_{i-2}\)
\[
(\bigcirc F \rightarrow G) \wedge \square(\bigcirc \bigcirc F \rightarrow \bigcirc G \vee G)
\]

\section*{Expressiveness of LTL}

Not all reasonable properties are expressible in LTL

Example: \(p\) holds in all even states (and possibly in others)

Equivalences: Unwinding Properties
```

\diamond(eventually) \bigcirc (next)
(always)
U (until)
R (release)

```
\[
\begin{aligned}
\forall F & \equiv F \vee \bigcirc \diamond F \\
\square F & \equiv F \wedge \bigcirc \square F \\
F \mathbf{U G} & \equiv G \vee(F \wedge \bigcirc(F \mathbf{U} G)) \\
F \mathbf{R G} & \equiv G \wedge(F \vee \bigcirc(F \mathbf{R} G))
\end{aligned}
\]

Equivalences: Negation of Temporal Operators
\[
\begin{aligned}
\neg \bigcirc F & \equiv \bigcirc \neg F \\
\neg \diamond F & \equiv \square \neg F \\
\neg \square F & \equiv \diamond \neg F \\
\neg(F \cup \mathrm{U} G) & \equiv \neg F \mathrm{R} \neg G \\
\neg(F \mathrm{R} G) & \equiv \neg F \mathbf{U} \neg G
\end{aligned}
\]

\section*{Expressing Temporal Operators Using UI}
```

\diamond (eventually)

$$
\begin{aligned}
\forall F & \equiv \top \mathbf{U} F \\
\square F & \equiv \neg(\top \mathbf{U} \neg F) \\
F \mathbf{R} G & \equiv \neg(\neg F \mathbf{U} \neg G)
\end{aligned}
$$

Hence, all operators can be expressed using \bigcirc and U

Further Equivalences

```
\diamond(eventually) \bigcirc (next)
(always)
U (until)
R (release)
```

$$
\begin{aligned}
\diamond(F \vee G) & \equiv \diamond F \vee \diamond G \\
\square(F \wedge G) & \equiv \square F \wedge \square G
\end{aligned}
$$

But

$$
\begin{aligned}
\square(F \vee G) & \not \equiv \square F \vee \square G \\
\diamond(F \wedge G) & \not \equiv \diamond F \wedge \diamond G
\end{aligned}
$$

How to Show that Two Formulas are not Equivalent

Find a path that satisfies one of the formulas but not the other

Example 1: for $\square(F \vee G)$ and $\square F \vee \square G$

Example 2: for $\diamond(F \wedge G)$ and $\diamond F \wedge \diamond G$

Back to the Vending Machine

variable	domain	explanation
st_coffee	$\{0,1\}$	drink storage contains coffee
st_soda	$\{0,1\}$	drink storage contains soda
disp	$\{$ none, soda, coffee $\}$	content of drink dispenser
coins	$\{0,1,2,3\}$	number of coins in the slot
customer	$\{$ none, student,prof $\}$	customer

Talking about the vending machine in LTL, Examples

1. If the machine runs out of soda, it gets restocked immediately.
2. The machine eventually runs out of drinks.
3. The machine runs out of soda infinitely often.
4. Students never leave without a drink.
5. Professors sometimes leave a drink in the dispenser.
6. If students forget a coin in the coin slot, they (or other students) will use this coin to get a drink before any professor does the same.
7. If professors forget coins or their drink in the machine, a student will immediately arrive at the machine.
8. If there is a coin in the coin slot when a professor arrives, they will leave without getting a drink.
9. If a professor is currently at the machine, there will be no student at the machine for at least the next three transitions.
10. ...

Transitions

1. Restock which results in the drink storage having both soda and coffee.
2. Customer_arrives, after which a customer appears at the machine.
3. Customer_leaves, after which the customer leaves.
4. Coin_insert, when the customer inserts a coin in the machine.
5. Dispense_soda, when the customer presses the button to get a can of soda.
6. Dispense_coffee, when the customer presses the button to get a cup of coffee.
7. Take_drink, when the customer removes a drink from the dispenser.

Reasoning About Transitions

Consider the following properties:

1. One cannot have two sodas in a row without inserting a coin.
2. If we never have two restock transitions in a row, then the next transition after a restock must be a customer arrival.

Reasoning About Transitions

Consider the following properties:

1. One cannot have two sodas in a row without inserting a coin.
2. If we never have two restock transitions in a row, then the next transition after a restock must be a customer arrival.

Note that they are about transitions, not states

Reasoning About Transitions

Consider the following properties:

1. One cannot have two sodas in a row without inserting a coin.
2. If we never have two restock transitions in a row, then the next transition after a restock must be a customer arrival.

Note that they are about transitions, not states
How can one represent these properties?

Reasoning About Transitions

Consider the following properties:

1. One cannot have two sodas in a row without inserting a coin.
2. If we never have two restock transitions in a row, then the next transition after a restock must be a customer arrival.

Note that they are about transitions, not states
How can one represent these properties?
Introduce a state variable denoting the next transition

Example

tr with domain $\{$ restock, customer_arrives, coin_insert, ... \}

$$
\begin{aligned}
\text { Restock } \stackrel{\text { def }}{=} & \begin{array}{l}
\operatorname{tr}=\text { restock } \wedge \text { customer }=\text { none } \wedge \\
\\
\text { st_coffee } \wedge \wedge \text { st_soda' } \wedge \\
\\
\text { only }(\text { st_coffee, st_soda, tr })
\end{array} \\
\text { Customer_arrives } \stackrel{\text { def }}{=} \quad & \begin{array}{l}
\text { tr }=\text { customer_arrives } \wedge \text { customer }=\text { none } \wedge \\
\\
\text { customer } \neq \text { none } \wedge
\end{array} \\
& \text { only }(\text { customer, tr }) \\
\text { Coin_insert } \stackrel{\text { def }}{=} \quad & \text { tr }=\text { coin_insert } \wedge \\
& \text { customer } \neq \text { none } \wedge \text { coins } \neq 3 \wedge \\
& \left(\text { coins }=0 \rightarrow \text { coins }^{\prime}=1\right) \wedge \\
& \left(\text { coins }=1 \rightarrow \text { coins }^{\prime}=2\right) \wedge \\
& \left(\text { coins }=2 \rightarrow \text { coins }^{\prime}=3\right) \wedge \\
& \text { only }(\text { coins }, \text { tr })
\end{aligned}
$$

Representing Temporal Properties of Transitions

1. One cannot have two sodas without inserting a coin in between getting them:

Representing Temporal Properties of Transitions

1. One cannot have two sodas without inserting a coin in between getting them:

$$
\square\left(\operatorname { t r } = \text { dispense_soda } \rightarrow \bigcirc \left(\begin{array}{rl}
\square & (\operatorname{tr} \neq \text { dispense_soda }) \vee \\
(\operatorname{tr} \neq \text { dispense_soda }) \mathrm{U}(\operatorname{tr}=\text { insert_coin })))
\end{array}\right.\right.
$$

Representing Temporal Properties of Transitions

1. One cannot have two sodas without inserting a coin in between getting them:

$$
\square\left(\operatorname { t r } = \text { dispense_soda } \rightarrow \bigcirc \left(\begin{array}{rl}
\square & (\operatorname{tr} \neq \text { dispense_soda }) \vee \\
& (\operatorname{tr} \neq \text { dispense_soda }) \mathrm{U}(\operatorname{tr}=\text { insert_coin })))
\end{array}\right.\right.
$$

2. If we never have two restock transitions in a row, then the next transition after a restock must be a customer arrival:

Representing Temporal Properties of Transitions

1. One cannot have two sodas without inserting a coin in between getting them:

$$
\square(\operatorname{tr}=\text { dispense_soda } \rightarrow \bigcirc(\square)(\operatorname{tr} \neq \text { dispense_soda }) \vee)
$$

2. If we never have two restock transitions in a row, then the next transition after a restock must be a customer arrival:

$$
\begin{aligned}
& \square(\operatorname{tr}=\text { restock } \rightarrow \bigcirc \operatorname{tr} \neq \text { restock }) \rightarrow \\
& \square \text { (tr }=\text { restock } \rightarrow \text { 〇tr }=\text { customer_arrives })
\end{aligned}
$$

Representing Temporal Properties of Transitions

1. One cannot have two sodas without inserting a coin in between getting them:

$$
\square(\operatorname{tr}=\text { dispense_soda } \rightarrow \bigcirc(\underset{(\operatorname{tr} \neq \text { dispense_soda }) \mathrm{U} \neq \text { dispense_soda }) \vee}{(\operatorname{tr}=\text { insert_coin })))}
$$

2. If we never have two restock transitions in a row, then the next transition after a restock must be a customer arrival:

$$
\begin{aligned}
& \square(\operatorname{tr}=\text { restock } \rightarrow \text { Otr } \neq \text { restock }) \rightarrow \\
& \square \text { (tr }=\text { restock } \rightarrow \text { 〇tr }=\text { customer_arrives })
\end{aligned}
$$

3. The value of customer changes only as a result of either Customer_arrives or Customer_leaves:

Representing Temporal Properties of Transitions

1. One cannot have two sodas without inserting a coin in between getting them:

$$
\square(\operatorname{tr}=\text { dispense_soda } \rightarrow \bigcirc(\underset{(\operatorname{tr} \neq \text { dispense_soda }) \mathrm{U} \neq \text { dispense_soda }) \vee}{(\operatorname{tr}=\text { insert_coin })))}
$$

2. If we never have two restock transitions in a row, then the next transition after a restock must be a customer arrival:

$$
\begin{aligned}
& \square(\operatorname{tr}=\text { restock } \rightarrow \text { Otr } \neq \text { restock }) \rightarrow \\
& \square \text { (tr }=\text { restock } \rightarrow \text { 〇tr }=\text { customer_arrives })
\end{aligned}
$$

3. The value of customer changes only as a result of either Customer_arrives or Customer_leaves:

$$
\square\left(\bigwedge_{v \in \operatorname{dom}(\text { customer })}(\text { customer }=v \wedge \bigcirc \text { customer } \neq v) \rightarrow\right.
$$

$$
\mathrm{tr}=\text { customer_arrives } \vee \mathrm{tr}=\text { customer_leaves) }
$$

Representing Temporal Properties of Transitions

1. If somebody inserts a coin twice in a row and then immediately gets a soda, the amount of coins in the slot will not change:

Representing Temporal Properties of Transitions

1. If somebody inserts a coin twice in a row and then immediately gets a soda, the amount of coins in the slot will not change:

$$
\begin{aligned}
& \bigwedge_{v \in \text { dom(coin) }} \square(\text { coin }=v \wedge \\
& \operatorname{tr}=\text { coin_insert } \wedge \\
& \bigcirc \operatorname{tr}=\text { coin_insert } \wedge \\
& \bigcirc \bigcirc \mathrm{tr}=\text { dispense_soda } \rightarrow \\
&\bigcirc \bigcirc \bigcirc \text { coin }=v)
\end{aligned}
$$

Representing Temporal Properties of Transitions

1. If somebody inserts a coin twice in a row and then immediately gets a soda, the amount of coins in the slot will not change:

$$
\begin{aligned}
& \bigwedge_{v \in \text { dom(coin) }} \square(\text { coin }=v \wedge \\
& \operatorname{tr}=\text { coin_insert } \wedge \\
& \mathrm{tr}=\text { coin_insert } \wedge \\
& \bigcirc \bigcirc \mathrm{tr}=\text { dispense_soda } \rightarrow \\
&\bigcirc \bigcirc \bigcirc \operatorname{coin}=v)
\end{aligned}
$$

2. If the system is occasionally restocked, then after each dispense_soda the customer will leave:

Representing Temporal Properties of Transitions

1. If somebody inserts a coin twice in a row and then immediately gets a soda, the amount of coins in the slot will not change:

$$
\begin{aligned}
& \bigwedge_{v \in \text { dom(coin) }} \square(\text { coin }=v \wedge \\
& \operatorname{tr}=\text { coin_insert } \wedge \\
& \text { tr }=\text { coin_insert } \wedge \\
& \bigcirc \bigcirc \operatorname{tr}=\text { dispense_soda } \rightarrow \\
&\bigcirc \bigcirc \bigcirc \text { coin }=v)
\end{aligned}
$$

2. If the system is occasionally restocked, then after each dispense_soda the customer will leave:

$$
\begin{aligned}
& \square \diamond \operatorname{tr}=\text { restock } \rightarrow \\
& \square \text { (tr }=\text { dispense_soda } \rightarrow \diamond \operatorname{tr}=\text { customer_leaves })
\end{aligned}
$$

Exercise, Dimmable Lamp

Device A lamp with two buttons that can be

- off
- on at medium intensity
- on at full intensity

Actions

1. pushing the first button (set): switches light from off to medium intensity or from medium to full intensity
2. pushing the second button (reset): switches light off
3. doing nothing (none): results just in time passing

Constraints

1. Pushing the first button has no effect if done immediately after a reset
2. Pushing the second button has no effect if done immediately after a set
3. It is impossible to push both buttons at the same time

Exercise, Dimmable Lamp

Device A lamp with two buttons that can be

- off
- on at medium intensity
- on at full intensity

Actions

state variable	domain	explanation
a	$\{$ set, reset, none $\}$	actions/transitions
s	$\{$ off, on1, on2 $\}$	lamp status
st	$\{0,1\}$	time counter for set
rt	$\{0,1\}$	time counter for reset

1. pushing the first button (set): switches light from off to medium intensity or from medium to full intensity
2. pushing the second button (reset): switches light off
3. doing nothing (none): results just in time passing

Constraints

1. Pushing the first button has no effect if done immediately after a reset
2. Pushing the second button has no effect if done immediately after a set
3. It is impossible to push both buttons at the same time

Exercise, Modeling device as a transition system

Initial state formula

$$
\mathrm{s}=\mathrm{off} \wedge \mathrm{st}=1 \wedge \mathrm{rt}=1
$$

Transition formulas

Exercise, Modeling device as a transition system

Initial state formula

$$
\mathrm{s}=\mathrm{off} \wedge \mathrm{st}=1 \wedge \mathrm{rt}=1
$$

Transition formulas

$$
\begin{aligned}
\text { Set } \stackrel{\text { def }}{=} & a=\text { set } \wedge r t=1 \wedge \\
& \left(s=\text { off } \wedge s^{\prime}=\text { on } 1 \vee s \neq \text { off } \wedge s^{\prime}=\text { on } 2\right) \wedge \\
& {s t^{\prime}=0 \wedge \text { only }(s, s t, a)} \quad
\end{aligned}
$$

Exercise, Modeling device as a transition system

Initial state formula

$$
\mathrm{s}=\mathrm{off} \wedge \mathrm{st}=1 \wedge \mathrm{rt}=1
$$

Transition formulas

$$
\begin{aligned}
\text { Set } \stackrel{\text { def }}{=} & a=\text { set } \wedge r t=1 \wedge \\
& \left(s=\text { off } \wedge s^{\prime}=\text { on } 1 \vee s \neq \text { off } \wedge s^{\prime}=o n 2\right) \wedge \\
& s t^{\prime}=0 \wedge \text { only }(s, s t, a) \\
\text { Reset } \stackrel{\text { def }}{=} & a=r e s e t \wedge s t=1 \wedge \\
& s^{\prime}=\text { off } \wedge \mathrm{rt}^{\prime}=0 \wedge \text { only }(\mathrm{s}, \mathrm{rt}, \mathrm{a})
\end{aligned}
$$

Exercise, Modeling device as a transition system

Initial state formula

$$
\mathrm{s}=\mathrm{off} \wedge \mathrm{st}=1 \wedge \mathrm{rt}=1
$$

Transition formulas

$$
\begin{aligned}
\text { Set } \stackrel{\text { def }}{=} & a=\text { set } \wedge r t=1 \wedge \\
& \left(s=o f f \wedge s^{\prime}=o n 1 \vee s \neq o f f \wedge s^{\prime}=o n 2\right) \wedge \\
& s t^{\prime}=0 \wedge \text { only }(\mathrm{s}, \mathrm{st}, \mathrm{a}) \\
\text { Reset } \stackrel{\text { def }}{=} \quad & a=r e s e t \wedge \mathrm{st}=1 \wedge \\
& \mathrm{~s}^{\prime}=\text { off } \wedge \mathrm{rt}^{\prime}=0 \wedge \text { only }(\mathrm{s}, \mathrm{rt}, \mathrm{a}) \\
\text { None } \stackrel{\text { def }}{=} & \mathrm{a}=\text { none } \wedge \\
& s t^{\prime}=1 \wedge \mathrm{rt}^{\prime}=1 \wedge \text { only }(\mathrm{st}, \mathrm{rt}, \mathrm{a})
\end{aligned}
$$

Exercise, Temporal properties about the lamp

1. The lamp is initially off.
2. Resetting when the lamp is on turns it off.
3. Resetting always turns the lamp off.
4. Setting when the lamp is off turns it on.
5. Setting when the lamp is half-on turns it fully on.
6. A reset cannot immediately follow a set and vice versa.
7. Setting when the lamp is fully on has no effect on the light.
8. The lamp is initially off and stays off until the first set.
9. Once off, the lamp stays off until the next set.
10. Two consecutive set actions are enough to turn the lamp fully on.
11. If the lamp is on at any point, it must have been turned on some time before.
12. If the lamp is on, it will eventually be off.
13. The lamp will be on repeatedly.
14. At some point the lamp will burn and stay permanently off.
15. If set occurs infinitely often the lamp will be on infinitely often.

Exercise, formalization of properties

1. $s=$ off
2. $\square(a=$ reset $\wedge s \neq$ off $\rightarrow \bigcirc s=$ off $)$
3. $\square(\mathrm{a}=$ reset $\rightarrow \bigcirc \mathrm{s}=$ off $)$
4. $\square(a=$ set $\wedge s=$ off $\rightarrow \bigcirc s \neq$ off $)$
5. $\square(a=\operatorname{set} \wedge s=o n 1 \rightarrow \bigcirc s=o n 2)$
6. $\square(\mathrm{a}=$ set $\rightarrow \bigcirc \mathrm{a} \neq$ reset $) \wedge \square(\mathrm{a}=$ reset $\rightarrow \bigcirc \mathrm{a} \neq$ set $)$
7. $\square(a=\operatorname{set} \wedge s=o n 2 \rightarrow \bigcirc s=o n 2)$
8. $\mathrm{a}=\operatorname{set} \mathrm{R} \mathrm{s}=$ off
9. $\square(s=$ off $\rightarrow a=\operatorname{set} \mathrm{R} s=$ off $)$
10.

$\square(a=\operatorname{set} \wedge \bigcirc a=\operatorname{set} \rightarrow \bigcirc \bigcirc s=o n 2)$, also $\square(\mathrm{a}=$ set $\rightarrow \bigcirc(\mathrm{a}=$ set $\rightarrow \bigcirc \mathrm{s}=$ on 2$))$
11. $\neg(a \neq \operatorname{set} \mathrm{Ul} s \neq$ off $)$
12. $\square(s \neq$ off $\rightarrow \Delta s=$ off $)$
13. $\square(\diamond s \neq$ off $)$
14. $\forall(\square s=$ off $)$
15. $\square \diamond \mathrm{a} \neq \mathrm{set} \rightarrow \square \diamond \mathrm{s} \neq$ off

Exercise, formalization of properties

1. $s=o f f$
2. $\square(a=$ reset $\wedge s \neq$ off $\rightarrow \bigcirc s=$ off $)$
3. $\square(\mathrm{a}=$ reset $\rightarrow \bigcirc \mathrm{s}=$ off $)$
4. $\square(a=$ set $\wedge s=$ off $\rightarrow \bigcirc s \neq$ off $)$
5. $\square(a=\operatorname{set} \wedge s=o n 1 \rightarrow \bigcirc s=o n 2)$
6. $\square(\mathrm{a}=$ set $\rightarrow \bigcirc \mathrm{a} \neq$ reset $) \wedge \square(\mathrm{a}=$ reset $\rightarrow \bigcirc \mathrm{a} \neq$ set $)$
7. $\square(a=\operatorname{set} \wedge s=$ on $2 \rightarrow \bigcirc s=$ on 2$)$
8. $\mathrm{a}=\operatorname{set} \mathrm{R} \mathrm{s}=$ off
9. $\square(\mathrm{s}=$ off $\rightarrow \mathrm{a}=\operatorname{set} \mathrm{R} \mathrm{s}=$ off $)$
10.

$$
\begin{aligned}
& \square(\mathrm{a}=\text { set } \wedge \bigcirc \mathrm{a}=\text { set } \rightarrow \bigcirc \bigcirc \mathrm{s}=\text { on } 2) \text {, also } \\
& \square(\mathrm{a}=\text { set } \rightarrow \bigcirc(\mathrm{a}=\text { set } \rightarrow \bigcirc \mathrm{s}=\text { on } 2))
\end{aligned}
$$

11. $\neg(a \neq \operatorname{set} \mathrm{U} \mathrm{s} \neq$ off $)$
12. $\square(s \neq$ off $\rightarrow \Delta s=$ off $)$
13. $\square(\diamond s \neq$ off $)$
14. $\diamond(\square s=$ off $)$

Which of these properties are satisfied by every execution path of the transition system?
15. \square

