CS:4350 Logic in Computer Science

Linear Temporal Logic

Cesare Tinelli

Spring 2022

Credits

These slides are largely based on slides originally developed by **Andrei Voronkov** at the University of Manchester. Adapted by permission.

Outline

Linear Temporal Logic

Computation Tree Linear Temporal Logic Using Temporal Formulas Equivalences of Temporal Formulas Expressing Transitions Full example

Computation Tree

Let $\mathbb{S} = (S, In, T, \mathcal{X}, dom, L)$ be a transition system and $s_0 \in S$

Computation tree for S *starting at* s_0 *:*

Defined as the (possibly infinite) tree C such that

- 1. every node of C is labeled by a state in S
- 2. the root of C is labeled by s_0
- 3. every node in the tree labeled by a state *s* has a child labeled by a state *s'* iff $(s, s') \in T$

Computation Tree

Let $\mathbb{S} = (S, In, T, \mathcal{X}, dom, L)$ be a transition system and $s_0 \in S$

Computation tree for S *starting at* s_0 *:*

Defined as the (possibly infinite) tree C such that

- 1. every node of C is labeled by a state in S
- 2. the root of C is labeled by s_0
- 3. every node in the tree labeled by a state *s* has a child labeled by a state *s'* iff $(s, s') \in T$

Computation path for \mathbb{S} *starting at* s_0 *:* any branch s_0, s_1, \ldots in *C*

 S_1 Х S_2 $\neg X$

computation path

computation path

computation path

Properties

 $\mathbb{S} = (S, In, T, \mathcal{X}, dom, L)$

1. The computation paths of $\mathbb S$ are exactly the branches in the computation trees for $\mathbb S$

If C is a computation tree for S, the subtree of C rooted at a state s is the computation tree for S starting at s
 (every subtree of a computation tree is itself a computation tree)

3. For all $s \in S$, there is a unique computation tree for \mathbb{S} starting at s

Properties

 $\mathbb{S} = (S, In, T, \mathcal{X}, dom, L)$

- 1. The computation paths of $\mathbb S$ are exactly the branches in the computation trees for $\mathbb S$
- If C is a computation tree for S, the subtree of C rooted at a state s is the computation tree for S starting at s
 (every subtree of a computation tree is itself a computation tree)

3. For all $s \in S$, there is a unique computation tree for $\mathbb S$ starting at s

Properties

 $\mathbb{S} = (S, In, T, \mathcal{X}, dom, L)$

- 1. The computation paths of $\mathbb S$ are exactly the branches in the computation trees for $\mathbb S$
- If C is a computation tree for S, the subtree of C rooted at a state s is the computation tree for S starting at s
 (every subtree of a computation tree is itself a computation tree)
- 3. For all $s \in S$, there is a unique computation tree for \mathbb{S} starting at s

System paths

$$s_1^{\omega} = s_1 s_1 s_1 \cdots$$
$$(s_1 s_2)^{\omega} = s_1 s_2 s_1 s_2 \cdots$$

System paths

$$s_1^{\omega} = s_1 s_1 s_1 \cdots$$
$$(s_1 s_2)^{\omega} = s_1 s_2 s_1 s_2 \cdots$$

not a system path: $(s_2s_1)^{\omega}$

$$s_1^{\omega} = s_1 s_1 s_1 \cdots$$
$$(s_1 s_2)^{\omega} = s_1 s_2 s_1 s_2 \cdots$$

not a system path: $(s_2s_1)^{\omega}$

$$s_1^{\omega} = s_1 s_1 s_1 \cdots$$
$$(s_1 s_2)^{\omega} = s_1 s_2 s_1 s_2 \cdots$$

not a system path: $(s_2s_1)^{\omega}$

$$\begin{split} &(s_1s_3)^{\omega} \\ &s_1s_4(s_3s_1)^{\omega} \\ &(s_1s_4s_3)^{\omega} \\ &s_1s_4(s_3s_1)^n s_4(s_3s_1)^{\omega} \ \text{for all } n>1 \\ &(s_1s_4s_3)^n s_1(s_3s_1)^{\omega} \ \text{for all } n>0 \end{split}$$

Linear Temporal Logic

Linear Temporal Logic (LTL) is a logic for reasoning about properties of computation paths

Linear Temporal Logic

Linear Temporal Logic (LTL) is a logic for reasoning about properties of computation paths

Formulas are built in the same way as in PLFD, with the following additions:

- **1.** If *F* is a formula, then \bigcirc *F*, \square *F*, and \Diamond *F* are formulas
- 2. If *F* and *G* are formulas, then *F* U *G* and *F* R *G* are formulas

Linear Temporal Logic

Linear Temporal Logic (LTL) is a logic for reasoning about properties of computation paths

Formulas are built in the same way as in PLFD, with the following additions:

- **1.** If *F* is a formula, then \bigcirc *F*, \square *F*, and \Diamond *F* are formulas
- 2. If F and G are formulas, then $F \amalg G$ and $F \And G$ are formulas

🔵 next

- always (in the future)
- ◊ **eventually** (in the future)
- U until
- R release

Precedences of Connectives and Temporal Operators

Connective	Precedence
$\neg,\bigcirc,\diamondsuit,\square$ \mathbf{U},\mathbf{R}	5 4
\wedge, \vee \rightarrow	3
\leftrightarrow	1

- unary temporal operators have the same precedence as ¬
- binary temporal operators have higher precedence than binary Boolean connectives

Semantics (intuitive)

LTL formulas express properties of computations or computation paths

 ${\rm LTL}$ formulas express properties of computations or computation paths

 $\pi = s_0, s_1, s_2, \ldots$, sequence of states $\pi_i = s_i, s_{i+1}, s_{i+2}, \ldots$, subsequence of π starting at $i \ge 0$

 ${\rm LTL}$ formulas express properties of computations or computation paths

 $\pi = s_0, s_1, s_2, \ldots$, sequence of states $\pi_i = s_i, s_{i+1}, s_{i+2}, \ldots$, subsequence of π starting at $i \ge 0$

 ${\rm LTL}$ formulas express properties of computations or computation paths

 $\pi = s_0, s_1, s_2, \ldots$, sequence of states $\pi_i = s_i, s_{i+1}, s_{i+2}, \ldots$, subsequence of π starting at $i \ge 0$

 ${\rm LTL}$ formulas express properties of computations or computation paths

 $\pi = s_0, s_1, s_2, \ldots$, sequence of states $\pi_i = s_i, s_{i+1}, s_{i+2}, \ldots$, subsequence of π starting at $i \ge 0$

 ${\rm LTL}$ formulas express properties of computations or computation paths

 $\pi = s_0, s_1, s_2, \ldots$, sequence of states $\pi_i = s_i, s_{i+1}, s_{i+2}, \ldots$, subsequence of π starting at $i \ge 0$

 ${\rm LTL}$ formulas express properties of computations or computation paths

 $\pi = s_0, s_1, s_2, \ldots$, sequence of states $\pi_i = s_i, s_{i+1}, s_{i+2}, \ldots$, subsequence of π starting at $i \ge 0$

 ${\rm LTL}$ formulas express properties of computations or computation paths

 $\pi = s_0, s_1, s_2, \dots$, sequence of states $\pi_i = s_i, s_{i+1}, s_{i+2}, \dots$, subsequence of π starting at $i \ge 0$

 F , an LTL formula

F holds on π or π satisfies *F*, written $\pi \models F$, iff *F* holds on π_0 , written $\pi_0 \models F$, where $\pi_i \models F$ is defined for all $i \ge 0$ by induction on *F*

 ${\rm LTL}$ formulas express properties of computations or computation paths

 $\pi = s_0, s_1, s_2, \ldots$, sequence of states $\pi_i = s_i, s_{i+1}, s_{i+2}, \ldots$, subsequence of π starting at $i \ge 0$

 F , an LTL formula

F holds on π or π satisfies *F*, written $\pi \models F$, iff *F* holds on π_0 , written $\pi_0 \models F$, where $\pi_i \models F$ is defined for all $i \ge 0$ by induction on *F*

We will informally say that *F* holds in s_i to mean that *F* holds on π_i
$\pi_i = s_i, s_{i+1}, s_{i+2}, \ldots$

Atomic formulas hold on π_i iff they hold in s_i :

1.
$$\pi_i \models x = v$$
 if $s_i \models x = v$

2. $\pi_i \models \top$ and $\pi_i \not\models \bot$

3. $\pi_i \models \neg F$ if $\pi_i \not\models F$

- 4. $\pi_i \models F_1 \land \dots \land F_n$ if $\pi_i \models F_j$ for all $j = 1, \dots, n$ $\pi_i \models F_1 \lor \dots \lor F_n$ if $\pi_i \models F_i$ for some $j = 1, \dots, n$
- 5. $\pi_I \models F \rightarrow G$ if either $\pi_I \not\models F$ or $\pi_I \models G$ $\pi_I \models F \leftrightarrow G$ if either both $\pi_I \not\models F$ and $\pi_I \not\models G$ or both $\pi_I \models F$ and $\pi_I \models G$

 $\pi_i = s_i, s_{i+1}, s_{i+2}, \ldots$

Atomic formulas hold on π_i iff they hold in s_i :

1. $\pi_i \models x = v$ if $s_i \models x = v$

The semantics of formulas whose top symbol is a propositional connective is the same as in PL, with all subformulas also evaluated on π_i :

 $\pi_i = s_i, s_{i+1}, s_{i+2}, \ldots$

Atomic formulas hold on π_i iff they hold in s_i :

1.
$$\pi_i \models x = v$$
 if $s_i \models x = v$

The semantics of formulas whose top symbol is a propositional connective is the same as in PL, with all subformulas also evaluated on π_i :

2.
$$\pi_i \models \top$$
 and $\pi_i \not\models \bot$

3. $\pi_i \models \neg F$ if $\pi_i \not\models F$

- **4.** $\pi_i \models F_1 \land \cdots \land F_n$ if $\pi_i \models F_j$ for all $j = 1, \ldots, n$
- $\pi_i \models F_1 \lor \cdots \lor F_n$ if $\pi_i \models F_j$ for some $j = 1, \dots, n$
- 5. $\pi_i \models F \rightarrow G$ if either $\pi_i \not\models F$ or $\pi_i \models G$
 - $\pi_i \models F \leftrightarrow G$ if either both $\pi_i \not\models F$ and $\pi_i \not\models G$ or both $\pi_i \models F$ and $\pi_i \models G$

 $\pi_i = s_i, s_{i+1}, s_{i+2}, \ldots$

Atomic formulas hold on π_i iff they hold in s_i :

1.
$$\pi_i \models x = v$$
 if $s_i \models x = v$

The semantics of formulas whose top symbol is a propositional connective is the same as in PL, with all subformulas also evaluated on π_i :

2.
$$\pi_i \models \top$$
 and $\pi_i \not\models \bot$

3.
$$\pi_i \models \neg F$$
 if $\pi_i \not\models F$

- 4. $\pi_i \models F_1 \land \cdots \land F_n$ if $\pi_i \models F_j$ for all $j = 1, \ldots, n$
- $\pi_i \models F_1 \lor \cdots \lor F_n$ if $\pi_i \models F_j$ for some $j = 1, \dots, n$
- 5. $\pi_i \models F \rightarrow G$ if either $\pi_i \not\models F$ or $\pi_i \models G$
 - $\pi_i \models F \leftrightarrow G$ if either both $\pi_i \not\models F$ and $\pi_i \not\models G$ or both $\pi_i \models F$ and $\pi_i \models G$

 $\pi_i = \mathsf{s}_i, \mathsf{s}_{i+1}, \mathsf{s}_{i+2}, \ldots$

Atomic formulas hold on π_i iff they hold in s_i :

1.
$$\pi_i \models x = v$$
 if $s_i \models x = v$

The semantics of formulas whose top symbol is a propositional connective is the same as in PL, with all subformulas also evaluated on π_i :

2.
$$\pi_i \models \top$$
 and $\pi_i \not\models \bot$
3. $\pi_i \models \neg F$ if $\pi_i \not\models F$
4. $\pi_i \models F_1 \land \cdots \land F_n$ if $\pi_i \models F_j$ for all $j = 1, \dots, n$
 $\pi_i \models F_1 \lor \cdots \lor F_n$ if $\pi_i \models F_j$ for some $j = 1, \dots, n$

 $\pi_l \models F \Leftrightarrow G$ if either both $\pi_l \nvDash F$ and $\pi_l \nvDash G$ or both $\pi_l \models F$ and $\pi_l \models G$

 $\pi_i = s_i, s_{i+1}, s_{i+2}, \ldots$

Atomic formulas hold on π_i iff they hold in s_i :

1.
$$\pi_i \models x = v$$
 if $s_i \models x = v$

The semantics of formulas whose top symbol is a propositional connective is the same as in PL, with all subformulas also evaluated on π_i :

2.
$$\pi_i \models \top$$
 and $\pi_i \not\models \bot$
3. $\pi_i \models \neg F$ if $\pi_i \not\models F$
4. $\pi_i \models F_1 \land \cdots \land F_n$ if $\pi_i \models F_j$ for all $j = 1, \dots, n$
 $\pi_i \models F_1 \lor \cdots \lor F_n$ if $\pi_i \models F_j$ for some $j = 1, \dots, n$
5. $\pi_i \models F \rightarrow G$ if either $\pi_i \not\models F$ or $\pi_i \models G$
 $\pi_i \models F \leftrightarrow G$ if either both $\pi_i \not\models F$ and $\pi_i \not\models G$ or both $\pi_i \models F$ and $\pi_i \models G$

6. $\pi_i \models \bigcirc F$ if $\pi_{i+1} \models F$

6. $\pi_i \models \bigcirc F$ if $\pi_{i+1} \models F$ $\pi_i \models \diamondsuit F$ if for some $k \ge i$ we have $\pi_k \models F$

6.
$$\pi_i \models \bigcirc F$$
 if $\pi_{i+1} \models F$
 $\pi_i \models \Diamond F$ if for some $k \ge i$ we have $\pi_k \models F$
 $\pi_i \models \bigcirc F$ if for all $k \ge i$ we have $\pi_k \models F$

$$S_i$$
 S_{i+1} S_{i+2} S_{k-1} S_k S_{k+1}

6. $\pi_i \models \bigcirc F$ if $\pi_{i+1} \models F$ $\pi_i \models \Diamond F$ if for some $k \ge i$ we have $\pi_k \models F$ $\pi_i \models \bigcirc F$ if for all $k \ge i$ we have $\pi_k \models F$ 7. $\pi_i \models F \sqcup G$ if for some $k \ge i$ we have $\pi_k \models G$ and $\pi_i \models F, \dots, \pi_{k-1} \models F$

$$S_i$$
 S_{i+1} S_{i+2} S_{k-1} S_k S_{k+1}

 S_i S_{i+1} S_{i+2} S_{k-1} S_k S_{k+1}

G

G

Example

	0	1	2	3	4	5	6	7	8	9	10	11	12	
р	1	1	1	1	1	1	1	1	0	0	1	1	1	1^{ω}
q	0	0	0	0	0	0	0	0	1	0	0	1	0	0^{ω}
$\bigcirc p$	1	1	1	1	1	1	1	0	0	1	1	1	1	1^{ω}
$\Diamond q$	1	1	1	1	1	1	1	1	1	1	1	1	0	0^{ω}
$\Box p$	0	0	0	0	0	0	0	0	0	0	1	1	1	1^{ω}
pUq	1	1	1	1	1	1	1	1	1	0	1	1	0	0^{ω}
а	0	0	1	0	0	1	0	0	1	0	1	0	0	0^{ω}
b	1	1	1	1	1	1	0	1	1	1	1	0	1	1^{ω}
a R b	1	1	1	1	1	1	0	1	1	1	1	0	0	0^{ω}

Notation: v^{ω} denotes the infinite repetition of v

Standard properties?

Two LTL formulas *F* and *G* are *equivalent*, written $F \equiv G$, if for every path π we have $\pi \models F$ iff $\pi \models G$

Standard properties?

Two LTL formulas *F* and *G* are *equivalent*, written $F \equiv G$, if for every path π we have $\pi \models F$ iff $\pi \models G$

We are not interested in satisfiability, validity etc. for temporal formulas

Standard properties?

Two LTL formulas *F* and *G* are *equivalent*, written $F \equiv G$, if for every path π we have $\pi \models F$ iff $\pi \models G$

We are not interested in satisfiability, validity etc. for temporal formulas

For an LTL formula F we can consider two kinds of properties of S:

- 1. does *F* hold on some computation path for *S* from an initial state of *S*?
- 2. does *F* hold on all computation paths for \mathbb{S} from an initial state of \mathbb{S} ?

• $\Box(F \to \bigcirc F)$

- $\Box(F \to \bigcirc F)$
- ¬FU []F

- $\Box(F \to \bigcirc F)$
- ¬FU []F
- *F* U ¬*F*

- $\Box(F \to \bigcirc F)$
- ¬FU []F
- *F* U ¬*F*
- $\Diamond F \land \Box (F \to \bigcirc F)$

- $\Box(F \to \bigcirc F)$
- ¬FU []F
- *F* U ¬*F*
- $\Diamond F \land \Box (F \to \bigcirc F)$

- $\Box(F \to \bigcirc F)$
- ¬FU []F
- *F* U ¬*F*
- $\Diamond F \land \Box (F \to \bigcirc F)$
- $F \land \Box (F \leftrightarrow \neg \bigcirc F)$

- 1. F holds initially but not later
- 2. F never holds in two consecutive states
- 3. If *F* holds in a state *s*, it also holds in all states after *s*
- 4. F holds in at most one state
- 5. F holds in at least two states
- 6. F happens infinitely often
- 7. *F* holds in each even state and does not hold in each odd state (states are counted from 0)
- 8. Unless s_i is the first state of the path, if *F* holds in state s_i , then *G* must hold in at least one of the two states just before s_i , that is, s_{i-1} and s_{i-2}

- 1. *F* holds initially but not later $F \land \bigcirc \Box \neg F$

 \Diamond

- **1.** *F* holds initially but not later $F \land \bigcirc \Box \neg F$
- 2. F never holds in two consecutive states
- 3. If F holds in a state s, it also holds in all states after s
- 4. F holds in at most one state
- 5. F holds in at least two states
- 6. F happens infinitely often
- 7. *F* holds in each even state and does not hold in each odd state (states are counted from 0)
- 8. Unless s_i is the first state of the path, if *F* holds in state s_i , then *G* must hold in at least one of the two states just before s_i , that is, s_{i-1} and s_{i-2}

- **1.** *F* holds initially but not later $F \land \bigcirc \Box \neg F$
- 2. *F* never holds in two consecutive states
- 3. If *F* holds in a state *s*, it also holds in all states after *s*
- 4. F holds in at most one state
- 5. F holds in at least two states
- 6. F happens infinitely often
- 7. *F* holds in each even state and does not hold in each odd state (states are counted from 0)
- 8. Unless s_i is the first state of the path, if *F* holds in state s_i , then *G* must hold in at least one of the two states just before s_i , that is, s_{i-1} and s_{i-2}

 \Box ($F \rightarrow \bigcirc \neg F$)

- **1.** *F* holds initially but not later $F \land \bigcirc \Box \neg F$
- 2. *F* never holds in two consecutive states
- 3. If *F* holds in a state *s*, it also holds in all states after *s*
- 4. F holds in at most one state
- 5. F holds in at least two states
- 6. F happens infinitely often
- 7. *F* holds in each even state and does not hold in each odd state (states are counted from 0)
- 8. Unless s_i is the first state of the path, if *F* holds in state s_i , then *G* must hold in at least one of the two states just before s_i , that is, s_{i-1} and s_{i-2}

 $\Box (F \rightarrow \bigcirc \neg F)$

- **1.** *F* holds initially but not later $F \land \bigcirc \Box \neg F$
- 2. *F* never holds in two consecutive states \Box ($F \rightarrow \bigcirc \neg F$)
- 3. If *F* holds in a state *s*, it also holds in all states after $s \square (F \rightarrow \square F)$
- 4. F holds in at most one state
- 5. F holds in at least two states
- 6. F happens infinitely often
- 7. *F* holds in each even state and does not hold in each odd state (states are counted from 0)
- 8. Unless s_i is the first state of the path, if *F* holds in state s_i , then *G* must hold in at least one of the two states just before s_i , that is, s_{i-1} and s_{i-2}

◊ (eventually)
 ○ (next)
 ○ (always)
 U (until)
 R (release)

- **1.** *F* holds initially but not later $F \land \bigcirc \Box \neg F$
- 2. *F* never holds in two consecutive states \Box ($F \rightarrow \bigcirc \neg F$)
- 3. If *F* holds in a state *s*, it also holds in all states after $s \quad \Box(F \rightarrow \Box F)$
- 4. *F* holds in at most one state
- 5. F holds in at least two states
- 6. F happens infinitely often
- 7. *F* holds in each even state and does not hold in each odd state (states are counted from 0)
- 8. Unless s_i is the first state of the path, if *F* holds in state s_i , then *G* must hold in at least one of the two states just before s_i , that is, s_{i-1} and s_{i-2}

◊ (eventually) ○ (next)
 ○ (always) U (until)
 R (release)

- **1.** *F* holds initially but not later $F \land \bigcirc \Box \neg F$
- 2. *F* never holds in two consecutive states \Box ($F \rightarrow \bigcirc \neg F$)
- 3. If *F* holds in a state *s*, it also holds in all states after $s = \Box(F \rightarrow \Box F)$
- 4. *F* holds in at most one state $\Box(F \rightarrow \bigcirc \Box \neg F)$
- 5. F holds in at least two states
- 6. F happens infinitely often
- 7. *F* holds in each even state and does not hold in each odd state (states are counted from 0)
- 8. Unless s_i is the first state of the path, if *F* holds in state s_i , then *G* must hold in at least one of the two states just before s_i , that is, s_{i-1} and s_{i-2}

ome Properties

 \diamond (eventually) (next) (alwavs) **U** (until) R (release)

- **1.** *F* holds initially but not later $F \land \bigcirc \Box \neg F$
- 2. *F* never holds in two consecutive states \Box ($F \rightarrow \bigcirc \neg F$)
- 3. If *F* holds in a state *s*, it also holds in all states after $s = \Box(F \rightarrow \Box F)$
- 4. *F* holds in at most one state $\Box(F \rightarrow \bigcirc \Box \neg F)$
- 5. F holds in at least two states
- 6. F happens infinitely often
- 7. *F* holds in each even state and does not hold in each odd state (states are counted from 0)
- 8. Unless s_i is the first state of the path, if *F* holds in state s_i , then *G* must hold in at least one of the two states just before s_i , that is, s_{i-1} and s_{i-2}

◊ (eventually) ○ (next) □ (always) U (until) R (release)

- **1.** *F* holds initially but not later $F \land \bigcirc \Box \neg F$
- 2. *F* never holds in two consecutive states $\square(F \rightarrow \bigcirc \neg F)$
- 3. If F holds in a state s, it also holds in all states after s $(F \rightarrow F)$
- $\square(F \rightarrow \bigcirc \square \neg F)$ 4. *F* holds in at most one state
- $\Diamond (F \land \bigcirc \Diamond F)$ 5. *F* holds in at least two states

(eventually) (next) (alwavs) **U** (until) R (release)

- **1.** *F* holds initially but not later $F \land \bigcirc \Box \neg F$
- 2. F never holds in two consecutive states $(F \rightarrow \bigcirc \neg F)$
- 3. If F holds in a state s, it also holds in all states after s $(F \rightarrow F)$
- 4. F holds in at most one state $(F \rightarrow \bigcirc \neg F)$
- 5. *F* holds in at least two states $\Diamond (F \land \bigcirc \Diamond F)$
- 6. *F* happens infinitely often

(eventually) (next) (alwavs) **U** (until) R (release)

- **1.** *F* holds initially but not later $F \land \bigcirc \Box \neg F$
- 2. *F* never holds in two consecutive states \Box ($F \rightarrow \bigcirc \neg F$)
- 3. If *F* holds in a state *s*, it also holds in all states after $s = \Box(F \rightarrow \Box F)$
- 4. *F* holds in at most one state $\Box(F \rightarrow \bigcirc \Box \neg F)$
- 5. *F* holds in at least two states $\Diamond(F \land \bigcirc \Diamond F)$
- 6. F happens infinitely often $\Box \Diamond F$
- 7. *F* holds in each even state and does not hold in each odd state (states are counted from 0)
- 8. Unless s_i is the first state of the path, if *F* holds in state s_i , then *G* must hold in at least one of the two states just before s_i , that is, s_{i-1} and s_{i-2}

◊ (eventually) ○ (next) ○ (always) U (until) R (release)

- **1.** *F* holds initially but not later $F \land \bigcirc \Box \neg F$
- 2. F never holds in two consecutive states $(F \rightarrow \bigcirc \neg F)$
- 3. If F holds in a state s, it also holds in all states after s $(F \rightarrow F)$
- 4. *F* holds in at most one state $\square(F \rightarrow \bigcirc \square \neg F)$
- 5. F holds in at least two states $\Diamond (F \land \bigcirc \Diamond F)$
- 6. *F* happens infinitely often $\Box \Diamond F$
- 7. F holds in each even state and does not hold in each odd state (states are counted from 0)

\diamond (eventually) (next) (alwavs) U (until) R (release)

- **1.** *F* holds initially but not later $F \land \bigcirc \Box \neg F$
- 2. F never holds in two consecutive states $\Box (F \rightarrow \bigcirc \neg F)$
- 3. If F holds in a state s, it also holds in all states after s $(F \rightarrow F)$
- 4. *F* holds in at most one state $\Box(F \rightarrow \bigcirc \neg F)$
- 5. F holds in at least two states $\Diamond (F \land \bigcirc \Diamond F)$
- 6. *F* happens infinitely often $\Box \Diamond F$
- 7. F holds in each even state and does not hold in each odd state (states are counted from 0) $F \land \Box (F \leftrightarrow \bigcirc \neg F)$

\Diamond (eventually) \bigcirc (next) U (until) (alwavs) R (release)

- **1.** *F* holds initially but not later $F \land \bigcirc \Box \neg F$
- 2. *F* never holds in two consecutive states $(F \rightarrow \bigcirc \neg F)$
- 3. If *F* holds in a state *s*, it also holds in all states after *s* \Box (*F* \rightarrow \Box *F*)
- 4. *F* holds in at most one state $\square(F \rightarrow \bigcirc \square \neg F)$
- 5. F holds in at least two states $\Diamond (F \land \bigcirc \Diamond F)$
- 6. *F* happens infinitely often $\Box \Diamond F$
- 7. F holds in each even state and does not hold in each odd state (states are counted from 0) $F \land \Box (F \leftrightarrow \bigcirc \neg F)$
- 8. Unless s_i is the first state of the path, if F holds in state s_i , then G must hold in at least one of the two states just before s_i , that is, s_{i-1} and s_{i-2}

\diamond (eventually) (alwavs) **R** (release)

- **1.** *F* holds initially but not later $F \land \bigcirc \Box \neg F$
- 2. *F* never holds in two consecutive states $\Box(F \rightarrow \bigcirc \neg F)$
- 3. If *F* holds in a state *s*, it also holds in all states after $s \quad \Box(F \rightarrow \Box F)$
- 4. *F* holds in at most one state $\Box(F \rightarrow \bigcirc \Box \neg F)$
- 5. *F* holds in at least two states $\Diamond(F \land \bigcirc \Diamond F)$
- 6. F happens infinitely often $\Box \Diamond F$
- 7. *F* holds in each even state and does not hold in each odd state (states are counted from 0) $F \land \Box(F \leftrightarrow \bigcirc \neg F)$
- 8. Unless s_i is the first state of the path, if F holds in state s_i , then G must hold in at least one of the two states just before s_i , that is, s_{i-1} and s_{i-2} $(\bigcirc F \rightarrow G) \land \square (\bigcirc \bigcirc F \rightarrow \bigcirc G \lor G)$

◊ (eventually)
 ○ (next)
 □ (always)
 U (until)
 R (release)

- **1.** *F* holds initially but not later $F \land \bigcirc \Box \neg F$
- 2. *F* never holds in two consecutive states $\Box(F \rightarrow \bigcirc \neg F)$
- 3. If *F* holds in a state *s*, it also holds in all states after $s = \Box(F \rightarrow \Box F)$
- 4. *F* holds in at most one state $\Box(F \rightarrow \bigcirc \Box \neg F)$
- 5. *F* holds in at least two states $\Diamond(F \land \bigcirc \Diamond F)$
- 6. F happens infinitely often $\Box \Diamond F$
- 7. *F* holds in each even state and does not hold in each odd state (states are counted from 0) $F \land \Box(F \leftrightarrow \bigcirc \neg F)$
- 8. Unless s_i is the first state of the path, if F holds in state s_i, then G must hold in at least one of the two states just before s_i, that is, s_{i-1} and s_{i-2} (○F → G) ∧ □(○○F → ○G ∨ G)

◊ (eventually) ○ (next) □ (always) U (until) R (release)

Expressiveness of LTL

Not all reasonable properties are expressible in LTL

Example: *p* holds in all even states (and possibly in others)

Equivalences: Unwinding Properties

 $\Diamond F \equiv F \lor \bigcirc \Diamond F$ $\Box F \equiv F \land \bigcirc \Box F$ $F \mathbf{U} G \equiv G \lor (F \land \bigcirc (F \mathbf{U} G))$ $F \mathbf{R} G \equiv G \land (F \lor \bigcirc (F \mathbf{R} G))$

Equivalences: Negation of Temporal Operators

 $\neg \bigcirc F \equiv \bigcirc \neg F$ $\neg \Diamond F \equiv \bigcirc \neg F$ $\neg \bigcirc F \equiv \Diamond \neg F$ $\neg \bigcirc F \equiv \Diamond \neg F$ $\neg (F \sqcup G) \equiv \neg F \sqcap \neg G$ $\neg (F \sqcap G) \equiv \neg F \amalg \neg G$

Expressing Temporal Operators Using \boldsymbol{U}

Hence, all operators can be expressed using \bigcirc and \amalg

Further Equivalences

$\Diamond (F \lor G) \equiv \Diamond F \lor \Diamond G$ $\Box (F \land G) \equiv \Box F \land \Box G$

But

$\Box (F \lor G) \not\equiv \Box F \lor \Box G$ $\Diamond (F \land G) \not\equiv \Diamond F \land \Diamond G$

How to Show that Two Formulas are not Equivalent

Find a path that satisfies one of the formulas but not the other

Example 1: for $\Box (F \lor G)$ and $\Box F \lor \Box G$

Example 2: for $\Diamond(F \land G)$ and $\Diamond F \land \Diamond G$

Back to the Vending Machine

variable	domain	explanation
st_coffee	$\{ 0, 1 \}$	drink storage contains coffee
st_soda	$\{ 0, 1 \}$	drink storage contains soda
disp	{ none, soda, coffee }	content of drink dispenser
coins	$\{0, 1, 2, 3\}$	number of coins in the slot
customer	{ none, student, prof }	customer

Talking about the vending machine in LTL, Examples

- 1. If the machine runs out of soda, it gets restocked immediately.
- 2. The machine eventually runs out of drinks.
- 3. The machine runs out of soda infinitely often.
- 4. Students never leave without a drink.
- 5. Professors sometimes leave a drink in the dispenser.
- 6. If students forget a coin in the coin slot, they (or other students) will use this coin to get a drink before any professor does the same.
- 7. If professors forget coins or their drink in the machine, a student will immediately arrive at the machine.
- 8. If there is a coin in the coin slot when a professor arrives, they will leave without getting a drink.
- 9. If a professor is currently at the machine, there will be no student at the machine for at least the next three transitions.

10. ...

Transitions

- 1. *Restock* which results in the drink storage having both soda and coffee.
- 2. *Customer_arrives*, after which a customer appears at the machine.
- 3. *Customer_leaves*, after which the customer leaves.
- 4. *Coin_insert*, when the customer inserts a coin in the machine.
- 5. *Dispense_soda*, when the customer presses the button to get a can of soda.
- 6. *Dispense_coffee*, when the customer presses the button to get a cup of coffee.
- 7. *Take_drink*, when the customer removes a drink from the dispenser.

Consider the following properties:

- 1. One cannot have two sodas in a row without inserting a coin.
- 2. If we never have two restock transitions in a row, then the next transition after a restock must be a customer arrival.

Note that they are about transitions, not states

How can one represent these properties?

Consider the following properties:

- 1. One cannot have two sodas in a row without inserting a coin.
- 2. If we never have two restock transitions in a row, then the next transition after a restock must be a customer arrival.

Note that they are about transitions, not states

How can one represent these properties?

Consider the following properties:

- 1. One cannot have two sodas in a row without inserting a coin.
- 2. If we never have two restock transitions in a row, then the next transition after a restock must be a customer arrival.

Note that they are about transitions, not states

How can one represent these properties?

Consider the following properties:

- 1. One cannot have two sodas in a row without inserting a coin.
- 2. If we never have two restock transitions in a row, then the next transition after a restock must be a customer arrival.

Note that they are about transitions, not states

How can one represent these properties?

Example

tr with domain { *restock*, *customer_arrives*, *coin_insert*, . . . }

Restock	def =	$\begin{array}{l} tr = \textit{restock} \land customer = \textit{none} \land \\ st_coffee' \land st_soda' \land \\ \textit{only}(st_coffee, st_soda, tr) \end{array}$
Customer_arrives		$\begin{array}{l} tr = \textit{customer}_\textit{arrives} \land \textit{customer} = \textit{none} \land \\ \textit{customer}' \neq \textit{none} \land \\ \textit{only}(\textit{customer}, tr) \end{array}$
Coin_insert	def =	$tr = coin_insert \land$ $customer \neq none \land coins \neq 3 \land$ $(coins = 0 \rightarrow coins' = 1) \land$ $(coins = 1 \rightarrow coins' = 2) \land$ $(coins = 2 \rightarrow coins' = 3) \land$ only(coins, tr)

1. One cannot have two sodas without inserting a coin in between getting them:

1. One cannot have two sodas without inserting a coin in between getting them:

 $\begin{array}{l} \square(\mathsf{tr} = \mathit{dispense_soda} \rightarrow \bigcirc (\square(\mathsf{tr} \neq \mathit{dispense_soda}) \lor \\ (\mathsf{tr} \neq \mathit{dispense_soda}) \, \texttt{U}(\mathsf{tr} = \mathit{insert_coin}))) \end{array}$

1. One cannot have two sodas without inserting a coin in between getting them:

 $\begin{array}{l} \square(\mathsf{tr} = \mathit{dispense_soda} \rightarrow \bigcirc (\square(\mathsf{tr} \neq \mathit{dispense_soda}) \lor \\ (\mathsf{tr} \neq \mathit{dispense_soda}) \, \texttt{U}(\mathsf{tr} = \mathit{insert_coin}))) \end{array}$

2. If we never have two restock transitions in a row, then the next transition after a restock must be a customer arrival:

1. One cannot have two sodas without inserting a coin in between getting them:

 $\Box(tr = dispense_soda \rightarrow \bigcirc (\Box(tr \neq dispense_soda) \lor (tr \neq dispense_soda) \cup (tr \neq dispense_soda) U(tr = insert_coin)))$

2. If we never have two restock transitions in a row, then the next transition after a restock must be a customer arrival:

$$\Box(tr = restock \rightarrow \bigcirc tr \neq restock) \rightarrow \\ \Box(tr = restock \rightarrow \bigcirc tr = customer_arrives)$$

1. One cannot have two sodas without inserting a coin in between getting them:

 $\Box(tr = dispense_soda \rightarrow \bigcirc (\Box(tr \neq dispense_soda) \lor (tr \neq dispense_soda) \cup (tr \neq dispense_soda) U(tr = insert_coin)))$

2. If we never have two restock transitions in a row, then the next transition after a restock must be a customer arrival:

$$\Box(tr = restock \to \bigcirc tr \neq restock) \to \\\Box(tr = restock \to \bigcirc tr = customer_arrives)$$

3. The value of customer changes only as a result of either *Customer_arrives* or *Customer_leaves*:

1. One cannot have two sodas without inserting a coin in between getting them:

 $\Box(tr = dispense_soda \rightarrow \bigcirc (\Box(tr \neq dispense_soda) \lor (tr \neq dispense_soda) \cup (tr \neq dispense_soda) U(tr = insert_coin)))$

2. If we never have two restock transitions in a row, then the next transition after a restock must be a customer arrival:

$$\Box(tr = restock \to \bigcirc tr \neq restock) \to \\\Box(tr = restock \to \bigcirc tr = customer_arrives)$$

3. The value of customer changes only as a result of either *Customer_arrives* or *Customer_leaves*:

$$\Box(\bigwedge_{v \in dom(customer)}(customer = v \land \bigcirc customer \neq v) \rightarrow tr = customer_arrives \lor tr = customer_leaves)$$

1. If somebody inserts a coin twice in a row and then immediately gets a soda, the amount of coins in the slot will not change:

1. If somebody inserts a coin twice in a row and then immediately gets a soda, the amount of coins in the slot will not change:

1. If somebody inserts a coin twice in a row and then immediately gets a soda, the amount of coins in the slot will not change:

2. If the system is occasionally restocked, then after each *dispense_soda* the customer will leave:

1. If somebody inserts a coin twice in a row and then immediately gets a soda, the amount of coins in the slot will not change:

2. If the system is occasionally restocked, then after each *dispense_soda* the customer will leave:

$$\bigcirc \mathsf{tr} = \mathsf{restock} \rightarrow \\ \bigcirc (\mathsf{tr} = \mathsf{dispense_soda} \rightarrow \Diamond \mathsf{tr} = \mathsf{customer_leaves}^{\mathsf{r}}$$

Exercise, Dimmable Lamp

Device A lamp with two buttons that can be

- off
- on at medium intensity
- on at full intensity

Actions

- 1. pushing the first button (set): switches light from off to medium intensity or from medium to full intensity
- 2. pushing the second button (reset): switches light off
- 3. doing nothing (none): results just in time passing

Constraints

- 1. Pushing the first button has no effect if done immediately after a reset
- 2. Pushing the second button has no effect if done immediately after a set
- 3. It is impossible to push both buttons at the same time

Exercise, Dimmable Lamp

Device A lamp with two buttons that can be

- off
- on at medium intensity
- on at full intensity

state variable	domain	explanation
а	{ set, reset, none }	actions/transitions
S	$\{ off, on1, on2 \}$	lamp status
st	$\{0, 1\}$	time counter for set
rt	$\{0, 1\}$	time counter for reset

Actions

- 1. pushing the first button (set): switches light from off to medium intensity or from medium to full intensity
- 2. pushing the second button (reset): switches light off
- 3. doing nothing (none): results just in time passing

Constraints

- 1. Pushing the first button has no effect if done immediately after a reset
- 2. Pushing the second button has no effect if done immediately after a set
- 3. It is impossible to push both buttons at the same time

Initial state formula

 $s = off \land st = 1 \land rt = 1$

Initial state formula

 $\mathsf{s} = \textit{off} \land \mathsf{st} = 1 \land \mathsf{rt} = 1$

Set
$$\stackrel{\text{def}}{=}$$
 a = set \land rt = 1 \land
(s = off \land s' = on1 \lor s \neq off \land s' = on2) \land
st' = 0 \land only(s, st, a)

Initial state formula

 $\mathsf{s} = \textit{off} \land \mathsf{st} = 1 \land \mathsf{rt} = 1$

$$\begin{array}{lll} \textit{Set} & \stackrel{\mathrm{def}}{=} & \mathsf{a} = \textit{set} \land \mathsf{rt} = 1 \land \\ & (\mathsf{s} = \textit{off} \land \mathsf{s'} = \textit{on1} \lor \mathsf{s} \neq \textit{off} \land \mathsf{s'} = \textit{on2}) \land \\ & \mathsf{st'} = \textit{0} \land \textit{only}(\mathsf{s}, \mathsf{st}, \mathsf{a}) \end{array}$$

$$\begin{array}{ll} \textit{Reset} & \stackrel{\mathrm{def}}{=} & \mathsf{a} = \textit{reset} \land \mathsf{st} = 1 \land \\ & \mathsf{s}' = \textit{off} \land \mathsf{rt}' = 0 \land \textit{only}(\mathsf{s},\mathsf{rt},\mathsf{a}) \end{array}$$

Initial state formula

 $\mathsf{s} = \textit{off} \land \mathsf{st} = 1 \land \mathsf{rt} = 1$

$$\begin{array}{lll} \textit{Set} & \stackrel{\mathrm{def}}{=} & a = \textit{set} \land \textit{rt} = 1 \land \\ & (s = \textit{off} \land s' = \textit{on1} \lor s \neq \textit{off} \land s' = \textit{on2}) \land \\ & st' = 0 \land \textit{only}(s, st, a) \end{array}$$

$$\begin{array}{rl} \textit{Reset} & \stackrel{\mathrm{def}}{=} & \mathsf{a} = \textit{reset} \land \mathsf{st} = 1 \land \\ & \mathsf{s}' = \textit{off} \land \mathsf{rt}' = 0 \land \textit{only}(\mathsf{s},\mathsf{rt},\mathsf{a}) \end{array}$$

None
$$\stackrel{\text{def}}{=}$$
 a = none \land
st' = 1 \land rt' = 1 \land only(st, rt, a)

Exercise, Temporal properties about the lamp

- 1. The lamp is initially off.
- 2. Resetting when the lamp is on turns it off.
- 3. Resetting always turns the lamp off.
- 4. Setting when the lamp is off turns it on.
- 5. Setting when the lamp is half-on turns it fully on.
- 6. A reset cannot immediately follow a set and vice versa.
- 7. Setting when the lamp is fully on has no effect on the light.
- 8. The lamp is initially off and stays off until the first set.
- 9. Once off, the lamp stays off until the next set.
- 10. Two consecutive set actions are enough to turn the lamp fully on.
- 11. If the lamp is on at any point, it must have been turned on some time before.
- 12. If the lamp is on, it will eventually be off.
- 13. The lamp will be on repeatedly.
- 14. At some point the lamp will burn and stay permanently off.
- 15. If set occurs infinitely often the lamp will be on infinitely often.

Exercise, formalization of properties

1.
$$s = off$$

2. $[(a = reset \land s \neq off \rightarrow \bigcirc s = off)$
3. $[(a = reset \rightarrow \bigcirc s = off)$
4. $[(a = set \land s = off \rightarrow \bigcirc s \neq off)$
5. $[(a = set \land s = on1 \rightarrow \bigcirc s = on2)$
6. $[(a = set \land s = on1 \rightarrow \bigcirc s = on2)$
6. $[(a = set \land s = on2 \rightarrow \bigcirc s = on2)$
8. $a = set R s = off$
9. $[(s = off \rightarrow a = set R s = off)$
10. $[(a = set \land \bigcirc a = set R s = off)$
10. $[(a = set \land \bigcirc a = set \rightarrow \bigcirc s = on2))$, also
 $[(a = set \rightarrow \bigcirc (a = set \rightarrow \bigcirc s = on2))$
11. $\neg (a \neq set U s \neq off)$
12. $[(s \neq off \rightarrow \Diamond s = off)$
13. $[(\Diamond s \neq off)]$
14. $\Diamond ([]s = off]$
15. $[] \Diamond a \neq set \rightarrow [] \Diamond s \neq off$
Exercise, formalization of properties

1.
$$s = off$$

2. $[(a = reset \land s \neq off \rightarrow \bigcirc s = off)$
3. $[(a = reset \rightarrow \bigcirc s = off)$
4. $[(a = set \land s = off \rightarrow \bigcirc s \neq off)$
5. $[(a = set \land s = on1 \rightarrow \bigcirc s = on2)$
6. $[(a = set \land s = on1 \rightarrow \bigcirc s = on2)$
6. $[(a = set \land s = on2 \rightarrow \bigcirc s = on2)$
8. $a = set \land s = off$
9. $[(s = off \rightarrow a = set \land s = off)$
10. $[(a = set \land \bigcirc a = set \land \bigcirc s = on2)$, also
 $[(a = set \land \bigcirc (a = set \rightarrow \bigcirc s = on2))$
11. $\neg (a \neq set \amalg s \neq off)$
12. $[(s \neq off \rightarrow \Diamond s = off)$
13. $[(\Diamond s \neq off)$
14. $\Diamond ([]s = off)$
15. $[] \Diamond a \neq set \rightarrow \bigcirc (\Diamond s \neq off)$
15. $[] \Diamond a \neq set \rightarrow \bigcirc (\Diamond s \neq off)$