CS:4350 Logic in Computer Science
 Transition Systems

Cesare Tinelli

Spring 2022

The
University
OF lOWA

Credits

These slides are largely based on slides originally developed by Andrei Voronkov at the University of Manchester. Adapted by permission.

Outline

Transition Systems

State-Changing Systems
Transition Systems
Labelled Transition Systems
Symbolic Representation of Transition Systems

State-changing systems

Our main interest from now on is modeling state-changing systems

State-changing systems

Our main interest from now on is modeling state-changing systems

We assume a discrete notion of time, with each time corresponding to a step taken by the system

State-changing systems

Our main interest from now on is modeling state-changing systems

We assume a discrete notion of time, with each time corresponding to a step taken by the system

Informally	Formally
At each step, the system is in a partic- ular state	States can be characterized by values of a set of variables, called the state variables
The system state changes over time There are actions (controlled or not) that change the state	Actions change values of some state variables

Reasoning about state-changing systems

1. Build a formal model of this state-changing system describing

- the behavior of the system, or
- some abstraction of that behavior

Reasoning about state-changing systems

1. Build a formal model of this state-changing system describing

- the behavior of the system, or
- some abstraction of that behavior

2. Using a logic to specify and verify properties of the system

Example, Vending machine

A state-changing system: vending machine dispensing drinks

- The machine has several components, including:
- storage space for storing and preparing drinks,
- a dispenser for the purchased drink, and
- a coin slot to pay for the drink
- When the machine is operating, it goes through several states, depending on the behavior of the current customer

Example, Vending machine

A state-changing system: vending machine dispensing drinks

- The machine has several components, including:
- storage space for storing and preparing drinks,
- a dispenser for the purchased drink, and
- a coin slot to pay for the drink
- When the machine is operating, it goes through several states, depending on the behavior of the current customer
- Each action by the customer or the machine itself may change its state

Ex: when the customer inserts a coin, the amount of money stored in the slot changes

Example, Vending machine

A state-changing system: vending machine dispensing drinks

- The machine has several components, including:
- storage space for storing and preparing drinks,
- a dispenser for the purchased drink, and
- a coin slot to pay for the drink
- When the machine is operating, it goes through several states, depending on the behavior of the current customer
- Each action by the customer or the machine itself may change its state

Ex: when the customer inserts a coin, the amount of money stored in the slot changes

State transition: action that may change the machine's state

Modeling state-changing systems

To build a formal model of a particular state-changing system, we specify its behavior in terms of

1. its state variables
2. the possible values for the state variables
3. the state transitions and how they change the values of the state variables

Modeling state-changing systems

To build a formal model of a particular state-changing system, we specify its behavior in terms of

1. its state variables
2. the possible values for the state variables
3. the state transitions and how they change the values of the state variables

A state can be identified with

- the set of pairs (variable, value), or
- a function from variables to values

Modeling state-changing systems

To build a formal model of a particular state-changing system, we specify its behavior in terms of

1. its state variables
2. the possible values for the state variables
3. the state transitions and how they change the values of the state variables

A state can be identified with

- the set of pairs (variable, value), or
- a function from variables to values

Formally, the system can be modeled as a transition system

Transition systems

A transition system is a tuple $\mathbb{S}=(S, \operatorname{In}, T, \mathcal{X}$, dom, $L)$, where

1. S is a finite non-empty set, the set of states of \mathbb{S}

Transition systems

A transition system is a tuple $\mathbb{S}=(S, \operatorname{In}, T, \mathcal{X}$, dom, $L)$, where

1. S is a finite non-empty set, the set of states of \mathbb{S}
2. In $\subseteq S$ is a non-empty set of states, the set of initial states of \mathbb{S}

Transition systems

A transition system is a tuple $\mathbb{S}=(S, \operatorname{In}, T, \mathcal{X}$, dom, $L)$, where

1. S is a finite non-empty set, the set of states of \mathbb{S}
2. In $\subseteq S$ is a non-empty set of states, the set of initial states of \mathbb{S}
3. $T \subseteq S \times S$ is a set of state pairs, the transition relation of \mathbb{S}

State Transition Graph

State Transition Graph of a transition system $\mathbb{S}=(S, \ln , T, \mathcal{X}$, dom, $L)$:

- The nodes are the states of \mathbb{S}
- The arcs are elements of the transition relation: there is an edge from state s to state s^{\prime} iff $\left(s, s^{\prime}\right) \in T$

We denote the initial states with double circles

State Transition Graph

State Transition Graph of a transition system $\mathbb{S}=(S, \operatorname{In}, T, \mathcal{X}$, dom, $L)$:

- The nodes are the states of \mathbb{S}
- The arcs are elements of the transition relation: there is an edge from state s to state s^{\prime} iff $\left(s, s^{\prime}\right) \in T$

We denote the initial states with double circles

State Transition Graph

State Transition Graph of a transition system $\mathbb{S}=(S, \operatorname{In}, T, \mathcal{X}$, dom, $L)$:

- The nodes are the states of \mathbb{S}
- The arcs are elements of the transition relation: there is an edge from state s to state s^{\prime} iff $\left(s, s^{\prime}\right) \in T$

We denote the initial states with double circles

State Transition Graph

State Transition Graph of a transition system $\mathbb{S}=(S, \operatorname{In}, T, \mathcal{X}$, dom, $L)$:

- The nodes are the states of \mathbb{S}
- The arcs are elements of the transition relation: there is an edge from state s to state s^{\prime} iff $\left(s, s^{\prime}\right) \in T$

We denote the initial states with double circles

State Transition Graph

State Transition Graph of a transition system $\mathbb{S}=(S, \operatorname{In}, T, \mathcal{X}$, dom, $L)$:

- The nodes are the states of \mathbb{S}
- The arcs are elements of the transition relation: there is an edge from state s to state s^{\prime} iff $\left(s, s^{\prime}\right) \in T$

We denote the initial states with double circles

State Transition Graph

State Transition Graph of a transition system $\mathbb{S}=(S, \operatorname{In}, T, \mathcal{X}$, dom, $L)$:

- The nodes are the states of \mathbb{S}
- The arcs are elements of the transition relation: there is an edge from state s to state s^{\prime} iff $\left(s, s^{\prime}\right) \in T$

We denote the initial states with double circles

State Transition Graph

State Transition Graph of a transition system $\mathbb{S}=(S, \operatorname{In}, T, \mathcal{X}$, dom, $L)$:

- The nodes are the states of \mathbb{S}
- The arcs are elements of the transition relation: there is an edge from state s to state s^{\prime} iff $\left(s, s^{\prime}\right) \in T$

We denote the initial states with double circles

Labelled transition systems

A (labelled) transition system is a tuple $\mathbb{S}=(S, \operatorname{In}, T, \mathcal{X}, d o m, L)$, where

1. S is a finite non-empty set, the set of states of \mathbb{S}
2. In $\subseteq S$ is a non-empty set of states, the set of initial states of \mathbb{S}
3. $T \subseteq S \times S$ is a set of state pairs, the transition relation of \mathbb{S}

Labelled transition systems

A (labelled) transition system is a tuple $\mathbb{S}=(S, \operatorname{In}, T, \mathcal{X}, d o m, L)$, where

1. S is a finite non-empty set, the set of states of \mathbb{S}
2. In $\subseteq S$ is a non-empty set of states, the set of initial states of \mathbb{S}
3. $T \subseteq S \times S$ is a set of state pairs, the transition relation of \mathbb{S}
4. \mathcal{X} is a finite set of state variables

Labelled transition systems

A (labelled) transition system is a tuple $\mathbb{S}=(S, \operatorname{In}, T, \mathcal{X}, d o m, L)$, where

1. S is a finite non-empty set, the set of states of \mathbb{S}
2. In $\subseteq S$ is a non-empty set of states, the set of initial states of \mathbb{S}
3. $T \subseteq S \times S$ is a set of state pairs, the transition relation of \mathbb{S}
4. \mathcal{X} is a finite set of state variables
5. dom is a mapping from \mathcal{X} such that for every $x \in \mathcal{X}, \operatorname{dom}(x)$ is a non-empty set of values, the domain of x

Labelled transition systems

A (labelled) transition system is a tuple $\mathbb{S}=(S, \operatorname{In}, T, \mathcal{X}, d o m, L)$, where

1. S is a finite non-empty set, the set of states of \mathbb{S}
2. In $\subseteq S$ is a non-empty set of states, the set of initial states of \mathbb{S}
3. $T \subseteq S \times S$ is a set of state pairs, the transition relation of \mathbb{S}
4. \mathcal{X} is a finite set of state variables
5. dom is a mapping from \mathcal{X} such that for every $x \in \mathcal{X}, \operatorname{dom}(x)$ is a non-empty set of values, the domain of x
6. L is a function mapping states of S to interpretations, the labelling function of \mathbb{S} (more on this later)

Labelled transition systems

A (labelled) transition system is a tuple $\mathbb{S}=(S, \operatorname{In}, T, \mathcal{X}, d o m, L)$, where

1. S is a finite non-empty set, the set of states of \mathbb{S}
2. In $\subseteq S$ is a non-empty set of states, the set of initial states of \mathbb{S}
3. $T \subseteq S \times S$ is a set of state pairs, the transition relation of \mathbb{S}
4. \mathcal{X} is a finite set of state variables
5. dom is a mapping from \mathcal{X} such that for every $x \in \mathcal{X}, \operatorname{dom}(x)$ is a non-empty set of values, the domain of x
6. L is a function mapping states of S to interpretations, the labelling function of \mathbb{S} (more on this later)
\mathbb{S} is finite-state if $\operatorname{dom}(x)$ is finite for all $x \in \mathcal{X}$

Labelled transition systems

A (labelled) transition system is a tuple $\mathbb{S}=(S, \operatorname{In}, T, \mathcal{X}, d o m, L)$, where

1. S is a finite non-empty set, the set of states of \mathbb{S}
2. In $\subseteq S$ is a non-empty set of states, the set of initial states of \mathbb{S}
3.
4. \mathcal{X} is a We will only study finite-state transition systems
5. dom isarmupprig riviric suntrine for every $x \in \mathcal{X}, \operatorname{dom}(x)$ is a non-empty set of values, the domain of x
6. L is a function mapping states of S to interpretations, the labelling function of \mathbb{S} (more on this later)
\mathbb{S} is finite-state if $\operatorname{dom}(x)$ is finite for all $x \in \mathcal{X}$

Systems in PLFD

$$
\mathbb{S}=(S, \ln , T, \mathcal{X}, \operatorname{dom}, L)
$$

Note this part of the definition transition system:
4. \mathcal{X} is a finite set of state variables
5. dom is a mapping from \mathcal{X} such that for every $x \in \mathcal{X}, \operatorname{dom}(x)$ is a non-empty set of values, the domain of x

Systems in PLFD

$$
\mathbb{S}=(S, \ln , T, \mathcal{X}, \operatorname{dom}, L)
$$

Note this part of the definition transition system:
4. \mathcal{X} is a finite set of state variables
5. dom is a mapping from \mathcal{X} such that for every $x \in \mathcal{X}, \operatorname{dom}(x)$ is a non-empty set of values, the domain of x

```
\(\mathcal{X}\) and \(d o m\) define an instance of PLFD!
```


Labeling function

$$
\mathbb{S}=(S, \ln , T, \mathcal{X}, \operatorname{dom}, L)
$$

Let \mathbb{I} be the set of all interpretations for the instance of PLFD given by \mathcal{X} and dom

Labeling function

$$
\mathbb{S}=(S, \ln , T, \mathcal{X}, \operatorname{dom}, L)
$$

Let \mathbb{I} be the set of all interpretations for the instance of PLFD given by \mathcal{X} and dom
L is a mapping from S to \mathbb{I}, associating every state to an interpretation of \mathcal{X} :

Labeling function

$$
\mathbb{S}=(S, \ln , T, \mathcal{X}, \operatorname{dom}, L)
$$

Let \mathbb{I} be the set of all interpretations for the instance of PLFD given by \mathcal{X} and dom
L is a mapping from S to \mathbb{I}, associating every state to an interpretation of \mathcal{X} :

1. for every $x \in \mathcal{X}$ and $s \in S$, we have $L(s)(x) \in \operatorname{dom}(x)$

Labeling function

$$
\mathbb{S}=(S, \ln , T, \mathcal{X}, \operatorname{dom}, L)
$$

Let \mathbb{I} be the set of all interpretations for the instance of PLFD given by \mathcal{X} and dom
L is a mapping from S to \mathbb{I}, associating every state to an interpretation of \mathcal{X} :

1. for every $x \in \mathcal{X}$ and $s \in S$, we have $L(s)(x) \in \operatorname{dom}(x)$
2. for every formula A over \mathcal{X} and every state $s \in S$, either $L(s) \models A$ or $L(s) \not \vDash A$

States as interpretations

If $L(s)(x)=v$, we say that x has value v in state s, and write $s(x)=v$

States as interpretations

If $L(s)(x)=v$, we say that x has value v in state s, and write $s(x)=v$
If $L(s) \mid=A$, we say that s satisfies A or A is true in s, and write $s \models A$

States as interpretations

If $L(s)(x)=v$, we say that x has value v in state s, and write $s(x)=v$
If $L(s) \mid=A$, we say that s satisfies A or A is true in s, and write $s \models A$

We will often identify s with $L(s)$

State Transition Graph

State transition graph of \mathbb{S} :

- The nodes are the states of \mathbb{S}
- The edges are the state pairs in T
- Nodes labeled by states

$$
\mathbb{S}=(S, \ln , T, \mathcal{X}, \operatorname{dom}, L)
$$

State Transition Graph

$$
\mathbb{S}=(S, \operatorname{In}, T, \mathcal{X}, \operatorname{dom}, L)
$$

State transition graph of \mathbb{S} :

- The nodes are the states of \mathbb{S}
- The edges are the state pairs in T
- Nodes labeled by states

$$
\text { Example: } \mathcal{X}=\{x, y\}, \operatorname{dom}(x)=\operatorname{dom}(y)=\{0,1\}
$$

$$
\begin{aligned}
S= & \left\{s_{1}, s_{2}, s_{3}, s_{4}\right\} \\
\text { In }= & \left\{s_{1}\right\} \\
T= & \left\{\left(s_{1}, s_{3}\right),\left(s_{1}, s_{4}\right),\left(s_{3}, s_{1}\right),\right. \\
& \left.\left(s_{4}, s_{2}\right),\left(s_{4}, s_{3}\right)\right\} \\
L= & \left\{s_{1} \mapsto\{x \mapsto 1, y \mapsto 0\}\right. \\
& s_{2} \mapsto\{x \mapsto 1, y \mapsto 1\} \\
& s_{3} \mapsto\{x \mapsto 0, y \mapsto 0\} \\
& \left.s_{4} \mapsto\{x \mapsto 0, y \mapsto 1\}\right\}
\end{aligned}
$$

State Transition Graph with interpretations as states

$$
\mathbb{S}=(S, \ln , T, \mathcal{X}, \operatorname{dom}, L)
$$

State transition graph of \mathbb{S} :

- The nodes are the states of \mathbb{S}
- The edges are the state pairs in T
- Nodes labeled by states

$$
\text { Example: } \mathcal{X}=\{x, y\}, \operatorname{dom}(x)=\operatorname{dom}(y)=\{0,1\}
$$

$$
\begin{aligned}
& x y \\
S= & \{(0,0),(0,1),(1,0),(1,1)\} \\
\operatorname{In}= & \{(1,0)\} \\
T= & \{((1,0),(0,1)), \\
& ((1,0),(0,0)), \\
& ((0,0),(1,0)), \\
& ((0,1),(0,0)), \\
& ((1,1),(0,1))\}
\end{aligned}
$$

States as Interpretations

States as Interpretations

- $s_{1}=x$

States as Interpretations

- $s_{1} \models \mathrm{x}$
- $s_{2} \models x \wedge y$

States as Interpretations

- $s_{1} \models \mathrm{x}$
- $s_{2} \models x \wedge y$
- $s_{3} \models \mathrm{x} \leftrightarrow \mathrm{y}$

Transitions

We will usually represent a transition relation as a union of transitions

Transitions

We will usually represent a transition relation as a union of transitions

Transition t: any set of state pairs

Transitions

We will usually represent a transition relation as a union of transitions

Transition t: any set of state pairs

A transition t is

- applicable to a state s if there is a state s^{\prime} such that $\left(s, s^{\prime}\right) \in t$

Transitions

We will usually represent a transition relation as a union of transitions

Transition t: any set of state pairs

A transition t is

- applicable to a state s if there is a state s^{\prime} such that $\left(s, s^{\prime}\right) \in t$
- deterministic if for every state s there is at most one state s^{\prime} such that $\left(s, s^{\prime}\right) \in t$

Vending machine

1. The vending machine contains a drink storage, a coin slot, and a drink dispenser.
2. The drink storage stores drinks of two kinds: soda and coffee. We are only interested in whether a particular kind of drink is currently being stored or not (but not its amount).
3. The coin slot can accommodate up to three coins.

Vending machine

1. The vending machine contains a drink storage, a coin slot, and a drink dispenser.
2. The drink storage stores drinks of two kinds: soda and coffee. We are only interested in whether a particular kind of drink is currently being stored or not (but not its amount).
3. The coin slot can accommodate up to three coins.
4. The drink dispenser can hold at most one drink. Any drink in it must be removed before the next one can be dispensed.

Vending machine

1. The vending machine contains a drink storage, a coin slot, and a drink dispenser.
2. The drink storage stores drinks of two kinds: soda and coffee. We are only interested in whether a particular kind of drink is currently being stored or not (but not its amount).
3. The coin slot can accommodate up to three coins.
4. The drink dispenser can hold at most one drink. Any drink in it must be removed before the next one can be dispensed.
5. A can of soda costs two coins. A cup of coffee costs one coin.

Vending machine

1. The vending machine contains a drink storage, a coin slot, and a drink dispenser.
2. The drink storage stores drinks of two kinds: soda and coffee. We are only interested in whether a particular kind of drink is currently being stored or not (but not its amount).
3. The coin slot can accommodate up to three coins.
4. The drink dispenser can hold at most one drink. Any drink in it must be removed before the next one can be dispensed.
5. A can of soda costs two coins. A cup of coffee costs one coin.
6. There are two kinds of customers: students and professors. Students drink only soda, professors drink only coffee.

Vending machine

1. The vending machine contains a drink storage, a coin slot, and a drink dispenser.
2. The drink storage stores drinks of two kinds: soda and coffee. We are only interested in whether a particular kind of drink is currently being stored or not (but not its amount).
3. The coin slot can accommodate up to three coins.
4. The drink dispenser can hold at most one drink. Any drink in it must be removed before the next one can be dispensed.
5. A can of soda costs two coins. A cup of coffee costs one coin.
6. There are two kinds of customers: students and professors. Students drink only soda, professors drink only coffee.
7. From time to time the drink storage can be restocked.

Formalization: Variables and Domains

variable	domain	explanation
st_coffee	$\{0,1\}$	drink storage contains coffee
st_soda	$\{0,1\}$	drink storage contains soda
disp	$\{$ none, soda, coffee $\}$	content of drink dispenser
coins	$\{0,1,2,3\}$	number of coins in the slot customer
$\{$ none, student, prof $\}$	customer	

Transitions for the Vending Machine

1. Restock, results in the drink storage having both soda and coffee
2. Customer_arrives, corresponds to a customer arriving at the machine
3. Customer_leaves, corresponds to the customer's leaving
4. Coin_insert, corresponds to the customer's inserting a coin in the machine
5. Dispense_soda, results in the customer's getting a can of soda
6. Dispense_coffee, results in the customer's getting a cup of coffee
7. Take_drink, corresponds to the customer's removing a drink from the dispenser

Symbolic Representation of Sets of States

Let $\mathbb{S}=(S, \ln , T, \mathcal{X}, \operatorname{dom}, L)$ be a (finite-state) labelled transition system

Every PLFD formula F over the variables in \mathcal{X} defines a set states:

$$
\{s \in S \mid s \models F\}
$$

Symbolic Representation of Sets of States

Let $\mathbb{S}=(S, \ln , T, \mathcal{X}, \operatorname{dom}, L)$ be a (finite-state) labelled transition system

Every PLFD formula F over the variables in \mathcal{X} defines a set states:

$$
\{s \in S \mid s \models F\}
$$

We say that F (symbolically) represents this set of states

Symbolic Representation of Sets of States

Symbolic Representation of Sets of States

- $\mathrm{x} \leftrightarrow \mathrm{y}$

Symbolic Representation of Sets of States

- $\mathrm{x} \leftrightarrow \mathrm{y}$ represents $\left\{s_{2}, s_{3}\right\}$

Symbolic Representation of Sets of States

- $x \leftrightarrow y$ represents $\left\{s_{2}, s_{3}\right\}$
- $x \wedge y$

Symbolic Representation of Sets of States

- $x \leftrightarrow y$ represents $\left\{s_{2}, s_{3}\right\}$
- $x \wedge y$ represents $\left\{s_{2}\right\}$

Symbolic Representation of Sets of States

- $x \leftrightarrow y$ represents $\left\{s_{2}, s_{3}\right\}$
- $x \wedge y$ represents $\left\{s_{2}\right\}$
- $\neg \mathrm{x}$

Symbolic Representation of Sets of States

- $x \leftrightarrow y$ represents $\left\{s_{2}, s_{3}\right\}$
- $x \wedge y$ represents $\left\{s_{2}\right\}$
- $\neg \mathrm{x}$ represents $\left\{s_{3}, s_{4}\right\}$

Example

Let us represent the set of states in which the machine is ready to dispense a drink
In every such state, it must be the case that

- a drink is available
- the drink dispenser is empty, and
- the coin slot contains enough coins

Example

Let us represent the set of states in which the machine is ready to dispense a drink
In every such state, it must be the case that

- a drink is available
- the drink dispenser is empty, and
- the coin slot contains enough coins

This can be expressed by:

```
(st_coffee \vee st_soda)}
disp = none ^
((coins = 1 ^ st_coffee) }\vee\mathrm{ coins = 2 \ coins = 3)
```


Symbolic Representation of Transitions

$$
\mathbb{S}=(S, \operatorname{In}, T, \mathcal{X}, \operatorname{dom}, L)
$$

A transition t in \mathbb{S} is a binary relation on s, i.e., a set of state pairs:

$$
t=\left\{\left(s, s^{\prime}\right) \mid s, s^{\prime} \in S\right\}
$$

It takes the system from some current state or pre-state s to some next state or post-state s'

Symbolic Representation of Transitions

$$
\mathbb{S}=(S, \operatorname{In}, T, \mathcal{X}, \operatorname{dom}, L)
$$

A transition t in \mathbb{S} is a binary relation on s, i.e., a set of state pairs:

$$
t=\left\{\left(s, s^{\prime}\right) \mid s, s^{\prime} \in S\right\}
$$

It takes the system from some current state or pre-state s to some next state or post-state s'

Can we represent transitions symbolically using PLFD formulas?

Symbolic Representation of Transitions

$$
\mathbb{S}=(S, \operatorname{In}, T, \mathcal{X}, \operatorname{dom}, L)
$$

A transition t in \mathbb{S} is a binary relation on s, i.e., a set of state pairs:

$$
t=\left\{\left(s, s^{\prime}\right) \mid s, s^{\prime} \in S\right\}
$$

It takes the system from some current state or pre-state s to some next state or post-state s'

Can we represent transitions symbolically using PLFD formulas?
Not immediately.
PLFD formulas over \mathcal{X} can only express properties of a single state

Symbolic Representation of Transitions

How can we represent transitions using formulas?

Symbolic Representation of Transitions

How can we represent transitions using formulas?

- Introduce a new set of next-state variables $\mathcal{X}^{\prime}=\left\{x^{\prime} \mid x \in \mathcal{X}\right\}$

Symbolic Representation of Transitions

How can we represent transitions using formulas?

- Introduce a new set of next-state variables $\mathcal{X}^{\prime}=\left\{x^{\prime} \mid x \in \mathcal{X}\right\}$
- Treat pairs of states as interpretations of formulas over $\mathcal{X} \cup \mathcal{X}^{\prime}$

$$
\begin{array}{ll}
\text { For all } x \in \mathcal{X}, & \left(s, s^{\prime}\right)(x) \\
\text { For all } x \in \mathcal{X}, & \left(s, s^{\prime}\right)\left(x^{\prime}\right)
\end{array} \stackrel{\text { def }}{=} s(x)
$$

Symbolic Representation of Transitions

How can we represent transitions using formulas?

- Introduce a new set of next-state variables $\mathcal{X}^{\prime}=\left\{x^{\prime} \mid x \in \mathcal{X}\right\}$
- Treat pairs of states as interpretations of formulas over $\mathcal{X} \cup \mathcal{X}^{\prime}$

$$
\begin{array}{ll}
\text { For all } x \in \mathcal{X}, & \left(s, s^{\prime}\right)(x) \\
\text { For all } x \in \mathcal{X}, & \left(s, s^{\prime}\right)\left(x^{\prime}\right)
\end{array} \stackrel{\text { def }}{=} s(x)
$$

- A formula F over variables $\mathcal{X} \cup \mathcal{X}^{\prime}$ represents symbolically a transition t if

$$
t=\left\{\left(s, s^{\prime}\right) \in S^{2} \mid\left(s, s^{\prime}\right) \models F\right\}
$$

Example

The transition Restock:

$$
\text { customer }=\text { none } \wedge \text { st_coffee }{ }^{\prime} \wedge \text { st_soda' }
$$

Example

The transition Restock:

Example

The transition Restock:

Note: This formula describes a strange transition after which, for example

- coins may appear in and disappear from the slot
- drinks may appear in and disappear from the dispenser
- ...

Frame problem

We must express explicitly, possibly for a large number of state variables, that the values of certain variables do not change after a transition

Frame problem

We must express explicitly, possibly for a large number of state variables, that the values of certain variables do not change after a transition

Example

$$
\begin{aligned}
& \left(\text { coins }=0 \leftrightarrow \text { coins }^{\prime}=0\right) \wedge \\
& \left(\text { coins }=1 \leftrightarrow \text { coins }^{\prime}=1\right) \wedge \\
& \left(\text { coins }=2 \leftrightarrow \text { coins }^{\prime}=2\right) \wedge \\
& \left(\text { coins }=3 \leftrightarrow \text { coins }^{\prime}=3\right)
\end{aligned}
$$

Frame problem

We must express explicitly, possibly for a large number of state variables, that the values of certain variables do not change after a transition

Example

$$
\begin{aligned}
& \left(\text { coins }=0 \leftrightarrow \text { coins }^{\prime}=0\right) \wedge \\
& \left(\text { coins }=1 \leftrightarrow \text { coins }^{\prime}=1\right) \wedge \\
& \left(\text { coins }=2 \leftrightarrow \text { coins }^{\prime}=2\right) \wedge \\
& \left(\text { coins }=3 \leftrightarrow \text { coins }^{\prime}=3\right)
\end{aligned}
$$

This is known as the frame problem

Frame problem

We must express explicitly, possibly for a large number of state variables, that the values of certain variables do not change after a transition

Example

$$
\begin{aligned}
& \left(\text { coins }=0 \leftrightarrow \text { coins }^{\prime}=0\right) \wedge \\
& \left(\text { coins }=1 \leftrightarrow \text { coins }^{\prime}=1\right) \wedge \\
& \left(\text { coins }=2 \leftrightarrow \text { coins }^{\prime}=2\right) \wedge \\
& \left(\text { coins }=3 \leftrightarrow \text { coins }^{\prime}=3\right)
\end{aligned}
$$

This is known as the frame problem

It arises in artificial intelligence, knowledge representation, planning, and in reasoning about actions in general

The frame formula

$$
\mathbb{S}=(S, \operatorname{In}, T, \mathcal{X}, \operatorname{dom}, L)
$$

Notation:
When $\operatorname{dom}(x)=\operatorname{dom}(y)$,

$$
\begin{array}{ll}
x \neq v & \stackrel{\text { def }}{=} \neg(x=v) \\
x=y & \stackrel{\text { def }}{=} \bigwedge_{v \in \operatorname{dom}(x)}(x=v \leftrightarrow y=v)
\end{array}
$$

The frame formula

$$
\mathbb{S}=(S, \ln , T, \mathcal{X}, \operatorname{dom}, L)
$$

Notation:
When $\operatorname{dom}(x)=\operatorname{dom}(y)$,

$$
\begin{aligned}
& x \neq v \\
& \stackrel{\text { def }}{=} \neg(x=v) \\
& x=y
\end{aligned} \stackrel{\text { def }}{=} \bigwedge_{v \in \operatorname{dom}(x)}(x=v \leftrightarrow y=v) .
$$

For $\left\{x_{1}, \ldots, x_{n}\right\} \subseteq \mathcal{X}$,

$$
\text { only }\left(x_{1}, \ldots, x_{n}\right) \stackrel{\text { def }}{=} \bigwedge_{x \in \mathcal{X} \backslash\left\{x_{1}, \ldots, x_{n}\right\}} x=x^{\prime}
$$

The frame formula

$$
\mathbb{S}=(S, \ln , T, \mathcal{X}, \operatorname{dom}, L)
$$

Notation:

When $\operatorname{dom}(x)=\operatorname{dom}(y)$,

$$
\begin{array}{ll}
x \neq v & \stackrel{\text { def }}{=} \neg(x=v) \\
x=y & \stackrel{\text { def }}{=} \bigwedge_{v \in \operatorname{dom}(x)}(x=v \leftrightarrow y=v)
\end{array}
$$

For $\left\{x_{1}, \ldots, x_{n}\right\} \subseteq \mathcal{X}$,

$$
\text { only }\left(x_{1}, \ldots, x_{n}\right) \stackrel{\text { def }}{=} \bigwedge_{x \in \mathcal{X} \backslash\left\{x_{1}, \ldots, x_{n}\right\}} x=x^{\prime}
$$

only $\left(x_{1}, \ldots, x_{n}\right)$ can be used in symbolic transitions to state that x_{1}, \ldots, x_{n} are the only variables whose values may change in the transition

Preconditions and postconditions

$$
\mathbb{S}=(S, \ln , T, \mathcal{X}, \operatorname{dom}, L)
$$

Typical symbolic representation of a transition t in \mathbb{S} :
A PLFD formula $F_{1} \wedge F_{2}$ where

Preconditions and postconditions

$$
\mathbb{S}=(S, \operatorname{In}, T, \mathcal{X}, \operatorname{dom}, L)
$$

Typical symbolic representation of a transition t in \mathbb{S} :
A PLFD formula $F_{1} \wedge F_{2}$ where

1. F_{1} is a formula over variables \mathcal{X} expressing t's precondition

Preconditions and postconditions

$$
\mathbb{S}=(S, \ln , T, \mathcal{X}, \operatorname{dom}, L)
$$

Typical symbolic representation of a transition t in \mathbb{S} :
A PLFD formula $F_{1} \wedge F_{2}$ where

1. F_{1} is a formula over variables \mathcal{X} expressing t 's precondition
2. F_{2} is a formula over $\mathcal{X} \cup \mathcal{X}^{\prime}$ expressing t's postcondition

Preconditions and postconditions

$$
\mathbb{S}=(S, \ln , T, \mathcal{X}, \operatorname{dom}, L)
$$

Typical symbolic representation of a transition t in \mathbb{S} :
A PLFD formula $F_{1} \wedge F_{2}$ where

1. F_{1} is a formula over variables \mathcal{X} expressing t's precondition
2. F_{2} is a formula over $\mathcal{X} \cup \mathcal{X}^{\prime}$ expressing t's postcondition
precondition: a necessary condition for a state of \mathbb{S} of to be a pre-state of t postcondition: a condition relating t's post-states to their corresponding pre-state

Transitions for the Vending Machine

1. Restock, results in the drink storage having both soda and coffee
2. Customer_arrives, corresponds to a customer arriving at the machine
3. Customer_leaves, corresponds to the customer's leaving
4. Coin_insert, corresponds to the customer's inserting a coin in the machine
5. Dispense_soda, results in the customer's getting a can of soda
6. Dispense_coffee, results in the customer's getting a cup of coffee
7. Take_drink, corresponds to the customer's removing a drink from the dispenser

Transitions: Symbolic Representation

Restock
Customer_arrives
Customer_leaves
Coin_insert

Transitions: Symbolic Representation

Restock

Transitions: Symbolic Representation

Restock

Transitions: Symbolic Representation

Restock

		precondition	postcondition
Restock	$\stackrel{\text { def }}{=}$	customer = none	\wedge st_coffee ${ }^{\prime} \wedge$ st_soda' \wedge only(st_coffee, st_soda)
Customer_arrives	ef	customer $=$ none	\wedge customer $^{\prime} \neq$ none \wedge only(customer)

Transitions: Symbolic Representation

Restock

Transitions: Symbolic Representation

Restock

Transitions: Symbolic Representation

Restock

		precondition	postcondition
Restock	$\stackrel{\text { def }}{=}$	customer = none	\wedge st_coffee ${ }^{\prime} \wedge$ st_soda' $^{\prime}$ \wedge only(st_coffee, st_soda)
Customer_arrives	def	customer $=$ none	\wedge customer $^{\prime} \neq$ none \wedge only(customer)
Customer_leaves	def	customer \neq none	\wedge customer $^{\prime}=$ none \wedge only(customer)

Transitions: Symbolic Representation

Restock

		re	postcondition
Restock	$\stackrel{\text { def }}{=}$	customer $=$ none	\wedge st_coffee $^{\prime} \wedge$ st_soda' $^{\prime}$ \wedge only(st_coffee, st_soda)
Customer_arrives	$\stackrel{\text { def }}{=}$	customer $=$ none	$\begin{aligned} & \wedge \text { customer } \neq \text { none } \\ & \wedge \text { only (customer) } \end{aligned}$
Customer_leaves	$\stackrel{\text { def }}{=}$	customer \neq none	\wedge customer $^{\prime}=$ none \wedge only(customer)
Coin_insert	$\begin{aligned} & \stackrel{\text { def }}{=} \\ & \wedge \end{aligned}$	customer \neq none coins $\neq 3$	$\begin{aligned} & \wedge\left(\text { coins }=0 \rightarrow \text { coins }^{\prime}=1\right) \\ & \wedge\left(\text { coins }=1 \rightarrow \text { coins }^{\prime}=2\right) \\ & \wedge\left(\text { coins }=2 \rightarrow \text { coins }^{\prime}=3\right) \\ & \wedge \text { only }(\text { coins }) \end{aligned}$

Transitions
Dispense_soda
Dispense_coffee
Take_drink

Transitions

```
Dispense_soda \(\stackrel{\text { def }}{=}\) customer \(=\) student \(\wedge\) st_soda \(\wedge\)
    disp \(=\) none \(\wedge(\) coins \(=2 \vee\) coins \(=3) \wedge\)
(coins \(=2 \rightarrow\) coins \(\left.^{\prime}=0\right) \wedge\)
\(\left(\right.\) coins \(=3 \rightarrow\) coins \(\left.^{\prime}=1\right) \wedge\)
disp \(^{\prime}=\) soda \(\wedge\) only(st_soda, disp, coins)
```


Transitions

```
Dispense_soda \(\stackrel{\text { def }}{=}\) customer \(=\) student \(\wedge\) st_soda \(\wedge\)
    disp \(=\) none \(\wedge(\) coins \(=2 \vee\) coins \(=3) \wedge\)
(coins \(=2 \rightarrow\) coins \(\left.^{\prime}=0\right) \wedge\)
\(\left(\right.\) coins \(=3 \rightarrow\) coins \(\left.^{\prime}=1\right) \wedge\)
disp \(^{\prime}=\) soda \(\wedge\) only(st_soda, disp, coins)
```


Transitions

$$
\begin{aligned}
\text { Dispense_soda } \stackrel{\text { def }}{=} \quad & \text { customer }=\text { student } \wedge \text { st_soda } \wedge \\
& \text { disp }=\text { none } \wedge(\text { coins }=2 \vee \text { coins }=3) \wedge \\
& \left(\text { coins }=2 \rightarrow \text { coins }^{\prime}=0\right) \wedge \\
& \left(\text { coins }=3 \rightarrow \text { coins }^{\prime}=1\right) \wedge \\
& \text { disp }=\text { soda } \wedge \text { only }(\text { st_soda, disp, coins }) \\
\text { Dispense_coffee } \stackrel{\text { def }}{=} \quad & c u s t o m e r=\text { prof } \wedge \text { st_coffee } \wedge \\
& d i s p=\text { none } \wedge \text { coins } \neq 0 \wedge \\
& \left(\text { coins }=1 \rightarrow \text { coins }^{\prime}=0\right) \wedge \\
& \left(\text { coins }=2 \rightarrow \text { coins }^{\prime}=1\right) \wedge \\
& \left(\text { coins }=3 \rightarrow \text { coins }^{\prime}=2\right) \wedge \\
& \text { disp }=\text { coffee } \wedge \text { only }(\text { st_coffee, disp, coins })
\end{aligned}
$$

Transitions

$$
\begin{aligned}
\text { Dispense_soda } \stackrel{\text { def }}{=} \quad & \text { customer }=\text { student } \wedge \text { st_soda } \wedge \\
& \text { disp }=\text { none } \wedge(\text { coins }=2 \vee \text { coins }=3) \wedge \\
& \left(\text { coins }=2 \rightarrow \text { coins }^{\prime}=0\right) \wedge \\
& \left(\text { coins }=3 \rightarrow \text { coins }^{\prime}=1\right) \wedge \\
& \text { disp }=\text { soda } \wedge \text { only }(\text { st_soda, disp, coins }) \\
\text { Dispense_coffee } \stackrel{\text { def }}{=} \quad & \text { customer }=\text { prof } \wedge \text { st_coffee } \wedge \\
& \text { disp }=\text { none } \wedge \text { coins } \neq 0 \wedge \\
& \left(\text { coins }=1 \rightarrow \text { coins }^{\prime}=0\right) \wedge \\
& \left(\text { coins }=2 \rightarrow \text { coins }^{\prime}=1\right) \wedge \\
& \left(\text { coins }=3 \rightarrow \text { coins }^{\prime}=2\right) \wedge \\
& \text { disp }^{\prime}=\text { coffee } \wedge \text { only }(\text { st_coffee, disp, coins })
\end{aligned}
$$

Transitions

$$
\begin{aligned}
& \text { Dispense_soda } \stackrel{\text { def }}{=} \quad \text { customer }=\text { student } \wedge \text { st_soda } \wedge \\
& \text { disp }=\text { none } \wedge(\text { coins }=2 \vee \text { coins }=3) \wedge \\
&\left(\text { coins }=2 \rightarrow \text { coins }^{\prime}=0\right) \wedge \\
&(\text { coins }=3 \rightarrow \text { coins }=1) \wedge \\
& \text { disp }=\text { soda } \wedge \text { only }(\text { st_soda, disp, coins }) \\
& \text { Dispense_coffee } \stackrel{\text { def }}{=} \quad \begin{array}{l}
\text { customer }=\text { prof } \wedge \text { st_coffee } \wedge \\
\\
\\
\\
\\
\\
(\text { disp }=\text { none } \wedge \text { coins } \neq 0 \wedge \\
\\
\\
\left(\text { coins }=1 \rightarrow \text { coins }^{\prime}=0\right) \wedge \\
\\
\left(\text { coins }=3 \rightarrow \text { coins }^{\prime}=1\right) \wedge \\
\\
\text { disp }=\text { coffee } \wedge \text { only }(\text { st_coffee, disp, coins }) \wedge
\end{array} \\
& \text { Take_drink } \stackrel{\text { def }}{=} \quad \begin{array}{l}
\text { customer } \neq \text { none } \wedge \text { disp } \neq \text { none } \wedge \\
\\
\\
\text { disp }=\text { none } \wedge \text { only }(\text { disp })
\end{array}
\end{aligned}
$$

Temporal properties of transition systems

1. There is no state in which professors and students are both customers.

Temporal properties of transition systems

1. There is no state in which professors and students are both customers.
2. Students always get soda.

Temporal properties of transition systems

1. There is no state in which professors and students are both customers.
2. Students always get soda.
3. The machine cannot dispense drinks forever without recharging.

Temporal properties of transition systems

1. There is no state in which professors and students are both customers.
2. Students always get soda.
3. The machine cannot dispense drinks forever without recharging.
4. Eventually, the machine runs out of soda.

Temporal properties of transition systems

1. There is no state in which professors and students are both customers.
2. Students always get soda.
3. The machine cannot dispense drinks forever without recharging.
4. Eventually, the machine runs out of soda.
5. If coffee has just been dispensed, the machine must have had coins right before.

Temporal properties of transition systems

1. There is no state in which professors and students are both customers.
2. Students always get soda.
3. The machine cannot dispense drinks forever without recharging.
4. Eventually, the machine runs out of soda.
5. If coffee has just been dispensed, the machine must have had coins right before.
6. If the machine is never restocked it will never dispense drinks.

Temporal properties of transition systems

1. There is no state in which professors and students are both customers.
2. Students always get soda.
3. The machine cannot dispense drinks forever without recharging.
4. Eventually, the machine runs out of soda.
5. If coffee has just been dispensed, the machine must have had coins right before.
6. If the machine is never restocked it will never dispense drinks.
7. The machine never dispenses drinks at a discount or for free.

Temporal properties of transition systems

1. There is no state in which professors and students are both customers.
2. Students always get soda.
3. The machine cannot dispense drinks forever without recharging.
4. Eventually, the machine runs out of soda.
5. If coffee has just been dispensed, the machine must have had coins right before.
6. If the machine is never restocked it will never dispense drinks.
7. The machine never dispenses drinks at a discount or for free.
8. ...

Temporal properties of transition systems

1. There is no state in which professors and students are both customers.
2. Students always get soda.
3. The machine cannot dispense drinks forever without recharging.
4. Eventually, the machine runs out of soda.
5. If coffee has just been dispensed, the machine must have had coins right before.
6. If the machine is never restocked it will never dispense drinks.
7. The machine never dispenses drinks at a discount or for free.
8. ...

These properties, which talk about the systems behavior over time, cannot be expressed in PLFD. We need a more expressive logic!

