CS:4350 Logic in Computer Science

Transition Systems

Cesare Tinelli

Spring 2022

Credits

These slides are largely based on slides originally developed by **Andrei Voronkov** at the University of Manchester. Adapted by permission.

Outline

Transition Systems

State-Changing Systems Transition Systems Labelled Transition Systems Symbolic Representation of Transition Systems

State-changing systems

Our main interest from now on is modeling *state-changing systems*

We assume a discrete notion of time, with each time corresponding to a *step* taken by the system

State-changing systems

Our main interest from now on is modeling state-changing systems

We assume a discrete notion of time, with each time corresponding to a *step* taken by the system

State-changing systems

Our main interest from now on is modeling state-changing systems

We assume a discrete notion of time, with each time corresponding to a *step* taken by the system

Informally	Formally
At each step, the system is in a partic- ular <mark>state</mark>	States can be characterized by values of a set of variables, called the <i>state</i> <i>variables</i>
The system state changes over time There are actions (controlled or not) that change the state	Actions change values of some state variables

Reasoning about state-changing systems

- 1. Build a formal model of this state-changing system describing
 - the behavior of the system, or
 - some abstraction of that behavior
- 2. Using a logic to specify and verify properties of the system

Reasoning about state-changing systems

- 1. Build a formal model of this state-changing system describing
 - the behavior of the system, or
 - some abstraction of that behavior
- 2. Using a logic to specify and verify properties of the system

Example, Vending machine

A state-changing system: vending machine dispensing drinks

- The machine has several components, including:
 - storage space for storing and preparing drinks,
 - a dispenser for the purchased drink, and
 - a coin slot to pay for the drink
- When the machine is operating, it goes through several states, depending on the behavior of the current customer
- Each action by the customer or the machine itself may change its state
 Ex: when the customer inserts a coin, the amount of money stored in the slot changes

Example, Vending machine

A state-changing system: vending machine dispensing drinks

- The machine has several components, including:
 - storage space for storing and preparing drinks,
 - a dispenser for the purchased drink, and
 - a coin slot to pay for the drink
- When the machine is operating, it goes through several states, depending on the behavior of the current customer
- Each action by the customer or the machine itself may change its state

Ex: when the customer inserts a coin, the amount of money stored in the slot changes

Example, Vending machine

A state-changing system: vending machine dispensing drinks

- The machine has several components, including:
 - storage space for storing and preparing drinks,
 - a dispenser for the purchased drink, and
 - a coin slot to pay for the drink
- When the machine is operating, it goes through several states, depending on the behavior of the current customer
- Each action by the customer or the machine itself may change its state

Ex: when the customer inserts a coin, the amount of money stored in the slot changes

State transition: action that may change the machine's state

Modeling state-changing systems

To build a formal model of a particular state-changing system, we specify its behavior in terms of

- 1. its state variables
- 2. the possible values for the state variables
- 3. the state transitions and how they change the values of the state variables

A state can be identified with

- the set of pairs (variable, value), or
- a function from variables to values

Formally, the system can be modeled as a transition system

Modeling state-changing systems

To build a formal model of a particular state-changing system, we specify its behavior in terms of

- 1. its state variables
- 2. the possible values for the state variables
- 3. the state transitions and how they change the values of the state variables

A state can be identified with

- the set of pairs (variable, value), or
- a function from variables to values

Formally, the system can be modeled as a transition system

Modeling state-changing systems

To build a formal model of a particular state-changing system, we specify its behavior in terms of

- 1. its state variables
- 2. the possible values for the state variables
- 3. the state transitions and how they change the values of the state variables

A state can be identified with

- the set of pairs (variable, value), or
- a function from variables to values

Formally, the system can be modeled as a transition system

Transition systems

A *transition system* is a tuple $\mathbb{S} = (S, In, T, \mathcal{X}, dom, L)$, where

1. *S* is a finite non-empty set, the set of states of \mathbb{S}

2. In \subseteq S is a non-empty set of states, the set of *initial states* of \mathbb{S}

3. $T \subseteq S \times S$ is a set of state pairs, the transition relation of \mathbb{S}

Transition systems

- 1. *S* is a finite non-empty set, the set of states of \mathbb{S}
- 2. In \subseteq S is a non-empty set of states, the set of *initial states* of \mathbb{S}
- 3. $T \subseteq S \times S$ is a set of state pairs, the transition relation of $\mathbb S$

Transition systems

- 1. *S* is a finite non-empty set, the set of states of \mathbb{S}
- 2. In \subseteq S is a non-empty set of states, the set of *initial states* of \mathbb{S}
- **3.** $T \subseteq S \times S$ is a set of state pairs, the transition relation of \mathbb{S}

State Transition Graph of a transition system $\mathbb{S} = (S, In, T, \mathcal{X}, dom, L)$:

- The nodes are the states of \mathbb{S}
- The arcs are elements of the transition relation: there is an edge from state *s* to state *s'* iff (*s*, *s'*) ∈ *T*

State Transition Graph of a transition system $\mathbb{S} = (S, In, T, \mathcal{X}, dom, L)$:

- The nodes are the states of \mathbb{S}
- The arcs are elements of the transition relation: there is an edge from state *s* to state *s'* iff (*s*, *s'*) ∈ *T*

State Transition Graph of a transition system $\mathbb{S} = (S, In, T, \mathcal{X}, dom, L)$:

- The nodes are the states of \mathbb{S}
- The arcs are elements of the transition relation: there is an edge from state *s* to state *s'* iff (*s*, *s'*) ∈ *T*

State Transition Graph of a transition system $\mathbb{S} = (S, In, T, \mathcal{X}, dom, L)$:

- The nodes are the states of \mathbb{S}
- The arcs are elements of the transition relation: there is an edge from state *s* to state *s'* iff (*s*, *s'*) ∈ *T*

State Transition Graph of a transition system $\mathbb{S} = (S, In, T, \mathcal{X}, dom, L)$:

- The nodes are the states of \mathbb{S}
- The arcs are elements of the transition relation: there is an edge from state *s* to state *s'* iff (*s*, *s'*) ∈ *T*

State Transition Graph of a transition system $\mathbb{S} = (S, In, T, \mathcal{X}, dom, L)$:

- The nodes are the states of \mathbb{S}
- The arcs are elements of the transition relation: there is an edge from state *s* to state *s'* iff (*s*, *s'*) ∈ *T*

State Transition Graph of a transition system $\mathbb{S} = (S, In, T, \mathcal{X}, dom, L)$:

- The nodes are the states of \mathbb{S}
- The arcs are elements of the transition relation: there is an edge from state *s* to state *s'* iff (*s*, *s'*) ∈ *T*

- 1. *S* is a finite non-empty set, the set of states of \mathbb{S}
- 2. $In \subseteq S$ is a non-empty set of states, the set of *initial states* of \mathbb{S}
- 3. $T \subseteq S \times S$ is a set of state pairs, the transition relation of \mathbb{S}
- 4. \mathcal{X} is a finite set of *state variables*
- 5. *dom* is a mapping from \mathcal{X} such that for every $x \in \mathcal{X}$, dom(x) is a non-empty set of values, the *domain* of x
- 6. *L* is a function mapping states of *S* to interpretations, the *labelling function* of *S* (more on this later)

- 1. *S* is a finite non-empty set, the set of states of \mathbb{S}
- 2. $In \subseteq S$ is a non-empty set of states, the set of *initial states* of \mathbb{S}
- 3. $T \subseteq S \times S$ is a set of state pairs, the transition relation of \mathbb{S}
- 4. \mathcal{X} is a finite set of *state variables*
- 5. *dom* is a mapping from \mathcal{X} such that for every $x \in \mathcal{X}$, *dom*(x) is a non-empty set of values, the *domain* of x
- 6. *L* is a function mapping states of *S* to interpretations, the *labelling function* of *S* (more on this later)

- 1. *S* is a finite non-empty set, the set of states of \mathbb{S}
- 2. $In \subseteq S$ is a non-empty set of states, the set of *initial states* of \mathbb{S}
- 3. $T \subseteq S \times S$ is a set of state pairs, the transition relation of \mathbb{S}
- 4. \mathcal{X} is a finite set of *state variables*
- 5. *dom* is a mapping from \mathcal{X} such that for every $x \in \mathcal{X}$, dom(x) is a non-empty set of values, the *domain of* x
- L is a function mapping states of S to interpretations, the *labelling function* of S (more on this later)

- 1. *S* is a finite non-empty set, the set of states of \mathbb{S}
- 2. In \subseteq S is a non-empty set of states, the set of *initial states* of \mathbb{S}
- 3. $T \subseteq S \times S$ is a set of state pairs, the transition relation of \mathbb{S}
- 4. \mathcal{X} is a finite set of *state variables*
- 5. *dom* is a mapping from \mathcal{X} such that for every $x \in \mathcal{X}$, dom(x) is a non-empty set of values, the *domain of* x
- 6. *L* is a function mapping states of *S* to interpretations, the *labelling function* of *S* (more on this later)

A (labelled) transition system is a tuple $\mathbb{S} = (S, In, T, \mathcal{X}, dom, L)$, where

- 1. *S* is a finite non-empty set, the set of states of \mathbb{S}
- 2. In \subseteq S is a non-empty set of states, the set of *initial states* of \mathbb{S}
- 3. $T \subseteq S \times S$ is a set of state pairs, the transition relation of \mathbb{S}
- 4. \mathcal{X} is a finite set of *state variables*
- 5. *dom* is a mapping from \mathcal{X} such that for every $x \in \mathcal{X}$, dom(x) is a non-empty set of values, the *domain of* x
- 6. *L* is a function mapping states of *S* to interpretations, the *labelling function* of *S* (more on this later)

 \mathbb{S} is *finite-state* if dom(x) is finite for all $x \in \mathcal{X}$

A (labelled) transition system is a tuple $\mathbb{S} = (S, In, T, \mathcal{X}, dom, L)$, where

- 1. *S* is a finite non-empty set, the set of states of \mathbb{S}
- 2. In \subseteq S is a non-empty set of states, the set of *initial states* of \mathbb{S}
- 3. $T \subseteq S$
- 4. \mathcal{X} is a We will only study finite-state transition systems
- 5. dom is a mapping non α such that for every $x \in \mathcal{X}$, dom(x) is a non-empty set of values, the *domain of* x
- 6. *L* is a function mapping states of *S* to interpretations, the *labelling function* of *S* (more on this later)

 \mathbb{S} is *finite-state* if dom(x) is finite for all $x \in \mathcal{X}$

Systems in PLFD

 $\mathbb{S} = (S, In, T, \mathcal{X}, dom, L)$

Note this part of the definition transition system:

- 4. \mathcal{X} is a finite set of *state variables*
- 5. *dom* is a mapping from \mathcal{X} such that for every $x \in \mathcal{X}$, dom(x) is a non-empty set of values, the *domain of x*

Systems in PLFD

 $\mathbb{S} = (S, In, T, \mathcal{X}, dom, L)$

Note this part of the definition transition system:

- 4. \mathcal{X} is a finite set of *state variables*
- 5. *dom* is a mapping from \mathcal{X} such that for every $x \in \mathcal{X}$, dom(x) is a non-empty set of values, the *domain of x*

 \mathcal{X} and *dom* define an instance of PLFD!

 $\mathbb{S} = (S, In, T, \mathcal{X}, dom, L)$

Let ${\rm I\!I}$ be the set of all interpretations for the instance of PLFD given by ${\mathcal X}$ and dom

1. for every $x \in \mathcal{X}$ and $s \in S$, we have $L(s)(x) \in dom(x)$

2. for every formula A over $\mathcal X$ and every state $s \in S$, either $L(s) \models A$ or $L(s) \not\models A$

 $\mathbb{S} = (S, In, T, \mathcal{X}, dom, L)$

Let ${\rm I\!I}$ be the set of all interpretations for the instance of PLFD given by ${\mathcal X}$ and dom

L is a mapping from *S* to \mathbb{I} , associating every state to an interpretation of \mathcal{X} :

- 1. for every $x \in \mathcal{X}$ and $s \in S$, we have $L(s)(x) \in dom(x)$
- **2.** for every formula *A* over \mathcal{X} and every state $s \in S$, either $L(s) \models A$ or $L(s) \not\models A$

 $\mathbb{S} = (S, In, T, \mathcal{X}, dom, L)$

Let ${\rm I\!I}$ be the set of all interpretations for the instance of PLFD given by ${\mathcal X}$ and dom

L is a mapping from S to I, associating every state to an interpretation of \mathcal{X} :

1. for every $x \in \mathcal{X}$ and $s \in S$, we have $L(s)(x) \in dom(x)$

2. for every formula A over \mathcal{X} and every state $s \in S$, either $L(s) \models A$ or $L(s) \not\models A$

 $\mathbb{S} = (S, In, T, \mathcal{X}, dom, L)$

Let ${\rm I\!I}$ be the set of all interpretations for the instance of PLFD given by ${\mathcal X}$ and dom

L is a mapping from S to I, associating every state to an interpretation of \mathcal{X} :

- **1.** for every $x \in \mathcal{X}$ and $s \in S$, we have $L(s)(x) \in dom(x)$
- **2.** for every formula *A* over \mathcal{X} and every state $s \in S$, either $L(s) \models A$ or $L(s) \not\models A$

If L(s)(x) = v, we say that x has value v in state s, and write s(x) = v

If $L(s) \models A$, we say that *s* satisfies *A* or *A* is true in *s*, and write $s \models A$

We will often identify s with L(s)

If L(s)(x) = v, we say that x has value v in state s, and write s(x) = v

If $L(s) \models A$, we say that s satisfies A or A is true in s, and write $s \models A$

We will often identify *s* with *L*(*s*)

If L(s)(x) = v, we say that x has value v in state s, and write s(x) = v

If $L(s) \models A$, we say that s satisfies A or A is true in s, and write $s \models A$

We will often identify s with L(s)

State Transition Graph

State transition graph of \mathbb{S} :

- The nodes are the states of $\mathbb S$
- The edges are the state pairs in T
- Nodes labeled by states

$$\mathbb{S} = (S, In, T, \mathcal{X}, dom, L)$$

State Transition Graph

$$\mathbb{S} = (S, In, T, \mathcal{X}, dom, L)$$

State transition graph of \mathbb{S} :

- The nodes are the states of S
- The edges are the state pairs in T
- Nodes labeled by states

Example: $X = \{x, y\}$, $dom(x) = dom(y) = \{0, 1\}$

State Transition Graph with interpretations as states

 $\mathbb{S} = (S, In, T, \mathcal{X}, dom, L)$

State transition graph of \mathbb{S} :

- The nodes are the states of S
- The edges are the state pairs in T
- Nodes labeled by states

Example: $X = \{x, y\}$, $dom(x) = dom(y) = \{0, 1\}$

- $s_1 \models x$
- $s_2 \models x \land y$
- $s_3 \models x \leftrightarrow y$

- $s_1 \models x$
- $s_2 \models x \land y$
- $s_3 \models x \leftrightarrow y$

- $s_1 \models x$
- $s_2 \models x \land y$
- $s_3 \models x \leftrightarrow y$

- $s_1 \models x$
- $s_2 \models x \land y$
- $s_3 \models x \leftrightarrow y$

We will usually represent a transition relation as a union of transitions

Transition t: any set of state pairs

- *applicable* to a state *s* if there is a state *s'* such that $(s, s') \in t$
- deterministic if for every state s there is at most one state s' such that (s, s') ∈ t

We will usually represent a transition relation as a union of transitions

Transition t: any set of state pairs

- *applicable* to a state *s* if there is a state *s'* such that $(s, s') \in t$
- deterministic if for every state s there is at most one state s' such that (s, s') ∈ t

We will usually represent a transition relation as a union of transitions

Transition t: any set of state pairs

- *applicable* to a state *s* if there is a state *s'* such that $(s, s') \in t$
- deterministic if for every state s there is at most one state s' such that (s, s') ∈ t

We will usually represent a transition relation as a union of transitions

Transition t: any set of state pairs

- *applicable* to a state *s* if there is a state *s'* such that $(s, s') \in t$
- *deterministic* if for every state *s* there is at most one state *s'* such that (*s*, *s'*) ∈ *t*

- 1. The vending machine contains a drink storage, a coin slot, and a drink dispenser.
- 2. The drink storage stores drinks of two kinds: soda and coffee. We are only interested in whether a particular kind of drink is currently being stored or not (but not its amount).
- 3. The coin slot can accommodate up to three coins.
- 4. The drink dispenser can hold at most one drink. Any drink in it must be removed before the next one can be dispensed.
- 5. A can of soda costs two coins. A cup of coffee costs one coin.
- 6. There are two kinds of customers: students and professors. Students drink only soda, professors drink only coffee.
- 7. From time to time the drink storage can be restocked.

- 1. The vending machine contains a drink storage, a coin slot, and a drink dispenser.
- 2. The drink storage stores drinks of two kinds: soda and coffee. We are only interested in whether a particular kind of drink is currently being stored or not (but not its amount).
- 3. The coin slot can accommodate up to three coins.
- 4. The drink dispenser can hold at most one drink. Any drink in it must be removed before the next one can be dispensed.
- 5. A can of soda costs two coins. A cup of coffee costs one coin.
- 6. There are two kinds of customers: students and professors. Students drink only soda, professors drink only coffee.
- 7. From time to time the drink storage can be restocked.

- 1. The vending machine contains a drink storage, a coin slot, and a drink dispenser.
- 2. The drink storage stores drinks of two kinds: soda and coffee. We are only interested in whether a particular kind of drink is currently being stored or not (but not its amount).
- 3. The coin slot can accommodate up to three coins.
- 4. The drink dispenser can hold at most one drink. Any drink in it must be removed before the next one can be dispensed.
- 5. A can of soda costs two coins. A cup of coffee costs one coin.
- 6. There are two kinds of customers: students and professors. Students drink only soda, professors drink only coffee.
- 7. From time to time the drink storage can be restocked.

- 1. The vending machine contains a drink storage, a coin slot, and a drink dispenser.
- 2. The drink storage stores drinks of two kinds: soda and coffee. We are only interested in whether a particular kind of drink is currently being stored or not (but not its amount).
- 3. The coin slot can accommodate up to three coins.
- 4. The drink dispenser can hold at most one drink. Any drink in it must be removed before the next one can be dispensed.
- 5. A can of soda costs two coins. A cup of coffee costs one coin.
- 6. There are two kinds of customers: students and professors. Students drink only soda, professors drink only coffee.
- 7. From time to time the drink storage can be restocked.

- 1. The vending machine contains a drink storage, a coin slot, and a drink dispenser.
- 2. The drink storage stores drinks of two kinds: soda and coffee. We are only interested in whether a particular kind of drink is currently being stored or not (but not its amount).
- 3. The coin slot can accommodate up to three coins.
- 4. The drink dispenser can hold at most one drink. Any drink in it must be removed before the next one can be dispensed.
- 5. A can of soda costs two coins. A cup of coffee costs one coin.
- 6. There are two kinds of customers: students and professors. Students drink only soda, professors drink only coffee.
- 7. From time to time the drink storage can be restocked.

Formalization: Variables and Domains

variable	domain	explanation
st_coffee	$\{ 0, 1 \}$	drink storage contains coffee
st_soda	$\{ 0, 1 \}$	drink storage contains soda
disp	{ none, soda, coffee }	content of drink dispenser
coins	$\{0, 1, 2, 3\}$	number of coins in the slot
customer	{ none, student, prof }	customer

Transitions for the Vending Machine

- 1. Restock, results in the drink storage having both soda and coffee
- 2. Customer_arrives, corresponds to a customer arriving at the machine
- 3. Customer_leaves, corresponds to the customer's leaving
- 4. Coin_insert, corresponds to the customer's inserting a coin in the machine
- 5. Dispense_soda, results in the customer's getting a can of soda
- 6. *Dispense_coffee*, results in the customer's getting a cup of coffee
- 7. *Take_drink*, corresponds to the customer's removing a drink from the dispenser

Let $\mathbb{S} = (S, \textit{In}, \textit{T}, \mathcal{X}, \textit{dom}, \textit{L})$ be a (finite-state) labelled transition system

Every PLFD formula F over the variables in \mathcal{X} defines a set states:

$$\{s \in S \mid s \models F\}$$

Let $\mathbb{S} = (S, \textit{In}, \textit{T}, \mathcal{X}, \textit{dom}, \textit{L})$ be a (finite-state) labelled transition system

Every PLFD formula F over the variables in \mathcal{X} defines a set states:

$$\{s \in S \mid s \models F\}$$

We say that F (symbolically) represents this set of states

- $x \leftrightarrow y$
- x ∧ y
- ¬X

- $x \leftrightarrow y$
- x ∧ y
- ¬X

- $x \leftrightarrow y$ represents { s_2, s_3 }
- x /\ y -
- ¬X

- $x \leftrightarrow y$ represents { s_2, s_3 }
- $x \wedge y$

• ¬X

- $x \leftrightarrow y$ represents { s_2, s_3 }
- $x \land y$ represents $\{s_2\}$

• ¬X

- $x \leftrightarrow y$ represents { s_2, s_3 }
- $x \land y$ represents $\{s_2\}$
- ¬χ

- $x \leftrightarrow y$ represents { s_2, s_3 }
- $x \land y$ represents $\{s_2\}$
- $\neg x \text{ represents} \{ s_3, s_4 \}$

Example

Let us represent the set of states in which the machine is ready to dispense a drink

In every such state, it must be the case that

- a drink is available
- the drink dispenser is empty, and
- the coin slot contains enough coins

Example

Let us represent the set of states in which the machine is ready to dispense a drink

In every such state, it must be the case that

- a drink is available
- the drink dispenser is empty, and
- the coin slot contains enough coins

This can be expressed by:

 $(st_coffee \lor st_soda) \land$ disp = none \land $((coins = 1 \land st_coffee) \lor coins = 2 \lor coins = 3)$

 $\mathbb{S} = (S, In, T, \mathcal{X}, dom, L)$

A *transition* t in \mathbb{S} is a binary relation on s, i.e., a set of state pairs:

$t = \{ (s, s') \mid s, s' \in S \}$

It takes the system from some *current state* or *pre-state s* to some *next state* or *post-state s'*

Can we represent transitions symbolically using PLFD formulas? Not immediately. PLFD formulas over ${\mathcal X}$ can only express properties of a single state

 $\mathbb{S} = (S, In, T, \mathcal{X}, dom, L)$

A *transition* t in \mathbb{S} is a binary relation on s, i.e., a set of state pairs:

$t = \{ (s, s') \mid s, s' \in S \}$

It takes the system from some *current state* or *pre-state* s to some *next state* or *post-state* s'

Can we represent transitions symbolically using PLFD formulas? Not immediately. PLFD formulas over 3' can only express properties of a single state

 $\mathbb{S} = (S, In, T, \mathcal{X}, dom, L)$

A *transition* t in \mathbb{S} is a binary relation on s, i.e., a set of state pairs:

$t = \{ (s, s') \mid s, s' \in S \}$

It takes the system from some *current state* or *pre-state s* to some *next state* or *post-state s'*

Can we represent transitions symbolically using PLFD formulas? Not immediately. PLFD formulas over \mathcal{X} can only express properties of a single state

How can we represent transitions using formulas?

- Introduce a new set of *next-state variables* $\mathcal{X}' = \{x' \mid x \in \mathcal{X}\}$
- Treat pairs of states as interpretations of formulas over $\mathcal{X}\cup\mathcal{X}'$

$$\begin{array}{lll} \mathsf{For all} \ x \in \mathcal{X}, & (s,s')(x) & \stackrel{\mathrm{def}}{=} & s(x) \\ \mathsf{For all} \ x \in \mathcal{X}, & (s,s')(x') & \stackrel{\mathrm{def}}{=} & s'(x) \end{array}$$

A formula F over variables X ∪ X' represents symbolically a transition t if

$$t = \{ (s,s') \in S^2 \mid (s,s') \models F \}$$

Symbolic Representation of Transitions

How can we represent transitions using formulas?

- Introduce a new set of *next-state variables* $\mathcal{X}' = \{x' \mid x \in \mathcal{X}\}$
- Treat pairs of states as interpretations of formulas over $\mathcal{X}\cup\mathcal{X}'$

For all
$$x \in \mathcal{X}$$
, $(s, s')(x) \stackrel{\text{def}}{=} s(x)$
For all $x \in \mathcal{X}$, $(s, s')(x') \stackrel{\text{def}}{=} s'(x)$

A formula F over variables X ∪ X' represents symbolically a transition t if

$$t = \{ (s,s') \in S^2 \mid (s,s') \models F \}$$

Symbolic Representation of Transitions

How can we represent transitions using formulas?

- Introduce a new set of *next-state variables* $\mathcal{X}' = \{x' \mid x \in \mathcal{X}\}$
- Treat pairs of states as interpretations of formulas over $\mathcal{X} \cup \mathcal{X}'$

For all
$$x \in \mathcal{X}$$
, $(s, s')(x) \stackrel{\text{def}}{=} s(x)$
For all $x \in \mathcal{X}$, $(s, s')(x') \stackrel{\text{def}}{=} s'(x)$

A formula F over variables X ∪ X' represents symbolically a transition t if

$$t = \{ (s,s') \in S^2 \mid (s,s') \models F \}$$

Symbolic Representation of Transitions

How can we represent transitions using formulas?

- Introduce a new set of *next-state variables* $\mathcal{X}' = \{x' \mid x \in \mathcal{X}\}$
- Treat pairs of states as interpretations of formulas over $\mathcal{X} \cup \mathcal{X}'$

For all
$$x \in \mathcal{X}$$
, $(s, s')(x) \stackrel{\text{def}}{=} s(x)$
For all $x \in \mathcal{X}$, $(s, s')(x') \stackrel{\text{def}}{=} s'(x)$

• A formula *F* over variables $\mathcal{X} \cup \mathcal{X}'$ represents symbolically a transition *t* if

$$t = \{ (s, s') \in S^2 \mid (s, s') \models F \}$$

Example

The transition Restock:

 $customer = none \land st_coffee' \land st_soda'$

Example

The transition Restock:

customer = *none* \land st_coffee' \land st_soda'

current state description

next state description

Example

The transition Restock:

customer = none
current state description

st_coffee'
$$\land$$
 st_soda'
next state description

Note: This formula describes a strange transition after which, for example

- coins may appear in and disappear from the slot
- drinks may appear in and disappear from the dispenser
- ...

We must express explicitly, possibly for a large number of state variables, that

the values of certain variables do not change after a transition

Example

 $\begin{array}{l} (\operatorname{coins} = 0 \leftrightarrow \operatorname{coins}' = 0) \land \\ (\operatorname{coins} = 1 \leftrightarrow \operatorname{coins}' = 1) \land \\ (\operatorname{coins} = 2 \leftrightarrow \operatorname{coins}' = 2) \land \\ (\operatorname{coins} = 3 \leftrightarrow \operatorname{coins}' = 3) \end{array}$

This is known as the frame problem

We must express explicitly, possibly for a large number of state variables, that

the values of certain variables do not change after a transition

Example

$$\begin{array}{l} (\operatorname{coins} = 0 \leftrightarrow \operatorname{coins}' = 0) \land \\ (\operatorname{coins} = 1 \leftrightarrow \operatorname{coins}' = 1) \land \\ (\operatorname{coins} = 2 \leftrightarrow \operatorname{coins}' = 2) \land \\ (\operatorname{coins} = 3 \leftrightarrow \operatorname{coins}' = 3) \end{array}$$

This is known as the frame problem

We must express explicitly, possibly for a large number of state variables, that

the values of certain variables do not change after a transition

Example

$$\begin{array}{l} (\operatorname{coins} = 0 \leftrightarrow \operatorname{coins}' = 0) \land \\ (\operatorname{coins} = 1 \leftrightarrow \operatorname{coins}' = 1) \land \\ (\operatorname{coins} = 2 \leftrightarrow \operatorname{coins}' = 2) \land \\ (\operatorname{coins} = 3 \leftrightarrow \operatorname{coins}' = 3) \end{array}$$

This is known as the *frame problem*

We must express explicitly, possibly for a large number of state variables, that

the values of certain variables do not change after a transition

Example

$$\begin{array}{l} (\operatorname{coins} = 0 \leftrightarrow \operatorname{coins}' = 0) \land \\ (\operatorname{coins} = 1 \leftrightarrow \operatorname{coins}' = 1) \land \\ (\operatorname{coins} = 2 \leftrightarrow \operatorname{coins}' = 2) \land \\ (\operatorname{coins} = 3 \leftrightarrow \operatorname{coins}' = 3) \end{array}$$

This is known as the *frame problem*

The frame formula

 $\mathbb{S} = (S, In, T, \mathcal{X}, dom, L)$

Notation:

When dom(x) = dom(y),

$$\begin{array}{ll} \boldsymbol{x} \neq \boldsymbol{v} & \stackrel{\mathrm{def}}{=} & \neg(\boldsymbol{x} = \boldsymbol{v}) \\ \boldsymbol{x} = \boldsymbol{y} & \stackrel{\mathrm{def}}{=} & \bigwedge_{\boldsymbol{v} \in dom(\boldsymbol{x})} (\boldsymbol{x} = \boldsymbol{v} \leftrightarrow \boldsymbol{y} = \boldsymbol{v}) \end{array}$$

For $\{x_1,\ldots,x_n\}\subseteq \mathcal{X},$

only
$$(x_1,\ldots,x_n) \stackrel{\mathrm{def}}{=} \bigwedge_{x \in \mathcal{X} \setminus \{x_1,\ldots,x_n\}} x = x'$$

 $only(x_1, \ldots, x_n)$ can be used in symbolic transitions to state that x_1, \ldots, x_n are the only variables whose values may change in the transition

The frame formula

$$\mathbb{S} = (S, In, T, \mathcal{X}, dom, L)$$

Notation:

When dom(x) = dom(y),

$$\begin{array}{ll} \mathbf{x} \neq \mathbf{v} & \stackrel{\mathrm{def}}{=} & \neg(\mathbf{x} = \mathbf{v}) \\ \mathbf{x} = \mathbf{y} & \stackrel{\mathrm{def}}{=} & \bigwedge_{\mathbf{v} \in dom(\mathbf{x})} (\mathbf{x} = \mathbf{v} \leftrightarrow \mathbf{y} = \mathbf{v}) \end{array}$$

For $\{x_1, \ldots, x_n\} \subseteq \mathcal{X}$,

only
$$(x_1,\ldots,x_n) \stackrel{\text{def}}{=} \bigwedge_{x \in \mathcal{X} \setminus \{x_1,\ldots,x_n\}} x = x'$$

only(*x*₁,...,*x_n*) can be used in symbolic transitions to state that *x*₁,...,*x_n* are the only variables whose values **ma**y change in the transition

The frame formula

$$\mathbb{S} = (S, In, T, \mathcal{X}, dom, L)$$

Notation:

When dom(x) = dom(y),

$$\begin{array}{ll} \mathbf{x} \neq \mathbf{v} & \stackrel{\mathrm{def}}{=} & \neg(\mathbf{x} = \mathbf{v}) \\ \mathbf{x} = \mathbf{y} & \stackrel{\mathrm{def}}{=} & \bigwedge_{\mathbf{v} \in dom(\mathbf{x})} (\mathbf{x} = \mathbf{v} \leftrightarrow \mathbf{y} = \mathbf{v}) \end{array}$$

For $\{x_1,\ldots,x_n\}\subseteq \mathcal{X}$,

only
$$(x_1,\ldots,x_n) \stackrel{\text{def}}{=} \bigwedge_{x \in \mathcal{X} \setminus \{x_1,\ldots,x_n\}} x = x'$$

 $only(x_1, \ldots, x_n)$ can be used in symbolic transitions to state that x_1, \ldots, x_n are the only variables whose values may change in the transition

$\mathbb{S} = (S, In, T, \mathcal{X}, dom, L)$

Typical symbolic representation of a transition t in \mathbb{S} : A PLFD formula $F_1 \wedge F_2$ where

- **1**. F_1 is a formula over variables \mathcal{X} expressing *t*'s precondition
- 2. F_2 is a formula over $\mathcal{X}\cup\mathcal{X}'$ expressing t's postcondition

 $\mathbb{S} = (S, In, T, \mathcal{X}, dom, L)$

Typical symbolic representation of a transition t in S:

A PLFD formula $F_1 \wedge F_2$ where

- **1.** F_1 is a formula over variables \mathcal{X} expressing t's precondition
- 2. F_2 is a formula over $\mathcal{X} \cup \mathcal{X}'$ expressing t's postcondition

 $\mathbb{S} = (S, In, T, \mathcal{X}, dom, L)$

Typical symbolic representation of a transition t in S:

A PLFD formula $F_1 \wedge F_2$ where

- **1.** F_1 is a formula over variables \mathcal{X} expressing t's precondition
- 2. F_2 is a formula over $\mathcal{X} \cup \mathcal{X}'$ expressing t's postcondition

 $\mathbb{S} = (S, In, T, \mathcal{X}, dom, L)$

Typical symbolic representation of a transition t in S:

A PLFD formula $F_1 \wedge F_2$ where

- **1.** F_1 is a formula over variables \mathcal{X} expressing t's precondition
- 2. F_2 is a formula over $\mathcal{X} \cup \mathcal{X}'$ expressing *t*'s postcondition

precondition: a necessary condition for a state of S of to be a pre-state of t *postcondition*: a condition relating t's post-states to their corresponding pre-state

Transitions for the Vending Machine

- 1. Restock, results in the drink storage having both soda and coffee
- 2. Customer_arrives, corresponds to a customer arriving at the machine
- 3. Customer_leaves, corresponds to the customer's leaving
- 4. Coin_insert, corresponds to the customer's inserting a coin in the machine
- 5. Dispense_soda, results in the customer's getting a can of soda
- 6. *Dispense_coffee*, results in the customer's getting a cup of coffee
- 7. *Take_drink*, corresponds to the customer's removing a drink from the dispenser

Restock

Customer_arrives Customer_leaves Coin_insert

Restock Customer_arrives Customer_leaves Coin_insert

 $\begin{array}{rll} \textit{precondition} & \textit{postcondition} \\ \textit{Restock} & \stackrel{\rm def}{=} & \textit{customer} = \textit{none} \ \land \ \textit{st_coffee'} \land \textit{st_soda'} \\ & \land \ \textit{only}(\textit{st_coffee}, \textit{st_soda}) \end{array}$

Restock Customer_arrives Customer_leaves Coin_insert

 $\begin{array}{rll} \textit{precondition} & \textit{postcondition} \\ \textit{Restock} & \stackrel{\rm def}{=} & \textit{customer} = \textit{none} \ \land \ \textit{st_coffee'} \land \textit{st_soda'} \\ & \land \ \textit{only}(\textit{st_coffee}, \textit{st_soda}) \end{array}$

Restock Customer_arrives Customer_leaves Coin_insert

 $\begin{array}{rcl} & precondition & postcondition \\ \hline Restock & \stackrel{\mathrm{def}}{=} & customer = none \ \land \ st_coffee' \ \land \ st_soda' \\ & \land \ only(st_coffee, \ st_soda) \\ \hline Customer_arrives & \stackrel{\mathrm{def}}{=} & customer = none \ \land \ customer' \neq none \\ & \land \ only(customer) \end{array}$

Restock Customer_arrives Customer_leaves Coin_insert

 $\begin{array}{rcl} & precondition & postcondition \\ \hline Restock & \stackrel{\mathrm{def}}{=} & customer = none \ \land \ st_coffee' \ \land \ st_soda' \\ & \land \ only(st_coffee, \ st_soda) \\ \hline Customer_arrives & \stackrel{\mathrm{def}}{=} & customer = none \ \land \ customer' \neq none \\ & \land \ only(customer) \end{array}$

Restock Customer_arrives Customer_leaves Coin_insert

 $\begin{array}{rcl} precondition & postcondition \\ \hline Restock & \stackrel{\mathrm{def}}{=} & customer = none \land st_coffee' \land st_soda' \\ \land & only(st_coffee, st_soda) \\ \hline Customer_arrives & \stackrel{\mathrm{def}}{=} & customer = none \land customer' \neq none \\ \land & only(customer) \\ \hline Customer_leaves & \stackrel{\mathrm{def}}{=} & customer \neq none \\ \land & only(customer) \\ \hline \end{array}$

Restock Customer_arrives Customer_leaves Coin_insert

 $\begin{array}{rcl} precondition & postcondition \\ \hline Restock & \stackrel{\mathrm{def}}{=} & customer = none & \wedge st_coffee' & \wedge st_soda' \\ & & & \wedge only(st_coffee, st_soda) \\ \hline Customer_arrives & \stackrel{\mathrm{def}}{=} & customer = none & \wedge customer' \neq none \\ & & & \wedge only(customer) \\ \hline Customer_leaves & \stackrel{\mathrm{def}}{=} & customer \neq none & \wedge customer' = none \\ & & & \wedge only(customer) \\ \hline \end{array}$

Restock Customer_arrives Customer_leaves Coin_insert

precondition postcondition $\stackrel{\text{def}}{=}$ customer = *none* \land st_coffee' \land st_soda' Restock \wedge only(st coffee, st soda) *Customer arrives* $\stackrel{\text{def}}{=}$ customer = none \land customer' \neq none \land only(customer) *Customer leaves* $\stackrel{\text{def}}{=}$ customer \neq *none* \land customer' = *none* \wedge only(customer) *Coin insert* $\stackrel{\text{def}}{=}$ customer \neq *none* \wedge (coins = 0 \rightarrow coins' = 1) \land coins $\neq 3$ \land (coins = 1 \rightarrow coins' = 2) \land (coins = 2 \rightarrow coins' = 3) \wedge only(coins)

Dispense_soda Dispense_coffee Take_drink

Dispense_soda Dispense_coffee Take_drink

Dispense_soda =

 $\begin{array}{l} \mbox{customer} = student \land st_soda \land \\ \mbox{disp} = none \land (\mbox{coins} = 2 \lor \mbox{coins} = 3) \land \\ (\mbox{coins} = 2 \rightarrow \mbox{coins}' = 0) \land \\ (\mbox{coins} = 3 \rightarrow \mbox{coins}' = 1) \land \\ \mbox{disp}' = soda \land only(\mbox{st_soda}, \mbox{disp}, \mbox{coins}) \end{array}$

Dispense_soda Dispense_coffee Take_drink

Dispense_soda =

 $\begin{array}{l} \mbox{customer} = student \land st_soda \land \\ \mbox{disp} = none \land (\mbox{coins} = 2 \lor \mbox{coins} = 3) \land \\ (\mbox{coins} = 2 \rightarrow \mbox{coins}' = 0) \land \\ (\mbox{coins} = 3 \rightarrow \mbox{coins}' = 1) \land \\ \mbox{disp}' = soda \land only(\mbox{st_soda}, \mbox{disp}, \mbox{coins}) \end{array}$

Dispense_soda Dispense_coffee Take_drink

def Dispense soda customer = student \land st soda \land disp = none \land (coins = 2 \lor coins = 3) \land $(coins = 2 \rightarrow coins' = 0) \land$ $(coins = 3 \rightarrow coins' = 1) \land$ $disp' = soda \land onlv(st soda, disp, coins)$ def = Dispense coffee customer = *prof* \land st_coffee \land disp = none \land coins $\neq 0 \land$ (coins = 1 \rightarrow coins' = 0) \wedge $(coins = 2 \rightarrow coins' = 1) \land$ (coins = 3 \rightarrow coins' = 2) \wedge $disp' = coffee \land only(st_coffee, disp, coins)$

Dispense_soda Dispense_coffee Take_drink

def Dispense soda customer = student \land st soda \land disp = none \land (coins = 2 \lor coins = 3) \land $(coins = 2 \rightarrow coins' = 0) \land$ $(coins = 3 \rightarrow coins' = 1) \land$ $disp' = soda \land onlv(st soda, disp, coins)$ def = Dispense coffee customer = *prof* \land st_coffee \land disp = none \land coins $\neq 0 \land$ (coins = 1 \rightarrow coins' = 0) \wedge $(coins = 2 \rightarrow coins' = 1) \land$ (coins = 3 \rightarrow coins' = 2) \wedge $disp' = coffee \land only(st_coffee, disp, coins)$

Dispense_soda Dispense_coffee Take_drink

Dispense_soda	def =	$\begin{array}{l} \mbox{customer} = student \land \mbox{st_soda} \land \\ \mbox{disp} = none \land (\mbox{coins} = 2 \lor \mbox{coins} = 3) \land \\ \mbox{(coins} = 2 \rightarrow \mbox{coins}' = 0) \land \\ \mbox{(coins} = 3 \rightarrow \mbox{coins}' = 1) \land \\ \mbox{disp}' = soda \land only(\mbox{st_soda}, \mbox{disp}, \mbox{coins}) \end{array}$
Dispense_coffee	def =	$\begin{array}{l} \text{customer} = prof \land \text{st_coffee} \land \\ \text{disp} = none \land \text{coins} \neq 0 \land \\ (\text{coins} = 1 \rightarrow \text{coins}' = 0) \land \\ (\text{coins} = 2 \rightarrow \text{coins}' = 1) \land \\ (\text{coins} = 3 \rightarrow \text{coins}' = 2) \land \\ \text{disp}' = coffee \land only(\text{st_coffee}, \text{disp}, \text{coins}) \end{array}$
Take_drink	$\stackrel{\mathrm{def}}{=}$	customer \neq none \land disp \neq none \land disp' = none \land only(disp)

1. There is no state in which professors and students are both customers.

- 2. Students always get soda.
- 3. The machine cannot dispense drinks forever without recharging.
- 4. Eventually, the machine runs out of soda.
- 5. If coffee has just been dispensed, the machine must have had coins right before.
- 6. If the machine is never restocked it will never dispense drinks.
- 7. The machine never dispenses drinks at a discount or for free.

8. ...

- 1. There is no state in which professors and students are both customers.
- 2. Students always get soda.
- 3. The machine cannot dispense drinks forever without recharging.
- 4. Eventually, the machine runs out of soda.
- 5. If coffee has just been dispensed, the machine must have had coins right before.
- 6. If the machine is never restocked it will never dispense drinks.
- 7. The machine never dispenses drinks at a discount or for free.

8. ...

- 1. There is no state in which professors and students are both customers.
- 2. Students always get soda.
- 3. The machine cannot dispense drinks forever without recharging.
- 4. Eventually, the machine runs out of soda.
- 5. If coffee has just been dispensed, the machine must have had coins right before.
- 6. If the machine is never restocked it will never dispense drinks.
- 7. The machine never dispenses drinks at a discount or for free.

- 1. There is no state in which professors and students are both customers.
- 2. Students always get soda.
- 3. The machine cannot dispense drinks forever without recharging.
- 4. Eventually, the machine runs out of soda.
- If coffee has just been dispensed, the machine must have had coins right before.
- 6. If the machine is never restocked it will never dispense drinks.
- 7. The machine never dispenses drinks at a discount or for free.

8. ...

- 1. There is no state in which professors and students are both customers.
- 2. Students always get soda.
- 3. The machine cannot dispense drinks forever without recharging.
- 4. Eventually, the machine runs out of soda.
- 5. If coffee has just been dispensed, the machine must have had coins right before.
- 6. If the machine is never restocked it will never dispense drinks.
- 7. The machine never dispenses drinks at a discount or for free.

8. ...

- 1. There is no state in which professors and students are both customers.
- 2. Students always get soda.
- 3. The machine cannot dispense drinks forever without recharging.
- 4. Eventually, the machine runs out of soda.
- 5. If coffee has just been dispensed, the machine must have had coins right before.
- 6. If the machine is never restocked it will never dispense drinks.
- The machine never dispenses drinks at a discount or for free.
 ...

- 1. There is no state in which professors and students are both customers.
- 2. Students always get soda.
- 3. The machine cannot dispense drinks forever without recharging.
- 4. Eventually, the machine runs out of soda.
- 5. If coffee has just been dispensed, the machine must have had coins right before.
- 6. If the machine is never restocked it will never dispense drinks.
- 7. The machine never dispenses drinks at a discount or for free.

- 1. There is no state in which professors and students are both customers.
- 2. Students always get soda.
- 3. The machine cannot dispense drinks forever without recharging.
- 4. Eventually, the machine runs out of soda.
- 5. If coffee has just been dispensed, the machine must have had coins right before.
- 6. If the machine is never restocked it will never dispense drinks.
- 7. The machine never dispenses drinks at a discount or for free.

8. ...

- 1. There is no state in which professors and students are both customers.
- 2. Students always get soda.
- 3. The machine cannot dispense drinks forever without recharging.
- 4. Eventually, the machine runs out of soda.
- 5. If coffee has just been dispensed, the machine must have had coins right before.
- 6. If the machine is never restocked it will never dispense drinks.
- 7. The machine never dispenses drinks at a discount or for free.

8. ...

These properties, which talk about the systems behavior over time, cannot be expressed in PLFD. We need a more expressive logic!