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Credits

These slides are largely based on slides originally developed by Andrei Voronkov
at the University of Manchester. Adapted by permission.
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State-changing systems

Our main interest from now on is modeling state-changing systems

We assume a discrete notion of time, with each time corresponding to a step taken
by the system

Informally

Formally

At each step, the system is in a partic-
ular state

States can be characterized by values
of a set of variables, called the state
variables

The system state changes over time
There are actions (controlled or not)
that change the state

Actions change values of some state
variables
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Reasoning about state-changing systems

1. Build a formal model of this state-changing system describing
• the behavior of the system, or
• some abstraction of that behavior

2. Using a logic to specify and verify properties of the system
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Example, Vendingmachine

A state-changing system: vending machine dispensing drinks

• The machine has several components, including:
• storage space for storing and preparing drinks,
• a dispenser for the purchased drink, and
• a coin slot to pay for the drink

• When the machine is operating, it goes through several states,
depending on the behavior of the current customer

• Each action by the customer or the machine itself may change its state

Ex: when the customer inserts a coin, the amount of money stored in the slot
changes

State transition: action that may change the machine’s state
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Modeling state-changing systems

To build a formal model of a particular state-changing system, we specify its
behavior in terms of

1. its state variables
2. the possible values for the state variables
3. the state transitions and how they change the values of the state variables

A state can be identified with
• the set of pairs (variable, value), or
• a function from variables to values

Formally, the system can be modeled as a transition system
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Transition systems

A transition system is a tuple S = (S, In, T,X , dom, L), where

1. S is a finite non-empty set, the set of states of S

2. In ⊆ S is a non-empty set of states, the set of initial states of S

3. T ⊆ S × S is a set of state pairs, the transition relation of S
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State Transition Graph

State Transition Graph of a transition system S = (S, In, T,X , dom, L):

• The nodes are the states of S
• The arcs are elements of the transition relation:

there is an edge from state s to state s′ iff (s, s′) ∈ T

Assume two boolean-valued variables x, y.

XYZ XYZ

XYZXYZ

We denote the initial states with double circles
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Labelled transition systems

A (labelled) transition system is a tuple S = (S, In, T,X , dom, L), where

1. S is a finite non-empty set, the set of states of S

2. In ⊆ S is a non-empty set of states, the set of initial states of S

3. T ⊆ S × S is a set of state pairs, the transition relation of S

4. X is a finite set of state variables

5. dom is a mapping from X such that
for every x ∈ X , dom(x) is a non-empty set of values, the domain of x

6. L is a function mapping states of S to interpretations, the labelling function of
S (more on this later)

S is finite-state if dom(x) is finite for all x ∈ X
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We will only study finite-state transition systems



Systems in PLFD

S = (S, In, T,X , dom, L)

Note this part of the definition transition system:

4. X is a finite set of state variables
5. dom is a mapping from X such that

for every x ∈ X , dom(x) is a non-empty set of values, the domain of x

X and dom define an instance of PLFD!
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Labeling function

S = (S, In, T,X , dom, L)

Let I be the set of all interpretations for the instance of PLFD given by X and dom

L is a mapping from S to I, associating every state to an interpretation of X :

1. for every x ∈ X and s ∈ S, we have L(s)(x) ∈ dom(x)
2. for every formula A over X and every state s ∈ S, either L(s) |= A or L(s) ̸|= A
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States as interpretations

If L(s)(x) = v, we say that x has value v in state s, and write s(x) = v

If L(s) |= A, we say that s satisfies A or A is true in s, and write s |= A

We will often identify s with L(s)
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State Transition Graph

with interpretations as states

S = (S, In, T,X , dom, L)
State transition graph of S :
• The nodes are the states of S
• The edges are the state pairs in T
• Nodes labeled by states

Example: X = {x, y}, dom(x) = dom(y) = { 0, 1 }

x = 1
y = 0

x = 1
y = 1

x = 0
y = 1

x = 0
y = 0

s1 s2

s3 s4
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x = 1
y = 0

x = 1
y = 1

x = 0
y = 1

x = 0
y = 0

s1 s2

s3 s4

S = { s1, s2, s3, s4 }
In = { s1 }
T = { (s1, s3), (s1, s4), (s3, s1),

(s4, s2), (s4, s3) }
L = { s1 7→ { x 7→ 1, y 7→ 0 },

s2 7→ { x 7→ 1, y 7→ 1 },
s3 7→ { x 7→ 0, y 7→ 0 },
s4 7→ { x 7→ 0, y 7→ 1 } }
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x = 1
y = 0

x = 1
y = 1

x = 0
y = 1

x = 0
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s1 s2

s3 s4

x y
S = { (0, 0), (0, 1), (1, 0), (1, 1) }
In = { (1, 0) }
T = { ((1, 0), (0, 1)),

((1, 0), (0, 0)),
((0, 0), (1, 0)),
((0, 1), (0, 0)),
((1, 1), (0, 1)) }
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States as Interpretations

x = 1
y = 0s1

x = 1
y = 1 s2

x = 0
y = 1 s4

x = 0
y = 0s3

• s1 |= x
• s2 |= x ∧ y
• s3 |= x ↔ y
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Transitions

We will usually represent a transition relation as a union of
transitions

Transition t: any set of state pairs

A transition t is
• applicable to a state s if there is a state s′ such that (s, s′) ∈ t

• deterministic if for every state s there is at most one state s′ such
that (s, s′) ∈ t
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Vendingmachine

1. The vending machine contains a drink storage, a coin slot, and a drink
dispenser.

2. The drink storage stores drinks of two kinds: soda and coffee. We are only
interested in whether a particular kind of drink is currently being stored or
not (but not its amount).

3. The coin slot can accommodate up to three coins.

4. The drink dispenser can hold at most one drink. Any drink in it must be
removed before the next one can be dispensed.

5. A can of soda costs two coins. A cup of coffee costs one coin.

6. There are two kinds of customers: students and professors. Students drink
only soda, professors drink only coffee.

7. From time to time the drink storage can be restocked.
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Formalization: Variables and Domains

variable domain explanation
st_coffee { 0, 1 } drink storage contains coffee
st_soda { 0, 1 } drink storage contains soda
disp { none, soda, coffee } content of drink dispenser
coins { 0, 1, 2, 3 } number of coins in the slot
customer { none, student, prof } customer
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Transitions for the Vending Machine

1. Restock, results in the drink storage having both soda and coffee

2. Customer_arrives, corresponds to a customer arriving at the machine

3. Customer_leaves, corresponds to the customer’s leaving

4. Coin_insert, corresponds to the customer’s inserting a coin in the machine

5. Dispense_soda, results in the customer’s getting a can of soda

6. Dispense_coffee, results in the customer’s getting a cup of coffee

7. Take_drink, corresponds to the customer’s removing a drink from the
dispenser
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Symbolic Representation of Sets of States

Let S = (S, In, T,X , dom, L) be a (finite-state) labelled transition
system

Every PLFD formula F over the variables in X defines a set states:

{ s ∈ S | s |= F }

We say that F (symbolically) represents this set of states
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Symbolic Representation of Sets of States

x = 1
y = 0s1

x = 1
y = 1 s2

x = 0
y = 0s3

x = 0
y = 1 s4

• x ↔ y

represents { s2, s3 }

• x ∧ y

represents { s2 }

• ¬x

represents { s3, s4 }
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Example

Let us represent the set of states in which the machine is ready to dispense a drink

In every such state, it must be the case that
• a drink is available
• the drink dispenser is empty, and
• the coin slot contains enough coins

This can be expressed by:

(st_coffee ∨ st_soda) ∧
disp = none ∧
((coins = 1 ∧ st_coffee) ∨ coins = 2 ∨ coins = 3)
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Symbolic Representation of Transitions

S = (S, In, T,X , dom, L)

A transition t in S is a binary relation on s, i.e., a set of state pairs:

t = { (s, s′) | s, s′ ∈ S }

It takes the system from some current state or pre-state s
to some next state or post-state s′

Can we represent transitions symbolically using PLFD formulas?

Not immediately.
PLFD formulas over X can only express properties of a single state
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Symbolic Representation of Transitions

How can we represent transitions using formulas?

• Introduce a new set of next-state variables X ′ = { x′ | x ∈ X }

• Treat pairs of states as interpretations of formulas over X ∪ X ′

For all x ∈ X , (s, s′)(x) def
= s(x)

For all x ∈ X , (s, s′)(x′)
def
= s′(x)

• A formula F over variables X ∪ X ′ represents symbolically a
transition t if

t = { (s, s′) ∈ S2 | (s, s′) |= F }
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Example

The transition Restock:

customer = none ∧ st_coffee′ ∧ st_soda′

Note: This formula describes a strange transition after which, for example
• coins may appear in and disappear from the slot
• drinks may appear in and disappear from the dispenser
• . . .
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Frame problem

We must express explicitly, possibly for a large number of state variables, that

the values of certain variables do not change after a transition

Example
(coins = 0 ↔ coins′ = 0) ∧
(coins = 1 ↔ coins′ = 1) ∧
(coins = 2 ↔ coins′ = 2) ∧
(coins = 3 ↔ coins′ = 3)

This is known as the frame problem

It arises in artificial intelligence, knowledge representation, planning, and in
reasoning about actions in general
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The frame formula
S = (S, In, T,X , dom, L)

Notation:

When dom(x) = dom(y),

x ̸= v def
= ¬(x = v)

x = y def
=

∧
v∈dom(x)(x = v ↔ y = v)

For { x1, . . . , xn } ⊆ X ,

only(x1, . . . , xn)
def
=

∧
x∈X\{ x1,...,xn } x = x′

only(x1, . . . , xn) can be used in symbolic transitions to state that
x1, . . . , xn are the only variables whose values may change in the transition
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Preconditions and postconditions

S = (S, In, T,X , dom, L)

Typical symbolic representation of a transition t in S:

A PLFD formula F1 ∧ F2 where

1. F1 is a formula over variables X expressing t’s precondition
2. F2 is a formula over X ∪ X ′ expressing t’s postcondition

precondition: a necessary condition for a state of S of to be a pre-state of t
postcondition: a condition relating t’s post-states to their corresponding pre-state
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Transitions for the Vending Machine

1. Restock, results in the drink storage having both soda and coffee

2. Customer_arrives, corresponds to a customer arriving at the machine

3. Customer_leaves, corresponds to the customer’s leaving

4. Coin_insert, corresponds to the customer’s inserting a coin in the machine

5. Dispense_soda, results in the customer’s getting a can of soda

6. Dispense_coffee, results in the customer’s getting a cup of coffee

7. Take_drink, corresponds to the customer’s removing a drink from the
dispenser
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Transitions: Symbolic Representation
Restock

Customer_arrives
Customer_leaves

Coin_insert

precondition postcondition

Restock def
= customer = none ∧ st_coffee′ ∧ st_soda′

∧ only(st_coffee, st_soda)

Customer_arrives def
= customer = none ∧ customer′ ̸= none

∧ only(customer)

Customer_leaves def
= customer ̸= none ∧ customer′ = none

∧ only(customer)

Coin_insert def
= customer ̸= none ∧ (coins = 0 → coins′ = 1)
∧ coins ̸= 3 ∧ (coins = 1 → coins′ = 2)

∧ (coins = 2 → coins′ = 3)
∧ only(coins)

30 / 32



Transitions: Symbolic Representation
Restock

Customer_arrives
Customer_leaves

Coin_insert

precondition postcondition

Restock def
= customer = none ∧ st_coffee′ ∧ st_soda′

∧ only(st_coffee, st_soda)

Customer_arrives def
= customer = none ∧ customer′ ̸= none

∧ only(customer)

Customer_leaves def
= customer ̸= none ∧ customer′ = none

∧ only(customer)

Coin_insert def
= customer ̸= none ∧ (coins = 0 → coins′ = 1)
∧ coins ̸= 3 ∧ (coins = 1 → coins′ = 2)

∧ (coins = 2 → coins′ = 3)
∧ only(coins)

30 / 32



Transitions: Symbolic Representation
Restock

Customer_arrives
Customer_leaves

Coin_insert

precondition postcondition

Restock def
= customer = none ∧ st_coffee′ ∧ st_soda′

∧ only(st_coffee, st_soda)

Customer_arrives def
= customer = none ∧ customer′ ̸= none

∧ only(customer)

Customer_leaves def
= customer ̸= none ∧ customer′ = none

∧ only(customer)

Coin_insert def
= customer ̸= none ∧ (coins = 0 → coins′ = 1)
∧ coins ̸= 3 ∧ (coins = 1 → coins′ = 2)

∧ (coins = 2 → coins′ = 3)
∧ only(coins)

30 / 32



Transitions: Symbolic Representation
Restock

Customer_arrives
Customer_leaves

Coin_insert

precondition postcondition

Restock def
= customer = none ∧ st_coffee′ ∧ st_soda′

∧ only(st_coffee, st_soda)

Customer_arrives def
= customer = none ∧ customer′ ̸= none

∧ only(customer)

Customer_leaves def
= customer ̸= none ∧ customer′ = none

∧ only(customer)

Coin_insert def
= customer ̸= none ∧ (coins = 0 → coins′ = 1)
∧ coins ̸= 3 ∧ (coins = 1 → coins′ = 2)

∧ (coins = 2 → coins′ = 3)
∧ only(coins)

30 / 32



Transitions: Symbolic Representation
Restock

Customer_arrives
Customer_leaves

Coin_insert

precondition postcondition

Restock def
= customer = none ∧ st_coffee′ ∧ st_soda′

∧ only(st_coffee, st_soda)

Customer_arrives def
= customer = none ∧ customer′ ̸= none

∧ only(customer)

Customer_leaves def
= customer ̸= none ∧ customer′ = none

∧ only(customer)

Coin_insert def
= customer ̸= none ∧ (coins = 0 → coins′ = 1)
∧ coins ̸= 3 ∧ (coins = 1 → coins′ = 2)

∧ (coins = 2 → coins′ = 3)
∧ only(coins)

30 / 32



Transitions: Symbolic Representation
Restock

Customer_arrives
Customer_leaves

Coin_insert

precondition postcondition

Restock def
= customer = none ∧ st_coffee′ ∧ st_soda′

∧ only(st_coffee, st_soda)

Customer_arrives def
= customer = none ∧ customer′ ̸= none

∧ only(customer)

Customer_leaves def
= customer ̸= none ∧ customer′ = none

∧ only(customer)

Coin_insert def
= customer ̸= none ∧ (coins = 0 → coins′ = 1)
∧ coins ̸= 3 ∧ (coins = 1 → coins′ = 2)

∧ (coins = 2 → coins′ = 3)
∧ only(coins)

30 / 32



Transitions: Symbolic Representation
Restock

Customer_arrives
Customer_leaves

Coin_insert

precondition postcondition

Restock def
= customer = none ∧ st_coffee′ ∧ st_soda′

∧ only(st_coffee, st_soda)

Customer_arrives def
= customer = none ∧ customer′ ̸= none

∧ only(customer)

Customer_leaves def
= customer ̸= none ∧ customer′ = none

∧ only(customer)

Coin_insert def
= customer ̸= none ∧ (coins = 0 → coins′ = 1)
∧ coins ̸= 3 ∧ (coins = 1 → coins′ = 2)

∧ (coins = 2 → coins′ = 3)
∧ only(coins)

30 / 32



Transitions: Symbolic Representation
Restock

Customer_arrives
Customer_leaves

Coin_insert

precondition postcondition

Restock def
= customer = none ∧ st_coffee′ ∧ st_soda′

∧ only(st_coffee, st_soda)

Customer_arrives def
= customer = none ∧ customer′ ̸= none

∧ only(customer)

Customer_leaves def
= customer ̸= none ∧ customer′ = none

∧ only(customer)

Coin_insert def
= customer ̸= none ∧ (coins = 0 → coins′ = 1)
∧ coins ̸= 3 ∧ (coins = 1 → coins′ = 2)

∧ (coins = 2 → coins′ = 3)
∧ only(coins)

30 / 32



Transitions
Dispense_soda

Dispense_coffee
Take_drink

Dispense_soda def
= customer = student ∧ st_soda ∧

disp = none ∧ (coins = 2 ∨ coins = 3)∧
(coins = 2 → coins′ = 0)∧
(coins = 3 → coins′ = 1)∧
disp′ = soda ∧ only(st_soda, disp, coins)

Dispense_coffee def
= customer = prof ∧ st_coffee ∧

disp = none ∧ coins ̸= 0 ∧
(coins = 1 → coins′ = 0)∧
(coins = 2 → coins′ = 1)∧
(coins = 3 → coins′ = 2)∧
disp′ = coffee ∧ only(st_coffee, disp, coins)

Take_drink def
= customer ̸= none ∧ disp ̸= none ∧

disp′ = none ∧ only(disp)
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Temporal properties of transition systems

1. There is no state in which professors and students are both customers.

2. Students always get soda.

3. The machine cannot dispense drinks forever without recharging.

4. Eventually, the machine runs out of soda.

5. If coffee has just been dispensed, the machine must have had coins right
before.

6. If the machine is never restocked it will never dispense drinks.

7. The machine never dispenses drinks at a discount or for free.

8. . . .

These properties, which talk about the systems behavior over time, cannot be
expressed in PLFD. We need a more expressive logic!
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