# CS:4350 Logic in Computer Science 

Propositional Logic of Finite Domains

Cesare Tinelli

Spring 2022

The Lilil
University
of lowa

## Credits

These slides are largely based on slides originally developed by Andrei Voronkov at the University of Manchester. Adapted by permission.

## Outline

Propositional Logic of Finite Domains
Logic and modeling
State-changing systems
PLFD
PLFD and propositional logic
A Tableau System for PLFD
Natural Deduction for PLFD

## Logic and Modeling

Satisfiability-checking in propositional logic has many applications

## Logic and Modeling

Satisfiability-checking in propositional logic has many applications
Unfortunately, there is an abstract gap between real-life problems and their propositional logic representation which is too low-level

## Logic and Modeling

Satisfiability-checking in propositional logic has many applications
Unfortunately, there is an abstract gap between real-life problems and their propositional logic representation which is too low-level

Propositional logic is not convenient for modeling problems

## Logic and Modeling

Satisfiability-checking in propositional logic has many applications
Unfortunately, there is an abstract gap between real-life problems and their propositional logic representation which is too low-level

Propositional logic is not convenient for modeling problems

Many application domains have specialized modeling languages for describing problems at a level of abstraction closer to that of natural language

## Logic and Modeling

Satisfiability-checking in propositional logic has many applications
Unfortunately, there is an abstract gap between real-life problems and their propositional logic representation which is too low-level

Propositional logic is not convenient for modeling problems

Many application domains have specialized modeling languages for describing problems at a level of abstraction closer to that of natural language

However, in many cases, problems expressed in these languages can then be translated to propositional logic

## Circuit Design



## Circuit: propositional logic

## Circuit Design



## Circuit: propositional logic

## Design: high-level description language (VHDL)

library ieee;
use ieee.std_logic_1164.all;
entity FULL_ADDER is
port (A, B, Cin : in std_logic;
end FULL_ADDER;
architecture BEHAV_FA of FULL_ADDER is
signal int1, int2, int3: std_logic;
begin
P1: process (A, B)
begin
int1<= A xor B; int2<= A and B;
end process;
P2: process (int1, int2, Cin)
begin
Sum <= int1 xor Cin;
int3 <= int1 and Cin; Cout <= int2 or int3;
end process;
end BEHAV_FA;

## Scheduling

| All Second Year Timetable 2009－2010 |  |  |  | Level 2 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Printable <br> Timetable | Monday | Tuesday | Wednesday | Thursday | Friday |
| 08：00 | － | － | － | － | － |
| 09：00 | MATH20701 CRAW TH． 1 | COMP20051 1.1 | GCOMP20340［B］ G23 <br> GCOMP20340 （A］ <br> HCOMP20411 IT407 <br> BMAN20890 G23 <br> MBS EAST B8  | FCOMP20411［A］ G23 <br> FCOMP20081（B） G23 <br> HCOMP20010 UNIX <br> BMAN10621 ROSCOE 1.007 | rCOMP20340［8］ UNIX <br> CCOMP20340［A］ TT407 <br> FCOMP20051［A w3＋］ G23 <br> GCOMP20411 A$]$ UNIX <br> HCOMP20081（B） G23 |
| 10：00 | $\begin{array}{\|l\|l\|} \hline \text { BMAN20880 }^{\dagger} & \\ & \text { SIMON B (B.41) } \\ \text { COMP20340 } & 1.1 \\ \text { MATH20701 } & \text { Mans Coop G20 } \end{array}$ | BMAN21061 CRAW TH． 1 <br> GCOMP20010 G23 <br> RCOMP20241 $[w]+]$ Toot 1 <br> BMAN10621 $\mathbf{1 . 1}$ | GCOMP20340（B） G23 <br> GCOMP20340［A］ IT407 <br> HCOMP20411 $(\mathrm{A}]$ G23 | BMAN10621 ROSCOE 1.007 <br> FCOMP20411（A） G23 <br> FCOMP20081（B） G23 <br> HCOMP20010 UNTX |  |
| 11：00 | BMAN20871 MBS EAST B8 MATH29631 SACKVILLE F047 MATH10141 SIMON 3 | BMAN21061 CRAW TH．1 <br> GCOMP20010 G23 <br> RCOMP20241  <br> BMAN106］ Toot 1 <br> BMAN10621 1.1 | COMP20081  <br> F＋ICOMP20081［日］ 1.1 <br> MATH29631 RENO G23 <br> BMAN10621 ROSCOE 1.008 | GCOMP20051（A w3＋1 G23 <br> ICOMP20010 UNIX <br> EEEN20027 RENO C009 <br> MATH20111 TURING G．107 | HCOMP20340（ध） UNIX <br> HCOMP20340［A］ TT407 <br> ICOMP20081（日］ G23 <br> rCOMP20411（A） G23 <br> FCOMP20241 LF15 <br> MATH10141 RENO C016 |
| 12：00 | BMAN21061 ROSCOE 1.008 <br> EEEN20019 RENO CO02 <br> MATH20411 SCH BLACKETT | COMP－PASS LF15 <br> MATH20411 TURING G．107 | G＋HCOMP20081（日） G23 <br> MATH10141 RENO C016 <br> MATH20701 SCH MOS | MATH20111 TURING G． 207 aCOMP20051［A w3＋1 G23 ICOMP20010 | MATH20201 UNI PL B <br> HCOMP20340（B） UNIX <br> HCOMP20340（A） IT407 <br> rCOMP20081（8） G23 <br> rCOMP20411［A］ G23 |
| 13：00 | FCOMP20340（A） IT407 <br> FCOMP20340（B） UNIX <br> FCOMP20081（B） G23 <br> rCOMP20051／A w3＋］ G23 <br> MATH20411 TURING G．107 | COMP20411 1.1 | － | COMP20141 1.1 <br> MATH20701 TURING G． 107 | EEEN20019 SSB A16 |
| 14：00 |  | EEEN－LAB $?$ <br> COMP20411 1.1 | － | $\begin{array}{rr}\text { BMAN21061 } & \text { CRAW TH．} 2 \\ \text { MATH20201 } & \text { ROSC A }\end{array}$ | COMP20141 $\mathbf{1 . 1}$ <br> EEEN20019 SSB A16 |
| 15：00 | HCOMP20051［A w3＋］ G23 <br> FCOMP20010 UNIX <br> BMAN20880 SIMON 3 （3．40） （3） | 2nd Yr Tutorial GCOMP20241iw3＋1 Toot 1 EEEN－LAB | － | COMP20051 1.1 | COMP20010 MATH29631 SACKVILLE G037 |
| 16：00 |  | CARS20021 UNI PL B <br> MATH20411 SCH BLACKETT <br> GCOMP20241 $w 3+1$ Toot 1 <br> EEEN－LAB $?$ | $\cdots$ | COMP20081 1.1 <br> BMAN20890 CRAW TH． 2 <br> 2nd Yr Tutorial  | EEEN20027 RENO COO9 MATH20111 ZOCHONIS TH．B（G．7） |
| 17：00 | － | CARS20021 UNI PL B | － | BMAN20890 CRAW TH． 2 | － |
| Notes | t BMAN20880 weeks 8，9 8 |  |  |  |  |

## Constraints on Solutions

| Registration Week Timetables | Room Timetables |  |  |
| :---: | :---: | :---: | :---: |
| Year 1 | $\text { 응 G33 } 24 \text { seats }$ |  |  |
| \% All First Years | \% Advisory ? seats |  |  |
| ( All Single Hons (+CBA/IC) $\mathrm{A}+\mathrm{W}+\mathrm{X}+\mathrm{Y}+\mathrm{Z}$ \% All Single Hons (-CBA/IC) $\mathbf{W}+\mathrm{X}+\mathrm{Y}+\mathrm{Z}$ | LF5 9 seats |  |  |
| © All Single Hons (-CBA/IC) W $+\mathbf{X}+\mathbf{Y}+\mathbf{Z}$ <br> \% Group A - (CBA + IC) |  |  |  |
| \% Group B - (CSwBM: C+D) | \% LF15 70 seats |  |  |
| \% Group C - (CSwBM) | $\text { \& LF17 } 27 \text { seats }$ |  | Rooms should have enouqh |
| - Group D - (CSwBM) | ह LF17 27 seats |  | Rooms should have enough |
| \% Group E - (CSE) | \% IT406 24 seats |  | +S |
| \% Group M - (CM) ${ }^{\text {\% Group W - (CS, }}$ (E,DC,AI) | © IT407 100 seats |  | seats |
| \% Group X - (CS,SE,DC,AI) | PG Teaching Rooms |  |  |
| \% Group Y - (CS, SE, DC,AI) | \% 2.19100 seats |  |  |
| \% Group Z - (CS,SE,DC,AI) \% Lab grouping A+Z | \% 2.1540 seats |  |  |
| \% Lab grouping $\mathbf{C + X}$ | UG Labs | 2 | nstructors cannottea |
| \% Lab grouping D+E+Y | ( Toot 140 seats |  |  |
| \% Lab grouping D+Y | \% Toot $0 \quad 28$ seats |  | WO courses atthe same |
| \% Lab grouping M+W | \% Toot 028 seats |  | two courses at the same |
| \% Service Units | \% Collab 24 Pods seats |  |  |
| \% Taking BMAN courseunits A+B | - Collab 18 Pods seats |  | time |
| Year 2 | \% PEVELab ? seats |  |  |
| \% All Second Year | \% G23 65 seats |  |  |
| ह Joint Hons (CM) | \% 3rdLab 61 seats |  |  |
| \% Joint Hons (CSE) | \% UNIX 70 seats |  | $r$ f Niohtowl |
| L Lab Group F | [All labs] |  | 8 |
| \% Lab Group G | Meeting Rooms |  |  |
| \% Lab Group H | \% 1.20 ? seats |  | at9am |
| \% Lab Group I | 8 2.3315 seats |  |  |
| \% Single Hons (CS, SE, DC, AI) | \& Atlas 128 seats |  |  |
| Year 3 | \% Atlas 222 seats |  |  |
| \% All Former SoI | ¡ IT401 24 seats | 4. |  |
| \% All Third Years | ह Mercury 24 seats |  |  |
| \% Joint Hons (CM) |  |  |  |
| ( Joint Hons (CSwBM) |  |  |  |
| \% Single Hons (CBA) |  |  |  |
| \% Single Hons (Computer Science) |  |  |  |
| \% Single Hons (Internet Computing) |  |  |  |
| \& Single Hons (Software Engineering - Informatics) |  |  |  |

## State-changing systems

Our main interest from now on is modeling state-changing systems

## State-changing systems

Our main interest from now on is modeling state-changing systems

We assume a discrete notion of time, with each time corresponding to a step taken by the system

## State-changing systems

Our main interest from now on is modeling state-changing systems
We assume a discrete notion of time, with each time corresponding to a step taken by the system

| Informally | Formally |
| :--- | :--- |
| At each step, the system is in a partic- <br> ular state | States can be characterized by values <br> of a set of state variables. |
| The system state changes over time <br> There are actions (controlled or not) <br> that change the state | Actions change values of some of the <br> state variables |

## Computational systems are state-changing systems

## Reactive systems

Systems maintaining an ongoing interaction with their environment, as opposed to producing some final value upon termination

Examples: air traffic control system, controllers in mechanical devices (microwaves, traffic lights, trains, planes, ...)

## Computational systems are state-changing systems

## Reactive systems

Systems maintaining an ongoing interaction with their environment, as opposed to producing some final value upon termination

Examples: air traffic control system, controllers in mechanical devices (microwaves, traffic lights, trains, planes, ...)

## Concurrent systems

Systems executing simultaneously, and potentially interacting with each other
Examples: operating systems, networks, ...

## Reasoning about state-changing systems

1. Build a formal model of the state-changing system which describes, in particular, its temporal behavior or some abstraction of it

## Reasoning about state-changing systems

1. Build a formal model of the state-changing system which describes, in particular, its temporal behavior or some abstraction of it
2. Use a logic to specify and verify properties of the system

## Propositional Logic of Finite Domains (PLFD)

Our first step to modeling state-changing systems:
(1) introduce a logic for expressing state variables and their values

## Propositional Logic of Finite Domains (PLFD)

Our first step to modeling state-changing systems:
(1) introduce a logic for expressing state variables and their values

PLFD is a family of logics

## Propositional Logic of Finite Domains (PLFD)

Our first step to modeling state-changing systems:
(1) introduce a logic for expressing state variables and their values

PLFD is a family of logics

Each instance of PLFD is characterized by

- a set $X$ of variables
- a set $V$ of values
- a mapping dom from $X$ to subsets of $V$, such that for every $x \in X, \operatorname{dom}(x)$ is a non-empty finite set, the domain for $x$


## Syntax of PLFD

Formulas:

- For all $x \in X$ and $v \in \operatorname{dom}(x)$, the equality $x=v$ is an atomic formula, or simply atom


## Syntax of PLFD

Formulas:

- For all $x \in X$ and $v \in \operatorname{dom}(x)$, the equality $x=v$ is an atomic formula, or simply atom
- Other formulas are built from atomic formulas as in propositional logic, using the connectives $\top, \perp, \wedge, \vee, \neg, \rightarrow$, and $\leftrightarrow$


## Syntax of PLFD

Formulas:

- For all $x \in X$ and $v \in \operatorname{dom}(x)$, the equality $x=v$ is an atomic formula, or simply atom
- Other formulas are built from atomic formulas as in propositional logic, using the connectives $\top, \perp, \wedge, \vee, \neg, \rightarrow$, and $\leftrightarrow$

Note: $\neg x=v$ is parsed as $\neg(x=v)$ whereas $x_{1} \wedge x_{2}=v$ or $x=v_{1} \vee v_{1}$, for instance, are not well-formed

## Syntax of PLFD

Formulas:

- For all $x \in X$ and $v \in \operatorname{dom}(x)$, the equality $x=v$ is an atomic formula, or simply atom
- Other formulas are built from atomic formulas as in propositional logic, using the connectives $\top, \perp, \wedge, \vee, \neg, \rightarrow$, and $\leftrightarrow$

Note: $\neg x=v$ is parsed as $\neg(x=v)$ whereas $x_{1} \wedge x_{2}=v$ or $x=v_{1} \vee v_{1}$, for instance, are not well-formed

Notation: We will often write $x \neq v$ as an abbreviation of $\neg x=v$

## Semantics

Fix a set $X$ of variables and a set $V$ of values for them
Interpretation: a mapping $\mathcal{I}: X \rightarrow V$ such that $\mathcal{I}(x) \in \operatorname{dom}(x)$ for all $x \in X$

## Semantics

Fix a set $X$ of variables and a set $V$ of values for them
Interpretation: a mapping $\mathcal{I}: X \rightarrow V$ such that $\mathcal{I}(x) \in \operatorname{dom}(x)$ for all $x \in X$

Interpretations extend to mappings from formulas to Boolean values as follows

1. $\mathcal{I}(x=v)=1$ iff $\mathcal{I}(x)=v$
2. $\mathcal{I}(F)$ is as for propositional formulas if $F$ is not atomic

## Semantics

Fix a set $X$ of variables and a set $V$ of values for them
Interpretation: a mapping $\mathcal{I}: X \rightarrow V$ such that $\mathcal{I}(x) \in \operatorname{dom}(x)$ for all $x \in X$

Interpretations extend to mappings from formulas to Boolean values as follows

1. $\mathcal{I}(x=v)=1$ iff $\mathcal{I}(x)=v$
2. $\mathcal{I}(F)$ is as for propositional formulas if $F$ is not atomic

The definitions of truth, models, entailment, validity, satisfiability, and equivalence are defined exactly as in propositional logic

## Example

If $\operatorname{dom}(x)=\{a, b, c\}$, then this is a formula which is also valid:

$$
x \neq a \rightarrow x=b \vee x=c
$$

## Example

If $\operatorname{dom}(x)=\{a, b, c\}$, then this is a formula which is also valid:

$$
x \neq a \rightarrow x=b \vee x=c
$$

In contrast, if $d o m(x)=\{a, b, c, d\}$, then the formula above is not valid

## Example

If $\operatorname{dom}(x)=\{a, b, c\}$, then this is a formula which is also valid:

$$
x \neq a \rightarrow x=b \vee x=c
$$

In contrast, if $d o m(x)=\{a, b, c, d\}$, then the formula above is not valid as it is falsified by $\mathcal{I}=\{x \mapsto d\}$ :

$$
\{x \mapsto d\} \not \vDash x \neq a \rightarrow x=b \vee x=c
$$

## Example: microwave

| variable | domain of values |
| :--- | :--- |
| mode | $\{$ idle, micro, grill, defrost $\}$ |
| door | \{open, closed $\}$ |
| content | \{none, burger, pizza, soup $\}$ |
| user | $\{$ nobody, student, prof, staff $\}$ |
| temperature | $\{0,150,160,170,180,190,200,210,220,230,240,250\}$ |

$$
\text { mode }=\text { grill } \rightarrow \text { door }=\text { closed } \wedge \text { temperature } \neq 0 \wedge \text { user } \neq \text { nobody }
$$

## Propositional Logic as a sublogic of PLFD

Turn propositional variables into variables over the domain $\{0,1\}$ Instead of atoms $p$ use $p=1$

One can also use $p=0$ for $\neg p$, since $(p=0) \equiv(p \neq 1)$

## Propositional Logic as a sublogic of PLFD

Turn propositional variables into variables over the domain $\{0,1\}$ Instead of atoms $p$ use $p=1$

One can also use $p=0$ for $\neg p$, since $(p=0) \equiv(p \neq 1)$

This transformation preserves models. For example, the models of

$$
p \wedge q \rightarrow \neg r
$$

are exactly the models of

$$
p=1 \wedge q=1 \rightarrow r=0
$$

## Propositional variables in PLFD

We say that $p$ is a boolean variable if $\operatorname{dom}(p)=\{0,1\}$

In instances of PLFD with both boolean and non-boolean variable, we will write boolean literals as in propositional logic:

- $p$ instead of $p=1$
- $\neg p$ instead of $p=0$


## Translation of PLFD into Propositional Logic

While we can embed PL into PLFD we can also translate PLFD to PL!

1. Introduce a propositional variable $x_{v}$ for each variable $x$ and value $v \in \operatorname{dom}(x)$
2. Replace every atom $x=v$ by $x_{v}$
3. Add domain axiom for each variable $x$ :

$$
\left(x_{v_{1}} \vee \cdots \vee x_{v_{n}}\right) \wedge \bigwedge_{i<j}\left(\neg x_{v_{i}} \vee \neg x_{v_{j}}\right)
$$

where $\operatorname{dom}(x)=\left\{v_{1}, \ldots, v_{n}\right\}$

## Example

To check satisfiability of the formula

$$
\neg(x=b \vee x=c)
$$

where $\operatorname{dom}(x)=\{a, b, c\}$, we can check satisfiability of the formula

$$
\underbrace{\left(x_{a} \vee x_{b} \vee x_{c}\right) \wedge\left(\neg x_{a} \vee \neg x_{b}\right) \wedge\left(\neg x_{a} \vee \neg x_{c}\right) \wedge\left(\neg x_{b} \vee \neg x_{c}\right)}_{\text {domain axiom }} \wedge \neg\left(x_{b} \vee x_{c}\right)
$$

## Example

To check satisfiability of the formula

$$
\neg(x=b \vee x=c)
$$

where $\operatorname{dom}(x)=\{a, b, c\}$, we can check satisfiability of the formula

$$
\underbrace{\left(x_{a} \vee x_{b} \vee x_{c}\right) \wedge\left(\neg x_{a} \vee \neg x_{b}\right) \wedge\left(\neg x_{a} \vee \neg x_{c}\right) \wedge\left(\neg x_{b} \vee \neg x_{c}\right)}_{\text {domain axiom }} \wedge \neg\left(x_{b} \vee x_{c}\right)
$$

Domain axiom for mode in microwave:

```
(mode idle}\vee\mp@code{mode micro }V\mp@subsup{\mathrm{ mode grill }}{\mathrm{ V mode cefrost }}{})
( }\neg\mp@subsup{\mathrm{ mode }}{\mathrm{ idle }}{}\vee\neg\mp@subsup{\mathrm{ mode }}{\mathrm{ micro }}{}\mathrm{ )
(}\neg\mp@subsup{\mathrm{mode}}{idle}{}\vee\neg\mp@subsup{\mathrm{ mode }}{\mathrm{ grill }}{}\mathrm{ )
(\neg\mp@subsup{mode}{idle}{}\vee\neg\mp@subsup{\mathrm{ mode defrost }}{}{\prime})\wedge
(\neg\mp@subsup{mode}{\mathrm{ micro }}{}\vee\neg\mp@subsup{\mathrm{ mode grill }}{}{\prime})
(}\neg\mp@subsup{\mathrm{mode micro }}{\mathrm{ m }}{
( }\neg\mp@subsup{\mathrm{ mode grill }}{}{}\vee\neg\mp@subsup{\mathrm{ mode defrost)}}{\mathrm{ )}}{
```


## Preservation of models

Suppose that $\mathcal{I}$ is a propositional model of all the domain axioms
Define a PLFD interpretation $\mathcal{I}^{\prime}$ as follows:

$$
\mathcal{I}^{\prime}(x)=v \text { iff } \mathcal{I} \models x_{v}
$$

Theorem 1
Let $F^{\prime}$ be a PLFD formula and let $F$ be the translation of $F^{\prime}$ to propositional logic. If $\mathcal{I} \models F$, then $\mathcal{I}^{\prime} \models F^{\prime}$.

## A Tableau System for PLFD

- Use signed formulas
- Use new kind of atomic formula: $x \in\left\{v_{1}, \ldots, v_{n}\right\}$ equivalent to $x=v_{1} \vee \cdots \vee x=v_{n}$ (also use $x \in\{v\}$ instead of $x=v$ )
- Abbreviations: instead of $(x \in D)^{1}$ write $x \in D$, instead of $(x \in D)^{0}$ write $x \notin D$
- Tableau rules for PL + new tableau rules:

$$
\begin{array}{rll}
x \notin D & \rightsquigarrow x \in \operatorname{dom}(x) \backslash D \\
x \in D_{1}, x \in D_{2} & \rightsquigarrow x \in D_{1} \cap D_{2}
\end{array}
$$

- A branch is closed if it contains any of $T^{0}, \perp^{1}$, and $x \in\}$

Example 1

$$
\begin{aligned}
& x \notin D \rightsquigarrow \\
& x \in D_{1}, x \in D_{2} \rightsquigarrow \\
& x \in D_{1} \cap D_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{dom}\left(x_{1}\right)=\{a, b, c\} \\
& \operatorname{dom}\left(x_{2}\right)=\{s, m, l\}
\end{aligned}
$$

Example 1

$$
\begin{aligned}
& x \notin D \rightsquigarrow \\
& x \in D_{1}, x \in D_{2} \rightsquigarrow \\
& x \in D_{1} \cap D_{2}
\end{aligned}
$$

$\left(\left(x_{1} \in\{b\} \vee x_{2} \in\{m\}\right) \wedge \neg\left(x_{1} \in\{b\}\right)\right)^{1}$

$$
x_{1} \in\{ \}
$$

closed

$$
\begin{aligned}
& \operatorname{dom}\left(x_{1}\right)=\{a, b, c\} \\
& \operatorname{dom}\left(x_{2}\right)=\{s, m, l\}
\end{aligned}
$$

Example 1

$$
\begin{aligned}
& x \notin D \rightsquigarrow \\
& x \in D_{1}, x \in D_{2} \rightsquigarrow \\
& x \in D_{1} \cap D_{2}
\end{aligned}
$$

$$
\begin{gathered}
\left(\left(x_{1} \in\{b\} \vee x_{2} \in\{m\}\right) \wedge \neg\left(x_{1} \in\{b\}\right)\right)^{1} \\
\left(x_{1} \in\{b\} \vee x_{2} \in\{m\}\right)^{1} \\
\left(\neg\left(x_{1} \in\{b\}\right)\right)^{1} \\
\mid \\
x_{1} \notin\{b\} \\
\mid \\
x_{1} \in\{a, c\} \\
\\
x_{1} \in\{b\} \quad x_{2} \in\{m\} \\
\mid \\
x_{1} \in\{ \} \\
\text { closed }
\end{gathered}
$$

$$
\begin{aligned}
& \operatorname{dom}\left(x_{1}\right)=\{a, b, c\} \\
& \operatorname{dom}\left(x_{2}\right)=\{s, m, l\}
\end{aligned}
$$

## Models:

1. $\left\{x_{1} \mapsto a, x_{2} \mapsto m\right\}$
2. $\left\{x_{1} \mapsto c, x_{2} \mapsto m\right\}$

Example 2

$$
\begin{aligned}
& x \notin D \rightsquigarrow \\
& x \in \operatorname{dom}(x) \backslash D \\
& x \in D_{1}, x \in D_{2} \rightsquigarrow \\
& x \in D_{1} \cap D_{2}
\end{aligned}
$$

Let's prove the validity of

$$
F=\begin{aligned}
& ((\text { user } \in\{\text { nobody }\} \rightarrow \text { content } \in\{\text { none }\}) \wedge \\
& (\text { user } \in\{\text { prof }\} \rightarrow \text { content } \in\{\text { none, soup }\}) \wedge \\
& (\text { user } \in\{\text { staff }\} \rightarrow \text { content } \in\{\text { none, burger }\})
\end{aligned}
$$

by deriving a closed tableaux from $F^{0}$

Example 2

$$
\begin{aligned}
& x \notin D \rightsquigarrow \\
& x \in D_{1}, x \in D_{2} \rightsquigarrow \\
& x \in D_{1} \cap D_{2}
\end{aligned}
$$

```
(((user }\in{\mathrm{ nobody } }->\mathrm{ content }\in{\mathrm{ none }) ^ (user }\in{\mathrm{ prof } }->\mathrm{ content }\in{\mathrm{ none, soup}) ^
(user }\in{\mathrm{ staff } }->\mathrm{ content }\in{\mathrm{ none, burger })) }->\mathrm{ (content }\in{\mathrm{ pizza } }->\mathrm{ user }\in{\mathrm{ student }))}\mp@subsup{)}{}{0
    |
((user }\in{\mathrm{ nobody } content }\in{\mathrm{ none }) ^ (user }\in{\mathrm{ prof } }->\mathrm{ content }\in{\mathrm{ none, soup }) }
    (user }\in{\mathrm{ staff } }->\mathrm{ content }\in{\mathrm{ none, burger }))}\mp@subsup{)}{}{1
    (content }\in{\mathrm{ pizza } }->\mathrm{ user }\in{\mathrm{ student })0
        |
        (user }\in{\mathrm{ nobody} }->\mathrm{ content }\in{\mathrm{ none })1
        (user }\in{\mathrm{ prof } }->\mathrm{ content }\in{\mathrm{ none, soup})}\mp@subsup{)}{}{1
        (user }\in{\mathrm{ staff }}->\mathrm{ content }\in{\mathrm{ none, burger })1
        |
        content }\in{\mathrm{ pizza}
        user }\not\in{\mathrm{ student}
        |
user }\in{\mathrm{ nobody,prof, staff }
```

Example 2, continued

$$
\begin{aligned}
& x \notin D \rightsquigarrow \\
& x \in D_{1}, x \in D_{2} \rightsquigarrow \\
& x \in D_{1} \cap D_{2}
\end{aligned}
$$



## Natural Deduction for PLFD

- Use again atomic formulas of the form $x \in\left\{v_{1}, \ldots, v_{n}\right\}$ equivalent to $x=v_{1} \vee \cdots \vee x=v_{n}$
- Use natural deduction rules for PL + new rules:

$$
\begin{array}{cc}
\frac{x \notin D}{x \in \operatorname{dom}(x) \backslash D} \notin \mathrm{e} & \frac{x \in\}}{\perp} \perp \mathrm{i} \\
\frac{x \in D_{1}, x \in D_{2}}{x \in D_{1} \cap D_{2}} \cap \mathrm{i} & \frac{x \in D_{1} \cup D_{2}}{x \in D_{1} \vee x \in D_{2}} \cup \mathrm{i}
\end{array}
$$

## Example 3

Let's prove the validity of the judment

$$
P_{1}, P_{2} \vdash F
$$

where

$$
\begin{aligned}
P_{1} & =\text { user } \in\{\text { nobody, prof }\} \rightarrow \text { content } \in\{\text { none, soup }\} \\
P_{2} & =\text { user } \in\{\text { staff }\} \rightarrow \text { content } \in\{\text { none, burger }\} \\
F & =\text { content } \in\{\text { pizza }\} \rightarrow \text { user } \in\{\text { student }\}
\end{aligned}
$$

by deriving $F$ from premises $P_{1}$ and $P_{2}$ by natural deduction

Example 3

|  | ```user }\in{\mathrm{ nobody, prof }}->\mathrm{ content }\in{\mathrm{ none, soup } user }\in{\mathrm{ staff }}->\mathrm{ content }\in{\mathrm{ none, burger }``` | premise premise |
| :---: | :---: | :---: |
| 3 | content $\in\{$ pizza $\}$ | assumption |
| 4 | user $\notin\{$ student $\}$ | assumption |
| 5 | user $\in\{$ nobody, prof, staff $\}$ | $\notin \mathrm{e} 4$ |
| 6 | user $\in\{$ nobody, prof $\} \vee$ user $\in\{$ staff $\}$ | Ui 5 |
| 7 | $\cdots$ |  |
| 8 | content $\in\}$ | Ve 6-8 |
| 9 | $\perp$ | Li 8 |
| 10 | user $\in\{$ student $\}$ | PBC 4-9 |
|  | content $\in\{$ pizza $\} \rightarrow$ user $\in\{$ student $\}$ | $\rightarrow \mathrm{i} 3-10$ |

