CS:4350 Logic in Computer Science

Propositional Logic of Finite Domains

Cesare Tinelli

Spring 2022

Credits

These slides are largely based on slides originally developed by **Andrei Voronkov** at the University of Manchester. Adapted by permission.

Outline

Propositional Logic of Finite Domains

Logic and modeling State-changing systems PLFD PLFD and propositional logic A Tableau System for PLFD Natural Deduction for PLFD

Satisfiability-checking in propositional logic has many applications

Unfortunately, there is an abstract gap between real-life problems and their propositional logic representation which is too low-level

Propositional logic is not convenient for modeling problems

Many application domains have specialized modeling languages for describing problems at a level of abstraction closer to that of natural language

Satisfiability-checking in propositional logic has many applications

Unfortunately, there is an abstract gap between real-life problems and their propositional logic representation which is too low-level

Propositional logic is not convenient for modeling problems

Many application domains have specialized modeling languages for describing problems at a level of abstraction closer to that of natural language

Satisfiability-checking in propositional logic has many applications

Unfortunately, there is an abstract gap between real-life problems and their propositional logic representation which is too low-level

Propositional logic is not convenient for modeling problems

Many application domains have specialized modeling languages for describing problems at a level of abstraction closer to that of natural language

Satisfiability-checking in propositional logic has many applications

Unfortunately, there is an abstract gap between real-life problems and their propositional logic representation which is too low-level

Propositional logic is not convenient for modeling problems

Many application domains have specialized modeling languages for describing problems at a level of abstraction closer to that of natural language

Satisfiability-checking in propositional logic has many applications

Unfortunately, there is an abstract gap between real-life problems and their propositional logic representation which is too low-level

Propositional logic is not convenient for modeling problems

Many application domains have specialized modeling languages for describing problems at a level of abstraction closer to that of natural language

Circuit: propositional logic

Circuit Design

library ieee; use ieee.std_logic_1164.all; entity FULL ADDER is port (A. B. Cin : in std logic: Sum. Cout : out std_logic); end FULL ADDER: architecture BEHAV_FA of FULL_ADDER is signal int1, int2, int3: std_logic; begin P1: process (A, B) begin int1<= A xor B: $int2 \le A$ and B: end process; P2: process (int1, int2, Cin) begin Sum <= int1 xor Cin: int3 <= int1 and Cin; Cout <= int2 or int3; end process: end BEHAV FA:

Circuit: propositional logic

Design: high-level description language (VHDL)

Scheduling

All Second Year Timetable 2009-2010 Level 2						
Printable Timetable	Monday	Tuesday	Wednesday	Thursday	Friday	
08:00	and the second second second	and the second				
09:00	MATH20701 CRAW TH.1	COMP20051 1.1	GCOMP20340(A) 1T407	#COMP20081(8) G23 #COMP20010 UNIX	ICOMP20340(8) UNIX ICOMP20340(A) IT400 #COMP20340(A) IT400 #COMP20051(A w3+) G23 GCOMP20411(A) UNIX #COMP20081(B) G23	
10:00	BMAN20880 [†] SIMON B (B.41) COMP20340 1.1 MATH20701 Mans Coop G20	GCOMP20010 G23	GCOMP20340(A) 1T407	FCOMP20081(8) G23	MATH20701 RENO C016 rCOMP20340(8) UNIX rCOMP20340(A) IT407 rCOMP20051(A w3+) G23 GCOMP20051(A w3+) G23 rCOMP20081(8) G23	
11:00	BMAN20871 MBS EAST B8 MATH29631 SACKVILLE F047 MATH10141 SIMON 3	GCOMP20010 G23 FCOMP20241(w3+) Toot 1	F+ICOMP20081(8) G23	ZCOMP20010 UNIX EEEN20027 RENO C009	#COMP20340(3) UNIX #COMP20340(A) IT407 rCOMP20081(3) G23 rCOMP20411(A) G23 #COMP20241 LF15 #ATH10141 RENO C016	
12:00	BMAN21061 ROSCOE 1.008 EEEN20019 RENO CO02 MATH20411 SCH BLACKETT	COMP-PASS LF15 MATH20411 TURING G.107	MATH10141 RENO CO16		MATH20201 UNI PL B #COMP20340(8) UNIX #COMP20340(A) UNIX rCOMP20081(8) G23 rCOMP20081(14) G23	
13:00	PCOMP20340[A] 1T407 PCOMP20340[8] UNIX GCOMP20081[8] G23 JCOMP20051[A w3+] G23 MATH20411 TURING G.107	COMP20411 1.1		COMP20141 1.1 MATH20701 TURING G.107	EEEN20019 SSB A16	
14:00	BMAN20880 SIMON 3 (3.40) EEEN20019 RENO C009 MATH20111 TURING G.207 FCOMP20340[A] IT407 FCOMP20340[A] UNIX GCOMP20340[A] UNIX GCOMP20340[A] G23 TCOMP20051[A #2+] G23	EEEN-LAB ? COMP20411 1.1	•		COMP20141 1.1 EEEN20019 SSB A16	
15:00		2nd Yr Tutorial cCOMP20241(w3+) Toot 1 EEEN-LAB ?	•	COMP20051 1.1	COMP20010 1.1 MATH29631 SACKVILLE G037	
16:00	MCOMP20051(A w3+) G23	CARS20021 UNI PL B MATH20411 SCH BLACKETT GCOMP20241[w3+] Toot 1 EEEN-LAB ?	•		EEEN20027 RENO CO09 MATH20111 ZOCHONIS TH.B (G.7)	
17:00		CARS20021 UNI PL B	-	BMAN20890 CRAW TH.2		

Constraints on Solutions

Registration Week Timetables

Year 1

All First Years All Single Hons (+CBA/IC) A+W+X+Y+Z All Single Hons (-CBA/IC) W+X+Y+Z Group A - (CBA + IC) Group B - (CSwBM: C+D) Group C - (CSwBM) Group D - (CSwBM) Group E - (CSE) Group M - (CM) Group W - (CS,SE,DC,AI) Group X - (CS.SE.DC.AI) Group Y - (CS.SE.DC.AI) Group Z - (CS.SE.DC.AI) Lab grouping A+Z Lab grouping C+X a Lab grouping D+E+Y a Lab grouping D+Y Lab grouping M+W Service Units Taking BMAN courseunits A+B

Year 2

All Second Year
 Joint Hons (CM)
 Joint Hons (CSE)
 Joint Hons (CSEB)
 Joint Hons (CSEBM)
 Lab Group F
 Lab Group G
 Lab Group I
 Single Hons (CBA)
 Single Hons (CS. SE. CA. A1)

Year 3

All Findres Sol
 All Third Vears
 All Third Vears
 All Third Vears
 Joint Hona (CM)
 Solnit Hona (CSWM)
 Single Hona (CBA)
 Single Hona (CBA)
 Single Hona (CMaputer Science)
 Single Hona (Internet Computing)
 Single Hona (Internet Computing)
 Single Hona (Internet Computing)

Room Timetables					
UG Teaching Rooms					
a G33	24 seats				
Advisory	? seats				
EF5	9 seats				
EF6	9 seats				
& LF15	70 seats				
a LF17	27 seats				
₫ IT406	24 seats				
@ IT407	100 seats				
PG Teac	hing Rooms				
8 2.19 100	seats				
2.15 40 :	eats				
UG Labs					
Toot 1	40 seats				
B Toot 0	28 seats				
Collab 2	4 Pods seats				
Collab 1	8 Pods seats				
PEVELab	? seats				
@ G23	65 seats				
a 3rdLab	61 seats				
a UNIX	70 seats				
	labs]				
Meeting	Rooms				
8 1.20	? seats				
2.33	15 seats				
atlas 1	28 seats				
Atlas 2	22 seats				
➡ IT401	24 seats				
Mercury	24 seats				

- 1. Rooms should have enough seats
- 2. Instructors cannot teach two courses at the same time
- 3. Prof. Nightowl cannot teach at 9am

4. ...

State-changing systems

Our main interest from now on is modeling *state-changing systems*

We assume a discrete notion of time, with each time corresponding to a *step* taken by the system

State-changing systems

Our main interest from now on is modeling *state-changing systems*

We assume a discrete notion of time, with each time corresponding to a *step* taken by the system

State-changing systems

Our main interest from now on is modeling *state-changing systems*

We assume a discrete notion of time, with each time corresponding to a *step* taken by the system

Informally	Formally
At each step, the system is in a partic-	States can be characterized by values
ular state	of a set of <i>state variables</i> .
The system state changes over time	Actions change values of some of the state variables
There are actions (controlled or not) that change the state	

Computational systems are state-changing systems

Reactive systems

Systems maintaining an ongoing interaction with their environment, as opposed to producing some final value upon termination

Examples: air traffic control system, controllers in mechanical devices (microwaves, traffic lights, trains, planes, ...)

Concurrent systems

Systems executing simultaneously, and potentially interacting with each other **Examples:** operating systems, networks, ...

Computational systems are state-changing systems

Reactive systems

Systems maintaining an ongoing interaction with their environment, as opposed to producing some final value upon termination

Examples: air traffic control system, controllers in mechanical devices (microwaves, traffic lights, trains, planes, ...)

Concurrent systems

Systems executing simultaneously, and potentially interacting with each other

Examples: operating systems, networks, ...

Reasoning about state-changing systems

1. Build a formal model of the state-changing system which describes, in particular, its temporal behavior or some abstraction of it

2. Use a logic to specify and verify properties of the system

Reasoning about state-changing systems

1. Build a formal model of the state-changing system which describes, in particular, its temporal behavior or some abstraction of it

2. Use a logic to specify and verify properties of the system

Propositional Logic of Finite Domains (PLFD)

Our first step to modeling state-changing systems:

(1) introduce a logic for expressing state variables and their values

PLFD is a family of logics

Each instance of PLFD is characterized by

- a set X of variables
- a set V of values
- a mapping *dom* from X to subsets of V, such that for every x ∈ X, *dom*(x) is a non-empty finite set, the *domain* for x

Propositional Logic of Finite Domains (PLFD)

Our first step to modeling state-changing systems:

(1) introduce a logic for expressing state variables and their values

PLFD is a family of logics

Each instance of PLFD is characterized by

- a set X of variables
- a set V of values
- a mapping *dom* from X to subsets of V, such that for every x ∈ X, *dom*(x) is a non-empty finite set, the *domain* for x

Propositional Logic of Finite Domains (PLFD)

Our first step to modeling state-changing systems:

(1) introduce a logic for expressing state variables and their values

PLFD is a family of logics

Each instance of PLFD is characterized by

- a set X of variables
- a set *V* of values
- a mapping *dom* from X to subsets of V, such that for every x ∈ X, *dom*(x) is a non-empty finite set, the *domain for* x

Formulas:

- For all x ∈ X and v ∈ dom(x), the equality x = v is an atomic formula, or simply atom
- Other formulas are built from atomic formulas as in propositional logic, using the connectives ⊤, ⊥, ∧, ∨, ¬, →, and ↔

Formulas:

- For all x ∈ X and v ∈ dom(x), the equality x = v is an atomic formula, or simply atom
- Other formulas are built from atomic formulas as in propositional logic, using the connectives ⊤, ⊥, ∧, ∨, ¬, →, and ↔

Formulas:

- For all x ∈ X and v ∈ dom(x), the equality x = v is an atomic formula, or simply atom
- Other formulas are built from atomic formulas as in propositional logic, using the connectives ⊤, ⊥, ∧, ∨, ¬, →, and ↔

Note: $\neg x = v$ is parsed as $\neg (x = v)$ whereas $x_1 \land x_2 = v$ or $x = v_1 \lor v_1$, for instance, are not well-formed

Formulas:

- For all x ∈ X and v ∈ dom(x), the equality x = v is an atomic formula, or simply atom
- Other formulas are built from atomic formulas as in propositional logic, using the connectives ⊤, ⊥, ∧, ∨, ¬, →, and ↔

Note: $\neg x = v$ is parsed as $\neg (x = v)$ whereas $x_1 \land x_2 = v$ or $x = v_1 \lor v_1$, for instance, are not well-formed

Notation: We will often write $x \neq v$ as an abbreviation of $\neg x = v$

Semantics

Fix a set X of variables and a set V of values for them

Interpretation: a mapping $\mathcal{I} : X \to V$ such that $\mathcal{I}(x) \in dom(x)$ for all $x \in X$

Interpretations extend to mappings from formulas to Boolean values as follows

- 1. $\mathcal{I}(x = v) = 1$ iff $\mathcal{I}(x) = v$
- 2. $\mathcal{I}(F)$ is as for propositional formulas if F is not atomic

The definitions of truth, models, entailment, validity, satisfiability, and equivalence are defined exactly as in propositional logic

Semantics

Fix a set X of variables and a set V of values for them

Interpretation: a mapping $\mathcal{I} : X \to V$ such that $\mathcal{I}(x) \in dom(x)$ for all $x \in X$

Interpretations extend to mappings from formulas to Boolean values as follows

- 1. $\mathcal{I}(x = v) = 1$ iff $\mathcal{I}(x) = v$
- 2. $\mathcal{I}(\textit{F})$ is as for propositional formulas if F is not atomic

The definitions of truth, models, entailment, validity, satisfiability, and equivalence are defined exactly as in propositional logic

Semantics

Fix a set X of variables and a set V of values for them

Interpretation: a mapping $\mathcal{I} : X \to V$ such that $\mathcal{I}(x) \in dom(x)$ for all $x \in X$

Interpretations extend to mappings from formulas to Boolean values as follows

- 1. $\mathcal{I}(x = v) = 1$ iff $\mathcal{I}(x) = v$
- 2. $\mathcal{I}(\textit{F})$ is as for propositional formulas if F is not atomic

The definitions of truth, models, entailment, validity, satisfiability, and equivalence are defined exactly as in propositional logic

Example

If $dom(x) = \{a, b, c\}$, then this is a formula which is also valid:

$$x \neq a \rightarrow x = b \lor x = c$$

In contrast, if $dom(x) = \{a, b, c, d\}$, then the formula above is not valid

Example

If $dom(x) = \{a, b, c\}$, then this is a formula which is also valid:

$$x \neq a \rightarrow x = b \lor x = c$$

In contrast, if $dom(x) = \{a, b, c, d\}$, then the formula above is not valid

Example

If $dom(x) = \{a, b, c\}$, then this is a formula which is also valid:

$$x \neq a \rightarrow x = b \lor x = c$$

In contrast, if $dom(x) = \{a, b, c, d\}$, then the formula above is not valid as it is falsified by $\mathcal{I} = \{x \mapsto d\}$:

$$\{\mathbf{x} \mapsto \mathbf{d}\} \not\models \mathbf{x} \neq \mathbf{a} \rightarrow \mathbf{x} = \mathbf{b} \lor \mathbf{x} = \mathbf{c}$$

Example: microwave

variable	domain of values
mode	{ idle, micro, grill, defrost }
door	{ open, closed }
content	{ none, burger, pizza, soup }
user	{ nobody, student, prof, staff }
temperature	$\{0, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250\}$

 $mode = grill \rightarrow door = closed \land temperature \neq 0 \land user \neq nobody$

Propositional Logic as a sublogic of PLFD

Turn propositional variables into variables over the domain $\{0, 1\}$

Instead of atoms p use p = 1

One can also use p = 0 for $\neg p$, since $(p = 0) \equiv (p \neq 1)$

This transformation preserves models. For example, the models of

 $p \wedge q \rightarrow \neg r$

are exactly the models of

$$p = 1 \land q = 1 \rightarrow r = 0$$

Propositional Logic as a sublogic of PLFD

Turn propositional variables into variables over the domain $\{0, 1\}$

Instead of atoms p use p = 1

One can also use p = 0 for $\neg p$, since $(p = 0) \equiv (p \neq 1)$

This transformation preserves models. For example, the models of

$$p \land q \rightarrow \neg r$$

are exactly the models of

$$p = 1 \land q = 1 \rightarrow r = 0$$

Propositional variables in PLFD

We say that *p* is a boolean variable if $dom(p) = \{0, 1\}$

In instances of PLFD with both boolean and non-boolean variable, we will write boolean literals as in propositional logic:

- p instead of p = 1
- $\neg p$ instead of p = 0

Translation of PLFD into Propositional Logic

While we can embed PL into PLFD we can also translate PLFD to PL!

- **1.** Introduce a propositional variable x_v for each variable x and value $v \in dom(x)$
- 2. Replace every atom x = v by x_v
- 3. Add *domain axiom* for each variable *x* :

$$(x_{v_1} \lor \cdots \lor x_{v_n}) \land \bigwedge_{i < j} (\neg x_{v_i} \lor \neg x_{v_j})$$

where $dom(x) = \{v_1, ..., v_n\}$

To check satisfiability of the formula

$$\neg(x = b \lor x = c)$$

where $dom(x) = \{a, b, c\}$, we can check satisfiability of the formula

$$(x_a \lor x_b \lor x_c) \land (\neg x_a \lor \neg x_b) \land (\neg x_a \lor \neg x_c) \land (\neg x_b \lor \neg x_c) \land \neg (x_b \lor x_c)$$

domain axiom

To check satisfiability of the formula

$$\neg(x = b \lor x = c)$$

where $dom(x) = \{a, b, c\}$, we can check satisfiability of the formula

$$\underbrace{(x_a \lor x_b \lor x_c) \land (\neg x_a \lor \neg x_b) \land (\neg x_a \lor \neg x_c) \land (\neg x_b \lor \neg x_c)}_{\land \neg (x_b \lor x_c)} \land \neg (x_b \lor x_c)$$

domain axiom

Domain axiom for mode in microwave:

$$\begin{array}{l} (\mathsf{mode}_{\mathit{idle}} \lor \mathsf{mode}_{\mathit{micro}} \lor \mathsf{mode}_{\mathit{grill}} \lor \mathsf{mode}_{\mathit{defrost}}) \land \\ (\neg\mathsf{mode}_{\mathit{idle}} \lor \neg\mathsf{mode}_{\mathit{micro}}) \land \\ (\neg\mathsf{mode}_{\mathit{idle}} \lor \neg\mathsf{mode}_{\mathit{grill}}) \land \\ (\neg\mathsf{mode}_{\mathit{idle}} \lor \neg\mathsf{mode}_{\mathit{defrost}}) \land \\ (\neg\mathsf{mode}_{\mathit{micro}} \lor \neg\mathsf{mode}_{\mathit{grill}}) \land \\ (\neg\mathsf{mode}_{\mathit{micro}} \lor \neg\mathsf{mode}_{\mathit{defrost}}) \land \\ (\neg\mathsf{mode}_{\mathit{grill}} \lor \neg\mathsf{mode}_{\mathit{defrost}}) \land \\ (\neg\mathsf{mode}_{\mathit{grill}} \lor \neg\mathsf{mode}_{\mathit{defrost}}) \end{array}$$

Preservation of models

Suppose that \mathcal{I} is a propositional model of all the domain axioms Define a PLFD interpretation \mathcal{I}' as follows:

 $\mathcal{I}'(x) = v \text{ iff } \mathcal{I} \models x_v$

Theorem 1 Let F' be a PLFD formula and let F be the translation of F' to propositional logic. If $\mathcal{I} \models F$, then $\mathcal{I}' \models F'$.

A Tableau System for PLFD

- Use signed formulas
- Use new kind of atomic formula: x ∈ {v₁,..., v_n} equivalent to x = v₁ ∨ ··· ∨ x = v_n
 (also use x ∈ {v} instead of x = v)
- Abbreviations: instead of $(x \in D)^1$ write $x \in D$, instead of $(x \in D)^0$ write $x \notin D$
- Tableau rules for PL + new tableau rules:

$$x \notin D \quad \rightsquigarrow \quad x \in dom(x) \setminus D$$

 $x \in D_1, \ x \in D_2 \quad \rightsquigarrow \quad x \in D_1 \cap D_2$

• A branch is *closed* if it contains any of T^0 , L^1 , and $x \in \{\}$

 $x \notin D \quad \rightsquigarrow \quad x \in dom(x) \setminus D$ $x \in D_1, x \in D_2 \quad \rightsquigarrow \quad x \in D_1 \cap D_2$

$$dom(x_1) = \{a, b, c\}$$

 $dom(x_2) = \{s, m, l\}$

$x ot\in D$	$\sim \rightarrow$	$x \in dom(x) \setminus D$
$x \in D_1, x \in D_2$	$\sim \rightarrow$	$x \in D_1 \cap D_2$

$$\begin{array}{c} ((x_{1} \in \{b\} \lor x_{2} \in \{m\}) \land \neg (x_{1} \in \{b\})) \\ & | \\ (x_{1} \in \{b\} \lor x_{2} \in \{m\})^{1} \\ (\neg (x_{1} \in \{b\}))^{1} \\ & | \\ x_{1} \notin \{b\} \\ & | \\ x_{1} \in \{c\} \\ & \\ x_{1} \in \{c\} \\ x_{1} \in \{b\} \\ x_{2} \in \{m\} \\ | \\ x_{1} \in \{c\} \\ closed \end{array}$$

$$dom(x_1) = \{a, b, c\}$$

$$dom(x_2) = \{s, m, l\}$$

$x ot\in D$	\rightsquigarrow	$x \in dom(x) \setminus D$
$x \in D_1, x \in D_2$	$\sim \rightarrow$	$x \in D_1 \cap D_2$

$$((x_{1} \in \{b\} \lor x_{2} \in \{m\}) \land \neg (x_{1} \in \{b\}))^{1}$$

$$| (x_{1} \in \{b\} \lor x_{2} \in \{m\})^{1}$$

$$(\neg (x_{1} \in \{b\}))^{1}$$

$$| (\neg (x_{1} \in \{b\}))^{1}$$

$$| (x_{1} \notin \{b\})$$

$$| (x_{1} \notin \{b\})$$

$$| (x_{1} \in \{b\})$$

$$| (x_{2} \in \{b\})$$

$$| (x_{1} \in \{b\})$$

$$| (x_{2} \in \{b\}$$

$$dom(x_1) = \{a, b, c\}$$

 $dom(x_2) = \{s, m, l\}$

Models: **1.** $\{x_1 \mapsto a, x_2 \mapsto m\}$ **2.** $\{x_1 \mapsto c, x_2 \mapsto m\}$

 $x \notin D \quad \rightsquigarrow \quad x \in dom(x) \setminus D$ $x \in D_1, x \in D_2 \quad \rightsquigarrow \quad x \in D_1 \cap D_2$

Let's prove the validity of

$$F = \begin{array}{l} ((\text{user} \in \{\text{nobody}\} \rightarrow \text{content} \in \{\text{none}\}) \land \\ (\text{user} \in \{\text{prof}\} \rightarrow \text{content} \in \{\text{none}, \text{soup}\}) \land \\ (\text{user} \in \{\text{staff}\} \rightarrow \text{content} \in \{\text{none}, \text{burger}\}) \\) \rightarrow (\text{content} \in \{\text{pizza}\} \rightarrow \text{user} \in \{\text{student}\}) \end{array}$$

by deriving a closed tableaux from F^0

 $x \notin D \quad \rightsquigarrow \quad x \in dom(x) \setminus D$ $x \in D_1, x \in D_2 \quad \rightsquigarrow \quad x \in D_1 \cap D_2$

```
(((user \in \{nobody\} \rightarrow content \in \{none\}) \land (user \in \{prof\} \rightarrow content \in \{none, soup\}) \land
(\text{user} \in \{\text{staff}\} \rightarrow \text{content} \in \{\text{none}, \text{burger}\})) \rightarrow (\text{content} \in \{\text{pizza}\} \rightarrow \text{user} \in \{\text{student}\})^0
 ((\text{user} \in \{\text{nobody}\} \rightarrow \text{content} \in \{\text{none}\}) \land (\text{user} \in \{\text{prof}\} \rightarrow \text{content} \in \{\text{none}, \text{soup}\}) \land
                                      (user \in {staff} \rightarrow content \in {none, burger})^1
                                         (content \in \{pizza\} \rightarrow user \in \{student\})^0
                                         (user \in \{nobody\} \rightarrow content \in \{none\})^1
                                       (user \in \{prof\} \rightarrow content \in \{none, soup\})^1
                                      (user \in {staff} \rightarrow content \in {none, burger})^1
                                                            content \in \{pizza\}
                                                            user \not\in {student}
```

user \in {*nobody*, *prof*, *staff*}

Example 2, continued

 $x \notin D \quad \rightsquigarrow \quad x \in dom(x) \setminus D$ $x \in D_1, x \in D_2 \quad \rightsquigarrow \quad x \in D_1 \cap D_2$

Natural Deduction for PLFD

- Use again atomic formulas of the form $x \in \{v_1, \dots, v_n\}$ equivalent to $x = v_1 \lor \dots \lor x = v_n$
- Use natural deduction rules for PL + new rules:

$$\frac{x \notin D}{x \in dom(x) \setminus D} \notin e \qquad \qquad \frac{x \in \{\}}{\perp} \perp i$$
$$\frac{x \in D_1, x \in D_2}{x \in D_1 \cap D_2} \cap i \qquad \qquad \frac{x \in D_1 \cup D_2}{x \in D_1 \vee x \in D_2} \cup i$$

Let's prove the validity of the judment

$$P_1, P_2 \vdash F$$

where

$$\begin{array}{rcl} P_1 &=& \mathsf{user} \in \{\mathsf{nobody}, \mathsf{prof}\} \to \mathsf{content} \in \{\mathsf{none}, \mathsf{soup}\} \\ P_2 &=& \mathsf{user} \in \{\mathsf{staff}\} \to \mathsf{content} \in \{\mathsf{none}, \mathsf{burger}\} \\ F &=& \mathsf{content} \in \{\mathsf{pizza}\} \to \mathsf{user} \in \{\mathsf{student}\} \end{array}$$

by deriving F from premises P_1 and P_2 by natural deduction

2	$user \in \{\mathit{staff}\} \rightarrow content \in \{\mathit{none}, \mathit{burger}\}$	premise
3	$content \in \{pizza\}$	assumption
4	user $\not\in \{student\}$	assumption
5	$user \in \{nobody, prof, staff\}$	∉e 4
6	$user \in \{\mathit{nobody}, \mathit{prof}\} \lor user \in \{\mathit{staff}\}$	∪i 5
7		
8	$content \in \{\}$	∨e 6–8
9	1	⊥i 8
10	user $\in \{student\}$	PBC 4-9

user \in {*nobody*, *prof*} \rightarrow content \in {*none*, *soup*} premise

11 content $\in \{pizza\} \rightarrow user \in \{student\} \rightarrow i 3 - 10$