
CS:4350 Logic in Computer Science

Quantified Boolean Formulas

Cesare Tinelli

Spring 2022

1 / 54

Credits

These slides are largely based on slides originally developed by Andrei Voronkov
at the University of Manchester. Adapted by permission.

2 / 54

Outline

Quantified Boolean Formulas
Syntax and Semantics
Free and Bound Variables
Prenex Form
Satisfiability Checking

Splitting
Conjunctive Normal Form
DPLL

3 / 54

Two-Player Games

Does she have a winning
strategy?

4 / 54

Two-Player Games: The Satisfiability Game

Given: a propositional formula G with variables p1, q1, . . . , pn, qn

There are two players: P and Q

At round of the game k each player makes a move:
1. player P can choose a value for variable pk

2. player Q can choose a value for variable qk

Player P wins if after n rounds the chosen values satisfy formula G

5 / 54

Two-Player Games: The Satisfiability Game

Given: a propositional formula G with variables p1, q1, . . . , pn, qn

There are two players: P and Q

At round of the game k each player makes a move:
1. player P can choose a value for variable pk

2. player Q can choose a value for variable qk

Player P wins if after n rounds the chosen values satisfy formula G

5 / 54

Two-Player Games: The Satisfiability Game

Given: a propositional formula G with variables p1, q1, . . . , pn, qn

There are two players: P and Q

At round of the game k each player makes a move:

1. player P can choose a value for variable pk

2. player Q can choose a value for variable qk

Player P wins if after n rounds the chosen values satisfy formula G

5 / 54

Two-Player Games: The Satisfiability Game

Given: a propositional formula G with variables p1, q1, . . . , pn, qn

There are two players: P and Q

At round of the game k each player makes a move:
1. player P can choose a value for variable pk

2. player Q can choose a value for variable qk

Player P wins if after n rounds the chosen values satisfy formula G

5 / 54

Two-Player Games: The Satisfiability Game

Given: a propositional formula G with variables p1, q1, . . . , pn, qn

There are two players: P and Q

At round of the game k each player makes a move:
1. player P can choose a value for variable pk

2. player Q can choose a value for variable qk

Player P wins if after n rounds the chosen values satisfy formula G

5 / 54

Two-Player Games: The Satisfiability Game

Given: a propositional formula G with variables p1, q1, . . . , pn, qn

There are two players: P and Q

At round of the game k each player makes a move:
1. player P can choose a value for variable pk

2. player Q can choose a value for variable qk

Player P wins if after n rounds the chosen values satisfy formula G

5 / 54

Suppose Both Players Make no Mistakes: Who Wins?

Consider several special cases:

G Outcome

1. p1 P wins with { p1 7→ 1 }
2. p1 → q1 P wins with { p1 7→ 0 }
3. q1 → q2 G has no pi vars, P’s choices are immaterial
4. q1 → q1 G is valid, P always wins!
5. p1 ∧ ¬p1 G is unsatisfiable, Q always wins!
6. p1 ↔ q1 each move by P can be beaten by Q

6 / 54

Suppose Both Players Make no Mistakes: Who Wins?

Consider several special cases:

G Outcome
1. p1

P wins with { p1 7→ 1 }
2. p1 → q1 P wins with { p1 7→ 0 }
3. q1 → q2 G has no pi vars, P’s choices are immaterial
4. q1 → q1 G is valid, P always wins!
5. p1 ∧ ¬p1 G is unsatisfiable, Q always wins!
6. p1 ↔ q1 each move by P can be beaten by Q

6 / 54

Suppose Both Players Make no Mistakes: Who Wins?

Consider several special cases:

G Outcome
1. p1 P wins with { p1 7→ 1 }

2. p1 → q1 P wins with { p1 7→ 0 }
3. q1 → q2 G has no pi vars, P’s choices are immaterial
4. q1 → q1 G is valid, P always wins!
5. p1 ∧ ¬p1 G is unsatisfiable, Q always wins!
6. p1 ↔ q1 each move by P can be beaten by Q

6 / 54

Suppose Both Players Make no Mistakes: Who Wins?

Consider several special cases:

G Outcome
1. p1 P wins with { p1 7→ 1 }
2. p1 → q1

P wins with { p1 7→ 0 }
3. q1 → q2 G has no pi vars, P’s choices are immaterial
4. q1 → q1 G is valid, P always wins!
5. p1 ∧ ¬p1 G is unsatisfiable, Q always wins!
6. p1 ↔ q1 each move by P can be beaten by Q

6 / 54

Suppose Both Players Make no Mistakes: Who Wins?

Consider several special cases:

G Outcome
1. p1 P wins with { p1 7→ 1 }
2. p1 → q1 P wins with { p1 7→ 0 }

3. q1 → q2 G has no pi vars, P’s choices are immaterial
4. q1 → q1 G is valid, P always wins!
5. p1 ∧ ¬p1 G is unsatisfiable, Q always wins!
6. p1 ↔ q1 each move by P can be beaten by Q

6 / 54

Suppose Both Players Make no Mistakes: Who Wins?

Consider several special cases:

G Outcome
1. p1 P wins with { p1 7→ 1 }
2. p1 → q1 P wins with { p1 7→ 0 }
3. q1 → q2

G has no pi vars, P’s choices are immaterial
4. q1 → q1 G is valid, P always wins!
5. p1 ∧ ¬p1 G is unsatisfiable, Q always wins!
6. p1 ↔ q1 each move by P can be beaten by Q

6 / 54

Suppose Both Players Make no Mistakes: Who Wins?

Consider several special cases:

G Outcome
1. p1 P wins with { p1 7→ 1 }
2. p1 → q1 P wins with { p1 7→ 0 }
3. q1 → q2 G has no pi vars, P’s choices are immaterial

4. q1 → q1 G is valid, P always wins!
5. p1 ∧ ¬p1 G is unsatisfiable, Q always wins!
6. p1 ↔ q1 each move by P can be beaten by Q

6 / 54

Suppose Both Players Make no Mistakes: Who Wins?

Consider several special cases:

G Outcome
1. p1 P wins with { p1 7→ 1 }
2. p1 → q1 P wins with { p1 7→ 0 }
3. q1 → q2 G has no pi vars, P’s choices are immaterial
4. q1 → q1

G is valid, P always wins!
5. p1 ∧ ¬p1 G is unsatisfiable, Q always wins!
6. p1 ↔ q1 each move by P can be beaten by Q

6 / 54

Suppose Both Players Make no Mistakes: Who Wins?

Consider several special cases:

G Outcome
1. p1 P wins with { p1 7→ 1 }
2. p1 → q1 P wins with { p1 7→ 0 }
3. q1 → q2 G has no pi vars, P’s choices are immaterial
4. q1 → q1 G is valid, P always wins!

5. p1 ∧ ¬p1 G is unsatisfiable, Q always wins!
6. p1 ↔ q1 each move by P can be beaten by Q

6 / 54

Suppose Both Players Make no Mistakes: Who Wins?

Consider several special cases:

G Outcome
1. p1 P wins with { p1 7→ 1 }
2. p1 → q1 P wins with { p1 7→ 0 }
3. q1 → q2 G has no pi vars, P’s choices are immaterial
4. q1 → q1 G is valid, P always wins!
5. p1 ∧ ¬p1

G is unsatisfiable, Q always wins!
6. p1 ↔ q1 each move by P can be beaten by Q

6 / 54

Suppose Both Players Make no Mistakes: Who Wins?

Consider several special cases:

G Outcome
1. p1 P wins with { p1 7→ 1 }
2. p1 → q1 P wins with { p1 7→ 0 }
3. q1 → q2 G has no pi vars, P’s choices are immaterial
4. q1 → q1 G is valid, P always wins!
5. p1 ∧ ¬p1 G is unsatisfiable, Q always wins!

6. p1 ↔ q1 each move by P can be beaten by Q

6 / 54

Suppose Both Players Make no Mistakes: Who Wins?

Consider several special cases:

G Outcome
1. p1 P wins with { p1 7→ 1 }
2. p1 → q1 P wins with { p1 7→ 0 }
3. q1 → q2 G has no pi vars, P’s choices are immaterial
4. q1 → q1 G is valid, P always wins!
5. p1 ∧ ¬p1 G is unsatisfiable, Q always wins!
6. p1 ↔ q1

each move by P can be beaten by Q

6 / 54

Suppose Both Players Make no Mistakes: Who Wins?

Consider several special cases:

G Outcome
1. p1 P wins with { p1 7→ 1 }
2. p1 → q1 P wins with { p1 7→ 0 }
3. q1 → q2 G has no pi vars, P’s choices are immaterial
4. q1 → q1 G is valid, P always wins!
5. p1 ∧ ¬p1 G is unsatisfiable, Q always wins!
6. p1 ↔ q1 each move by P can be beaten by Q

6 / 54

Winning Strategy
Problem: does P have a winning strategy?

P has a winning strategy
iff
there exists a move for P (a value for p1) such that

for all moves of Q (values for q1)
there exists a move for P (a value for p2) such that

for all moves of Q (values for q2)
. . .

there exists a move for P (a value for pn) such that
for all moves of Q (values for qn)

the formula G is satisfiable

The existence of a winning strategy can be expressed by the
quantified Boolean formula

∃p1∀q1∃p2∀q2 · · · ∃pn∀qn G

7 / 54

Winning Strategy
Problem: does P have a winning strategy?

P has a winning strategy
iff
there exists a move for P (a value for p1) such that

for all moves of Q (values for q1)
there exists a move for P (a value for p2) such that

for all moves of Q (values for q2)
. . .

there exists a move for P (a value for pn) such that
for all moves of Q (values for qn)

the formula G is satisfiable

The existence of a winning strategy can be expressed by the
quantified Boolean formula

∃p1∀q1∃p2∀q2 · · · ∃pn∀qn G

7 / 54

Winning Strategy
Problem: does P have a winning strategy?

P has a winning strategy
iff
there exists a move for P (a value for p1) such that

for all moves of Q (values for q1)

there exists a move for P (a value for p2) such that
for all moves of Q (values for q2)

. . .
there exists a move for P (a value for pn) such that

for all moves of Q (values for qn)
the formula G is satisfiable

The existence of a winning strategy can be expressed by the
quantified Boolean formula

∃p1∀q1∃p2∀q2 · · · ∃pn∀qn G

7 / 54

Winning Strategy
Problem: does P have a winning strategy?

P has a winning strategy
iff
there exists a move for P (a value for p1) such that

for all moves of Q (values for q1)
there exists a move for P (a value for p2) such that

for all moves of Q (values for q2)
. . .

there exists a move for P (a value for pn) such that
for all moves of Q (values for qn)

the formula G is satisfiable

The existence of a winning strategy can be expressed by the
quantified Boolean formula

∃p1∀q1∃p2∀q2 · · · ∃pn∀qn G

7 / 54

Winning Strategy
Problem: does P have a winning strategy?

P has a winning strategy
iff
there exists a move for P (a value for p1) such that

for all moves of Q (values for q1)
there exists a move for P (a value for p2) such that

for all moves of Q (values for q2)

. . .
there exists a move for P (a value for pn) such that

for all moves of Q (values for qn)
the formula G is satisfiable

The existence of a winning strategy can be expressed by the
quantified Boolean formula

∃p1∀q1∃p2∀q2 · · · ∃pn∀qn G

7 / 54

Winning Strategy
Problem: does P have a winning strategy?

P has a winning strategy
iff
there exists a move for P (a value for p1) such that

for all moves of Q (values for q1)
there exists a move for P (a value for p2) such that

for all moves of Q (values for q2)
. . .

there exists a move for P (a value for pn) such that
for all moves of Q (values for qn)

the formula G is satisfiable

The existence of a winning strategy can be expressed by the
quantified Boolean formula

∃p1∀q1∃p2∀q2 · · · ∃pn∀qn G

7 / 54

Winning Strategy
Problem: does P have a winning strategy?

P has a winning strategy
iff
there exists a move for P (a value for p1) such that

for all moves of Q (values for q1)
there exists a move for P (a value for p2) such that

for all moves of Q (values for q2)
. . .

there exists a move for P (a value for pn) such that

for all moves of Q (values for qn)
the formula G is satisfiable

The existence of a winning strategy can be expressed by the
quantified Boolean formula

∃p1∀q1∃p2∀q2 · · · ∃pn∀qn G

7 / 54

Winning Strategy
Problem: does P have a winning strategy?

P has a winning strategy
iff
there exists a move for P (a value for p1) such that

for all moves of Q (values for q1)
there exists a move for P (a value for p2) such that

for all moves of Q (values for q2)
. . .

there exists a move for P (a value for pn) such that
for all moves of Q (values for qn)

the formula G is satisfiable

The existence of a winning strategy can be expressed by the
quantified Boolean formula

∃p1∀q1∃p2∀q2 · · · ∃pn∀qn G

7 / 54

Winning Strategy
Problem: does P have a winning strategy?

P has a winning strategy
iff
there exists a move for P (a value for p1) such that

for all moves of Q (values for q1)
there exists a move for P (a value for p2) such that

for all moves of Q (values for q2)
. . .

there exists a move for P (a value for pn) such that
for all moves of Q (values for qn)

the formula G is satisfiable

The existence of a winning strategy can be expressed by the
quantified Boolean formula

∃p1∀q1∃p2∀q2 · · · ∃pn∀qn G

7 / 54

Winning Strategy
Problem: does P have a winning strategy?

P has a winning strategy
iff
there exists a move for P (a value for p1) such that

for all moves of Q (values for q1)
there exists a move for P (a value for p2) such that

for all moves of Q (values for q2)
. . .

there exists a move for P (a value for pn) such that
for all moves of Q (values for qn)

the formula G is satisfiable

The existence of a winning strategy can be expressed by the
quantified Boolean formula

∃p1∀q1∃p2∀q2 · · · ∃pn∀qn G

7 / 54

Quantified Boolean Formulas

Propositional Formula:
• Every Boolean variable is a (propositional) formula
• ⊤ and ⊥ are formulas
• If F is a formula, then ¬F is a formula
• If F1, . . . , Fn are formulas, where n ≥ 2,

then F1 ∧ · · · ∧ Fn and F1 ∨ · · · ∨ Fn are formulas
• If F and G are formulas, then F → G and F ↔ G are formulas

Quantified Boolean Formulas (QBFs):
• Every propositional formula is a QBF
• If p is a Boolean variable and F is a QBF,

then ∀p F and ∃p F are QBFs

8 / 54

Quantified Boolean Formulas

Propositional Formula:
• Every Boolean variable is a (propositional) formula
• ⊤ and ⊥ are formulas
• If F is a formula, then ¬F is a formula
• If F1, . . . , Fn are formulas, where n ≥ 2,

then F1 ∧ · · · ∧ Fn and F1 ∨ · · · ∨ Fn are formulas
• If F and G are formulas, then F → G and F ↔ G are formulas

Quantified Boolean Formulas (QBFs):
• Every propositional formula is a QBF
• If p is a Boolean variable and F is a QBF,

then ∀p F and ∃p F are QBFs

8 / 54

Quantifiers

• ∀ is called the universal quantifier (symbol)
• ∃ is called the existential quantifier (symbol)
• ∀p F is read as “for all p, F”
• ∃p F is read as “there exists p such that F” or “for some p, F”

For every variable p, we treat ∀p and ∃p as unary operators applied
to a formula F

∀p and ∃p have the highest precedence (like ¬), e.g.:

∀p p → q ≡ (∀p p) → q ̸≡ ∀p (p → q)

Note: Some texts give quantifiers lower precedence than all Boolean connectives

9 / 54

Quantifiers

• ∀ is called the universal quantifier (symbol)
• ∃ is called the existential quantifier (symbol)
• ∀p F is read as “for all p, F”
• ∃p F is read as “there exists p such that F” or “for some p, F”

For every variable p, we treat ∀p and ∃p as unary operators applied
to a formula F

∀p and ∃p have the highest precedence (like ¬), e.g.:

∀p p → q ≡ (∀p p) → q ̸≡ ∀p (p → q)

Note: Some texts give quantifiers lower precedence than all Boolean connectives

9 / 54

Quantifiers

• ∀ is called the universal quantifier (symbol)
• ∃ is called the existential quantifier (symbol)
• ∀p F is read as “for all p, F”
• ∃p F is read as “there exists p such that F” or “for some p, F”

For every variable p, we treat ∀p and ∃p as unary operators applied
to a formula F

∀p and ∃p have the highest precedence (like ¬), e.g.:

∀p p → q ≡ (∀p p) → q ̸≡ ∀p (p → q)

Note: Some texts give quantifiers lower precedence than all Boolean connectives

9 / 54

Quantifiers

• ∀ is called the universal quantifier (symbol)
• ∃ is called the existential quantifier (symbol)
• ∀p F is read as “for all p, F”
• ∃p F is read as “there exists p such that F” or “for some p, F”

For every variable p, we treat ∀p and ∃p as unary operators applied
to a formula F

∀p and ∃p have the highest precedence (like ¬), e.g.:

∀p p → q ≡ (∀p p) → q ̸≡ ∀p (p → q)

Note: Some texts give quantifiers lower precedence than all Boolean connectives

9 / 54

Changing interpretations pointwise

Let I be an interpretation

Notation:

I[p 7→ b](q) def
=

{
I(q), if p ̸= q
b, if p = q

Example: I = { p 7→ 1, q 7→ 0, r 7→ 1 }

I[q 7→ 1] = {p 7→ 1, q 7→ 1, r 7→ 1}
I[q 7→ 0] = {p 7→ 1, q 7→ 0, r 7→ 1} = I
I[p 7→ 0] = {p 7→ 0, q 7→ 0, r 7→ 1}

10 / 54

Changing interpretations pointwise

Let I be an interpretation

Notation:

I[p 7→ b](q) def
=

{
I(q), if p ̸= q
b, if p = q

Example: I = { p 7→ 1, q 7→ 0, r 7→ 1 }

I[q 7→ 1] = {p 7→ 1, q 7→ 1, r 7→ 1}
I[q 7→ 0] = {p 7→ 1, q 7→ 0, r 7→ 1} = I
I[p 7→ 0] = {p 7→ 0, q 7→ 0, r 7→ 1}

10 / 54

QBF Semantics

1. I(⊤) = 1 and I(⊥) = 0

2. I(F1 ∧ · · · ∧ Fn) = 1 iff I(Fi) = 1 for all i

3. I(F1 ∨ · · · ∨ Fn) = 1 iff I(Fi) = 1 for some i

4. I(¬F) = 1 iff I(F) = 0

5. I(F → G) = 1 iff I(F) = 0 or I(G) = 1

6. I(F ↔ G) = 1 iff I(F) = I(G)

7. I(∀p F) = 1 iff I[p 7→ 0](F) = 1 and I[p 7→ 1](F) = 1
8. I(∃p F) = 1 iff I[p 7→ 0](F) = 1 or I[p 7→ 1](F) = 1

11 / 54

QBF Semantics

1. I(⊤) = 1 and I(⊥) = 0

2. I(F1 ∧ · · · ∧ Fn) = 1 iff I(Fi) = 1 for all i

3. I(F1 ∨ · · · ∨ Fn) = 1 iff I(Fi) = 1 for some i

4. I(¬F) = 1 iff I(F) = 0

5. I(F → G) = 1 iff I(F) = 0 or I(G) = 1

6. I(F ↔ G) = 1 iff I(F) = I(G)

7. I(∀p F) = 1 iff I[p 7→ 0](F) = 1 and I[p 7→ 1](F) = 1
8. I(∃p F) = 1 iff I[p 7→ 0](F) = 1 or I[p 7→ 1](F) = 1

11 / 54

Evaluating a formula: and-or trees

How to evaluate ∀p ∃q (p ↔ q) in interpretation { p 7→ 1, q 7→ 0 }

Notation: for brevity, let Iv1v2 denote the interpretation { p 7→ v1, q 7→ v2 }

I10 |= ∀p∃q (p ↔ q)

⇔
I00 |= ∃q (p ↔ q)

I10 |= ∃q (p ↔ q)
and

⇔

I00 |= p ↔ q
I01 |= p ↔ q or

and

I10 |= p ↔ q
I11 |= p ↔ q or

12 / 54

Evaluating a formula: and-or trees

How to evaluate ∀p ∃q (p ↔ q) in interpretation { p 7→ 1, q 7→ 0 }

Notation: for brevity, let Iv1v2 denote the interpretation { p 7→ v1, q 7→ v2 }

I10 |= ∀p∃q (p ↔ q)

⇔
I00 |= ∃q (p ↔ q)

I10 |= ∃q (p ↔ q)
and

⇔

I00 |= p ↔ q
I01 |= p ↔ q or

and

I10 |= p ↔ q
I11 |= p ↔ q or

12 / 54

Evaluating a formula: and-or trees

How to evaluate ∀p ∃q (p ↔ q) in interpretation { p 7→ 1, q 7→ 0 }

Notation: for brevity, let Iv1v2 denote the interpretation { p 7→ v1, q 7→ v2 }

I10 |= ∀p∃q (p ↔ q)

⇔
I00 |= ∃q (p ↔ q)

I10 |= ∃q (p ↔ q)
and

⇔

I00 |= p ↔ q
I01 |= p ↔ q or

and

I10 |= p ↔ q
I11 |= p ↔ q or

12 / 54

Evaluating a formula: and-or trees

How to evaluate ∀p ∃q (p ↔ q) in interpretation { p 7→ 1, q 7→ 0 }

Notation: for brevity, let Iv1v2 denote the interpretation { p 7→ v1, q 7→ v2 }

I10 |= ∀p∃q (p ↔ q) ⇔
I00 |= ∃q (p ↔ q)

I10 |= ∃q (p ↔ q)
and

⇔

I00 |= p ↔ q
I01 |= p ↔ q or

and

I10 |= p ↔ q
I11 |= p ↔ q or

12 / 54

Evaluating a formula: and-or trees

How to evaluate ∀p ∃q (p ↔ q) in interpretation { p 7→ 1, q 7→ 0 }

Notation: for brevity, let Iv1v2 denote the interpretation { p 7→ v1, q 7→ v2 }

I10 |= ∀p∃q (p ↔ q) ⇔
I00 |= ∃q (p ↔ q)

I10 |= ∃q (p ↔ q)
and

⇔

I00 |= p ↔ q
I01 |= p ↔ q or

and
I10 |= p ↔ q
I11 |= p ↔ q or

12 / 54

Evaluating a formula: and-or trees

I10 |= ∀p ∃q (p ↔ q)

∧

I00 |= ∃q (p ↔ q)

∨
I10 |= ∃q (p ↔ q)

∨

I00 |= p ↔ q I01 |= p ↔ q I10 |= p ↔ q I11 |= p ↔ q

0 1

0 1 0 1

13 / 54

Evaluating a formula
Notation: Denote any interpretation { p 7→ b1, q 7→ b2 } by Ib1b2

Use wildcards ∗ to denote any Boolean value

I∗∗ |= ∀p∃q (p ↔ q)

⇔
I0∗ |= ∃q (p ↔ q)

I1∗ |= ∃q (p ↔ q)
and

⇔

I00 |= p ↔ q
I01 |= p ↔ q or

and
I10 |= p ↔ q
I11 |= p ↔ q or

The variables p and q are bound by the quantifiers ∀p and ∃q, so
the value of the formula does not depend on the values p and q

14 / 54

Evaluating a formula
Notation: Denote any interpretation { p 7→ b1, q 7→ b2 } by Ib1b2

Use wildcards ∗ to denote any Boolean value

I∗∗ |= ∀p∃q (p ↔ q) ⇔
I0∗ |= ∃q (p ↔ q)

I1∗ |= ∃q (p ↔ q)
and

⇔

I00 |= p ↔ q
I01 |= p ↔ q or

and
I10 |= p ↔ q
I11 |= p ↔ q or

The variables p and q are bound by the quantifiers ∀p and ∃q, so
the value of the formula does not depend on the values p and q

14 / 54

Evaluating a formula
Notation: Denote any interpretation { p 7→ b1, q 7→ b2 } by Ib1b2

Use wildcards ∗ to denote any Boolean value

I∗∗ |= ∀p∃q (p ↔ q) ⇔
I0∗ |= ∃q (p ↔ q)

I1∗ |= ∃q (p ↔ q)
and

⇔

I00 |= p ↔ q
I01 |= p ↔ q or

and
I10 |= p ↔ q
I11 |= p ↔ q or

The variables p and q are bound by the quantifiers ∀p and ∃q, so
the value of the formula does not depend on the values p and q

14 / 54

Evaluating a formula
Notation: Denote any interpretation { p 7→ b1, q 7→ b2 } by Ib1b2

Use wildcards ∗ to denote any Boolean value

I∗∗ |= ∀p∃q (p ↔ q) ⇔
I0∗ |= ∃q (p ↔ q)

I1∗ |= ∃q (p ↔ q)
and

⇔

I00 |= p ↔ q
I01 |= p ↔ q or

and
I10 |= p ↔ q
I11 |= p ↔ q or

The variables p and q are bound by the quantifiers ∀p and ∃q, so
the value of the formula does not depend on the values p and q

14 / 54

Subformula

Propositional formulas:
• F is the immediate subformula of ¬F
• F1, . . . , Fn are the immediate subformulas of F1 ∧ · · · ∧ Fn

• F1, . . . , Fn are the immediate subformulas of F1 ∨ · · · ∨ Fn

• F1 and F2 are the immediate subformulas of F1 → F2

• F1 and F2 are the immediate subformulas of F1 ↔ F2

• . . .

Quantified Boolean formulas:
• F is the immediate subformula of ∀p F and of ∃p F

15 / 54

Subformula

Propositional formulas:
• F is the immediate subformula of ¬F
• F1, . . . , Fn are the immediate subformulas of F1 ∧ · · · ∧ Fn

• F1, . . . , Fn are the immediate subformulas of F1 ∨ · · · ∨ Fn

• F1 and F2 are the immediate subformulas of F1 → F2

• F1 and F2 are the immediate subformulas of F1 ↔ F2

• . . .

Quantified Boolean formulas:
• F is the immediate subformula of ∀p F and of ∃p F

15 / 54

Positions and polarity by example

→ p → ∀q ∃p(q ↔ p) ∨ r

p

1

∨

2

∀q

1

r

2

∃p
1

↔
1

q

1

p

2

F|2.1 = ∀q ∃p(q ↔ p)

F|2.1.1.1.1 = q

16 / 54

Positions and polarity by example

→ p → ∀q ∃p(q ↔ p) ∨ r

p

1

∨

2

∀q

1

r

2

∃p
1

↔
1

q

1

p

2

F|2.1 = ∀q ∃p(q ↔ p)

F|2.1.1.1.1 = q

16 / 54

Positions and polarity by example

→ p → ∀q ∃p(q ↔ p) ∨ r

p

1

∨

2

∀q

1

r

2

∃p
1

↔
1

q

1

p

2

F|2.1 = ∀q ∃p(q ↔ p)

F|2.1.1.1.1 = q

16 / 54

Positions and Polarity

Let F|π = A

Propositional formulas:
• If A has the form ¬A1 ,

then π.1 is a position in F, F|π.1
def
= A1 and pol(F, π.1) def

= −pol(F, π)
• If A has the form A1 ∧ · · · ∧ An or A1 ∨ · · · ∨ An and i ∈ { 1, . . . , n },

then π.i is a position in F and pol(F, π.i) def
= pol(F, π)

• . . .

Quantified Boolean formulas:
• If A has the form ∀p B or ∃p B,

then π.1 is a position in F, F|π.1
def
= B and pol(F, π.1) def

= pol(F, π)

17 / 54

Positions and Polarity

Let F|π = A

Propositional formulas:
• If A has the form ¬A1 ,

then π.1 is a position in F, F|π.1
def
= A1 and pol(F, π.1) def

= −pol(F, π)
• If A has the form A1 ∧ · · · ∧ An or A1 ∨ · · · ∨ An and i ∈ { 1, . . . , n },

then π.i is a position in F and pol(F, π.i) def
= pol(F, π)

• . . .

Quantified Boolean formulas:
• If A has the form ∀p B or ∃p B,

then π.1 is a position in F, F|π.1
def
= B and pol(F, π.1) def

= pol(F, π)

17 / 54

Free and bound variables by example

→ p → ∀q∃p (q ↔ p) ∨ r

p
(free)

∨

∀q r
(free)

∃p

↔

q
(bound)

p
(bound)

18 / 54

Free and bound occurrences in programs

• Free variables in formulas are analogous to global variables in programs

• Bound variables in formulas are analogous to local variables in programs

int offset_sym_diff(int i, int j)
{

int k = i > j ? i - j : j - i;
return a + k

}

sum = i + offset_sym_diff(3,4);

free

bound

binding

19 / 54

Free and bound occurrences in programs

• Free variables in formulas are analogous to global variables in programs

• Bound variables in formulas are analogous to local variables in programs

int offset_sym_diff(int i, int j)
{

int k = i > j ? i - j : j - i;
return a + k

}

sum = i + offset_sym_diff(3,4);

free

bound

binding

19 / 54

Free and bound occurrences of variables

Let F be a QBF and p be atom of at position π

The occurrence of p at position π in F is bound if π can be represented as a
concatenation of two strings π1π2 such that F|π1 has the form ∀p G or ∃p G

A bound occurrence of p is an occurrence in the scope of ∀p or ∃p

Free occurrence: not bound

Free (bound) variable of a formula: a variable with at least one free (bound)
occurrence

Closed formula: formula with no free variables

20 / 54

Free and bound occurrences of variables

Let F be a QBF and p be atom of at position π

The occurrence of p at position π in F is bound if π can be represented as a
concatenation of two strings π1π2 such that F|π1 has the form ∀p G or ∃p G

A bound occurrence of p is an occurrence in the scope of ∀p or ∃p

Free occurrence: not bound

Free (bound) variable of a formula: a variable with at least one free (bound)
occurrence

Closed formula: formula with no free variables

20 / 54

Free and bound occurrences of variables

Let F be a QBF and p be atom of at position π

The occurrence of p at position π in F is bound if π can be represented as a
concatenation of two strings π1π2 such that F|π1 has the form ∀p G or ∃p G

A bound occurrence of p is an occurrence in the scope of ∀p or ∃p

Free occurrence: not bound

Free (bound) variable of a formula: a variable with at least one free (bound)
occurrence

Closed formula: formula with no free variables

20 / 54

Free and bound occurrences of variables

Let F be a QBF and p be atom of at position π

The occurrence of p at position π in F is bound if π can be represented as a
concatenation of two strings π1π2 such that F|π1 has the form ∀p G or ∃p G

A bound occurrence of p is an occurrence in the scope of ∀p or ∃p

Free occurrence: not bound

Free (bound) variable of a formula: a variable with at least one free (bound)
occurrence

Closed formula: formula with no free variables

20 / 54

Free and bound occurrences of variables

Let F be a QBF and p be atom of at position π

The occurrence of p at position π in F is bound if π can be represented as a
concatenation of two strings π1π2 such that F|π1 has the form ∀p G or ∃p G

A bound occurrence of p is an occurrence in the scope of ∀p or ∃p

Free occurrence: not bound

Free (bound) variable of a formula: a variable with at least one free (bound)
occurrence

Closed formula: formula with no free variables

20 / 54

Only free variables matter for truth

The truth value of a QBF formula F depends only on the values of its free variables:

Lemma 1
Suppose I1(p) = I2(p) for all free variables p of F. Then

I1 |= F iff I2 |= F

Theorem 2
Let F be a closed formula and let I1, I2 be two interpretations. Then

I1 |= F iff I2 |= F

21 / 54

Only free variables matter for truth

The truth value of a QBF formula F depends only on the values of its free variables:

Lemma 1
Suppose I1(p) = I2(p) for all free variables p of F. Then

I1 |= F iff I2 |= F

Theorem 2
Let F be a closed formula and let I1, I2 be two interpretations. Then

I1 |= F iff I2 |= F

21 / 54

Truth, Validity and Satisfiability
Validity and satisfiability are defined as for propositional formulas

There is no difference between these two notions for closed formulas:

Lemma 3
For every interpretation I and closed formula F the following statements are
equivalent: (i) I |= F; (ii) F is satisfiable; and (iii) F is valid.

Satisfiability can be expressed through satisfiability/validity of closed formulas:

Lemma 4
Let F be a formula with free variables p1, . . . , pn.
• F is satisfiable iff ∃p1 · · · ∃pn F is satisfiable/valid
• F is valid iff the formula ∀p1 · · · ∀pn F is satisfiable/valid

22 / 54

Truth, Validity and Satisfiability
Validity and satisfiability are defined as for propositional formulas

There is no difference between these two notions for closed formulas:

Lemma 3
For every interpretation I and closed formula F the following statements are
equivalent: (i) I |= F; (ii) F is satisfiable; and (iii) F is valid.

Satisfiability can be expressed through satisfiability/validity of closed formulas:

Lemma 4
Let F be a formula with free variables p1, . . . , pn.
• F is satisfiable iff ∃p1 · · · ∃pn F is satisfiable/valid
• F is valid iff the formula ∀p1 · · · ∀pn F is satisfiable/valid

22 / 54

Truth, Validity and Satisfiability
Validity and satisfiability are defined as for propositional formulas

There is no difference between these two notions for closed formulas:

Lemma 3
For every interpretation I and closed formula F the following statements are
equivalent: (i) I |= F; (ii) F is satisfiable; and (iii) F is valid.

Satisfiability can be expressed through satisfiability/validity of closed formulas:

Lemma 4
Let F be a formula with free variables p1, . . . , pn.
• F is satisfiable iff ∃p1 · · · ∃pn F is satisfiable/valid
• F is valid iff the formula ∀p1 · · · ∀pn F is satisfiable/valid

22 / 54

Substitutions for propositional formulas

Substitution: FG
p : denotes the formula obtained from F by replacing all occurrences

of variable p by G

Example:

((p ∨ s) ∧ (q → p))(l∧s)
p = ((l ∧ s) ∨ s) ∧ (q → (l ∧ s))

Property: Applying any substitution to a valid formula results in a valid formula

23 / 54

Substitutions for propositional formulas

Substitution: FG
p : denotes the formula obtained from F by replacing all occurrences

of variable p by G

Example:

((p ∨ s) ∧ (q → p))(l∧s)
p = ((l ∧ s) ∨ s) ∧ (q → (l ∧ s))

Property: Applying any substitution to a valid formula results in a valid formula

23 / 54

Substitutions for propositional formulas

Substitution: FG
p : denotes the formula obtained from F by replacing all occurrences

of variable p by G

Example:

((p ∨ s) ∧ (q → p))(l∧s)
p = ((l ∧ s) ∨ s) ∧ (q → (l ∧ s))

Property: Applying any substitution to a valid formula results in a valid formula

23 / 54

Substitutions for quantified formulas

Some problems . . .

Consider ∃q (¬p ↔ q)

We cannot simply replace variables by formulas any more:
∃(r → r) (¬p ↔ r → r) ??? Ill formed

Free variables are parameters: we can only substitute for parameters.
But a variable can have both free and bound occurrences in a formula,
e.g.,

∀p ((p → q) ∨ ¬p) ∧ (q ∨ (q → p))

24 / 54

Substitutions for quantified formulas

Some problems . . .

Consider ∃q (¬p ↔ q)

We cannot simply replace variables by formulas any more:
∃(r → r) (¬p ↔ r → r) ??? Ill formed

Free variables are parameters: we can only substitute for parameters.
But a variable can have both free and bound occurrences in a formula,
e.g.,

∀p ((p → q) ∨ ¬p) ∧ (q ∨ (q → p))

24 / 54

Substitutions for quantified formulas

Some problems . . .

Consider ∃q (¬p ↔ q)

We cannot simply replace variables by formulas any more:
∃(r → r) (¬p ↔ r → r) ??? Ill formed

Free variables are parameters: we can only substitute for parameters.
But a variable can have both free and bound occurrences in a formula,
e.g.,

∀p ((p → q) ∨ ¬p) ∧ (q ∨ (q → p))

24 / 54

Substitutions for quantified formulas

Some problems . . .

Consider ∃q (¬p ↔ q)

We cannot simply replace variables by formulas any more:
∃(r → r) (¬p ↔ r → r) ??? Ill formed

Free variables are parameters: we can only substitute for parameters.
But a variable can have both free and bound occurrences in a formula,
e.g.,

∀p ((p → q) ∨ ¬p) ∧ (q ∨ (q → p))

24 / 54

Renaming bound variables
Notation: ∀∃ : any of ∃, ∀

Renaming bound variables in F[∀∃ pG]:

1. Take a fresh variable q (i.e., a variable not occurring in F)
2. Replace all free occurrences of p in G (not in F!) by q, obtaining G′

3. Consider F[∀∃ qG′]

Example:

∃r (∀p ((p → r) ∧ p)) ∨ p rename p to q, obtaining

∃r (∀q ((q → r) ∧ q)) ∨ p

Lemma 5
F[∀∃ pG] ≡ F[∀∃ qG′]

25 / 54

Renaming bound variables
Notation: ∀∃ : any of ∃, ∀

Renaming bound variables in F[∀∃ pG]:

1. Take a fresh variable q (i.e., a variable not occurring in F)
2. Replace all free occurrences of p in G (not in F!) by q, obtaining G′

3. Consider F[∀∃ qG′]

Example:

∃r (∀p ((p → r) ∧ p)) ∨ p rename p to q, obtaining

∃r (∀q ((q → r) ∧ q)) ∨ p

Lemma 5
F[∀∃ pG] ≡ F[∀∃ qG′]

25 / 54

Renaming bound variables
Notation: ∀∃ : any of ∃, ∀

Renaming bound variables in F[∀∃ pG]:

1. Take a fresh variable q (i.e., a variable not occurring in F)
2. Replace all free occurrences of p in G (not in F!) by q, obtaining G′

3. Consider F[∀∃ qG′]

Example:

∃r (∀p ((p → r) ∧ p)) ∨ p rename p to q, obtaining

∃r (∀q ((q → r) ∧ q)) ∨ p

Lemma 5
F[∀∃ pG] ≡ F[∀∃ qG′]

25 / 54

Renaming bound variables
Notation: ∀∃ : any of ∃, ∀

Renaming bound variables in F[∀∃ pG]:

1. Take a fresh variable q (i.e., a variable not occurring in F)
2. Replace all free occurrences of p in G (not in F!) by q, obtaining G′

3. Consider F[∀∃ qG′]

Example:

∃r (∀p ((p → r) ∧ p)) ∨ p rename p to q, obtaining

∃r (∀q ((q → r) ∧ q)) ∨ p

Lemma 5
F[∀∃ pG] ≡ F[∀∃ qG′]

25 / 54

Free and bound variables by example

→ p → ∀q∃p(q ↔ p) ∨ r

p
(free)

∨

∀q r
(free)

∃p

↔

q
(bound)

p
(bound)

26 / 54

Rectified formulas

Rectified formula F:
1. no variable appears both free and bound in F
2. for every variable p, there is at most one occurrence of quantifier ∀∃ p in F

Any formula can be rectified by renaming its bound variables

We can use the usual notation FG
p for substitutions into a rectified formula F,

assuming p occurs only free in F

27 / 54

Rectified formulas

Rectified formula F:
1. no variable appears both free and bound in F
2. for every variable p, there is at most one occurrence of quantifier ∀∃ p in F

Any formula can be rectified by renaming its bound variables

We can use the usual notation FG
p for substitutions into a rectified formula F,

assuming p occurs only free in F

27 / 54

Rectified formulas

Rectified formula F:
1. no variable appears both free and bound in F
2. for every variable p, there is at most one occurrence of quantifier ∀∃ p in F

Any formula can be rectified by renaming its bound variables

We can use the usual notation FG
p for substitutions into a rectified formula F,

assuming p occurs only free in F

27 / 54

Rectification: Example

p → ∃p (p ∧ ∀p (p ∨ r → ¬p)) ⇒

p → ∃p (p ∧ ∀p1 (p1 ∨ r → ¬p1)) ⇒

p → ∃p2 (p2 ∧ ∀p1 (p1 ∨ r → ¬p1))

Renaming each bound variable to a
fresh one preserves equivalence

28 / 54

Rectification: Example

p → ∃p (p ∧ ∀p (p ∨ r → ¬p)) ⇒

p → ∃p (p ∧ ∀p1 (p1 ∨ r → ¬p1)) ⇒

p → ∃p2 (p2 ∧ ∀p1 (p1 ∨ r → ¬p1))

Renaming each bound variable to a
fresh one preserves equivalence

28 / 54

Rectification: Example

p → ∃p (p ∧ ∀p (p ∨ r → ¬p)) ⇒

p → ∃p (p ∧ ∀p1 (p1 ∨ r → ¬p1)) ⇒

p → ∃p2 (p2 ∧ ∀p1 (p1 ∨ r → ¬p1))

Renaming each bound variable to a
fresh one preserves equivalence

28 / 54

Rectification: Example

p → ∃p (p ∧ ∀p (p ∨ r → ¬p)) ⇒

p → ∃p (p ∧ ∀p1 (p1 ∨ r → ¬p1)) ⇒

p → ∃p2 (p2 ∧ ∀p1 (p1 ∨ r → ¬p1))

Renaming each bound variable to a
fresh one preserves equivalence

28 / 54

Rectification: Example

p → ∃p (p ∧ ∀p (p ∨ r → ¬p)) ⇒

p → ∃p (p ∧ ∀p1 (p1 ∨ r → ¬p1)) ⇒

p → ∃p2 (p2 ∧ ∀p1 (p1 ∨ r → ¬p1))

Renaming each bound variable to a
fresh one preserves equivalence

28 / 54

Another problem

∃q (¬p ↔ q) This formula is valid (whatever value p has, choose the opposite
for q)

substitute p by q

∃q (¬q ↔ q) This formula is unsatisfiable!

Substitutions below a quantifier should not lead to variable capturing

29 / 54

Another problem

∃q (¬p ↔ q) This formula is valid (whatever value p has, choose the opposite
for q)

substitute p by q

∃q (¬q ↔ q) This formula is unsatisfiable!

Substitutions below a quantifier should not lead to variable capturing

29 / 54

Another problem

∃q (¬p ↔ q) This formula is valid (whatever value p has, choose the opposite
for q)

substitute p by q

∃q (¬q ↔ q) This formula is unsatisfiable!

Substitutions below a quantifier should not lead to variable capturing

29 / 54

Another problem

∃q (¬p ↔ q) This formula is valid (whatever value p has, choose the opposite
for q)

substitute p by q

∃q (¬q ↔ q) This formula is unsatisfiable!

Substitutions below a quantifier should not lead to variable capturing

29 / 54

Another restriction

Suppose we want to substitute G for p in F[p]

Requirement: no free variables in G become bound in FG
p

(In previous example, (∃q (¬p ↔ q))q
p does not satisfy this requirement)

Uniform solution: renaming of bound variables before application of substitution

Example:
Since ∃q (¬p ↔ q) ≡ ∃ r(¬p ↔ r)
we can use (∃r (¬p ↔ r))q

p instead of (∃q (¬p ↔ q))q
p

30 / 54

Another restriction

Suppose we want to substitute G for p in F[p]

Requirement: no free variables in G become bound in FG
p

(In previous example, (∃q (¬p ↔ q))q
p does not satisfy this requirement)

Uniform solution: renaming of bound variables before application of substitution

Example:
Since ∃q (¬p ↔ q) ≡ ∃ r(¬p ↔ r)
we can use (∃r (¬p ↔ r))q

p instead of (∃q (¬p ↔ q))q
p

30 / 54

Another restriction

Suppose we want to substitute G for p in F[p]

Requirement: no free variables in G become bound in FG
p

(In previous example, (∃q (¬p ↔ q))q
p does not satisfy this requirement)

Uniform solution: renaming of bound variables before application of substitution

Example:
Since ∃q (¬p ↔ q) ≡ ∃ r(¬p ↔ r)
we can use (∃r (¬p ↔ r))q

p instead of (∃q (¬p ↔ q))q
p

30 / 54

Another restriction

Suppose we want to substitute G for p in F[p]

Requirement: no free variables in G become bound in FG
p

(In previous example, (∃q (¬p ↔ q))q
p does not satisfy this requirement)

Uniform solution: renaming of bound variables before application of substitution

Example:
Since ∃q (¬p ↔ q) ≡ ∃ r(¬p ↔ r)
we can use (∃r (¬p ↔ r))q

p instead of (∃q (¬p ↔ q))q
p

30 / 54

From now on, we always assume that:
1. formulas are rectified
2. all substitutions satisfy the requirement above

Equivalent replacement

Lemma 6
Let I be an interpretation and I |= F1 ↔ F2. Then
I |= G[F1] ↔ G[F2].

Theorem 7 (Equivalent Replacement)
Let F1 ≡ F2. Then G[F1] ≡ G[F2].

31 / 54

Equivalent replacement

Lemma 6
Let I be an interpretation and I |= F1 ↔ F2. Then
I |= G[F1] ↔ G[F2].

Theorem 7 (Equivalent Replacement)
Let F1 ≡ F2. Then G[F1] ≡ G[F2].

31 / 54

More equivalences

Theorem 8
The following holds for all QBFs F:

1. ∀p1∀p2 F ≡ ∀p2∀p1 F
2. ∃p1∃p2 F ≡ ∃p2∃p1 F
3. ∀∃ p F ≡ F if p does not occur free in F
4. ∀p F ≡ F⊥

p ∧ F⊤
p

5. ∃p F ≡ F⊥
p ∨ F⊤

p

Note: In general, ∃p1∀p2F ̸≡ ∀p2∃p1F !
Example:

• ∀p∃q (p ↔ q) ≡ ⊤
• ∃q∀p (p ↔ q) ≡ ⊥

32 / 54

More equivalences

Theorem 8
The following holds for all QBFs F:

1. ∀p1∀p2 F ≡ ∀p2∀p1 F
2. ∃p1∃p2 F ≡ ∃p2∃p1 F
3. ∀∃ p F ≡ F if p does not occur free in F
4. ∀p F ≡ F⊥

p ∧ F⊤
p

5. ∃p F ≡ F⊥
p ∨ F⊤

p

Note: In general, ∃p1∀p2F ̸≡ ∀p2∃p1F !
Example:

• ∀p∃q (p ↔ q) ≡ ⊤
• ∃q∀p (p ↔ q) ≡ ⊥

32 / 54

More equivalences

Theorem 8
The following holds for all QBFs F:

1. ∀p1∀p2 F ≡ ∀p2∀p1 F
2. ∃p1∃p2 F ≡ ∃p2∃p1 F
3. ∀∃ p F ≡ F if p does not occur free in F
4. ∀p F ≡ F⊥

p ∧ F⊤
p

5. ∃p F ≡ F⊥
p ∨ F⊤

p

Note: In general, ∃p1∀p2F ̸≡ ∀p2∃p1F !
Example:

• ∀p∃q (p ↔ q) ≡ ⊤
• ∃q∀p (p ↔ q) ≡ ⊥

32 / 54

More equivalences

Theorem 8
The following holds for all QBFs F:

1. ∀p1∀p2 F ≡ ∀p2∀p1 F
2. ∃p1∃p2 F ≡ ∃p2∃p1 F
3. ∀∃ p F ≡ F if p does not occur free in F
4. ∀p F ≡ F⊥

p ∧ F⊤
p

5. ∃p F ≡ F⊥
p ∨ F⊤

p

Note: In general, ∃p1∀p2F ̸≡ ∀p2∃p1F !
Example:

• ∀p∃q (p ↔ q) ≡ ⊤
• ∃q∀p (p ↔ q) ≡ ⊥

32 / 54

Prenex form

Quantifier-free formula: no quantifiers (that is, propositional)

Prenex formula: formula of the form
quantifier prefix︷ ︸︸ ︷
∀∃ 1p1 · · · ∀∃ npn G︸︷︷︸

matrix

with G quantifier-free

Outermost prefix of ∀∃ 1p1 · · · ∀∃ npnG: the longest subsequence
∀∃ 1p1 · · · ∀∃ kpk of ∀∃ 1p1 · · · ∀∃ npn such that ∀∃ 1 = · · · = ∀∃ k

33 / 54

Prenex form

Quantifier-free formula: no quantifiers (that is, propositional)

Prenex formula: formula of the form
quantifier prefix︷ ︸︸ ︷
∀∃ 1p1 · · · ∀∃ npn G︸︷︷︸

matrix

with G quantifier-free

Outermost prefix of ∀∃ 1p1 · · · ∀∃ npnG: the longest subsequence
∀∃ 1p1 · · · ∀∃ kpk of ∀∃ 1p1 · · · ∀∃ npn such that ∀∃ 1 = · · · = ∀∃ k

33 / 54

Prenex form

Quantifier-free formula: no quantifiers (that is, propositional)

Prenex formula: formula of the form
quantifier prefix︷ ︸︸ ︷
∀∃ 1p1 · · · ∀∃ npn G︸︷︷︸

matrix

with G quantifier-free

Outermost prefix of ∀∃ 1p1 · · · ∀∃ npnG: the longest subsequence
∀∃ 1p1 · · · ∀∃ kpk of ∀∃ 1p1 · · · ∀∃ npn such that ∀∃ 1 = · · · = ∀∃ k

33 / 54

Prenex form

Quantifier-free formula: no quantifiers (that is, propositional)

Prenex formula: formula of the form
quantifier prefix︷ ︸︸ ︷
∀∃ 1p1 · · · ∀∃ npn G︸︷︷︸

matrix

with G quantifier-free

Outermost prefix of ∀∃ 1p1 · · · ∀∃ npnG: the longest subsequence
∀∃ 1p1 · · · ∀∃ kpk of ∀∃ 1p1 · · · ∀∃ npn such that ∀∃ 1 = · · · = ∀∃ k

Example
• outermost prefix of ∀p ∀q∃r(r ∧ p → q): ∀p∀q
• outermost prefix of ∃p∀q∃r(r ∧ p → q): ∃p

33 / 54

Prenex form

Quantifier-free formula: no quantifiers (that is, propositional)

Prenex formula: formula of the form
quantifier prefix︷ ︸︸ ︷
∀∃ 1p1 · · · ∀∃ npn G︸︷︷︸

matrix

with G quantifier-free

Outermost prefix of ∀∃ 1p1 · · · ∀∃ npnG: the longest subsequence
∀∃ 1p1 · · · ∀∃ kpk of ∀∃ 1p1 · · · ∀∃ npn such that ∀∃ 1 = · · · = ∀∃ k

A formula F is a prenex form of a formula G if F is prenex and F ≡ G

33 / 54

Conversion to prenex form, Example I

→

∃q

→

q p

∨

¬

∀r

→

r p

p
⇒

∀q

→

→

q p

∨

¬

∀r

→

r p

p
⇒

∀q

→

→

q p

∨

∃r

¬

→

r p

p
⇒

∀q

→

→

q p

∃r

∨

¬

→

r p

p

⇒

∀q

∃r

→

→

q p

∨

¬

→

r p

p

34 / 54

Conversion to prenex form, Example I

Same conversion:

(∃q (q → p)) → ¬∀r (r → p) ∨ p ⇒
∀q ((q → p) → ¬∀r (r → p) ∨ p) ⇒
∀q ((q → p) → ∃r ¬(r → p) ∨ p) ⇒
∀q ((q → p) → ∃r (¬(r → p) ∨ p)) ⇒
∀q∃r ((q → p) → ¬(r → p) ∨ p)

35 / 54

Prenexing rules

(∀∃ p F1) ∧ · · · ∧ Fn ⇒ ∀∃ p (F1 ∧ · · · ∧ Fn)

(∀∃ p F1) ∨ · · · ∨ Fn ⇒ ∀∃ p (F1 ∨ · · · ∨ Fn)

(∀p F1) → F2 ⇒ ∃p (F1 → F2) F1 → (∃p F2) ⇒ ∃p (F1 → F2)

(∃p F1) → F2 ⇒ ∀p (F1 → F2) F1 → (∀p F2) ⇒ ∀p (F1 → F2)

¬∀p F ⇒ ∃p¬F ¬∃p F ⇒ ∀p¬F

36 / 54

Conversion to prenex form, Example II

∃q (q → p) → ¬∀r (r → p) ∨ p ⇒
∃q (q → p) → ∃r ¬(r → p) ∨ p ⇒
∃q (q → p) → ∃r (¬(r → p) ∨ p) ⇒
∃r (∃q (q → p) → ¬(r → p) ∨ p) ⇒
∃r ∀q ((q → p) → ¬(r → p) ∨ p)

37 / 54

Checking the satisfiability of QBFs

The algorithms for propositional satisfiability or validity can be adapted to QBF

We will see:
• Splitting
• DPLL

Recall:
1. F(p1, . . . , pn) is satisfiable iff ∃p1 · · · ∃pn F(p1, . . . , pn) is satisfiable
2. F(p1, . . . , pn) is valid iff ∀p1 · · · ∀pn F(p1, . . . , pn) is satisfiable
3. A closed QBF is either always true (valid) or always false (unsatisfiable)

The algorithms will check whether a closed formula is valid or unsatisfiable

38 / 54

Checking the satisfiability of QBFs

The algorithms for propositional satisfiability or validity can be adapted to QBF

We will see:
• Splitting
• DPLL

Recall:
1. F(p1, . . . , pn) is satisfiable iff ∃p1 · · · ∃pn F(p1, . . . , pn) is satisfiable
2. F(p1, . . . , pn) is valid iff ∀p1 · · · ∀pn F(p1, . . . , pn) is satisfiable
3. A closed QBF is either always true (valid) or always false (unsatisfiable)

The algorithms will check whether a closed formula is valid or unsatisfiable

38 / 54

Checking the satisfiability of QBFs

The algorithms for propositional satisfiability or validity can be adapted to QBF

We will see:
• Splitting
• DPLL

Recall:
1. F(p1, . . . , pn) is satisfiable iff ∃p1 · · · ∃pn F(p1, . . . , pn) is satisfiable
2. F(p1, . . . , pn) is valid iff ∀p1 · · · ∀pn F(p1, . . . , pn) is satisfiable
3. A closed QBF is either always true (valid) or always false (unsatisfiable)

The algorithms will check whether a closed formula is valid or unsatisfiable

38 / 54

Splitting: foundations

Lemma 9
• A closed formula ∀p F evaluates to 1 iff both F⊥

p and F⊤
p evaluate to 1.

• A closed formula ∃p F evaluates to true iff either F⊥
p or F⊤

p evaluates to 1.

39 / 54

Splitting

Simplification rules for ⊤:

¬⊤ ⇒ ⊥
⊤ ∧ F1 ∧ · · · ∧ Fn ⇒ F1 ∧ · · · ∧ Fn

⊤ ∨ F1 ∨ · · · ∨ Fn ⇒ ⊤
F → ⊤ ⇒ ⊤ ⊤ → F ⇒ F
F ↔ ⊤ ⇒ F ⊤ ↔ F ⇒ F

∀p⊤ ⇒ ⊤
∃p⊤ ⇒ ⊤

Simplification rules for ⊥:

¬⊥ ⇒ ⊤
⊥ ∧ F1 ∧ · · · ∧ Fn ⇒ ⊥

⊥∨ F1 ∨ · · · ∨ Fn ⇒ F1 ∨ · · · ∨ Fn

F → ⊥ ⇒ ¬F ⊥ → F ⇒ ⊤
F ↔ ⊥ ⇒ ¬F ⊥ ↔ F ⇒ ¬F

∀p⊥ ⇒ ⊥
∃p⊥ ⇒ ⊥

40 / 54

Splitting

Simplification rules for ⊤:

¬⊤ ⇒ ⊥
⊤ ∧ F1 ∧ · · · ∧ Fn ⇒ F1 ∧ · · · ∧ Fn

⊤ ∨ F1 ∨ · · · ∨ Fn ⇒ ⊤
F → ⊤ ⇒ ⊤ ⊤ → F ⇒ F
F ↔ ⊤ ⇒ F ⊤ ↔ F ⇒ F

∀p⊤ ⇒ ⊤
∃p⊤ ⇒ ⊤

Simplification rules for ⊥:

¬⊥ ⇒ ⊤
⊥ ∧ F1 ∧ · · · ∧ Fn ⇒ ⊥

⊥∨ F1 ∨ · · · ∨ Fn ⇒ F1 ∨ · · · ∨ Fn

F → ⊥ ⇒ ¬F ⊥ → F ⇒ ⊤
F ↔ ⊥ ⇒ ¬F ⊥ ↔ F ⇒ ¬F

∀p⊥ ⇒ ⊥
∃p⊥ ⇒ ⊥

40 / 54

Splitting, Example

∀p∃q (p ↔ q)

∧
p = 0

∨
q = 0

p = 1

∨

⊤

q = 1

1

1

1

1

1 ∃q ∀p (p ↔ q)
∨

∀p (¬p)

q = 0

∧

⊥

p = 1

∀p (p)

q = 1

∧

⊥

p = 0

0

0

0

0

0

To minimize search, the selection of variable values is best seen as a two-player
game:

• by selecting a value for ∃q one is trying to make the formula true
• by selecting a value for ∀p one is trying to make the formula false

41 / 54

Splitting, Example

∀p∃q (p ↔ q)
∧

∃q (⊥ ↔ q)

p = 0

∨
q = 0

p = 1

∨

⊤

q = 1

1

1

1

1

1 ∃q ∀p (p ↔ q)
∨

∀p (¬p)

q = 0

∧

⊥

p = 1

∀p (p)

q = 1

∧

⊥

p = 0

0

0

0

0

0

To minimize search, the selection of variable values is best seen as a two-player
game:

• by selecting a value for ∃q one is trying to make the formula true
• by selecting a value for ∀p one is trying to make the formula false

41 / 54

Splitting, Example

∀p∃q (p ↔ q)
∧

∃q (¬q)

p = 0

∨
q = 0

p = 1

∨

⊤

q = 1

1

1

1

1

1 ∃q ∀p (p ↔ q)
∨

∀p (¬p)

q = 0

∧

⊥

p = 1

∀p (p)

q = 1

∧

⊥

p = 0

0

0

0

0

0

To minimize search, the selection of variable values is best seen as a two-player
game:

• by selecting a value for ∃q one is trying to make the formula true
• by selecting a value for ∀p one is trying to make the formula false

41 / 54

Splitting, Example

∀p∃q (p ↔ q)
∧

∃q (¬q)

p = 0

∨

(¬⊥)

q = 0

p = 1

∨

⊤

q = 1

1

1

1

1

1 ∃q ∀p (p ↔ q)
∨

∀p (¬p)

q = 0

∧

⊥

p = 1

∀p (p)

q = 1

∧

⊥

p = 0

0

0

0

0

0

To minimize search, the selection of variable values is best seen as a two-player
game:

• by selecting a value for ∃q one is trying to make the formula true
• by selecting a value for ∀p one is trying to make the formula false

41 / 54

Splitting, Example

∀p∃q (p ↔ q)
∧

∃q (¬q)

p = 0

∨

⊤

q = 0

p = 1

∨

⊤

q = 1

1

1

1

1

1 ∃q ∀p (p ↔ q)
∨

∀p (¬p)

q = 0

∧

⊥

p = 1

∀p (p)

q = 1

∧

⊥

p = 0

0

0

0

0

0

To minimize search, the selection of variable values is best seen as a two-player
game:

• by selecting a value for ∃q one is trying to make the formula true
• by selecting a value for ∀p one is trying to make the formula false

41 / 54

Splitting, Example

∀p∃q (p ↔ q)
∧

∃q (¬q)

p = 0

∨

⊤

q = 0

p = 1

∨

⊤

q = 1

1

1

1

1

1 ∃q ∀p (p ↔ q)
∨

∀p (¬p)

q = 0

∧

⊥

p = 1

∀p (p)

q = 1

∧

⊥

p = 0

0

0

0

0

0

To minimize search, the selection of variable values is best seen as a two-player
game:

• by selecting a value for ∃q one is trying to make the formula true
• by selecting a value for ∀p one is trying to make the formula false

41 / 54

Splitting, Example

∀p∃q (p ↔ q)
∧

∃q (¬q)

p = 0

∨

⊤

q = 0

∃q (⊤ ↔ q)

p = 1

∨

⊤

q = 1

1

1

1

1

1 ∃q ∀p (p ↔ q)
∨

∀p (¬p)

q = 0

∧

⊥

p = 1

∀p (p)

q = 1

∧

⊥

p = 0

0

0

0

0

0

To minimize search, the selection of variable values is best seen as a two-player
game:

• by selecting a value for ∃q one is trying to make the formula true
• by selecting a value for ∀p one is trying to make the formula false

41 / 54

Splitting, Example

∀p∃q (p ↔ q)
∧

∃q (¬q)

p = 0

∨

⊤

q = 0

∃q (q)

p = 1

∨

⊤

q = 1

1

1

1

1

1 ∃q ∀p (p ↔ q)
∨

∀p (¬p)

q = 0

∧

⊥

p = 1

∀p (p)

q = 1

∧

⊥

p = 0

0

0

0

0

0

To minimize search, the selection of variable values is best seen as a two-player
game:

• by selecting a value for ∃q one is trying to make the formula true
• by selecting a value for ∀p one is trying to make the formula false

41 / 54

Splitting, Example

∀p∃q (p ↔ q)
∧

∃q (¬q)

p = 0

∨

⊤

q = 0

∃q (q)

p = 1

∨

⊤

q = 1

1

1

1

1

1 ∃q ∀p (p ↔ q)
∨

∀p (¬p)

q = 0

∧

⊥

p = 1

∀p (p)

q = 1

∧

⊥

p = 0

0

0

0

0

0

To minimize search, the selection of variable values is best seen as a two-player
game:

• by selecting a value for ∃q one is trying to make the formula true
• by selecting a value for ∀p one is trying to make the formula false

41 / 54

Splitting, Example

∀p∃q (p ↔ q)
∧

∃q (¬q)

p = 0

∨

⊤

q = 0

∃q (q)

p = 1

∨

⊤

q = 1

1

1

1

1

1 ∃q ∀p (p ↔ q)
∨

∀p (¬p)

q = 0

∧

⊥

p = 1

∀p (p)

q = 1

∧

⊥

p = 0

0

0

0

0

0

To minimize search, the selection of variable values is best seen as a two-player
game:

• by selecting a value for ∃q one is trying to make the formula true
• by selecting a value for ∀p one is trying to make the formula false

41 / 54

Splitting, Example

∀p∃q (p ↔ q)
∧

∃q (¬q)

p = 0

∨

⊤

q = 0

∃q (q)

p = 1

∨

⊤

q = 1

1

1

1

1

1 ∃q ∀p (p ↔ q)
∨

∀p (¬p)

q = 0

∧

⊥

p = 1

∀p (p)

q = 1

∧

⊥

p = 0

0

0

0

0

0

To minimize search, the selection of variable values is best seen as a two-player
game:

• by selecting a value for ∃q one is trying to make the formula true
• by selecting a value for ∀p one is trying to make the formula false

41 / 54

Splitting, Example

∀p∃q (p ↔ q)
∧

∃q (¬q)

p = 0

∨

⊤

q = 0

∃q (q)

p = 1

∨

⊤

q = 1

1

1

1

1

1

∃q ∀p (p ↔ q)
∨

∀p (¬p)

q = 0

∧

⊥

p = 1

∀p (p)

q = 1

∧

⊥

p = 0

0

0

0

0

0

To minimize search, the selection of variable values is best seen as a two-player
game:

• by selecting a value for ∃q one is trying to make the formula true
• by selecting a value for ∀p one is trying to make the formula false

41 / 54

Splitting, Example

∀p∃q (p ↔ q)
∧

∃q (¬q)

p = 0

∨

⊤

q = 0

∃q (q)

p = 1

∨

⊤

q = 1

1

1

1

1

1 ∃q ∀p (p ↔ q)

∨

∀p (¬p)

q = 0

∧

⊥

p = 1

∀p (p)

q = 1

∧

⊥

p = 0

0

0

0

0

0

To minimize search, the selection of variable values is best seen as a two-player
game:

• by selecting a value for ∃q one is trying to make the formula true
• by selecting a value for ∀p one is trying to make the formula false

41 / 54

Splitting, Example

∀p∃q (p ↔ q)
∧

∃q (¬q)

p = 0

∨

⊤

q = 0

∃q (q)

p = 1

∨

⊤

q = 1

1

1

1

1

1 ∃q ∀p (p ↔ q)
∨

∀p (¬p)

q = 0

∧

⊥

p = 1

∀p (p)

q = 1

∧

⊥

p = 0

0

0

0

0

0

To minimize search, the selection of variable values is best seen as a two-player
game:

• by selecting a value for ∃q one is trying to make the formula true
• by selecting a value for ∀p one is trying to make the formula false

41 / 54

Splitting, Example

∀p∃q (p ↔ q)
∧

∃q (¬q)

p = 0

∨

⊤

q = 0

∃q (q)

p = 1

∨

⊤

q = 1

1

1

1

1

1 ∃q ∀p (p ↔ q)
∨

∀p (¬p)

q = 0

∧

⊥

p = 1

∀p (p)

q = 1

∧

⊥

p = 0

0

0

0

0

0

To minimize search, the selection of variable values is best seen as a two-player
game:

• by selecting a value for ∃q one is trying to make the formula true
• by selecting a value for ∀p one is trying to make the formula false

41 / 54

Splitting, Example

∀p∃q (p ↔ q)
∧

∃q (¬q)

p = 0

∨

⊤

q = 0

∃q (q)

p = 1

∨

⊤

q = 1

1

1

1

1

1 ∃q ∀p (p ↔ q)
∨

∀p (¬p)

q = 0

∧

⊥

p = 1

∀p (p)

q = 1

∧

⊥

p = 0

0

0

0

0

0

To minimize search, the selection of variable values is best seen as a two-player
game:

• by selecting a value for ∃q one is trying to make the formula true
• by selecting a value for ∀p one is trying to make the formula false

41 / 54

Splitting, Example

∀p∃q (p ↔ q)
∧

∃q (¬q)

p = 0

∨

⊤

q = 0

∃q (q)

p = 1

∨

⊤

q = 1

1

1

1

1

1 ∃q ∀p (p ↔ q)
∨

∀p (¬p)

q = 0

∧

⊥

p = 1

∀p (p)

q = 1

∧

⊥

p = 0

0

0

0

0

0

To minimize search, the selection of variable values is best seen as a two-player
game:

• by selecting a value for ∃q one is trying to make the formula true
• by selecting a value for ∀p one is trying to make the formula false

41 / 54

Splitting, Example

∀p∃q (p ↔ q)
∧

∃q (¬q)

p = 0

∨

⊤

q = 0

∃q (q)

p = 1

∨

⊤

q = 1

1

1

1

1

1 ∃q ∀p (p ↔ q)
∨

∀p (¬p)

q = 0

∧

⊥

p = 1

∀p (p)

q = 1

∧

⊥

p = 0

0

0

0

0

0

To minimize search, the selection of variable values is best seen as a two-player
game:

• by selecting a value for ∃q one is trying to make the formula true
• by selecting a value for ∀p one is trying to make the formula false

41 / 54

Splitting, Example

∀p∃q (p ↔ q)
∧

∃q (¬q)

p = 0

∨

⊤

q = 0

∃q (q)

p = 1

∨

⊤

q = 1

1

1

1

1

1 ∃q ∀p (p ↔ q)
∨

∀p (¬p)

q = 0

∧

⊥

p = 1

∀p (p)

q = 1

∧

⊥

p = 0

0

0

0

0

0

To minimize search, the selection of variable values is best seen as a two-player
game:

• by selecting a value for ∃q one is trying to make the formula true
• by selecting a value for ∀p one is trying to make the formula false

41 / 54

Splitting, Example

∀p∃q (p ↔ q)
∧

∃q (¬q)

p = 0

∨

⊤

q = 0

∃q (q)

p = 1

∨

⊤

q = 1

1

1

1

1

1 ∃q ∀p (p ↔ q)
∨

∀p (¬p)

q = 0

∧

⊥

p = 1

∀p (p)

q = 1

∧

⊥

p = 0

0

0

0

0

0

To minimize search, the selection of variable values is best seen as a two-player
game:

• by selecting a value for ∃q one is trying to make the formula true
• by selecting a value for ∀p one is trying to make the formula false

41 / 54

Splitting, Example

∀p∃q (p ↔ q)
∧

∃q (¬q)

p = 0

∨

⊤

q = 0

∃q (q)

p = 1

∨

⊤

q = 1

1

1

1

1

1 ∃q ∀p (p ↔ q)
∨

∀p (¬p)

q = 0

∧

⊥

p = 1

∀p (p)

q = 1

∧

⊥

p = 0

0

0

0

0

0

To minimize search, the selection of variable values is best seen as a two-player
game:

• by selecting a value for ∃q one is trying to make the formula true
• by selecting a value for ∀p one is trying to make the formula false

41 / 54

Splitting algorithm

Notation: if p = (p1, . . . , pk) then ∀∃ pF denotes ∀∃ p1 · · · ∀∃ pkF

42 / 54

Splitting algorithm
procedure splitting(F)
input: closed rectified prenex formula F
output: 0 or 1
parameters: function select_variable_value // selects a variable from the outermost prefix
begin // of F as well as a Boolean value for it

F := simplify(F) // apply extended simplification rules to completion
if F = ⊥ then return 0
if F = ⊤ then return 1
// else F has the form ∀∃ pF′ where p is F’s outermost prefix
(p, b) := select_variable_value(F)
Let G be obtained from F by deleting p from p
if b = 0 then A := ⊥; B := ⊤ else A := ⊤; B := ⊥
b := splitting(GA

p)
case (b, ∀∃) of
(0, ∀)⇒ return 0
(0, ∃)⇒ return splitting(GB

p)
(1, ∀)⇒ return splitting(GB

p)
(1, ∃)⇒ return 1

end
42 / 54

Conjunctive Normal Form

For more efficient algorithms we need QBFs to be in a convenient normal form

Our next aim is to modify CNF and DPLL to deal with quantified Boolean formulas

A quantified Boolean formula F is in Conjunctive Normal Form (CNF), if
• it is either ⊥, or ⊤, or
• it has the form

∀∃ 1p1 · · · ∀∃ npn (C1 ∧ · · · ∧ Cm)

where C1, . . . , Cm are clauses

Example:
∀p∃q∃s ((¬p ∨ s ∨ q) ∧ (s ∨ ¬q) ∧ ¬s)

43 / 54

Conjunctive Normal Form

For more efficient algorithms we need QBFs to be in a convenient normal form

Our next aim is to modify CNF and DPLL to deal with quantified Boolean formulas

A quantified Boolean formula F is in Conjunctive Normal Form (CNF), if
• it is either ⊥, or ⊤, or
• it has the form

∀∃ 1p1 · · · ∀∃ npn (C1 ∧ · · · ∧ Cm)

where C1, . . . , Cm are clauses

Example:
∀p∃q∃s ((¬p ∨ s ∨ q) ∧ (s ∨ ¬q) ∧ ¬s)

43 / 54

Conjunctive Normal Form

For more efficient algorithms we need QBFs to be in a convenient normal form

Our next aim is to modify CNF and DPLL to deal with quantified Boolean formulas

A quantified Boolean formula F is in Conjunctive Normal Form (CNF), if
• it is either ⊥, or ⊤, or
• it has the form

∀∃ 1p1 · · · ∀∃ npn (C1 ∧ · · · ∧ Cm)

where C1, . . . , Cm are clauses

Example:
∀p∃q∃s ((¬p ∨ s ∨ q) ∧ (s ∨ ¬q) ∧ ¬s)

43 / 54

Conjunctive Normal Form

For more efficient algorithms we need QBFs to be in a convenient normal form

Our next aim is to modify CNF and DPLL to deal with quantified Boolean formulas

A quantified Boolean formula F is in Conjunctive Normal Form (CNF), if
• it is either ⊥, or ⊤, or
• it has the form

∀∃ 1p1 · · · ∀∃ npn (C1 ∧ · · · ∧ Cm)

where C1, . . . , Cm are clauses

Example:
∀p∃q∃s ((¬p ∨ s ∨ q) ∧ (s ∨ ¬q) ∧ ¬s)

43 / 54

CNF rules

Prenexing rules
+
propositional CNF rules:

F ↔ G ⇒ (¬F ∨ G) ∧ (¬G ∨ F)
F → G ⇒ ¬F ∨ G

¬(F ∧ G) ⇒ ¬F ∨ ¬G
¬(F ∨ G) ⇒ ¬F ∧ ¬G

¬¬F ⇒ F
(F1 ∧ · · · ∧ Fm) ∨ G1 ∨ · · · ∨ Gn ⇒ (F1 ∨ G1 ∨ · · · ∨ Gn) ∧

· · · ∧
(Fm ∨ G1 ∨ · · · ∨ Gn)

44 / 54

DPLL for quantified Boolean formulas

Input:
Q: quantifier sequence ∀∃ 1p1 · · · ∀∃ npn

S: set of clauses with variables from p1, . . . ,pn

Main components:
Unit propagation
Splitting on literals

45 / 54

Unit Propagation
Q: quantifier sequence
S: current clause set

Propositional formulas:
For each unit clause L in S

1. remove all clauses containing literal L from S
2. remove every literal L from remaining clauses

Quantified Boolean formulas:
For each unit clause L in S of the form p or ¬p
• If Q does not contain p or contains ∃p,

1. remove all clauses containing literal L from S
2. remove every literal L from remaining clauses

• otherwise (Q contains ∀p), add □ to S

46 / 54

Unit Propagation
Q: quantifier sequence
S: current clause set

Propositional formulas:
For each unit clause L in S

1. remove all clauses containing literal L from S
2. remove every literal L from remaining clauses

Quantified Boolean formulas:
For each unit clause L in S of the form p or ¬p
• If Q does not contain p or contains ∃p,

1. remove all clauses containing literal L from S
2. remove every literal L from remaining clauses

• otherwise (Q contains ∀p), add □ to S

46 / 54

Unit Propagation
Q: quantifier sequence
S: current clause set

Propositional formulas:
For each unit clause L in S

1. remove all clauses containing literal L from S
2. remove every literal L from remaining clauses

Quantified Boolean formulas:
For each unit clause L in S of the form p or ¬p
• If Q does not contain p or contains ∃p,

1. remove all clauses containing literal L from S
2. remove every literal L from remaining clauses

• otherwise (Q contains ∀p), add □ to S

46 / 54

Unit Propagation
Q: quantifier sequence
S: current clause set

Propositional formulas:
For each unit clause L in S

1. remove all clauses containing literal L from S
2. remove every literal L from remaining clauses

Quantified Boolean formulas:
For each unit clause L in S of the form p or ¬p
• If Q does not contain p or contains ∃p,

1. remove all clauses containing literal L from S
2. remove every literal L from remaining clauses

• otherwise (Q contains ∀p), add □ to S

46 / 54

DPLL algorithm

Why do we add □ to Swhen Q is ∀p ∀∃ 1p1 · · · ∀∃ m pm and
S is { p, C1, . . . , Cn } ?

Alternatively, using the game metaphor, because

the ∀-player wants to falsify the formula

Winning move for the ∀-player:

select the value for p that falsifies the unit clause p, and hence the
whole CNF

(argument is similar for {¬p, C1, . . . , Cn })

47 / 54

DPLL algorithm

Why do we add □ to Swhen Q is ∀p ∀∃ 1p1 · · · ∀∃ m pm and
S is { p, C1, . . . , Cn } ?

Because
1. The intended input formula is

G = ∀p ∀∃ 1q1 · · · ∀∃ mqm (p ∧ C1 ∧ · · · ∧ Cm)

2. G ≡ ∀∃ 1q1 · · · ∀∃ mqm ((p ∧ C1 ∧ · · · ∧ Cm)
⊥
p ∧ (p ∧ C1 ∧ · · · ∧ Cm)

⊤
p)

= ∀∃ 1q1 · · · ∀∃ mqm (⊥∧ (C1 ∧ · · · ∧Cm)
⊥
p ∧ (p∧C1 ∧ · · · ∧Cm)

⊤
p)

≡ ∀∃ 1q1 · · · ∀∃ mqm ⊥
≡ ⊥

Alternatively, using the game metaphor, because
the ∀-player wants to falsify the formula

Winning move for the ∀-player:
select the value for p that falsifies the unit clause p, and hence the
whole CNF

(argument is similar for {¬p, C1, . . . , Cn })

47 / 54

DPLL algorithm

Why do we add □ to Swhen Q is ∀p ∀∃ 1p1 · · · ∀∃ m pm and
S is { p, C1, . . . , Cn } ?

Because
1. The intended input formula is

G = ∀p ∀∃ 1q1 · · · ∀∃ mqm (p ∧ C1 ∧ · · · ∧ Cm)

2. G ≡ ∀∃ 1q1 · · · ∀∃ mqm ((p ∧ C1 ∧ · · · ∧ Cm)
⊥
p ∧ (p ∧ C1 ∧ · · · ∧ Cm)

⊤
p)

= ∀∃ 1q1 · · · ∀∃ mqm (⊥∧ (C1 ∧ · · · ∧Cm)
⊥
p ∧ (p∧C1 ∧ · · · ∧Cm)

⊤
p)

≡ ∀∃ 1q1 · · · ∀∃ mqm ⊥
≡ ⊥

Alternatively, using the game metaphor, because
the ∀-player wants to falsify the formula

Winning move for the ∀-player:
select the value for p that falsifies the unit clause p, and hence the
whole CNF

(argument is similar for {¬p, C1, . . . , Cn })

47 / 54

DPLL algorithm

Why do we add □ to Swhen Q is ∀p ∀∃ 1p1 · · · ∀∃ m pm and
S is { p, C1, . . . , Cn } ?

Because
1. The intended input formula is

G = ∀p ∀∃ 1q1 · · · ∀∃ mqm (p ∧ C1 ∧ · · · ∧ Cm)

2. G ≡ ∀∃ 1q1 · · · ∀∃ mqm ((p ∧ C1 ∧ · · · ∧ Cm)
⊥
p ∧ (p ∧ C1 ∧ · · · ∧ Cm)

⊤
p)

= ∀∃ 1q1 · · · ∀∃ mqm (⊥∧ (C1 ∧ · · · ∧Cm)
⊥
p ∧ (p∧C1 ∧ · · · ∧Cm)

⊤
p)

≡ ∀∃ 1q1 · · · ∀∃ mqm ⊥
≡ ⊥

Alternatively, using the game metaphor, because
the ∀-player wants to falsify the formula

Winning move for the ∀-player:
select the value for p that falsifies the unit clause p, and hence the
whole CNF

(argument is similar for {¬p, C1, . . . , Cn })

47 / 54

DPLL algorithm

Why do we add □ to Swhen Q is ∀p ∀∃ 1p1 · · · ∀∃ m pm and
S is { p, C1, . . . , Cn } ?

Because
1. The intended input formula is

G = ∀p ∀∃ 1q1 · · · ∀∃ mqm (p ∧ C1 ∧ · · · ∧ Cm)

2. G ≡ ∀∃ 1q1 · · · ∀∃ mqm ((p ∧ C1 ∧ · · · ∧ Cm)
⊥
p ∧ (p ∧ C1 ∧ · · · ∧ Cm)

⊤
p)

= ∀∃ 1q1 · · · ∀∃ mqm (⊥∧ (C1 ∧ · · · ∧Cm)
⊥
p ∧ (p∧C1 ∧ · · · ∧Cm)

⊤
p)

≡ ∀∃ 1q1 · · · ∀∃ mqm ⊥
≡ ⊥

Alternatively, using the game metaphor, because
the ∀-player wants to falsify the formula

Winning move for the ∀-player:
select the value for p that falsifies the unit clause p, and hence the
whole CNF

(argument is similar for {¬p, C1, . . . , Cn })

47 / 54

DPLL algorithm

Why do we add □ to Swhen Q is ∀p ∀∃ 1p1 · · · ∀∃ m pm and
S is { p, C1, . . . , Cn } ?

Alternatively, using the game metaphor, because

the ∀-player wants to falsify the formula

Winning move for the ∀-player:

select the value for p that falsifies the unit clause p, and hence the
whole CNF

(argument is similar for {¬p, C1, . . . , Cn })

47 / 54

DPLL algorithm

Why do we add □ to Swhen Q is ∀p ∀∃ 1p1 · · · ∀∃ m pm and
S is { p, C1, . . . , Cn } ?

Alternatively, using the game metaphor, because

the ∀-player wants to falsify the formula

Winning move for the ∀-player:

select the value for p that falsifies the unit clause p, and hence the
whole CNF

(argument is similar for {¬p, C1, . . . , Cn })

47 / 54

DPLL algorithm

Why do we add □ to Swhen Q is ∀p ∀∃ 1p1 · · · ∀∃ m pm and
S is { p, C1, . . . , Cn } ?

Alternatively, using the game metaphor, because

the ∀-player wants to falsify the formula

Winning move for the ∀-player:

select the value for p that falsifies the unit clause p, and hence the
whole CNF

(argument is similar for {¬p, C1, . . . , Cn })

47 / 54

DPLL, Example

∃p ∀q∃r
p ∨ q ∨ ¬r
p ∨ ¬q ∨ r
¬p ∨ q ∨ r
¬p ∨ q ∨ ¬r

1∀q ∃r
¬p

p ∨ q ∨ ¬r
p ∨ ¬q ∨ r
¬p ∨ q ∨ r
¬p ∨ q ∨ ¬r

¬p1

∀q∃r
q ∨ ¬r
¬q ∨ r

1

∃r
¬q

q ∨ ¬r
¬q ∨ r

¬q

1

∃r

¬r

∃r
q

q ∨ ¬r
¬q ∨ r

q

1

∃r

r

48 / 54

DPLL, Example

∃p ∀q∃r
p ∨ q ∨ ¬r
p ∨ ¬q ∨ r
¬p ∨ q ∨ r
¬p ∨ q ∨ ¬r

1

∀q ∃r
¬p

p ∨ q ∨ ¬r
p ∨ ¬q ∨ r
¬p ∨ q ∨ r
¬p ∨ q ∨ ¬r

¬p

1

∀q∃r
q ∨ ¬r
¬q ∨ r

1

∃r
¬q

q ∨ ¬r
¬q ∨ r

¬q

1

∃r

¬r

∃r
q

q ∨ ¬r
¬q ∨ r

q

1

∃r

r

48 / 54

DPLL, Example

∃p ∀q∃r
p ∨ q ∨ ¬r
p ∨ ¬q ∨ r
¬p ∨ q ∨ r
¬p ∨ q ∨ ¬r

1

∀q ∃r
¬p

p ∨ q ∨ ¬r
p ∨ ¬q ∨ r
¬p ∨ q ∨ r
¬p ∨ q ∨ ¬r

¬p

1

∀q∃r
q ∨ ¬r
¬q ∨ r

1

∃r
¬q

q ∨ ¬r
¬q ∨ r

¬q

1

∃r

¬r

∃r
q

q ∨ ¬r
¬q ∨ r

q

1

∃r

r

48 / 54

DPLL, Example

∃p ∀q∃r
p ∨ q ∨ ¬r
p ∨ ¬q ∨ r
¬p ∨ q ∨ r
¬p ∨ q ∨ ¬r

1

∀q ∃r
¬p

p ∨ q ∨ ¬r
p ∨ ¬q ∨ r
¬p ∨ q ∨ r
¬p ∨ q ∨ ¬r

¬p

1

∀q∃r
q ∨ ¬r
¬q ∨ r

1

∃r
¬q

q ∨ ¬r
¬q ∨ r

¬q

1

∃r

¬r

∃r
q

q ∨ ¬r
¬q ∨ r

q

1

∃r

r

48 / 54

DPLL, Example

∃p ∀q∃r
p ∨ q ∨ ¬r
p ∨ ¬q ∨ r
¬p ∨ q ∨ r
¬p ∨ q ∨ ¬r

1

∀q ∃r
¬p

p ∨ q ∨ ¬r
p ∨ ¬q ∨ r
¬p ∨ q ∨ r
¬p ∨ q ∨ ¬r

¬p

1

∀q∃r
q ∨ ¬r
¬q ∨ r

1

∃r
¬q

q ∨ ¬r
¬q ∨ r

¬q

1

∃r

¬r

∃r
q

q ∨ ¬r
¬q ∨ r

q

1

∃r

r

48 / 54

DPLL, Example

∃p ∀q∃r
p ∨ q ∨ ¬r
p ∨ ¬q ∨ r
¬p ∨ q ∨ r
¬p ∨ q ∨ ¬r

1

∀q ∃r
¬p

p ∨ q ∨ ¬r
p ∨ ¬q ∨ r
¬p ∨ q ∨ r
¬p ∨ q ∨ ¬r

¬p

1

∀q∃r
q ∨ ¬r
¬q ∨ r

1

∃r
¬q

q ∨ ¬r
¬q ∨ r

¬q

1

∃r

¬r

∃r
q

q ∨ ¬r
¬q ∨ r

q

1

∃r

r

48 / 54

DPLL, Example

∃p ∀q∃r
p ∨ q ∨ ¬r
p ∨ ¬q ∨ r
¬p ∨ q ∨ r
¬p ∨ q ∨ ¬r

1

∀q ∃r
¬p

p ∨ q ∨ ¬r
p ∨ ¬q ∨ r
¬p ∨ q ∨ r
¬p ∨ q ∨ ¬r

¬p

1

∀q∃r
q ∨ ¬r
¬q ∨ r

1

∃r
¬q

q ∨ ¬r
¬q ∨ r

¬q

1

∃r

¬r

∃r
q

q ∨ ¬r
¬q ∨ r

q

1

∃r

r

48 / 54

DPLL, Example

∃p ∀q∃r
p ∨ q ∨ ¬r
p ∨ ¬q ∨ r
¬p ∨ q ∨ r
¬p ∨ q ∨ ¬r

1

∀q ∃r
¬p

p ∨ q ∨ ¬r
p ∨ ¬q ∨ r
¬p ∨ q ∨ r
¬p ∨ q ∨ ¬r

¬p

1

∀q∃r
q ∨ ¬r
¬q ∨ r

1

∃r
¬q

q ∨ ¬r
¬q ∨ r

¬q

1

∃r

¬r

∃r
q

q ∨ ¬r
¬q ∨ r

q

1

∃r

r

48 / 54

DPLL, Example

∃p ∀q∃r
p ∨ q ∨ ¬r
p ∨ ¬q ∨ r
¬p ∨ q ∨ r
¬p ∨ q ∨ ¬r

1

∀q ∃r
¬p

p ∨ q ∨ ¬r
p ∨ ¬q ∨ r
¬p ∨ q ∨ r
¬p ∨ q ∨ ¬r

¬p

1

∀q∃r
q ∨ ¬r
¬q ∨ r

1

∃r
¬q

q ∨ ¬r
¬q ∨ r

¬q

1

∃r

¬r

∃r
q

q ∨ ¬r
¬q ∨ r

q

1

∃r

r

48 / 54

DPLL, Example

∃p ∀q∃r
p ∨ q ∨ ¬r
p ∨ ¬q ∨ r
¬p ∨ q ∨ r
¬p ∨ q ∨ ¬r

1

∀q ∃r
¬p

p ∨ q ∨ ¬r
p ∨ ¬q ∨ r
¬p ∨ q ∨ r
¬p ∨ q ∨ ¬r

¬p

1

∀q∃r
q ∨ ¬r
¬q ∨ r

1

∃r
¬q

q ∨ ¬r
¬q ∨ r

¬q

1

∃r

¬r

∃r
q

q ∨ ¬r
¬q ∨ r

q

1

∃r

r

48 / 54

DPLL, Example

∃p ∀q∃r
p ∨ q ∨ ¬r
p ∨ ¬q ∨ r
¬p ∨ q ∨ r
¬p ∨ q ∨ ¬r

1

∀q ∃r
¬p

p ∨ q ∨ ¬r
p ∨ ¬q ∨ r
¬p ∨ q ∨ r
¬p ∨ q ∨ ¬r

¬p1

∀q∃r
q ∨ ¬r
¬q ∨ r

1

∃r
¬q

q ∨ ¬r
¬q ∨ r

¬q

1

∃r

¬r

∃r
q

q ∨ ¬r
¬q ∨ r

q

1

∃r

r

48 / 54

DPLL, Example

∃p ∀q∃r
p ∨ q ∨ ¬r
p ∨ ¬q ∨ r
¬p ∨ q ∨ r
¬p ∨ q ∨ ¬r

1∀q ∃r
¬p

p ∨ q ∨ ¬r
p ∨ ¬q ∨ r
¬p ∨ q ∨ r
¬p ∨ q ∨ ¬r

¬p1

∀q∃r
q ∨ ¬r
¬q ∨ r

1

∃r
¬q

q ∨ ¬r
¬q ∨ r

¬q

1

∃r

¬r

∃r
q

q ∨ ¬r
¬q ∨ r

q

1

∃r

r

48 / 54

DPLL algorithm
procedure DPLL(Q, S)
input: quantifier sequence Q = ∀∃ 1p1 · · · ∀∃ npn,

clause set Swith vars from Q
output: 0 or 1
parameters: function select_variable_value
begin
S := unit_propagate(Q, S)
if S is empty then return 1
if S contains □ then return 0
(p, b) := select_variable_value(p1, S)
Let Q′ be obtained from Q by deleting ∀∃ 1p from ∀∃ 1p1

if b = 0 then L := ¬p
else L := p

case (DPLL(Q′, S ∪ { L }), ∀∃) of
(0, ∀)⇒ return 0
(0, ∃)⇒ return DPLL(Q′, S ∪ { L })
(1, ∀)⇒ return DPLL(Q′, S ∪ { L })
(1, ∃)⇒ return 1

end
49 / 54

Improving DPLL with further simplifications

∃p∃q ∀r ∃s ((p ∨ ¬r) ∧ (¬q ∨ r) ∧ (¬p ∨ q ∨ s) ∧ (¬p ∨ q ∨ r ∨ ¬s))

⇒
∃p∃q ∀r ∃s (p ∧ (¬q ∨ r) ∧ (¬p ∨ q ∨ s) ∧ (¬p ∨ q ∨ r ∨ ¬s)) ⇒
∃q∀r ∃s ((¬q ∨ r) ∧ (q ∨ s) ∧ (q ∨ r ∨ ¬s)) ⇒
∃q∃s (¬q ∧ (q ∨ s) ∧ (q ∨ ¬s)) ⇒
∃s (s ∧ ¬s) ⇒
□

• We can treat ¬r in p ∨ ¬r as 0 without loss of generality
• We can apply unit propagation
• We can treat r as 0 everywhere without loss of generality
• We can apply unit propagation with ¬q
• We can apply unit propagation with s

50 / 54

Improving DPLL with further simplifications

∃p∃q ∀r ∃s ((p ∨ ¬r) ∧ (¬q ∨ r) ∧ (¬p ∨ q ∨ s) ∧ (¬p ∨ q ∨ r ∨ ¬s))

⇒
∃p∃q ∀r ∃s (p ∧ (¬q ∨ r) ∧ (¬p ∨ q ∨ s) ∧ (¬p ∨ q ∨ r ∨ ¬s)) ⇒
∃q∀r ∃s ((¬q ∨ r) ∧ (q ∨ s) ∧ (q ∨ r ∨ ¬s)) ⇒
∃q∃s (¬q ∧ (q ∨ s) ∧ (q ∨ ¬s)) ⇒
∃s (s ∧ ¬s) ⇒
□

• We can treat ¬r in p ∨ ¬r as 0 without loss of generality
• We can apply unit propagation
• We can treat r as 0 everywhere without loss of generality
• We can apply unit propagation with ¬q
• We can apply unit propagation with s

50 / 54

Improving DPLL with further simplifications

∃p∃q ∀r ∃s ((p ∨ ¬r) ∧ (¬q ∨ r) ∧ (¬p ∨ q ∨ s) ∧ (¬p ∨ q ∨ r ∨ ¬s)) ⇒
∃p∃q ∀r ∃s (p ∧ (¬q ∨ r) ∧ (¬p ∨ q ∨ s) ∧ (¬p ∨ q ∨ r ∨ ¬s))

⇒
∃q∀r ∃s ((¬q ∨ r) ∧ (q ∨ s) ∧ (q ∨ r ∨ ¬s)) ⇒
∃q∃s (¬q ∧ (q ∨ s) ∧ (q ∨ ¬s)) ⇒
∃s (s ∧ ¬s) ⇒
□

• We can treat ¬r in p ∨ ¬r as 0 without loss of generality
• We can apply unit propagation
• We can treat r as 0 everywhere without loss of generality
• We can apply unit propagation with ¬q
• We can apply unit propagation with s

50 / 54

Improving DPLL with further simplifications

∃p∃q ∀r ∃s ((p ∨ ¬r) ∧ (¬q ∨ r) ∧ (¬p ∨ q ∨ s) ∧ (¬p ∨ q ∨ r ∨ ¬s)) ⇒
∃p∃q ∀r ∃s (p ∧ (¬q ∨ r) ∧ (¬p ∨ q ∨ s) ∧ (¬p ∨ q ∨ r ∨ ¬s))

⇒
∃q∀r ∃s ((¬q ∨ r) ∧ (q ∨ s) ∧ (q ∨ r ∨ ¬s)) ⇒
∃q∃s (¬q ∧ (q ∨ s) ∧ (q ∨ ¬s)) ⇒
∃s (s ∧ ¬s) ⇒
□

• We can treat ¬r in p ∨ ¬r as 0 without loss of generality
• We can apply unit propagation
• We can treat r as 0 everywhere without loss of generality
• We can apply unit propagation with ¬q
• We can apply unit propagation with s

50 / 54

Improving DPLL with further simplifications

∃p∃q ∀r ∃s ((p ∨ ¬r) ∧ (¬q ∨ r) ∧ (¬p ∨ q ∨ s) ∧ (¬p ∨ q ∨ r ∨ ¬s)) ⇒
∃p∃q ∀r ∃s (p ∧ (¬q ∨ r) ∧ (¬p ∨ q ∨ s) ∧ (¬p ∨ q ∨ r ∨ ¬s)) ⇒
∃q∀r ∃s ((¬q ∨ r) ∧ (q ∨ s) ∧ (q ∨ r ∨ ¬s))

⇒
∃q∃s (¬q ∧ (q ∨ s) ∧ (q ∨ ¬s)) ⇒
∃s (s ∧ ¬s) ⇒
□

• We can treat ¬r in p ∨ ¬r as 0 without loss of generality
• We can apply unit propagation
• We can treat r as 0 everywhere without loss of generality
• We can apply unit propagation with ¬q
• We can apply unit propagation with s

50 / 54

Improving DPLL with further simplifications

∃p∃q ∀r ∃s ((p ∨ ¬r) ∧ (¬q ∨ r) ∧ (¬p ∨ q ∨ s) ∧ (¬p ∨ q ∨ r ∨ ¬s)) ⇒
∃p∃q ∀r ∃s (p ∧ (¬q ∨ r) ∧ (¬p ∨ q ∨ s) ∧ (¬p ∨ q ∨ r ∨ ¬s)) ⇒
∃q∀r ∃s ((¬q ∨ r) ∧ (q ∨ s) ∧ (q ∨ r ∨ ¬s))

⇒
∃q∃s (¬q ∧ (q ∨ s) ∧ (q ∨ ¬s)) ⇒
∃s (s ∧ ¬s) ⇒
□

• We can treat ¬r in p ∨ ¬r as 0 without loss of generality
• We can apply unit propagation
• We can treat r as 0 everywhere without loss of generality
• We can apply unit propagation with ¬q
• We can apply unit propagation with s

50 / 54

Improving DPLL with further simplifications

∃p∃q ∀r ∃s ((p ∨ ¬r) ∧ (¬q ∨ r) ∧ (¬p ∨ q ∨ s) ∧ (¬p ∨ q ∨ r ∨ ¬s)) ⇒
∃p∃q ∀r ∃s (p ∧ (¬q ∨ r) ∧ (¬p ∨ q ∨ s) ∧ (¬p ∨ q ∨ r ∨ ¬s)) ⇒
∃q∀r ∃s ((¬q ∨ r) ∧ (q ∨ s) ∧ (q ∨ r ∨ ¬s)) ⇒
∃q∃s (¬q ∧ (q ∨ s) ∧ (q ∨ ¬s))

⇒
∃s (s ∧ ¬s) ⇒
□

• We can treat ¬r in p ∨ ¬r as 0 without loss of generality
• We can apply unit propagation
• We can treat r as 0 everywhere without loss of generality
• We can apply unit propagation with ¬q
• We can apply unit propagation with s

50 / 54

Improving DPLL with further simplifications

∃p∃q ∀r ∃s ((p ∨ ¬r) ∧ (¬q ∨ r) ∧ (¬p ∨ q ∨ s) ∧ (¬p ∨ q ∨ r ∨ ¬s)) ⇒
∃p∃q ∀r ∃s (p ∧ (¬q ∨ r) ∧ (¬p ∨ q ∨ s) ∧ (¬p ∨ q ∨ r ∨ ¬s)) ⇒
∃q∀r ∃s ((¬q ∨ r) ∧ (q ∨ s) ∧ (q ∨ r ∨ ¬s)) ⇒
∃q∃s (¬q ∧ (q ∨ s) ∧ (q ∨ ¬s))

⇒
∃s (s ∧ ¬s) ⇒
□

• We can treat ¬r in p ∨ ¬r as 0 without loss of generality
• We can apply unit propagation
• We can treat r as 0 everywhere without loss of generality
• We can apply unit propagation with ¬q
• We can apply unit propagation with s

50 / 54

Improving DPLL with further simplifications

∃p∃q ∀r ∃s ((p ∨ ¬r) ∧ (¬q ∨ r) ∧ (¬p ∨ q ∨ s) ∧ (¬p ∨ q ∨ r ∨ ¬s)) ⇒
∃p∃q ∀r ∃s (p ∧ (¬q ∨ r) ∧ (¬p ∨ q ∨ s) ∧ (¬p ∨ q ∨ r ∨ ¬s)) ⇒
∃q∀r ∃s ((¬q ∨ r) ∧ (q ∨ s) ∧ (q ∨ r ∨ ¬s)) ⇒
∃q∃s (¬q ∧ (q ∨ s) ∧ (q ∨ ¬s)) ⇒
∃s (s ∧ ¬s)

⇒
□

• We can treat ¬r in p ∨ ¬r as 0 without loss of generality
• We can apply unit propagation
• We can treat r as 0 everywhere without loss of generality
• We can apply unit propagation with ¬q
• We can apply unit propagation with s

50 / 54

Improving DPLL with further simplifications

∃p∃q ∀r ∃s ((p ∨ ¬r) ∧ (¬q ∨ r) ∧ (¬p ∨ q ∨ s) ∧ (¬p ∨ q ∨ r ∨ ¬s)) ⇒
∃p∃q ∀r ∃s (p ∧ (¬q ∨ r) ∧ (¬p ∨ q ∨ s) ∧ (¬p ∨ q ∨ r ∨ ¬s)) ⇒
∃q∀r ∃s ((¬q ∨ r) ∧ (q ∨ s) ∧ (q ∨ r ∨ ¬s)) ⇒
∃q∃s (¬q ∧ (q ∨ s) ∧ (q ∨ ¬s)) ⇒
∃s (s ∧ ¬s) ⇒
□

• We can treat ¬r in p ∨ ¬r as 0 without loss of generality
• We can apply unit propagation
• We can treat r as 0 everywhere without loss of generality
• We can apply unit propagation with ¬q
• We can apply unit propagation with s

50 / 54

Pure literal rule
Q: quantifier sequence
S: current clause set
L: literal of the form p or ¬p

Suppose L is pure in S (i.e., L does not occur in S). Then:
• If p is existentially quantified in Q, we can remove all clauses containing L

• if p is universally quantified in Q, we can remove L from all clauses

Why?

• The ∃-player will make L true (satisfying all clauses containing L)
• The ∀-player will make L false (so it can be removed from all clauses

containing L)

51 / 54

Pure literal rule
Q: quantifier sequence
S: current clause set
L: literal of the form p or ¬p

Suppose L is pure in S (i.e., L does not occur in S). Then:
• If p is existentially quantified in Q, we can remove all clauses containing L
• if p is universally quantified in Q, we can remove L from all clauses

Why?

• The ∃-player will make L true (satisfying all clauses containing L)
• The ∀-player will make L false (so it can be removed from all clauses

containing L)

51 / 54

Pure literal rule
Q: quantifier sequence
S: current clause set
L: literal of the form p or ¬p

Suppose L is pure in S (i.e., L does not occur in S). Then:
• If p is existentially quantified in Q, we can remove all clauses containing L
• if p is universally quantified in Q, we can remove L from all clauses

Why?

• The ∃-player will make L true (satisfying all clauses containing L)
• The ∀-player will make L false (so it can be removed from all clauses

containing L)

51 / 54

Pure literal rule
Q: quantifier sequence
S: current clause set
L: literal of the form p or ¬p

Suppose L is pure in S (i.e., L does not occur in S). Then:
• If p is existentially quantified in Q, we can remove all clauses containing L
• if p is universally quantified in Q, we can remove L from all clauses

Why?
• The ∃-player will make L true (satisfying all clauses containing L)

• The ∀-player will make L false (so it can be removed from all clauses
containing L)

51 / 54

Pure literal rule
Q: quantifier sequence
S: current clause set
L: literal of the form p or ¬p

Suppose L is pure in S (i.e., L does not occur in S). Then:
• If p is existentially quantified in Q, we can remove all clauses containing L
• if p is universally quantified in Q, we can remove L from all clauses

Why?
• The ∃-player will make L true (satisfying all clauses containing L)
• The ∀-player will make L false (so it can be removed from all clauses

containing L)

51 / 54

Universal literal deletion
Q: quantifier sequence
S: clause set

p, q: variables
• p is existential in Q if Q contains ∃p
• q is universal in Q if Q contains ∀q

• p is quantified before a variable q if p occurs before q in Q

52 / 54

Universal literal deletion
Q: quantifier sequence
S: clause set

p, q: variables
• p is existential in Q if Q contains ∃p
• q is universal in Q if Q contains ∀q
• p is quantified before a variable q if p occurs before q in Q

52 / 54

Universal literal deletion
Q: quantifier sequence
S: clause set

p, q: variables
• p is existential in Q if Q contains ∃p
• q is universal in Q if Q contains ∀q
• p is quantified before a variable q if p occurs before q in Q

Example: In Q = ∀q∃p∀r
q is quantified before both p and r; and p is quantified before r

52 / 54

Universal literal deletion
Q: quantifier sequence
S: clause set

p, q: variables
• p is existential in Q if Q contains ∃p
• q is universal in Q if Q contains ∀q
• p is quantified before a variable q if p occurs before q in Q

Theorem 10
Suppose that

1. C is a clause in S;
2. a variable q in a literal L of C is universal in Q;
3. all existential variables of Q in C are quantified before q.

Then deleting L from C does not change the truth value of Q S.

52 / 54

Universal literal deletion

Intuition behind Theorem 10

Consider a clause C from S of the form

L1 ∨ · · · ∨ Ln ∨ (¬)q1 ∨ · · · ∨ (¬)qm

where all existential variables of Q in C are quantified before q1, . . . , qm

Consider the position before the q1, . . . , qm-moves of the ∀-player

• If at least one of L1, . . . , Ln is true,
then C is true regardless of the truth value of of (¬)q1, . . . , (¬)qm

• If all of L1, . . . , Ln are false,
the ∀-player will make all (¬)q1, . . . , (¬)qm false and win the game

In either case, the deletion of (¬)q1, . . . , (¬)qm will not change the final outcome

53 / 54

Universal literal deletion

Intuition behind Theorem 10

Consider a clause C from S of the form

L1 ∨ · · · ∨ Ln ∨ (¬)q1 ∨ · · · ∨ (¬)qm

where all existential variables of Q in C are quantified before q1, . . . , qm

Consider the position before the q1, . . . , qm-moves of the ∀-player
• If at least one of L1, . . . , Ln is true,

then C is true regardless of the truth value of of (¬)q1, . . . , (¬)qm

• If all of L1, . . . , Ln are false,
the ∀-player will make all (¬)q1, . . . , (¬)qm false and win the game

In either case, the deletion of (¬)q1, . . . , (¬)qm will not change the final outcome

53 / 54

Universal literal deletion

Intuition behind Theorem 10

Consider a clause C from S of the form

L1 ∨ · · · ∨ Ln ∨ (¬)q1 ∨ · · · ∨ (¬)qm

where all existential variables of Q in C are quantified before q1, . . . , qm

Consider the position before the q1, . . . , qm-moves of the ∀-player
• If at least one of L1, . . . , Ln is true,

then C is true regardless of the truth value of of (¬)q1, . . . , (¬)qm

• If all of L1, . . . , Ln are false,
the ∀-player will make all (¬)q1, . . . , (¬)qm false and win the game

In either case, the deletion of (¬)q1, . . . , (¬)qm will not change the final outcome

53 / 54

Universal literal deletion

Intuition behind Theorem 10

Consider a clause C from S of the form

L1 ∨ · · · ∨ Ln ∨ (¬)q1 ∨ · · · ∨ (¬)qm

where all existential variables of Q in C are quantified before q1, . . . , qm

Consider the position before the q1, . . . , qm-moves of the ∀-player
• If at least one of L1, . . . , Ln is true,

then C is true regardless of the truth value of of (¬)q1, . . . , (¬)qm

• If all of L1, . . . , Ln are false,
the ∀-player will make all (¬)q1, . . . , (¬)qm false and win the game

In either case, the deletion of (¬)q1, . . . , (¬)qm will not change the final outcome

53 / 54

Universal literal deletion

Intuition behind Theorem 10

Consider a clause C from S of the form

L1 ∨ · · · ∨ Ln ∨ (¬)q1 ∨ · · · ∨ (¬)qm

where all existential variables of Q in C are quantified before q1, . . . , qm

Consider the position before the q1, . . . , qm-moves of the ∀-player
• If at least one of L1, . . . , Ln is true,

then C is true regardless of the truth value of of (¬)q1, . . . , (¬)qm

• If all of L1, . . . , Ln are false,
the ∀-player will make all (¬)q1, . . . , (¬)qm false and win the game

In either case, the deletion of (¬)q1, . . . , (¬)qm will not change the final outcome

53 / 54

Example revisited

∃p∃q ∀r ∃s ((p ∨ ¬r) ∧ (¬q ∨ r) ∧ (¬p ∨ q ∨ s) ∧ (¬p ∨ q ∨ r ∨ ¬s))

⇒
∃p∃q ∀r ∃s (p ∧ (¬q ∨ r) ∧ (¬p ∨ q ∨ s) ∧ (¬p ∨ q ∨ r ∨ ¬s)) ⇒
∃q∀r ∃s ((¬q ∨ r) ∧ (q ∨ s) ∧ (q ∨ r ∨ ¬s)) ⇒
∃q∃s (¬q ∧ (q ∨ s) ∧ (q ∨ ¬s)) ⇒
∃s (s ∧ ¬s) ⇒
□

• Apply universal literal deletion to p ∨ ¬r
• Apply unit propagation
• Apply the pure literal rule to r
• Apply unit propagation

54 / 54

Example revisited

∃p∃q ∀r ∃s ((p ∨ ¬r) ∧ (¬q ∨ r) ∧ (¬p ∨ q ∨ s) ∧ (¬p ∨ q ∨ r ∨ ¬s))

⇒
∃p∃q ∀r ∃s (p ∧ (¬q ∨ r) ∧ (¬p ∨ q ∨ s) ∧ (¬p ∨ q ∨ r ∨ ¬s)) ⇒
∃q∀r ∃s ((¬q ∨ r) ∧ (q ∨ s) ∧ (q ∨ r ∨ ¬s)) ⇒
∃q∃s (¬q ∧ (q ∨ s) ∧ (q ∨ ¬s)) ⇒
∃s (s ∧ ¬s) ⇒
□

• Apply universal literal deletion to p ∨ ¬r

• Apply unit propagation
• Apply the pure literal rule to r
• Apply unit propagation

54 / 54

Example revisited

∃p∃q ∀r ∃s ((p ∨ ¬r) ∧ (¬q ∨ r) ∧ (¬p ∨ q ∨ s) ∧ (¬p ∨ q ∨ r ∨ ¬s)) ⇒
∃p∃q ∀r ∃s (p ∧ (¬q ∨ r) ∧ (¬p ∨ q ∨ s) ∧ (¬p ∨ q ∨ r ∨ ¬s))

⇒
∃q∀r ∃s ((¬q ∨ r) ∧ (q ∨ s) ∧ (q ∨ r ∨ ¬s)) ⇒
∃q∃s (¬q ∧ (q ∨ s) ∧ (q ∨ ¬s)) ⇒
∃s (s ∧ ¬s) ⇒
□

• Apply universal literal deletion to p ∨ ¬r

• Apply unit propagation
• Apply the pure literal rule to r
• Apply unit propagation

54 / 54

Example revisited

∃p∃q ∀r ∃s ((p ∨ ¬r) ∧ (¬q ∨ r) ∧ (¬p ∨ q ∨ s) ∧ (¬p ∨ q ∨ r ∨ ¬s)) ⇒
∃p∃q ∀r ∃s (p ∧ (¬q ∨ r) ∧ (¬p ∨ q ∨ s) ∧ (¬p ∨ q ∨ r ∨ ¬s))

⇒
∃q∀r ∃s ((¬q ∨ r) ∧ (q ∨ s) ∧ (q ∨ r ∨ ¬s)) ⇒
∃q∃s (¬q ∧ (q ∨ s) ∧ (q ∨ ¬s)) ⇒
∃s (s ∧ ¬s) ⇒
□

• Apply universal literal deletion to p ∨ ¬r
• Apply unit propagation

• Apply the pure literal rule to r
• Apply unit propagation

54 / 54

Example revisited

∃p∃q ∀r ∃s ((p ∨ ¬r) ∧ (¬q ∨ r) ∧ (¬p ∨ q ∨ s) ∧ (¬p ∨ q ∨ r ∨ ¬s)) ⇒
∃p∃q ∀r ∃s (p ∧ (¬q ∨ r) ∧ (¬p ∨ q ∨ s) ∧ (¬p ∨ q ∨ r ∨ ¬s)) ⇒
∃q∀r ∃s ((¬q ∨ r) ∧ (q ∨ s) ∧ (q ∨ r ∨ ¬s))

⇒
∃q∃s (¬q ∧ (q ∨ s) ∧ (q ∨ ¬s)) ⇒
∃s (s ∧ ¬s) ⇒
□

• Apply universal literal deletion to p ∨ ¬r
• Apply unit propagation

• Apply the pure literal rule to r
• Apply unit propagation

54 / 54

Example revisited

∃p∃q ∀r ∃s ((p ∨ ¬r) ∧ (¬q ∨ r) ∧ (¬p ∨ q ∨ s) ∧ (¬p ∨ q ∨ r ∨ ¬s)) ⇒
∃p∃q ∀r ∃s (p ∧ (¬q ∨ r) ∧ (¬p ∨ q ∨ s) ∧ (¬p ∨ q ∨ r ∨ ¬s)) ⇒
∃q∀r ∃s ((¬q ∨ r) ∧ (q ∨ s) ∧ (q ∨ r ∨ ¬s))

⇒
∃q∃s (¬q ∧ (q ∨ s) ∧ (q ∨ ¬s)) ⇒
∃s (s ∧ ¬s) ⇒
□

• Apply universal literal deletion to p ∨ ¬r
• Apply unit propagation
• Apply the pure literal rule to r

• Apply unit propagation

54 / 54

Example revisited

∃p∃q ∀r ∃s ((p ∨ ¬r) ∧ (¬q ∨ r) ∧ (¬p ∨ q ∨ s) ∧ (¬p ∨ q ∨ r ∨ ¬s)) ⇒
∃p∃q ∀r ∃s (p ∧ (¬q ∨ r) ∧ (¬p ∨ q ∨ s) ∧ (¬p ∨ q ∨ r ∨ ¬s)) ⇒
∃q∀r ∃s ((¬q ∨ r) ∧ (q ∨ s) ∧ (q ∨ r ∨ ¬s)) ⇒
∃q∃s (¬q ∧ (q ∨ s) ∧ (q ∨ ¬s))

⇒
∃s (s ∧ ¬s) ⇒
□

• Apply universal literal deletion to p ∨ ¬r
• Apply unit propagation
• Apply the pure literal rule to r

• Apply unit propagation

54 / 54

Example revisited

∃p∃q ∀r ∃s ((p ∨ ¬r) ∧ (¬q ∨ r) ∧ (¬p ∨ q ∨ s) ∧ (¬p ∨ q ∨ r ∨ ¬s)) ⇒
∃p∃q ∀r ∃s (p ∧ (¬q ∨ r) ∧ (¬p ∨ q ∨ s) ∧ (¬p ∨ q ∨ r ∨ ¬s)) ⇒
∃q∀r ∃s ((¬q ∨ r) ∧ (q ∨ s) ∧ (q ∨ r ∨ ¬s)) ⇒
∃q∃s (¬q ∧ (q ∨ s) ∧ (q ∨ ¬s))

⇒
∃s (s ∧ ¬s) ⇒
□

• Apply universal literal deletion to p ∨ ¬r
• Apply unit propagation
• Apply the pure literal rule to r
• Apply unit propagation

54 / 54

Example revisited

∃p∃q ∀r ∃s ((p ∨ ¬r) ∧ (¬q ∨ r) ∧ (¬p ∨ q ∨ s) ∧ (¬p ∨ q ∨ r ∨ ¬s)) ⇒
∃p∃q ∀r ∃s (p ∧ (¬q ∨ r) ∧ (¬p ∨ q ∨ s) ∧ (¬p ∨ q ∨ r ∨ ¬s)) ⇒
∃q∀r ∃s ((¬q ∨ r) ∧ (q ∨ s) ∧ (q ∨ r ∨ ¬s)) ⇒
∃q∃s (¬q ∧ (q ∨ s) ∧ (q ∨ ¬s)) ⇒
∃s (s ∧ ¬s)

⇒
□

• Apply universal literal deletion to p ∨ ¬r
• Apply unit propagation
• Apply the pure literal rule to r
• Apply unit propagation

54 / 54

Example revisited

∃p∃q ∀r ∃s ((p ∨ ¬r) ∧ (¬q ∨ r) ∧ (¬p ∨ q ∨ s) ∧ (¬p ∨ q ∨ r ∨ ¬s)) ⇒
∃p∃q ∀r ∃s (p ∧ (¬q ∨ r) ∧ (¬p ∨ q ∨ s) ∧ (¬p ∨ q ∨ r ∨ ¬s)) ⇒
∃q∀r ∃s ((¬q ∨ r) ∧ (q ∨ s) ∧ (q ∨ r ∨ ¬s)) ⇒
∃q∃s (¬q ∧ (q ∨ s) ∧ (q ∨ ¬s)) ⇒
∃s (s ∧ ¬s) ⇒
□

• Apply universal literal deletion to p ∨ ¬r
• Apply unit propagation
• Apply the pure literal rule to r
• Apply unit propagation

54 / 54

	Quantified Boolean Formulas
	Syntax and Semantics
	Free and Bound Variables
	Prenex Form
	Satisfiability Checking

