CS:4350 Logic in Computer Science

Quantified Boolean Formulas

Cesare Tinelli

Spring 2022

Credits

These slides are largely based on slides originally developed by **Andrei Voronkov** at the University of Manchester. Adapted by permission.

Outline

Quantified Boolean Formulas

Syntax and Semantics Free and Bound Variables Prenex Form Satisfiability Checking Splitting Conjunctive Normal Form DPLL

Two-Player Games

Does she have a winning strategy?

Given: a propositional formula *G* with variables $p_1, q_1, \ldots, p_n, q_n$

Given: a propositional formula *G* with variables $p_1, q_1, \ldots, p_n, q_n$

There are two players: *P* and *Q*

Given: a propositional formula *G* with variables $p_1, q_1, \ldots, p_n, q_n$

There are two players: *P* and *Q*

At round of the game *k* each player makes a move:

Given: a propositional formula *G* with variables $p_1, q_1, \ldots, p_n, q_n$

There are two players: *P* and *Q*

At round of the game *k* each player makes a move: 1. player *P* can choose a value for variable *p*_k

Given: a propositional formula *G* with variables $p_1, q_1, \ldots, p_n, q_n$

There are two players: *P* and *Q*

At round of the game *k* each player makes a move:

- 1. player *P* can choose a value for variable p_k
- 2. player *Q* can choose a value for variable q_k

Given: a propositional formula *G* with variables $p_1, q_1, \ldots, p_n, q_n$

There are two players: *P* and *Q*

At round of the game *k* each player makes a move:

- 1. player *P* can choose a value for variable p_k
- 2. player Q can choose a value for variable q_k

Player *P* wins if after *n* rounds the chosen values satisfy formula *G*

Consider several special cases:

G Outcome

Consider several special cases:

Consider several special cases:

GOutcome1. p_1 P wins with $\{p_1 \mapsto 1\}$

Consider several special cases:

GOutcome1. p_1 P wins with $\{p_1 \mapsto 1\}$ 2. $p_1 \rightarrow q_1$

	G	Outcome
1.	p_1	<i>P</i> wins with $\set{p_1 \mapsto 1}$
2.	$p_1 ightarrow q_1$	<i>P</i> wins with $\{p_1 \mapsto 0\}$

	G	Outcome
1.	p_1	<i>P</i> wins with $\{p_1 \mapsto 1\}$
2.	$p_1 ightarrow q_1$	<i>P</i> wins with $\{p_1 \mapsto 0\}$
3.	$q_1 ightarrow q_2$	

	G	Outcome
1.	p_1	<i>P</i> wins with $\{p_1 \mapsto 1\}$
2.	$p_1 ightarrow q_1$	<i>P</i> wins with $\{p_1 \mapsto 0\}$
3.	$q_1 ightarrow q_2$	<i>G</i> has no <i>p_i</i> vars, <i>P</i> 's choices are immaterial

Consider several special cases:

	G	Outcome
1.	p_1	P wins with $\{p_1 \mapsto 1\}$
2.	$p_1 o q_1$	P wins with $\{p_1 \mapsto 0\}$
3.	$q_1 ightarrow q_2$	<i>G</i> has no p_i vars, <i>P</i> 's choices are immaterial
4.	$q_{1} ightarrow q_{1}$	

	G	Outcome
1.	p_1	P wins with $\{p_1 \mapsto 1\}$
2.	$p_1 o q_1$	<i>P</i> wins with $\{p_1 \mapsto 0\}$
3.	$q_1 ightarrow q_2$	G has no p_i vars, P's choices are immaterial
4.	$q_1 ightarrow q_1$	G is valid, P always wins!

	G	Outcome
1.	p_1	<i>P</i> wins with $\{p_1 \mapsto 1\}$
2.	$p_1 ightarrow q_1$	<i>P</i> wins with $\{p_1 \mapsto 0\}$
3.	$q_1 ightarrow q_2$	<i>G</i> has no <i>p_i</i> vars, <i>P</i> 's choices are immaterial
4.	$q_1 ightarrow q_1$	<i>G</i> is valid, <i>P</i> always wins!
5.	$p_1 \wedge \neg p_1$	

	G	Outcome
1.	p_1	P wins with $\{p_1 \mapsto 1\}$
2.	$p_1 o q_1$	<i>P</i> wins with $\{p_1 \mapsto 0\}$
3.	$q_1 ightarrow q_2$	<i>G</i> has no <i>p_i</i> vars, <i>P</i> 's choices are immaterial
4.	$q_1 o q_1$	<i>G</i> is valid, <i>P</i> always wins!
5.	$p_1 \wedge \neg p_1$	<i>G</i> is unsatisfiable, <i>Q</i> always wins!

	G	Outcome
1.	p_1	<i>P</i> wins with $\{p_1 \mapsto 1\}$
2.	$p_1 o q_1$	<i>P</i> wins with $\{p_1 \mapsto 0\}$
3.	$q_1 ightarrow q_2$	<i>G</i> has no p_i vars, <i>P</i> 's choices are immaterial
4.	$q_1 ightarrow q_1$	G is valid, P always wins!
5.	$p_1 \wedge \neg p_1$	G is unsatisfiable, Q always wins!
6.	$p_1 \leftrightarrow q_1$	

	G	Outcome
1.	p_1	<i>P</i> wins with $\{p_1 \mapsto 1\}$
2.	$p_1 o q_1$	<i>P</i> wins with $\{p_1 \mapsto 0\}$
3.	$q_1 ightarrow q_2$	<i>G</i> has no p_i vars, <i>P</i> 's choices are immaterial
4.	$q_1 ightarrow q_1$	G is valid, P always wins!
5.	$p_1 \wedge eg p_1$	G is unsatisfiable, Q always wins!
6.	$p_1 \leftrightarrow q_1$	each move by <i>P</i> can be beaten by <mark>Q</mark>

Problem: does P have a winning strategy?

P has a winning strategy iff there exists a move for P (a value for p_1) such that

Problem: does P have a winning strategy?

P has a winning strategy iff there exists a move for P (a value for p₁) such that for all moves of Q (values for q₁)

```
P has a winning strategy
iff
there exists a move for P (a value for p_1) such that
for all moves of Q (values for q_1)
there exists a move for P (a value for p_2) such that
```

```
P has a winning strategy
iff
there exists a move for P (a value for p_1) such that
for all moves of Q (values for q_1)
there exists a move for P (a value for p_2) such that
for all moves of Q (values for q_2)
```

```
P has a winning strategy
iff
there exists a move for P (a value for p<sub>1</sub>) such that
for all moves of Q (values for q<sub>1</sub>)
there exists a move for P (a value for p<sub>2</sub>) such that
for all moves of Q (values for q<sub>2</sub>)
```

Problem: does P have a winning strategy?

```
P has a winning strategy
iff
there exists a move for P (a value for p<sub>1</sub>) such that
for all moves of Q (values for q<sub>1</sub>)
there exists a move for P (a value for p<sub>2</sub>) such that
for all moves of Q (values for q<sub>2</sub>)
```

there exists a move for P (a value for p_n) such that

```
P has a winning strategy

iff

there exists a move for P (a value for p_1) such that

for all moves of Q (values for q_1)

there exists a move for P (a value for p_2) such that

for all moves of Q (values for q_2)

...
```

```
there exists a move for P (a value for p_n) such that
for all moves of Q (values for q_n)
```

```
P has a winning strategy
iff
there exists a move for P (a value for p<sub>1</sub>) such that
for all moves of Q (values for q<sub>1</sub>)
there exists a move for P (a value for p<sub>2</sub>) such that
for all moves of Q (values for q<sub>2</sub>)
```

```
there exists a move for P (a value for p_n) such that
for all moves of Q (values for q_n)
```

```
the formula G is satisfiable
```

Problem: does P have a winning strategy?

```
P has a winning strategy
iff
there exists a move for P (a value for p<sub>1</sub>) such that
for all moves of Q (values for q<sub>1</sub>)
there exists a move for P (a value for p<sub>2</sub>) such that
for all moves of Q (values for q<sub>2</sub>)
```

there exists a move for P (a value for p_n) such that for all moves of Q (values for q_n)

the formula G is satisfiable

The existence of a winning strategy can be expressed by the *quantified Boolean formula*

 $\exists p_1 \forall q_1 \exists p_2 \forall q_2 \cdots \exists p_n \forall q_n G$

Quantified Boolean Formulas

Propositional Formula:

- Every Boolean variable is a (propositional) formula
- ullet op and ot are formulas
- If F is a formula, then $\neg F$ is a formula
- If F_1, \ldots, F_n are formulas, where $n \ge 2$, then $F_1 \land \cdots \land F_n$ and $F_1 \lor \cdots \lor F_n$ are formulas
- If *F* and *G* are formulas, then $F \rightarrow G$ and $F \leftrightarrow G$ are formulas

Quantified Boolean Formulas

Propositional Formula:

- Every Boolean variable is a (propositional) formula
- $\bullet \ \top \text{ and } \bot \text{ are formulas}$
- If F is a formula, then $\neg F$ is a formula
- If F_1, \ldots, F_n are formulas, where $n \ge 2$, then $F_1 \land \cdots \land F_n$ and $F_1 \lor \cdots \lor F_n$ are formulas
- If *F* and *G* are formulas, then $F \rightarrow G$ and $F \leftrightarrow G$ are formulas

Quantified Boolean Formulas (QBFs):

- Every propositional formula is a QBF
- If p is a Boolean variable and F is a QBF, then $\forall p F$ and $\exists p F$ are QBFs

Quantifiers

- \forall is called the *universal quantifier* (symbol)
- \exists is called the *existential quantifier* (symbol)
- $\forall p F$ is read as "for all p, F"
- ∃*p F* is read as "there exists *p* such that *F*" or "for some *p*, *F*"

For every variable p, we treat $\forall p$ and $\exists p$ as unary operators applied to a formula F

 $\forall p \text{ and } \exists p \text{ have the highest precedence (like <math>\neg$), e.g.:

$$\forall p \, p
ightarrow q \quad \equiv \quad (\forall p \, p)
ightarrow q \quad
eq \quad \forall p \, (p
ightarrow q)$$

Note: Some texts give quantifiers lower precedence than all Boolean connectives

Quantifiers

- \forall is called the *universal quantifier* (symbol)
- \exists is called the *existential quantifier* (symbol)
- $\forall p F$ is read as "for all p, F"
- ∃*p F* is read as "there exists *p* such that *F*" or "for some *p*, *F*"

For every variable p, we treat $\forall p$ and $\exists p$ as unary operators applied to a formula F

orall p and $\exists p$ have the highest precedence (like \neg), e.g.:

$\forall p \ p \to q \equiv (\forall p \ p) \to q \not\equiv \forall p \ (p \to q)$

Note: Some texts give quantifiers lower precedence than all Boolean connectives

Quantifiers

- \forall is called the *universal quantifier* (symbol)
- \exists is called the *existential quantifier* (symbol)
- $\forall p F$ is read as "for all p, F"
- ∃*p F* is read as "there exists *p* such that *F*" or "for some *p*, *F*"

For every variable p, we treat $\forall p$ and $\exists p$ as unary operators applied to a formula F

 $\forall p \text{ and } \exists p \text{ have the highest precedence (like } \neg), e.g.:$

$$\forall p \, p
ightarrow q \equiv (\forall p \, p)
ightarrow q
otin (\forall p \, p)
ightarrow q
otin (p
ightarrow q)$$

Note: Some texts give quantifiers lower precedence than all Boolean connectives

Quantifiers

- \forall is called the *universal quantifier* (symbol)
- \exists is called the *existential quantifier* (symbol)
- $\forall p F$ is read as "for all p, F"
- $\exists p F$ is read as "there exists p such that F" or "for some p, F"

For every variable p, we treat $\forall p$ and $\exists p$ as unary operators applied to a formula F

 $\forall p \text{ and } \exists p \text{ have the highest precedence (like } \neg), e.g.:$

$$\forall p \, p
ightarrow q \equiv (\forall p \, p)
ightarrow q
ot \equiv \forall p \, (p
ightarrow q)$$

Note: Some texts give quantifiers lower precedence than all Boolean connectives

Changing interpretations pointwise

Let ${\mathcal I}$ be an interpretation

Notation:

$$\mathcal{I}[p\mapsto b](q) \stackrel{\mathrm{def}}{=} \left\{ egin{array}{c} \mathcal{I}(q), & ext{if } p
eq q \ b, & ext{if } p = q \end{array}
ight.$$

Example: $\mathcal{I} = \{ p \mapsto 1, q \mapsto 0, r \mapsto 1 \}$

 $egin{array}{rll} \mathcal{I}[q\mapsto 1]&=&\{p\mapsto 1,q\mapsto 1,r\mapsto 1\}\ \mathcal{I}[q\mapsto 0]&=&\{p\mapsto 1,q\mapsto 0,r\mapsto 1\}&=&\mathcal{I}\ \mathcal{I}[p\mapsto 0]&=&\{p\mapsto 0,q\mapsto 0,r\mapsto 1\} \end{array}$

Changing interpretations pointwise

Let ${\mathcal I}$ be an interpretation

Notation:

$$\mathcal{I}[p\mapsto b](q) \stackrel{ ext{def}}{=} \left\{egin{array}{c} \mathcal{I}(q), & ext{if}\, p
eq q \ b, & ext{if}\, p = q \end{array}
ight.$$

Example: $\mathcal{I} = \{ p \mapsto 1, q \mapsto 0, r \mapsto 1 \}$

$$\begin{split} \mathcal{I}[q \mapsto 1] &= \{ p \mapsto 1, q \mapsto 1, r \mapsto 1 \} \\ \mathcal{I}[q \mapsto 0] &= \{ p \mapsto 1, q \mapsto 0, r \mapsto 1 \} &= \mathcal{I} \\ \mathcal{I}[p \mapsto 0] &= \{ p \mapsto 0, q \mapsto 0, r \mapsto 1 \} \end{split}$$

QBF Semantics

1. $\mathcal{I}(\top) = 1$ and $\mathcal{I}(\bot) = 0$ **2.** $\mathcal{I}(F_1 \wedge \cdots \wedge F_n) = 1$ iff $\mathcal{I}(F_i) = 1$ for all *i* **3.** $\mathcal{I}(F_1 \lor \cdots \lor F_n) = 1$ iff $\mathcal{I}(F_i) = 1$ for some *i* **4.** $\mathcal{I}(\neg F) = 1$ iff $\mathcal{I}(F) = 0$ 5. $\mathcal{I}(F \to G) = 1$ iff $\mathcal{I}(F) = 0$ or $\mathcal{I}(G) = 1$ 6. $\mathcal{I}(F \leftrightarrow G) = 1$ iff $\mathcal{I}(F) = \mathcal{I}(G)$

QBF Semantics

1. $\mathcal{I}(\top) = 1$ and $\mathcal{I}(\bot) = 0$ **2.** $\mathcal{I}(F_1 \wedge \cdots \wedge F_n) = 1$ iff $\mathcal{I}(F_i) = 1$ for all *i* **3.** $\mathcal{I}(F_1 \vee \cdots \vee F_n) = 1$ iff $\mathcal{I}(F_i) = 1$ for some *i* **4.** $\mathcal{I}(\neg F) = 1$ iff $\mathcal{I}(F) = 0$ 5. $\mathcal{I}(F \to G) = 1$ iff $\mathcal{I}(F) = 0$ or $\mathcal{I}(G) = 1$ 6. $\mathcal{I}(F \leftrightarrow G) = 1$ iff $\mathcal{I}(F) = \mathcal{I}(G)$ 7. $\mathcal{I}(\forall p F) = 1$ iff $\mathcal{I}[p \mapsto 0](F) = 1$ and $\mathcal{I}[p \mapsto 1](F) = 1$ 8. $\mathcal{I}(\exists p F) = 1$ iff $\mathcal{I}[p \mapsto 0](F) = 1$ or $\mathcal{I}[p \mapsto 1](F) = 1$

How to evaluate $\forall p \exists q (p \leftrightarrow q)$ in interpretation { $p \mapsto 1, q \mapsto 0$ }

How to evaluate $\forall p \exists q (p \leftrightarrow q)$ in interpretation { $p \mapsto 1, q \mapsto 0$ }

Notation: for brevity, let $\mathcal{I}_{v_1v_2}$ denote the interpretation { $p \mapsto v_1, q \mapsto v_2$ }

How to evaluate $\forall p \exists q (p \leftrightarrow q)$ in interpretation $\{ p \mapsto 1, q \mapsto 0 \}$

Notation: for brevity, let $\mathcal{I}_{v_1v_2}$ denote the interpretation $\{p \mapsto v_1, q \mapsto v_2\}$

 $\mathcal{I}_{10} \models \forall p \, \exists q \, (p \leftrightarrow q)$

How to evaluate $\forall p \exists q (p \leftrightarrow q)$ in interpretation { $p \mapsto 1, q \mapsto 0$ }

Notation: for brevity, let $\mathcal{I}_{v_1v_2}$ denote the interpretation $\{p \mapsto v_1, q \mapsto v_2\}$

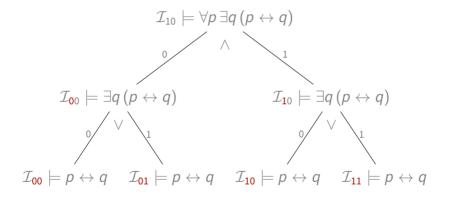
$$\mathcal{I}_{10} \models \forall p \, \exists q \, (p \leftrightarrow q) \quad \Leftrightarrow \quad \begin{aligned} \mathcal{I}_{00} \models \exists q \, (p \leftrightarrow q) \\ \mathcal{I}_{10} \models \exists q \, (p \leftrightarrow q) \end{aligned} \text{ and}$$

How to evaluate $\forall p \exists q (p \leftrightarrow q)$ in interpretation { $p \mapsto 1, q \mapsto 0$ }

Notation: for brevity, let $\mathcal{I}_{v_1v_2}$ denote the interpretation $\{p \mapsto v_1, q \mapsto v_2\}$

$$\mathcal{I}_{10} \models \forall p \exists q (p \leftrightarrow q) \quad \Leftrightarrow \qquad \begin{array}{c} \mathcal{I}_{00} \models \exists q (p \leftrightarrow q) \\ \mathcal{I}_{10} \models \exists q (p \leftrightarrow q) \end{array} \text{ and} \\ \mathcal{I}_{10} \models \exists q (p \leftrightarrow q) \end{array}$$

$$\Leftrightarrow \qquad \begin{array}{c} \mathcal{I}_{00} \models p \leftrightarrow q \\ \mathcal{I}_{01} \models p \leftrightarrow q \end{array} \text{ or} \\ \mathcal{I}_{11} \models p \leftrightarrow q \end{array} \text{ or} \\ \mathcal{I}_{11} \models p \leftrightarrow q \end{array} \text{ or}$$



Notation: Denote any interpretation $\{p \mapsto b_1, q \mapsto b_2\}$ by $\mathcal{I}_{b_1 b_2}$ Use wildcards * to denote *any* Boolean value

 $\mathcal{I}_{**} \models \forall p \, \exists q \, (p \leftrightarrow q)$

Notation: Denote any interpretation $\{p \mapsto b_1, q \mapsto b_2\}$ by $\mathcal{I}_{b_1b_2}$ Use wildcards * to denote *any* Boolean value

$$\mathcal{I}_{**} \models \forall p \, \exists q \, (p \leftrightarrow q) \quad \Leftrightarrow \quad \left| \begin{array}{c} \mathcal{I}_{\mathbf{0}*} \models \exists q \, (p \leftrightarrow q) \\ \mathcal{I}_{\mathbf{1}*} \models \exists q \, (p \leftrightarrow q) \end{array} \right| \text{ and }$$

Notation: Denote any interpretation $\{p \mapsto b_1, q \mapsto b_2\}$ by $\mathcal{I}_{b_1b_2}$ Use wildcards * to denote *any* Boolean value

$$\mathcal{I}_{**} \models \forall p \exists q (p \leftrightarrow q) \Leftrightarrow \mathcal{I}_{0*} \models \exists q (p \leftrightarrow q) \\
\mathcal{I}_{1*} \models \exists q (p \leftrightarrow q) \\
\mathcal{I}_{1*} \models \exists q (p \leftrightarrow q) \\
\mathcal{I}_{01} \models p \leftrightarrow q \\
\mathcal{I}_{01} \models p \leftrightarrow q \\
\mathcal{I}_{11} \models p \rightarrow q \\
\mathcal{I}_{11} \models p \rightarrow$$

Notation: Denote any interpretation $\{p \mapsto b_1, q \mapsto b_2\}$ by $\mathcal{I}_{b_1b_2}$ Use wildcards * to denote *any* Boolean value

$$\mathcal{I}_{**} \models \forall p \, \exists q \, (p \leftrightarrow q) \quad \Leftrightarrow \qquad \begin{array}{c} \mathcal{I}_{0*} \models \exists q \, (p \leftrightarrow q) \\ \mathcal{I}_{1*} \models \exists q \, (p \leftrightarrow q) \end{array} \text{ and} \\ \\ \mathcal{I}_{01} \models p \leftrightarrow q \quad \text{or} \\ \\ \mathcal{I}_{01} \models p \leftrightarrow q \quad \text{or} \\ \\ \mathcal{I}_{10} \models p \leftrightarrow q \quad \text{or} \end{array}$$

The variables p and q are *bound* by the quantifiers $\forall p$ and $\exists q$, so the value of the formula does not depend on the values p and q

Subformula

Propositional formulas:

- F is the immediate subformula of $\neg F$
- F_1, \ldots, F_n are the immediate subformulas of $F_1 \land \cdots \land F_n$
- F_1, \ldots, F_n are the immediate subformulas of $F_1 \lor \cdots \lor F_n$
- F_1 and F_2 are the immediate subformulas of $\mathit{F}_1 \rightarrow \mathit{F}_2$
- F_1 and F_2 are the immediate subformulas of $F_1 \leftrightarrow F_2$
- ...

Subformula

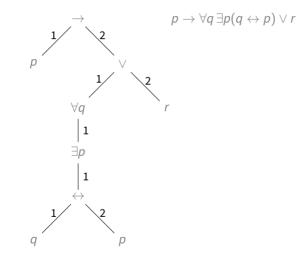
Propositional formulas:

- F is the immediate subformula of $\neg F$
- F_1, \ldots, F_n are the immediate subformulas of $F_1 \land \cdots \land F_n$
- F_1, \ldots, F_n are the immediate subformulas of $F_1 \lor \cdots \lor F_n$
- F_1 and F_2 are the immediate subformulas of $\mathit{F}_1 \rightarrow \mathit{F}_2$
- F_1 and F_2 are the immediate subformulas of $F_1 \leftrightarrow F_2$
- ...

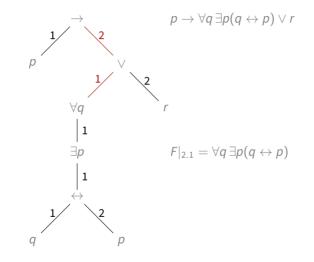
Quantified Boolean formulas:

• *F* is the immediate subformula of $\forall p \ F$ and of $\exists p \ F$

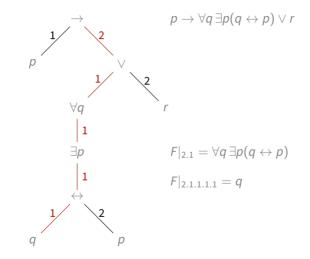
Positions and polarity by example



Positions and polarity by example



Positions and polarity by example



Positions and Polarity

Let $F|_{\pi} = A$

Propositional formulas:

- If *A* has the form $\neg A_1$, then $\pi.1$ is a position in *F*, $F|_{\pi.1} \stackrel{\text{def}}{=} A_1$ and $pol(F, \pi.1) \stackrel{\text{def}}{=} -pol(F, \pi)$
- If *A* has the form $A_1 \land \cdots \land A_n$ or $A_1 \lor \cdots \lor A_n$ and $i \in \{1, \ldots, n\}$, then $\pi.i$ is a position in *F* and $pol(F, \pi.i) \stackrel{\text{def}}{=} pol(F, \pi)$

• ...

Positions and Polarity

Let $F|_{\pi} = A$

Propositional formulas:

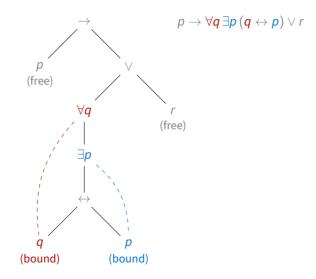
- If *A* has the form $\neg A_1$, then $\pi.1$ is a position in *F*, $F|_{\pi.1} \stackrel{\text{def}}{=} A_1$ and $pol(F, \pi.1) \stackrel{\text{def}}{=} -pol(F, \pi)$
- If A has the form A₁ ∧ · · · ∧ A_n or A₁ ∨ · · · ∨ A_n and i ∈ { 1, . . . , n }, then π.i is a position in F and pol(F, π.i) ^{def} = pol(F, π)

• ...

Quantified Boolean formulas:

 If A has the form ∀p B or ∃p B, then π.1 is a position in F, F|_{π.1} def = B and pol(F, π.1) def pol(F, π)

Free and bound variables by example



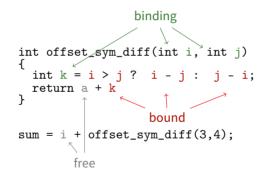
Free and bound occurrences in programs

- Free variables in formulas are analogous to global variables in programs
- Bound variables in formulas are analogous to local variables in programs

```
int offset_sym_diff(int i, int j)
{
    int k = i > j ? i - j : j - i;
    return a + k
}
sum = i + offset_sym_diff(3,4);
```

Free and bound occurrences in programs

- Free variables in formulas are analogous to global variables in programs
- Bound variables in formulas are analogous to local variables in programs



Let ${\it F}$ be a QBF and p be atom of at position π

The occurrence of p at position π in F is *bound* if π can be represented as a concatenation of two strings $\pi_1 \pi_2$ such that $F|_{\pi_1}$ has the form $\forall p \ G \text{ or } \exists p \ G$

Let $\ensuremath{\textit{F}}$ be a QBF and $\ensuremath{\textit{p}}$ be atom of at position $\ensuremath{\pi}$

The occurrence of p at position π in F is *bound* if π can be represented as a concatenation of two strings $\pi_1 \pi_2$ such that $F|_{\pi_1}$ has the form $\forall p \ G \text{ or } \exists p \ G$

A bound occurrence of *p* is an occurrence *in the scope of* $\forall p$ *or* $\exists p$

Let $\ensuremath{\textit{F}}$ be a QBF and $\ensuremath{\textit{p}}$ be atom of at position $\ensuremath{\pi}$

The occurrence of p at position π in F is *bound* if π can be represented as a concatenation of two strings $\pi_1 \pi_2$ such that $F|_{\pi_1}$ has the form $\forall p \ G \text{ or } \exists p \ G$

A bound occurrence of *p* is an occurrence *in the scope of* $\forall p$ *or* $\exists p$

Free occurrence: not bound

Let $\ensuremath{\textit{F}}$ be a QBF and $\ensuremath{\textit{p}}$ be atom of at position $\ensuremath{\pi}$

The occurrence of p at position π in F is *bound* if π can be represented as a concatenation of two strings $\pi_1 \pi_2$ such that $F|_{\pi_1}$ has the form $\forall p \ G \text{ or } \exists p \ G$

A bound occurrence of *p* is an occurrence *in the scope of* $\forall p$ *or* $\exists p$

Free occurrence: not bound

Free (bound) variable of a formula: a variable with at least one free (bound) occurrence

Let $\ensuremath{\textit{F}}$ be a QBF and $\ensuremath{\textit{p}}$ be atom of at position $\ensuremath{\pi}$

The occurrence of p at position π in F is *bound* if π can be represented as a concatenation of two strings $\pi_1 \pi_2$ such that $F|_{\pi_1}$ has the form $\forall p \ G \text{ or } \exists p \ G$

A bound occurrence of *p* is an occurrence *in the scope of* $\forall p$ *or* $\exists p$

Free occurrence: not bound

Free (bound) variable of a formula: a variable with at least one free (bound) occurrence

Closed formula: formula with no free variables

Only free variables matter for truth

The truth value of a QBF formula *F* depends only on the values of its free variables:

Lemma 1 Suppose $\mathcal{I}_1(p) = \mathcal{I}_2(p)$ for all free variables p of F. Then $\mathcal{I}_1 \models F$ iff $\mathcal{I}_2 \models F$

Only free variables matter for truth

The truth value of a QBF formula *F* depends only on the values of its free variables:

Lemma 1 Suppose $\mathcal{I}_1(p) = \mathcal{I}_2(p)$ for all free variables p of F. Then $\mathcal{I}_1 \models F$ iff $\mathcal{I}_2 \models F$

Theorem 2 Let *F* be a closed formula and let $\mathcal{I}_1, \mathcal{I}_2$ be two interpretations. Then $\mathcal{I}_1 \models F$ iff $\mathcal{I}_2 \models F$

Truth, Validity and Satisfiability

Validity and satisfiability are defined as for propositional formulas

Truth, Validity and Satisfiability

Validity and satisfiability are defined as for propositional formulas

There is no difference between these two notions for closed formulas:

Lemma 3 For every interpretation \mathcal{I} and closed formula F the following statements are equivalent: (i) $\mathcal{I} \models F$; (ii) F is satisfiable; and (iii) F is valid.

Truth, Validity and Satisfiability

Validity and satisfiability are defined as for propositional formulas

There is no difference between these two notions for closed formulas:

Lemma 3 For every interpretation \mathcal{I} and closed formula F the following statements are equivalent: (i) $\mathcal{I} \models F$; (ii) F is satisfiable; and (iii) F is valid.

Satisfiability can be expressed through satisfiability/validity of closed formulas:

Lemma 4

Let F be a formula with free variables p_1, \ldots, p_n .

- *F* is satisfiable iff $\exists p_1 \cdots \exists p_n F$ is satisfiable/valid
- *F* is valid iff the formula $\forall p_1 \cdots \forall p_n F$ is satisfiable/valid

Substitutions for propositional formulas

Substitution: F_{ρ}^{G} : denotes the formula obtained from F by replacing all occurrences of variable ρ by G

Example:

$((p \lor s) \land (q \to p))_p^{(l \land s)} = ((l \land s) \lor s) \land (q \to (l \land s))$

Property: Applying any substitution to a valid formula results in a valid formula

Substitutions for propositional formulas

Substitution: F_{ρ}^{G} : denotes the formula obtained from *F* by replacing all occurrences of variable *p* by *G*

Example:

$$((\boldsymbol{p} \lor \boldsymbol{s}) \land (\boldsymbol{q} \to \boldsymbol{p}))_{\boldsymbol{p}}^{(l \land \boldsymbol{s})} = ((l \land \boldsymbol{s}) \lor \boldsymbol{s}) \land (\boldsymbol{q} \to (l \land \boldsymbol{s}))$$

Property: Applying any substitution to a valid formula results in a valid formula

Substitutions for propositional formulas

Substitution: F_{ρ}^{G} : denotes the formula obtained from *F* by replacing all occurrences of variable *p* by *G*

Example:

$$((\boldsymbol{p} \lor \boldsymbol{s}) \land (\boldsymbol{q} \to \boldsymbol{p}))_{\boldsymbol{p}}^{(l \land \boldsymbol{s})} = ((l \land \boldsymbol{s}) \lor \boldsymbol{s}) \land (\boldsymbol{q} \to (l \land \boldsymbol{s}))$$

Property: Applying any substitution to a valid formula results in a valid formula

Some problems ...

Some problems ...

Consider $\exists q (\neg p \leftrightarrow q)$

Some problems ...

Consider $\exists q (\neg p \leftrightarrow q)$

We cannot simply replace variables by formulas any more: $\exists (r \rightarrow r) (\neg p \leftrightarrow r \rightarrow r) ???$ Ill formed

Some problems ...

Consider $\exists q (\neg p \leftrightarrow q)$

We cannot simply replace variables by formulas any more: $\exists (r \rightarrow r) (\neg p \leftrightarrow r \rightarrow r) ???$ Ill formed

Free variables are parameters: we can only substitute for parameters. But a variable can have both free and bound occurrences in a formula, e.g.,

$$orall oldsymbol{p}\left((oldsymbol{p}
ightarrow q)ee
eg p
ight)\wedge (qee (q
ightarrow p))$$

Notation: $\exists \forall$ **:** any of \exists , \forall

Notation: $\exists \forall$: any of \exists , \forall

Renaming bound variables in $F[\exists \forall pG]$:

- 1. Take a *fresh* variable q (i.e., a variable not occurring in F)
- 2. Replace all free occurrences of p in G (not in F!) by q, obtaining G'
- 3. Consider $F[\exists \forall qG']$

Notation: $\exists \forall$: any of \exists , \forall

Renaming bound variables in $F[\exists pG]$:

- 1. Take a *fresh* variable q (i.e., a variable not occurring in F)
- 2. Replace all free occurrences of p in G (not in F!) by q, obtaining G'
- 3. Consider $F[\exists \forall qG']$

Example:

 $\exists r (\forall p ((p \to r) \land p)) \lor p \quad \text{rename } p \text{ to } q, \text{ obtaining}$ $\exists r (\forall q ((q \to r) \land q)) \lor p$

Notation: $\exists \forall$: any of \exists , \forall

Renaming bound variables in $F[\exists pG]$:

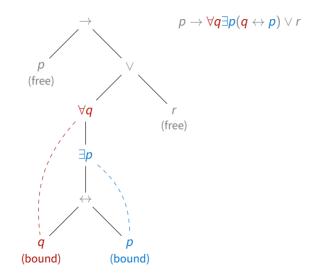
- 1. Take a *fresh* variable q (i.e., a variable not occurring in F)
- 2. Replace all free occurrences of p in G (not in F!) by q, obtaining G'
- 3. Consider $F[\exists \forall qG']$

Example:

 $\exists r (\forall p ((p \to r) \land p)) \lor p \quad \text{rename } p \text{ to } q, \text{ obtaining}$ $\exists r (\forall q ((q \to r) \land q)) \lor p$

Lemma 5 $F[\exists \forall pG] \equiv F[\exists \forall qG']$

Free and bound variables by example



Rectified formulas

Rectified formula F:

- 1. no variable appears both free and bound in *F*
- 2. for every variable p, there is at most one occurrence of quantifier $\exists \forall p \text{ in } F$

Any formula can be rectified by renaming its bound variables

We can use the usual notation F_p^G for substitutions into a rectified formula F, assuming p occurs only free in F

Rectified formulas

Rectified formula F:

- 1. no variable appears both free and bound in *F*
- 2. for every variable *p*, there is at most one occurrence of quantifier $\exists \forall p \text{ in } F$

Any formula can be rectified by renaming its bound variables

We can use the usual notation F_p^G for substitutions into a rectified formula F, assuming p occurs only free in F

Rectified formulas

Rectified formula F:

- 1. no variable appears both free and bound in *F*
- 2. for every variable *p*, there is at most one occurrence of quantifier $\exists \forall p \text{ in } F$

Any formula can be rectified by renaming its bound variables

We can use the usual notation F_p^G for substitutions into a rectified formula F, assuming p occurs only free in F

 $p \to \exists p (p \land \forall p (p \lor r \to \neg p)) \Rightarrow$ $p \to \exists p (p \land \forall p_1 (p_1 \lor r \to \neg p_1)) \Rightarrow$ $p \to \exists p_2 (p_2 \land \forall p_1 (p_1 \lor r \to \neg p_1))$

 $p \to \exists p (p \land \forall p (p \lor r \to \neg p)) \Rightarrow$ $p \to \exists p (p \land \forall p_1 (p_1 \lor r \to \neg p_1)) \Rightarrow$ $p \to \exists p_2 (p_2 \land \forall p_1 (p_1 \lor r \to \neg p_1))$

$$p \to \exists p (p \land \forall p (p \lor r \to \neg p)) \Rightarrow$$
$$p \to \exists p (p \land \forall p_1 (p_1 \lor r \to \neg p_1)) =$$

 $oldsymbol{
ho} o \exists oldsymbol{p}_2 \, (oldsymbol{
ho}_2 \wedge orall oldsymbol{p}_1 \, (oldsymbol{
ho}_1 ee r o
eg oldsymbol{
ho}_1))$

$$p \to \exists p (p \land \forall p (p \lor r \to \neg p)) \Rightarrow$$
$$p \to \exists p (p \land \forall p_1 (p_1 \lor r \to \neg p_1)) \Rightarrow$$
$$p \to \exists p_2 (p_2 \land \forall p_1 (p_1 \lor r \to \neg p_1))$$

$$p \to \exists p (p \land \forall p (p \lor r \to \neg p)) \Rightarrow$$
$$p \to \exists p (p \land \forall p_1 (p_1 \lor r \to \neg p_1)) \Rightarrow$$
$$p \to \exists p_2 (p_2 \land \forall p_1 (p_1 \lor r \to \neg p_1))$$

Renaming each bound variable to a fresh one preserves equivalence

 $\exists q \ (\neg p \leftrightarrow q)$ This formula is valid (whatever value p has, choose the opposite for q)

substitute *p* by *q*

 $\exists m{q} \left(
eg m{q} \leftrightarrow m{q}
ight)$ This formula is unsatisfiable!

 $\exists q \ (\neg p \leftrightarrow q)$ This formula is valid (whatever value p has, choose the opposite for q)

substitute *p* by *q*

 $\exists m{q} \left(
eg m{q} \leftrightarrow m{q}
ight)$ This formula is unsatisfiable!

 $\exists q (\neg p \leftrightarrow q)$ This formula is valid (whatever value p has, choose the opposite for q)

substitute *p* by *q*

$\exists q \ (\neg q \leftrightarrow q)$ This formula is unsatisfiable!

 $\exists q (\neg p \leftrightarrow q)$ This formula is valid (whatever value p has, choose the opposite for q)

substitute *p* by *q*

 $\exists q \ (\neg q \leftrightarrow q)$ This formula is unsatisfiable!

Suppose we want to substitute *G* for p in F[p]

Requirement: no free variables in G become bound in F_p^G

(In previous example, $(\exists q\,(
eg p\,\leftrightarrow\,q))^q_p$ does not satisfy this requirement)

Uniform solution: renaming of bound variables before application of substitution

Example: Since $\exists q (\neg p \leftrightarrow q) \equiv \exists r (\neg p \leftrightarrow r)$ we can use $(\exists r (\neg p \leftrightarrow r))_{i}^{g}$ instead of $(\exists q (\neg p \leftrightarrow q))_{i}^{g}$

Suppose we want to substitute *G* for p in F[p]

Requirement: no free variables in G become bound in F_p^G

(In previous example, $(\exists q \ (\neg p \leftrightarrow q))^q_p$ does not satisfy this requirement)

Uniform solution: renaming of bound variables before application of substitution

Example: Since $\exists q (\neg p \leftrightarrow q) \equiv \exists r (\neg p \leftrightarrow r)$ we can use $(\exists r (\neg p \leftrightarrow r))_{r}^{g}$ instead of $(\exists q (\neg p \leftrightarrow q))_{r}^{g}$

Suppose we want to substitute *G* for p in F[p]

Requirement: no free variables in G become bound in F_p^G

(In previous example, $(\exists q \ (\neg p \leftrightarrow q))_p^q$ does not satisfy this requirement)

Uniform solution: renaming of bound variables before application of substitution

Example:

Since $\exists q (\neg p \leftrightarrow q) \equiv \exists r (\neg p \leftrightarrow r)$ we can use $(\exists r (\neg p \leftrightarrow r))_p^q$ instead of $(\exists q (\neg p \leftrightarrow q))_p^q$

```
Suppose we want to substitute G for p in F[p]
```

```
Requirement: no free variables in G become bound in F_p^G
```

(In previous example, $(\exists q \, (\neg p \leftrightarrow q))^q_p$ does not satisfy this requirement)

Unifor	From now on, we always assume that:	tution
Examp Since∃ we can	 formulas are rectified all substitutions satisfy the requirement above 	

Equivalent replacement

```
Lemma 6
Let \mathcal{I} be an interpretation and \mathcal{I} \models F_1 \leftrightarrow F_2. Then
\mathcal{I} \models G[F_1] \leftrightarrow G[F_2].
```

Theorem 7 (Equivalent Replacement) Let $F_1 \equiv F_2$. Then $G[F_1] \equiv G[F_2]$.

Equivalent replacement

```
Lemma 6
Let \mathcal{I} be an interpretation and \mathcal{I} \models F_1 \leftrightarrow F_2. Then
\mathcal{I} \models G[F_1] \leftrightarrow G[F_2].
```

Theorem 7 (Equivalent Replacement) Let $F_1 \equiv F_2$. Then $G[F_1] \equiv G[F_2]$.

Theorem 8 The following holds for all QBFs F: 1. $\forall p_1 \forall p_2 F \equiv \forall p_2 \forall p_1 F$ 2. $\exists p_1 \exists p_2 F \equiv \exists p_2 \exists p_1 F$ 3. $\exists \forall p F \equiv F \text{ if } p \text{ does not occur free in } F$ 4. $\forall p F \equiv F_p^{\perp} \land F_p^{\top}$ 5. $\exists p F \equiv F_p^{\perp} \lor F_p^{\top}$

Note: In general, $\exists p_1 \forall p_2 F \neq \forall p_2 \exists p_1 F$! Example:

• $\forall p \exists q (p \leftrightarrow q) \equiv \top$

```
Theorem 8

The following holds for all QBFs F:

1. \forall p_1 \forall p_2 F \equiv \forall p_2 \forall p_1 F

2. \exists p_1 \exists p_2 F \equiv \exists p_2 \exists p_1 F

3. \exists \forall p F \equiv F \text{ if } p \text{ does not occur free in } F

4. \forall p F \equiv F_p^{\perp} \land F_p^{\top}

5. \exists p F \equiv F_p^{\perp} \lor F_p^{\top}
```

Note: In general, $\exists p_1 \forall p_2 F \neq \forall p_2 \exists p_1 F$!

Example: • $\forall p \exists a (p \leftrightarrow a) \Rightarrow$

Theorem 8
The following holds for all QBFs F:
1.
$$\forall p_1 \forall p_2 F \equiv \forall p_2 \forall p_1 F$$

2. $\exists p_1 \exists p_2 F \equiv \exists p_2 \exists p_1 F$
3. $\exists \forall p F \equiv F \text{ if } p \text{ does not occur free in } F$
4. $\forall p F \equiv F_p^{\perp} \land F_p^{\top}$
5. $\exists p F \equiv F_p^{\perp} \lor F_p^{\top}$

Note: In general, $\exists p_1 \forall p_2 F \neq \forall p_2 \exists p_1 F$! **Example:**

- $\forall p \exists q (p \leftrightarrow q) \equiv \top$
- $\exists q \, \forall p \, (p \leftrightarrow q) \equiv \bot$

Theorem 8
The following holds for all QBFs F:
1.
$$\forall p_1 \forall p_2 F \equiv \forall p_2 \forall p_1 F$$

2. $\exists p_1 \exists p_2 F \equiv \exists p_2 \exists p_1 F$
3. $\exists \forall p F \equiv F \text{ if } p \text{ does not occur free in } F$
4. $\forall p F \equiv F_p^{\perp} \land F_p^{\top}$
5. $\exists p F \equiv F_p^{\perp} \lor F_p^{\top}$

Note: In general, $\exists p_1 \forall p_2 F \neq \forall p_2 \exists p_1 F$! Example:

- $\forall p \exists q (p \leftrightarrow q) \equiv \top$
- $\exists q \forall p (p \leftrightarrow q) \equiv \bot$

Prenex form

Quantifier-free formula: no quantifiers (that is, propositional)

Prenex formula: formula of the form

with G quantifier-free

Outermost prefix of $\exists \forall_1 p_1 \cdots \exists \forall_n p_n G$: the longest subsequence $\exists \forall_1 p_1 \cdots \exists \forall_k p_k$ of $\exists \forall_1 p_1 \cdots \exists \forall_n p_n$ such that $\exists \forall_1 = \cdots = \exists \forall_k$

Quantifier-free formula: no quantifiers (that is, propositional)

Prenex formula: formula of the form

with G quantifier-free

Outermost prefix of $\exists \forall_1 p_1 \cdots \exists \forall_n p_n G$: the longest subsequence $\exists \forall_1 p_1 \cdots \exists \forall_k p_k$ of $\exists \forall_1 p_1 \cdots \exists \forall_n p_n$ such that $\exists \forall_1 = \cdots = \exists \forall_k$

Quantifier-free formula: no quantifiers (that is, propositional)

Prenex formula: formula of the form

with G quantifier-free

Outermost prefix of $\exists \forall_1 p_1 \cdots \exists \forall_n p_n G$: the longest subsequence $\exists \forall_1 p_1 \cdots \exists \forall_k p_k$ of $\exists \forall_1 p_1 \cdots \exists \forall_n p_n$ such that $\exists \forall_1 = \cdots = \exists \forall_k$

Quantifier-free formula: no quantifiers (that is, propositional)

Prenex formula: formula of the form

with G quantifier-free

Outermost prefix of $\exists \forall_1 p_1 \cdots \exists \forall_n p_n G$: the longest subsequence $\exists \forall_1 p_1 \cdots \exists \forall_k p_k$ of $\exists \forall_1 p_1 \cdots \exists \forall_n p_n$ such that $\exists \forall_1 = \cdots = \exists \forall_k$

Example

- outermost prefix of $\forall p \forall q \exists r(r \land p \rightarrow q)$: $\forall p \forall q$
- outermost prefix of $\exists p \forall q \exists r(r \land p \rightarrow q)$: $\exists p$

Quantifier-free formula: no quantifiers (that is, propositional)

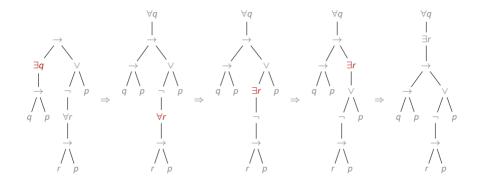
Prenex formula: formula of the form

with G quantifier-free

Outermost prefix of $\exists \forall_1 p_1 \cdots \exists \forall_n p_n G$: the longest subsequence $\exists \forall_1 p_1 \cdots \exists \forall_k p_k$ of $\exists \forall_1 p_1 \cdots \exists \forall_n p_n$ such that $\exists \forall_1 = \cdots = \exists \forall_k$

A formula *F* is a *prenex form* of a formula *G* if *F* is prenex and $F \equiv G$

Conversion to prenex form, Example I



Conversion to prenex form, Example I

Same conversion:

$$(\exists q (q \to p)) \to \neg \forall r (r \to p) \lor p \Rightarrow \\ \forall q ((q \to p) \to \neg \forall r (r \to p) \lor p) \Rightarrow \\ \forall q ((q \to p) \to \exists r \neg (r \to p) \lor p) \Rightarrow \\ \forall q ((q \to p) \to \exists r (\neg (r \to p) \lor p)) \Rightarrow \\ \forall q \exists r ((q \to p) \to \neg (r \to p) \lor p) \end{cases}$$

Prenexing rules

$$(\exists \forall p F_1) \land \dots \land F_n \Rightarrow \exists \forall p (F_1 \land \dots \land F_n)$$
$$(\exists \forall p F_1) \lor \dots \lor F_n \Rightarrow \exists \forall p (F_1 \lor \dots \lor F_n)$$
$$(\forall p F_1) \rightarrow F_2 \Rightarrow \exists p (F_1 \rightarrow F_2) \qquad F_1 \rightarrow (\exists p F_2) \Rightarrow \exists p (F_1 \rightarrow F_2)$$
$$(\exists p F_1) \rightarrow F_2 \Rightarrow \forall p (F_1 \rightarrow F_2) \qquad F_1 \rightarrow (\forall p F_2) \Rightarrow \forall p (F_1 \rightarrow F_2)$$
$$\neg \forall p F \Rightarrow \exists p \neg F \qquad \neg \exists p F \Rightarrow \forall p \neg F$$

Conversion to prenex form, Example II

$$\exists q (q \to p) \to \neg \forall r (r \to p) \lor p \quad \Rightarrow \\ \exists q (q \to p) \to \exists r \neg (r \to p) \lor p \quad \Rightarrow \\ \exists q (q \to p) \to \exists r (\neg (r \to p) \lor p) \quad \Rightarrow \\ \exists r (\exists q (q \to p) \to \neg (r \to p) \lor p) \quad \Rightarrow \\ \exists r \forall q ((q \to p) \to \neg (r \to p) \lor p) \end{cases}$$

Checking the satisfiability of QBFs

The algorithms for propositional satisfiability or validity can be adapted to QBF

We will see:

- Splitting
- DPLL

Recall:

1. $F(p_1, \ldots, p_n)$ is satisfiableiff $\exists p_1 \cdots \exists p_n F(p_1, \ldots, p_n)$ is satisfiable**2.** $F(p_1, \ldots, p_n)$ is validiff $\forall p_1 \cdots \forall p_n F(p_1, \ldots, p_n)$ is satisfiable

3. A closed QBF is either always true (valid) or always false (unsatisfiable)

The algorithms will check whether a closed formula is valid or unsatisfiable

Checking the satisfiability of QBFs

The algorithms for propositional satisfiability or validity can be adapted to QBF

We will see:

- Splitting
- DPLL

Recall:

- **1.** $F(p_1, \ldots, p_n)$ is satisfiable iff $\exists p_1 \cdots \exists p_n F(p_1, \ldots, p_n)$ is satisfiable
- **2.** $F(p_1, \ldots, p_n)$ is valid iff $\forall p_1 \cdots \forall p_n F(p_1, \ldots, p_n)$ is satisfiable
- 3. A closed QBF is either always true (valid) or always false (unsatisfiable)

The algorithms will check whether a closed formula is valid or unsatisfiable

Checking the satisfiability of QBFs

The algorithms for propositional satisfiability or validity can be adapted to QBF

We will see:

- Splitting
- DPLL

Recall:

- **1.** $F(p_1, \ldots, p_n)$ is satisfiable iff $\exists p_1 \cdots \exists p_n F(p_1, \ldots, p_n)$ is satisfiable
- **2.** $F(p_1, \ldots, p_n)$ is valid iff $\forall p_1 \cdots \forall p_n F(p_1, \ldots, p_n)$ is satisfiable
- 3. A closed QBF is either always true (valid) or always false (unsatisfiable)

The algorithms will check whether a closed formula is valid or unsatisfiable

Splitting: foundations

Lemma 9

- A closed formula $\forall p \ F$ evaluates to 1 iff both F_p^{\perp} and F_p^{\top} evaluate to 1.
- A closed formula $\exists p \ F$ evaluates to true iff either F_p^{\perp} or F_p^{\top} evaluates to 1.

Splitting

Simplification rules for \top :

 $\neg \top \Rightarrow \bot$ $\top \land F_1 \land \dots \land F_n \Rightarrow F_1 \land \dots \land F_n$ $\top \lor F_1 \lor \dots \lor F_n \Rightarrow \top$ $F \rightarrow \top \Rightarrow \top \qquad \top \rightarrow F \Rightarrow F$ $F \leftrightarrow \top \Rightarrow F \qquad \top \leftrightarrow F \Rightarrow F$

Simplification rules for \perp :

 $\neg \bot \Rightarrow \top$ $\bot \land F_1 \land \dots \land F_n \Rightarrow \bot$ $\bot \lor F_1 \lor \dots \lor F_n \Rightarrow F_1 \lor \dots \lor F_n$ $F \to \bot \Rightarrow \neg F \qquad \bot \to F \Rightarrow \top$ $F \leftrightarrow \bot \Rightarrow \neg F \qquad \bot \leftrightarrow F \Rightarrow \neg F$

Splitting

Simplification rules for \top : $\neg \top \Rightarrow \bot$ $\top \land F_1 \land \cdots \land F_n \Rightarrow F_1 \land \cdots \land F_n$ $\top \lor F_1 \lor \cdots \lor F_n \Rightarrow \top$ $F \rightarrow \top \Rightarrow \top \qquad \top \rightarrow F \Rightarrow F$ $F \leftrightarrow \top \Rightarrow F \qquad \top \leftrightarrow F \Rightarrow F$ $\forall p \top \Rightarrow \top$ $\exists p \top \Rightarrow \top$

Simplification rules for \perp :

 $\neg \bot \Rightarrow \top$ $\bot \land F_1 \land \dots \land F_n \Rightarrow \bot$ $\bot \lor F_1 \lor \dots \lor F_n \Rightarrow F_1 \lor \dots \lor F_n$ $F \to \bot \Rightarrow \neg F \qquad \bot \to F \Rightarrow \top$ $F \leftrightarrow \bot \Rightarrow \neg F \qquad \bot \leftrightarrow F \Rightarrow \neg F$ $\forall p \bot \Rightarrow \bot$ $\exists p \bot \Rightarrow \bot$

 $\forall p \exists q (p \leftrightarrow q)$

$$\forall p \exists q (p \leftrightarrow q)$$

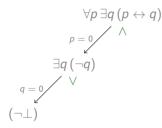
$$\uparrow p = 0 \qquad \land$$

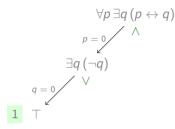
$$\exists q (\bot \leftrightarrow q)$$

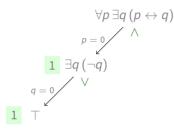
$$\forall p \exists q (p \leftrightarrow q)$$

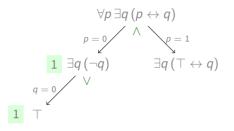
$$p = 0 \land$$

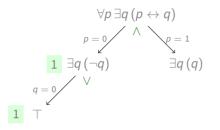
$$\exists q (\neg q)$$

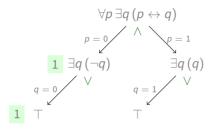


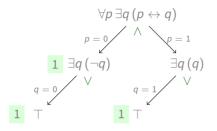


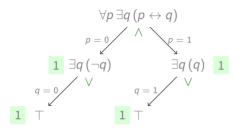


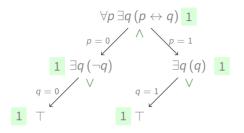


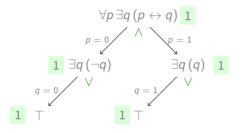




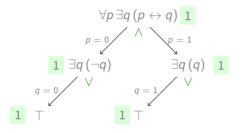




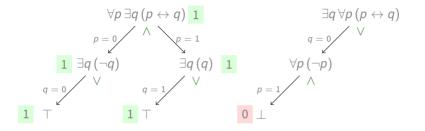


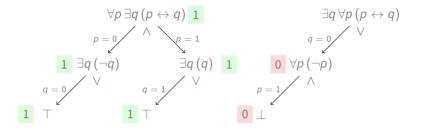


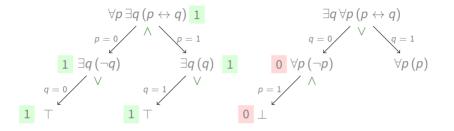
 $\exists q \forall p (p \leftrightarrow q)$

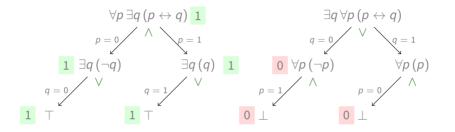


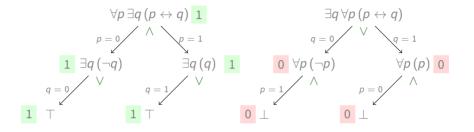
$$\exists q \forall p (p \leftrightarrow q)$$
$$q = 0 \qquad \lor \qquad \lor$$
$$p (\neg p)$$

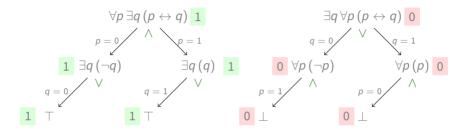


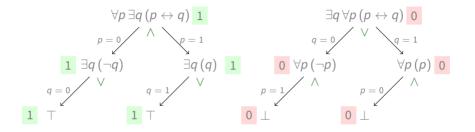












To minimize search, the selection of variable values is best seen as a two-player game:

- by selecting a value for $\exists q$ one is trying to make the formula true
- by selecting a value for $\forall p$ one is trying to make the formula false

Splitting algorithm

Notation: if $\boldsymbol{p} = (p_1, \dots, p_k)$ then $\exists \forall \boldsymbol{p} F$ denotes $\exists \forall p_1 \cdots \exists \forall p_k F$

Splitting algorithm

```
procedure splitting(F)
input: closed rectified prenex formula F
output: 0 or 1
parameters: function select variable value // selects a variable from the outermost prefix
begin
                                                    // of F as well as a Boolean value for it
F := simplify(F) // apply extended simplification rules to completion
if F = \bot then return 0
if F = T then return 1
// else F has the form \exists \forall p F' where p is F's outermost prefix
 (p, b) := select_variable_value(F)
 Let G be obtained from F by deleting p from p
 if b = 0 then A := \bot: B := \top else A := \top: B := \bot
b := splitting(G_p^A)
case (b, \exists \forall) of
  (0, \forall) \Rightarrow return 0
  (0, \exists) \Rightarrow return splitting(G_p^B)
  (1, \forall) \Rightarrow return splitting(G_{\rho}^{B})
  (1,\exists) \Rightarrow return 1
end
```

For more efficient algorithms we need QBFs to be in a convenient normal form

For more efficient algorithms we need QBFs to be in a convenient normal form

Our next aim is to modify CNF and DPLL to deal with quantified Boolean formulas

For more efficient algorithms we need QBFs to be in a convenient normal form

Our next aim is to modify CNF and DPLL to deal with quantified Boolean formulas

A quantified Boolean formula F is in Conjunctive Normal Form (CNF), if

- it is either \bot , or \top , or
- it has the form

$$\exists \forall_1 p_1 \cdots \exists \forall_n p_n \left(C_1 \wedge \cdots \wedge C_m \right)$$

where C_1, \ldots, C_m are clauses

For more efficient algorithms we need QBFs to be in a convenient normal form

Our next aim is to modify CNF and DPLL to deal with quantified Boolean formulas

A quantified Boolean formula F is in Conjunctive Normal Form (CNF), if

- it is either \bot , or \top , or
- it has the form

$$\exists \forall_1 p_1 \cdots \exists \forall_n p_n \left(C_1 \wedge \cdots \wedge C_m \right)$$

where C_1, \ldots, C_m are clauses

Example:

$$\forall p \exists q \exists s ((\neg p \lor s \lor q) \land (s \lor \neg q) \land \neg s)$$

CNF rules

Prenexing rules

+ propositional CNF rules:

$$F \leftrightarrow G \implies (\neg F \vee G) \land (\neg G \vee F)$$

$$F \rightarrow G \implies \neg F \vee G$$

$$\neg (F \land G) \implies \neg F \lor \neg G$$

$$\neg (F \lor G) \implies \neg F \land \neg G$$

$$\neg \neg F \implies F$$

$$(F_1 \land \dots \land F_m) \lor G_1 \lor \dots \lor G_n \implies (F_1 \lor G_1 \lor \dots \lor G_n) \land$$

$$\dots$$

$$(F_m \lor G_1 \lor \dots \lor G_n)$$

DPLL for quantified Boolean formulas

Input:

Q: quantifier sequence $\exists \forall_1 \boldsymbol{p}_1 \cdots \exists \forall_n \boldsymbol{p}_n$

S: set of clauses with variables from p_1, \ldots, p_n

Main components:

Unit propagation Splitting on literals

Q: quantifier sequence *S*: current clause set

Propositional formulas:

For each unit clause *L* in S

- 1. remove all clauses containing literal *L* from S
- 2. remove every literal \overline{L} from remaining clauses

Quantified Boolean formulas:

For each unit clause *L* in **S** of the form p or $\neg p$

- If Q does not contain p or contains ∃p,
 - 1. remove all clauses containing literal *L* from **S**
 - 2. remove every literal \overline{L} from remaining clauses
- otherwise (Q contains ∀p), add □ to S

Q: quantifier sequence *S*: current clause set

Propositional formulas:

For each unit clause *L* in S

- 1. remove all clauses containing literal *L* from S
- 2. remove every literal \overline{L} from remaining clauses

Quantified Boolean formulas:

For each unit clause *L* in **S** of the form p or $\neg p$

- If Q does not contain p or contains ∃p,
 - 1. remove all clauses containing literal L from S
 - 2. remove every literal \overline{L} from remaining clauses
- otherwise (Q contains ∀p), add □ to S

Q: quantifier sequence **S**: current clause set

Propositional formulas:

For each unit clause *L* in S

- 1. remove all clauses containing literal *L* from S
- 2. remove every literal \overline{L} from remaining clauses

Quantified Boolean formulas:

For each unit clause *L* in **S** of the form p or $\neg p$

- If Q does not contain p or contains $\exists p$,
 - 1. remove all clauses containing literal *L* from **S**
 - 2. remove every literal \overline{L} from remaining clauses

otherwise (Q contains ∀p), add □ to S

Q: quantifier sequence **S**: current clause set

Propositional formulas:

For each unit clause *L* in S

- 1. remove all clauses containing literal *L* from S
- 2. remove every literal \overline{L} from remaining clauses

Quantified Boolean formulas:

For each unit clause *L* in **S** of the form p or $\neg p$

- If Q does not contain p or contains $\exists p$,
 - 1. remove all clauses containing literal *L* from **S**
 - 2. remove every literal \overline{L} from remaining clauses
- otherwise (Q contains $\forall p$), add \Box to **S**

Why do we add \Box to **S** when Q is $\forall p \exists \forall_1 p_1 \cdots \exists \forall_m p_m$ and **S** is $\{p, C_1, \ldots, C_n\}$?

Why do we add
$$\Box$$
 to *S* when *Q* is $\forall p \exists \forall_1 p_1 \cdots \exists \forall_m p_m$ and *S* is $\{p, C_1, \ldots, C_n\}$?

Because

1. The intended input formula is

 $G = \forall \boldsymbol{p} \exists \forall_1 q_1 \cdots \exists \forall_m q_m (\boldsymbol{p} \land C_1 \land \cdots \land C_m)$

2. $G \equiv \exists \forall_1 q_1 \cdots \exists \forall_m q_m ((p \land C_1 \land \cdots \land C_m)_p^{\perp} \land (p \land C_1 \land \cdots \land C_m)_p^{\top})$

Why do we add
$$\Box$$
 to *S* when *Q* is $\forall p \exists \forall_1 p_1 \cdots \exists \forall_m p_m$ and *S* is $\{p, C_1, \ldots, C_n\}$?

Because

1. The intended input formula is

 $G = \forall p \exists \forall_1 q_1 \cdots \exists \forall_m q_m (p \land C_1 \land \cdots \land C_m)$ 2. $G \equiv \exists \forall_1 q_1 \cdots \exists \forall_m q_m ((p \land C_1 \land \cdots \land C_m)_p^{\perp} \land (p \land C_1 \land \cdots \land C_m)_p^{\top})$

Why do we add
$$\Box$$
 to *S* when *Q* is $\forall p \exists \forall_1 p_1 \cdots \exists \forall_m p_m$ and *S* is $\{p, C_1, \dots, C_n\}$?

Because

1. The intended input formula is

$$G = \forall \mathbf{p} \exists \forall_1 q_1 \cdots \exists \forall_m q_m (p \land C_1 \land \cdots \land C_m)$$

2.
$$G \equiv \exists \forall_1 q_1 \cdots \exists \forall_m q_m ((p \land C_1 \land \cdots \land C_m)_{\mathbf{p}}^{\perp} \land (p \land C_1 \land \cdots \land C_m)_{\mathbf{p}}^{\top})$$
$$= \exists \forall_1 q_1 \cdots \exists \forall_m q_m (\bot \land (C_1 \land \cdots \land C_m)_{\mathbf{p}}^{\perp} \land (p \land C_1 \land \cdots \land C_m)_{\mathbf{p}}^{\top})$$

Why do we add
$$\Box$$
 to *S* when *Q* is $\forall p \exists \forall_1 p_1 \cdots \exists \forall_m p_m$ and *S* is $\{p, C_1, \dots, C_n\}$?

Because

1. The intended input formula is

$$G = \forall p \exists \forall_1 q_1 \cdots \exists \forall_m q_m (p \land C_1 \land \cdots \land C_m)$$

2.
$$G \equiv \exists \forall_1 q_1 \cdots \exists \forall_m q_m ((p \land C_1 \land \cdots \land C_m)_p^{\perp} \land (p \land C_1 \land \cdots \land C_m)_p^{\top})$$

$$= \exists \forall_1 q_1 \cdots \exists \forall_m q_m (\bot \land (C_1 \land \cdots \land C_m)_p^{\perp} \land (p \land C_1 \land \cdots \land C_m)_p^{\top})$$

$$\equiv \exists \forall_1 q_1 \cdots \exists \forall_m q_m \bot$$

$$\equiv \bot$$

Why do we add
$$\Box$$
 to *S* when *Q* is $\forall p \exists \forall_1 p_1 \cdots \exists \forall_m p_m$ and *S* is $\{p, C_1, \ldots, C_n\}$?

Alternatively, using the game metaphor, because the \forall -player wants to falsify the formula

Why do we add \Box to S when Q is $\forall p \exists \forall_1 p_1 \cdots \exists \forall_m p_m$ and S is $\{p, C_1, \ldots, C_n\}$?

Alternatively, using the game metaphor, because

the ∀-player wants to falsify the formula

Winning move for the \forall -player:

select the value for p that falsifies the unit clause p , and hence the whole CNF

Why do we add \Box to S when Q is $\forall p \exists \forall_1 p_1 \cdots \exists \forall_m p_m$ and S is $\{p, C_1, \dots, C_n\}$?

Alternatively, using the game metaphor, because

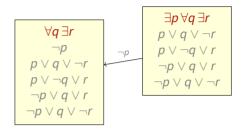
the ∀-player wants to falsify the formula

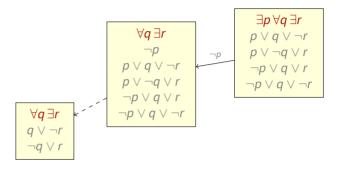
Winning move for the \forall -player:

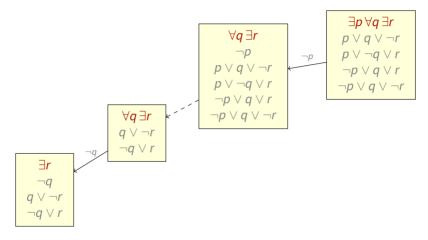
select the value for p that falsifies the unit clause p , and hence the whole CNF

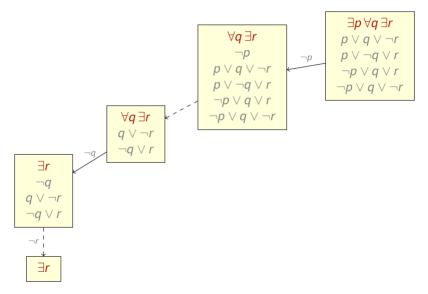
(argument is similar for $\{\neg p, C_1, \ldots, C_n\}$)

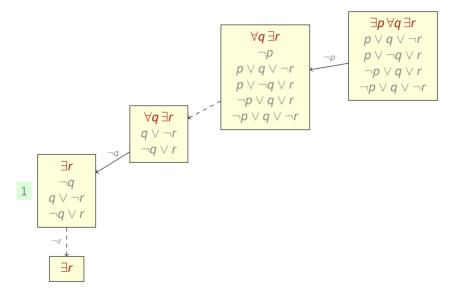
 $\exists p \, \forall q \, \exists r$ $p \lor q \lor \neg r$ $p \lor \neg q \lor r$ $\neg p \lor q \lor r$ $\neg p \lor q \lor r$

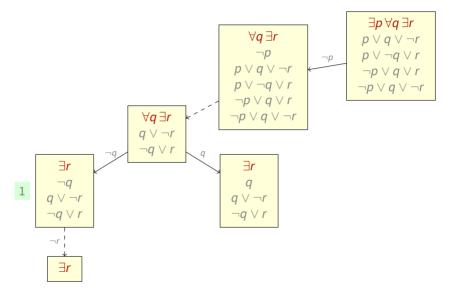


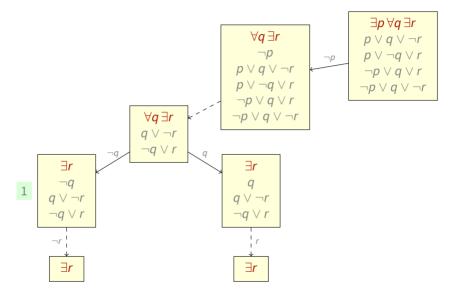


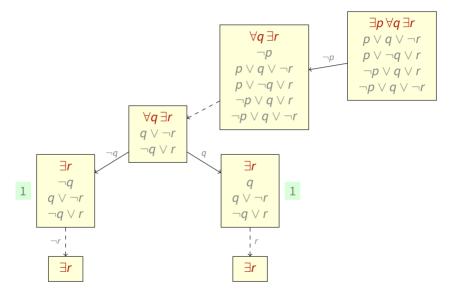


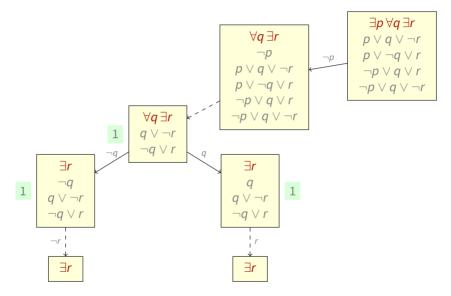


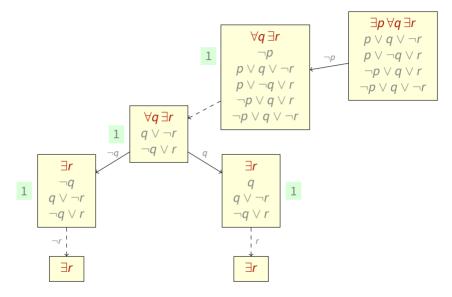


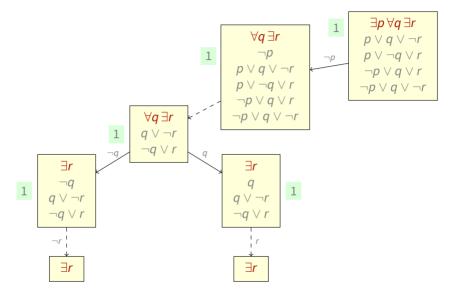












```
procedure DPLL(O, S)
input: quantifier sequence Q = \exists \forall_1 \boldsymbol{p}_1 \cdots \exists \forall_n \boldsymbol{p}_n,
         clause set S with vars from O
output: 0 or 1
parameters: function select_variable_value
begin
 \mathbf{S} := unit\_propagate(Q, S)
 if S is empty then return 1
 if S contains \Box then return 0
 (p, b) := select_variable_value(p_1, S)
 Let Q' be obtained from Q by deleting \exists \forall_1 p from \exists \forall_1 p_1
 if b = 0 then L := \neg p
            else L := p
 case (DPLL(Q', S \cup \{L\}), \exists \forall) of
  (0, \forall) \Rightarrow return 0
  (0, \exists) \Rightarrow return DPLL(Q', S \cup \{\overline{L}\})
  (1, \forall) \Rightarrow return DPLL(Q', S \cup \{\overline{L}\})
  (1,\exists) \Rightarrow return 1
```

$$\exists p \exists q \forall r \exists s ((p \lor \neg r) \land (\neg q \lor r) \land (\neg p \lor q \lor s) \land (\neg p \lor q \lor r \lor \neg s))$$

- We can treat ¬r in p ∨ ¬r as 0 without loss of generality
- We can apply unit propagation
- We can treat r as 0 everywhere without loss of generality
- We can apply unit propagation with ¬q
- We can apply unit propagation with s

$$\exists p \exists q \forall r \exists s ((p \lor \neg r) \land (\neg q \lor r) \land (\neg p \lor q \lor s) \land (\neg p \lor q \lor r \lor \neg s))$$

• We can treat $\neg r$ in $p \lor \neg r$ as 0 without loss of generality

- We can apply unit propagation
- We can treat r as 0 everywhere without loss of generality
- We can apply unit propagation with ¬q
- We can apply unit propagation with s

$$\exists p \exists q \forall r \exists s ((p \lor \neg r) \land (\neg q \lor r) \land (\neg p \lor q \lor s) \land (\neg p \lor q \lor r \lor \neg s)) \Rightarrow \\ \exists p \exists q \forall r \exists s (p \land (\neg q \lor r) \land (\neg p \lor q \lor s) \land (\neg p \lor q \lor r \lor \neg s))$$

• We can treat $\neg r$ in $p \lor \neg r$ as 0 without loss of generality

- We can apply unit propagation
- We can treat r as 0 everywhere without loss of generality
- We can apply unit propagation with $\neg q$
- We can apply unit propagation with s

 $\exists p \exists q \forall r \exists s ((p \lor \neg r) \land (\neg q \lor r) \land (\neg p \lor q \lor s) \land (\neg p \lor q \lor r \lor \neg s)) \Rightarrow \exists p \exists q \forall r \exists s (p \land (\neg q \lor r) \land (\neg p \lor q \lor s) \land (\neg p \lor q \lor r \lor \neg s))$

- We can treat $\neg r$ in $p \lor \neg r$ as 0 without loss of generality
- We can apply unit propagation
- We can treat r as 0 everywhere without loss of generality
- We can apply unit propagation with ¬q
- We can apply unit propagation with s

$$\exists p \exists q \forall r \exists s ((p \lor \neg r) \land (\neg q \lor r) \land (\neg p \lor q \lor s) \land (\neg p \lor q \lor r \lor \neg s)) \Rightarrow \\ \exists p \exists q \forall r \exists s (p \land (\neg q \lor r) \land (\neg p \lor q \lor s) \land (\neg p \lor q \lor r \lor \neg s)) \Rightarrow \\ \exists q \forall r \exists s ((\neg q \lor r) \land (q \lor s) \land (q \lor r \lor \neg s))$$

- We can treat $\neg r$ in $p \lor \neg r$ as 0 without loss of generality
- We can apply unit propagation
- We can treat r as 0 everywhere without loss of generality
- We can apply unit propagation with ¬q
- We can apply unit propagation with s

$$\exists p \exists q \forall r \exists s ((p \lor \neg r) \land (\neg q \lor r) \land (\neg p \lor q \lor s) \land (\neg p \lor q \lor r \lor \neg s)) \Rightarrow \\ \exists p \exists q \forall r \exists s (p \land (\neg q \lor r) \land (\neg p \lor q \lor s) \land (\neg p \lor q \lor r \lor \neg s)) \Rightarrow \\ \exists q \forall r \exists s ((\neg q \lor r) \land (q \lor s) \land (q \lor r \lor \neg s))$$

- We can treat $\neg r$ in $p \lor \neg r$ as 0 without loss of generality
- We can apply unit propagation
- We can treat r as 0 everywhere without loss of generality
- We can apply unit propagation with ¬q
- We can apply unit propagation with s

$$\exists p \exists q \forall r \exists s ((p \lor \neg r) \land (\neg q \lor r) \land (\neg p \lor q \lor s) \land (\neg p \lor q \lor r \lor \neg s)) \Rightarrow \exists p \exists q \forall r \exists s (p \land (\neg q \lor r) \land (\neg p \lor q \lor s) \land (\neg p \lor q \lor r \lor \neg s)) \Rightarrow \exists q \forall r \exists s ((\neg q \lor r) \land (q \lor s) \land (q \lor r \lor \neg s)) \Rightarrow \exists q \exists s (\neg q \land (q \lor s) \land (q \lor \neg s))$$

- We can treat $\neg r$ in $p \lor \neg r$ as 0 without loss of generality
- We can apply unit propagation
- We can treat r as 0 everywhere without loss of generality
- We can apply unit propagation with ¬q
- We can apply unit propagation with s

$$\exists p \exists q \forall r \exists s ((p \lor \neg r) \land (\neg q \lor r) \land (\neg p \lor q \lor s) \land (\neg p \lor q \lor r \lor \neg s)) \Rightarrow \exists p \exists q \forall r \exists s (p \land (\neg q \lor r) \land (\neg p \lor q \lor s) \land (\neg p \lor q \lor r \lor \neg s)) \Rightarrow \exists q \forall r \exists s ((\neg q \lor r) \land (q \lor s) \land (q \lor r \lor \neg s)) \Rightarrow \exists q \exists s (\neg q \land (q \lor s) \land (q \lor \neg s))$$

- We can treat $\neg r$ in $p \lor \neg r$ as 0 without loss of generality
- We can apply unit propagation
- We can treat r as 0 everywhere without loss of generality
- We can apply unit propagation with $\neg q$
- We can apply unit propagation with s

$$\exists p \exists q \forall r \exists s ((p \lor \neg r) \land (\neg q \lor r) \land (\neg p \lor q \lor s) \land (\neg p \lor q \lor r \lor \neg s)) \Rightarrow \\ \exists p \exists q \forall r \exists s (p \land (\neg q \lor r) \land (\neg p \lor q \lor s) \land (\neg p \lor q \lor r \lor \neg s)) \Rightarrow \\ \exists q \forall r \exists s ((\neg q \lor r) \land (q \lor s) \land (q \lor r \lor \neg s)) \Rightarrow \\ \exists q \exists s (\neg q \land (q \lor s) \land (q \lor \neg s)) \Rightarrow \\ \exists s (s \land \neg s)$$

- We can treat $\neg r$ in $p \lor \neg r$ as 0 without loss of generality
- We can apply unit propagation
- We can treat r as 0 everywhere without loss of generality
- We can apply unit propagation with $\neg q$
- We can apply unit propagation with s

$$\exists p \exists q \forall r \exists s ((p \lor \neg r) \land (\neg q \lor r) \land (\neg p \lor q \lor s) \land (\neg p \lor q \lor r \lor \neg s)) \Rightarrow \\ \exists p \exists q \forall r \exists s (p \land (\neg q \lor r) \land (\neg p \lor q \lor s) \land (\neg p \lor q \lor r \lor \neg s)) \Rightarrow \\ \exists q \forall r \exists s ((\neg q \lor r) \land (q \lor s) \land (q \lor r \lor \neg s)) \Rightarrow \\ \exists q \exists s (\neg q \land (q \lor s) \land (q \lor \neg s)) \Rightarrow \\ \exists s (s \land \neg s) \Rightarrow \\ \Box$$

- We can treat $\neg r$ in $p \lor \neg r$ as 0 without loss of generality
- We can apply unit propagation
- We can treat r as 0 everywhere without loss of generality
- We can apply unit propagation with $\neg q$
- We can apply unit propagation with *s*

Q: quantifier sequence S: current clause set L: literal of the form p or $\neg p$

Suppose *L* is *pure* in *S* (i.e., \overline{L} does not occur in *S*). Then:

• If *p* is existentially quantified in *Q*, we can remove all clauses containing *L*

Q: quantifier sequence S: current clause set L: literal of the form p or $\neg p$

Suppose *L* is *pure* in *S* (i.e., \overline{L} does not occur in *S*). Then:

- If *p* is existentially quantified in *Q*, we can remove all clauses containing *L*
- if *p* is universally quantified in *Q*, we can remove *L* from all clauses

Q: quantifier sequence S: current clause set L: literal of the form p or $\neg p$

Suppose *L* is *pure* in *S* (i.e., \overline{L} does not occur in *S*). Then:

- If *p* is existentially quantified in *Q*, we can remove all clauses containing *L*
- if *p* is universally quantified in *Q*, we can remove *L* from all clauses

Why?

Q: quantifier sequence S: current clause set L: literal of the form p or $\neg p$

Suppose *L* is *pure* in *S* (i.e., \overline{L} does not occur in *S*). Then:

- If *p* is existentially quantified in *Q*, we can remove all clauses containing *L*
- if *p* is universally quantified in *Q*, we can remove *L* from all clauses

Why?

• The \exists -player will make \bot true (satisfying all clauses containing \bot)

Q: quantifier sequence S: current clause set L: literal of the form p or ¬p

Suppose *L* is *pure* in *S* (i.e., \overline{L} does not occur in *S*). Then:

- If *p* is existentially quantified in *Q*, we can remove all clauses containing *L*
- if *p* is universally quantified in *Q*, we can remove *L* from all clauses

Why?

- The \exists -player will make \bot true (satisfying all clauses containing \bot)
- The ∀-player will make *L* false (so it can be removed from all clauses containing *L*)

Q: quantifier sequence S: clause set p, q: variables

- *p* is *existential in Q* if *Q* contains $\exists p$
- q is *universal in* Q if Q contains $\forall q$

Q: quantifier sequence S: clause set p, q: variables

- *p* is *existential in Q* if *Q* contains $\exists p$
- q is *universal in* Q if Q contains $\forall q$
- *p* is *quantified before* a variable *q* if *p* occurs before *q* in *Q*

Q: quantifier sequence S: clause set p, q: variables

- *p* is *existential in Q* if *Q* contains $\exists p$
- q is *universal in* Q if Q contains $\forall q$
- *p* is *quantified before* a variable *q* if *p* occurs before *q* in *Q*

Example: In $Q = \forall q \exists p \forall r$

q is quantified before both p and r; and p is quantified before r

Q: quantifier sequence **S**: clause set *p*, *q*: variables

- *p* is *existential in Q* if *Q* contains $\exists p$
- q is *universal in* Q if Q contains $\forall q$
- *p* is *quantified before* a variable *q* if *p* occurs before *q* in *Q*

Theorem 10

Suppose that

- 1. C is a clause in **S**;
- 2. a variable q in a literal L of C is universal in Q;

3. all existential variables of Q in C are quantified before q. Then deleting L from C does not change the truth value of Q S.

Intuition behind Theorem 10

Consider a clause C from S of the form

 $L_1 \vee \cdots \vee L_n \vee (\neg)q_1 \vee \cdots \vee (\neg)q_m$

where all existential variables of Q in C are quantified before q_1, \ldots, q_m

- If at least one of L₁,..., L_n is true, then C is true regardless of the truth value of of (¬)q₁,..., (¬)q_m
- If all of L₁,..., L_n are false, the ∀-player will make all (¬)q₁,..., (¬)q_m false and win the game

Intuition behind Theorem 10

Consider a clause C from S of the form

 $L_1 \lor \cdots \lor L_n \lor (\neg)q_1 \lor \cdots \lor (\neg)q_m$

where all existential variables of Q in C are quantified before q_1, \ldots, q_m

- If at least one of L₁,..., L_n is true, then C is true regardless of the truth value of of (¬)q₁,..., (¬)q_m
- If all of L₁,..., L_n are false, the ∀-player will make all (¬)q₁,..., (¬)q_m false and win the game

Intuition behind Theorem 10

Consider a clause C from S of the form

 $L_1 \lor \cdots \lor L_n \lor (\neg)q_1 \lor \cdots \lor (\neg)q_m$

where all existential variables of Q in C are quantified before q_1, \ldots, q_m

- If at least one of L₁,..., L_n is true, then C is true regardless of the truth value of of (¬)q₁,..., (¬)q_m
- If all of L₁,..., L_n are false, the ∀-player will make all (¬)q₁,..., (¬)q_m false and win the game

Intuition behind Theorem 10

Consider a clause C from S of the form

 $L_1 \lor \cdots \lor L_n \lor (\neg)q_1 \lor \cdots \lor (\neg)q_m$

where all existential variables of Q in C are quantified before q_1, \ldots, q_m

- If at least one of L₁,..., L_n is true, then C is true regardless of the truth value of of (¬)q₁,..., (¬)q_m
- If all of L₁,..., L_n are false,
 the ∀-player will make all (¬)q₁,..., (¬)q_m false and win the game

Intuition behind Theorem 10

Consider a clause C from S of the form

 $L_1 \lor \cdots \lor L_n \lor (\neg)q_1 \lor \cdots \lor (\neg)q_m$

where all existential variables of Q in C are quantified before q_1, \ldots, q_m

- If at least one of L₁,..., L_n is true, then C is true regardless of the truth value of of (¬)q₁,..., (¬)q_m
- If all of L₁,..., L_n are false, the ∀-player will make all (¬)q₁,..., (¬)q_m false and win the game
 In either case, the deletion of (¬)q₁,..., (¬)q_m will not change the final outcome

$$\exists p \exists q \forall r \exists s ((p \lor \neg r) \land (\neg q \lor r) \land (\neg p \lor q \lor s) \land (\neg p \lor q \lor r \lor \neg s))$$

$$\exists p \exists q \forall r \exists s ((p \lor \neg r) \land (\neg q \lor r) \land (\neg p \lor q \lor s) \land (\neg p \lor q \lor r \lor \neg s))$$

• Apply universal literal deletion to $p \vee \neg r$

$$\exists p \exists q \forall r \exists s ((p \lor \neg r) \land (\neg q \lor r) \land (\neg p \lor q \lor s) \land (\neg p \lor q \lor r \lor \neg s)) \Rightarrow \\ \exists p \exists q \forall r \exists s (p \land (\neg q \lor r) \land (\neg p \lor q \lor s) \land (\neg p \lor q \lor r \lor \neg s))$$

• Apply universal literal deletion to $p \vee \neg r$

$$\exists p \exists q \forall r \exists s ((p \lor \neg r) \land (\neg q \lor r) \land (\neg p \lor q \lor s) \land (\neg p \lor q \lor r \lor \neg s)) \Rightarrow \\ \exists p \exists q \forall r \exists s (p \land (\neg q \lor r) \land (\neg p \lor q \lor s) \land (\neg p \lor q \lor r \lor \neg s))$$

- Apply universal literal deletion to $p \vee \neg r$
- Apply unit propagation

$$\exists p \exists q \forall r \exists s ((p \lor \neg r) \land (\neg q \lor r) \land (\neg p \lor q \lor s) \land (\neg p \lor q \lor r \lor \neg s)) \Rightarrow \\ \exists p \exists q \forall r \exists s (p \land (\neg q \lor r) \land (\neg p \lor q \lor s) \land (\neg p \lor q \lor r \lor \neg s)) \Rightarrow \\ \exists q \forall r \exists s ((\neg q \lor r) \land (q \lor s) \land (q \lor r \lor \neg s))$$

- Apply universal literal deletion to $p \vee \neg r$
- Apply unit propagation

$$\exists p \exists q \forall r \exists s ((p \lor \neg r) \land (\neg q \lor r) \land (\neg p \lor q \lor s) \land (\neg p \lor q \lor r \lor \neg s)) \Rightarrow \\ \exists p \exists q \forall r \exists s (p \land (\neg q \lor r) \land (\neg p \lor q \lor s) \land (\neg p \lor q \lor r \lor \neg s)) \Rightarrow \\ \exists q \forall r \exists s ((\neg q \lor r) \land (q \lor s) \land (q \lor r \lor \neg s))$$

- Apply universal literal deletion to $p \vee \neg r$
- Apply unit propagation
- Apply the *pure literal rule* to *r*

$$\exists p \exists q \forall r \exists s ((p \lor \neg r) \land (\neg q \lor r) \land (\neg p \lor q \lor s) \land (\neg p \lor q \lor r \lor \neg s)) \Rightarrow \exists p \exists q \forall r \exists s (p \land (\neg q \lor r) \land (\neg p \lor q \lor s) \land (\neg p \lor q \lor r \lor \neg s)) \Rightarrow \exists q \forall r \exists s ((\neg q \lor r) \land (q \lor s) \land (q \lor r \lor \neg s)) \Rightarrow \exists q \exists s (\neg q \land (q \lor s) \land (q \lor \neg s))$$

- Apply universal literal deletion to $p \vee \neg r$
- Apply unit propagation
- Apply the *pure literal rule* to *r*

$$\exists p \exists q \forall r \exists s ((p \lor \neg r) \land (\neg q \lor r) \land (\neg p \lor q \lor s) \land (\neg p \lor q \lor r \lor \neg s)) \Rightarrow \exists p \exists q \forall r \exists s (p \land (\neg q \lor r) \land (\neg p \lor q \lor s) \land (\neg p \lor q \lor r \lor \neg s)) \Rightarrow \exists q \forall r \exists s ((\neg q \lor r) \land (q \lor s) \land (q \lor r \lor \neg s)) \Rightarrow \exists q \exists s (\neg q \land (q \lor s) \land (q \lor \neg s))$$

- Apply universal literal deletion to $p \vee \neg r$
- Apply unit propagation
- Apply the *pure literal rule* to *r*
- Apply unit propagation

$$\exists p \exists q \forall r \exists s ((p \lor \neg r) \land (\neg q \lor r) \land (\neg p \lor q \lor s) \land (\neg p \lor q \lor r \lor \neg s)) \Rightarrow \\ \exists p \exists q \forall r \exists s (p \land (\neg q \lor r) \land (\neg p \lor q \lor s) \land (\neg p \lor q \lor r \lor \neg s)) \Rightarrow \\ \exists q \forall r \exists s ((\neg q \lor r) \land (q \lor s) \land (q \lor r \lor \neg s)) \Rightarrow \\ \exists q \exists s (\neg q \land (q \lor s) \land (q \lor \neg s)) \Rightarrow \\ \exists s (s \land \neg s)$$

- Apply universal literal deletion to $p \vee \neg r$
- Apply unit propagation
- Apply the *pure literal rule* to *r*
- Apply unit propagation

$$\exists p \exists q \forall r \exists s ((p \lor \neg r) \land (\neg q \lor r) \land (\neg p \lor q \lor s) \land (\neg p \lor q \lor r \lor \neg s)) \Rightarrow \\ \exists p \exists q \forall r \exists s (p \land (\neg q \lor r) \land (\neg p \lor q \lor s) \land (\neg p \lor q \lor r \lor \neg s)) \Rightarrow \\ \exists q \forall r \exists s ((\neg q \lor r) \land (q \lor s) \land (q \lor r \lor \neg s)) \Rightarrow \\ \exists q \exists s (\neg q \land (q \lor s) \land (q \lor \neg s)) \Rightarrow \\ \exists s (s \land \neg s) \Rightarrow \\ \Box$$

- Apply universal literal deletion to $p \vee \neg r$
- Apply unit propagation
- Apply the *pure literal rule* to *r*
- Apply unit propagation