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Credits

These slides are largely based on slides originally developed by Andrei Voronkov
at the University of Manchester. Adapted by permission.

2/39



Outline

DPLL
Conjunctive Normal Form
Clausal Form and Definitional Transformation
Unit Propagation
DPLL
Expressing Counting
Sudoku
Loop the Loop
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Satisfiability of clauses

The efficiency of splitting algorithms for satisfiability
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e by first putting the input formula in normal form
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Satisfiability of clauses

The efficiency of splitting algorithms for satisfiability
® can be massively improved in practice
e by first putting the input formula in normal form

A popular satisfiability procedure called DPLL requires formulas in
conjunctive normal form

We will see this next
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a negated atom —p (negative literal)
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Literals

Literal: an atom p (positive literal) or
a negated atom —p (negative literal)

The complement | of a literal L:
def { =L if L is positive

Z p—
p ifL hasthe form —p

Note: p and —p are each other’s complement
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6/39



Clauses

Clause: a disjunction L, \V - - - \/ L, of literals with n > 0

® Empty clause () : whenn = 0
® Unit clause: whenn =1
® Horn clause: when it has at most one positive literal

6/39



Clauses

Clause: a disjunction L, \V - - - \/ L, of literals with n > 0

® Empty clause () : whenn = 0
® Unit clause: whenn =1
® Horn clause: when it has at most one positive literal

Note: [ ]is false in every interpretation
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Conjunctive Normal Form

A formula A is in conjunctive normal form, or simply CNF, if it is either
‘I oraconjunction of clauses:

A=AV
g

Example

(=pVg)A(=pV—=gVr)ApA(—qV -r)
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Conjunctive Normal Form

A formula A is in conjunctive normal form, or simply CNF, if it is either
‘I oraconjunction of clauses:

A= /\\/L’J
i
Example

(=pV@)A(=pV—=gVr)ApA(—=qV -r)

Aformula B is a conjunctive normal form of a formula A
if B= Aand Bisin CNF
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Satisfiability on CNF

Note: An interpretation 7

1. satisfies a formulain CNF
A=AVt
i

iff it satisfies every clause C; = \/j. LijinA
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Satisfiability on CNF

Note: An interpretation 7

1. satisfies a formulain CNF
A= NV Ly
i
iff it satisfies every clause C; = \/,L;;inA
2. satisfies a clause

C — Ll\/\/Ln

iff it satisfies some (i.e., at least one) literal L, in C
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CNF transformation

Any propositional formula can be converted to CNF by the repeated applications
of these rewrite rules:

1. A~+B = (ﬁA\/B)A(ﬁBVA)

2. A—-B = -AVB

3. -~(AANB) = -AV-B

4. -(AVB) = -AA-B

5. -—A = A

6. (AAN--ANAR)VBV---VB, = (AAVBV---VB,) A

A
(AmVB1V---VB,)
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CNF transformation

Any propositional formula can be converted to CNF by the repeated applications
of these rewrite rules:

1. A~+B = (ﬁAVB)A(ﬁBVA)

2. A—B = -AVB

3. -~(AANB) = -AV-B

4. -(AVB) = -AA-B

5. -—A = A

6. (ALA---ANAy)VBV---VB, = (AVBV---VB,) A

A
(AmVB1V---VB,)

A formula to which no rewrite rule is applicable
® containsno <+

contains no —

may contain — but only applied to atoms

does not contain A in the scope of v

(hence) isin CNF
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CNF, example

A+ B = (WAVB)A(—BVA)
A—B= —-AVB
“((pP—=>aq)A(pAg—r)—(p—T)) CANB) = —av B
-(AVB) = —-AA-B
-—A = A
(ALA - ANAm) (ALV By V- VBy)A
VB V:--VB, = A
(An VB1 V-V By)
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CNF, example

A<» B = (-AVB)A(-BVA)
((p—=a)A(prg—=r)—=(p—=r)) = LGns o CaAvos
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CNF, example

((p=a)A(PAg—=T)=(p—T))=>
(=g AN(pAG—=1)V(p—r1)) =
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CNF, example

A<rB = (FAVB)A(—BVA)

(P prg ) (pon) = P

“(=((p=q)A(pAg—=1)V(P—=T)) = ~AVE) = —An-p

“—((p—=aAPAG=T)A=(p—=T1)= (AL A ANAn)  (AVBLV - VB A
VB V---VB, = A

p=a)AlpAg—=r)A=(p—r)= (Am VBLV -V By
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CNF, example

A< B= (FAVB) A (-BVA)

~((p—=a)A(pAg—r) = (p—r))= LGnB o Avos
“(~((e=a)A(pAg—=1)V(p—r)= T4V E) = AN B
——((p—=g)AN(pAg—=1)AN=(p—=T1)= (AL A AAn)  (ALVBIV---VB)A

VB V---VB, = A
(P=a)N(pAG—=r)A=(p—r)= (An V By V -\ By)
(p—=a)AN(pAg—=r)A=(-pVr)=
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CNF, example

(p—n)=
(p—n)=

(pAg—T1)—
“(=((p—=a)A(pAGg—T))V
—((p—=a)A(PpAG—=Tr)A=(p—r)=
(P=a)N(pAG—=r)A=(p—r)=
(p=a)AN(pAg—=r)A=(=pVr)=

-((p—=q) A

A< B= (FAVB) A (-BVA)

A—B= -AVB
-(AAB) = —AV B
—(AVB) = -AN-B

——A = A
(ALA - ANAm)
VB V---VB, =

(AL V By V

(Am V By V

“\/B")

©V By) A

>
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CNF, example

A< B= (FAVB) A (-BVA)

(P2 r(pAg—=r)=(p—1))= LGnB 2 Avos
“(((p=g)A(prg—=1))V(P—T1))= TAVE) = ANE
—((p—=g)A(pPAg—=1)A=(p—r)= (A A AAm)  (ALVBIV -V By) A

VBV ---VB, =

>

(Am VB1 V-V By)

ANpAg—=r)AN=(—pVr)=
PAG—=T)A=—pA-r=
PAG—=TI)APA-T=
“(pAQ)VI)APA-Tr=
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CNF, example

A+ B = (mAVB)A(-BVA)

(P> q)A(pAg—1)—(p—1)) = LANB) = Ay s
“(~((p=g)A(pAg—=1))V(p—T))= ~AVE) = ANTE
“—((p—=g)A(pAg—=1)A—(p—r)= (AL A AAn)  (ALVBLV - VB)A

VB V---VB, =

>

(Am VB1 V-V By)

ApANg—=r)A=(=pVr)=
PAG—=T)A-—p AT =
PAG—=T)APA-T=

“(pAQ)VI)ADPA-T=
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CNF, example

A< B= (FAVB) A (-BVA)

~((p—=a)A(pAg—r) = (p—r))= LGnB 2 Avos
(= rlprg=r)Vip—=r1)= "AvE) = ANE
——((p—=g)AN(pAg—=1)A=(p—=T1)= (A A AAn) (A VBV VB)A

VBV ---VB, =

>

p—=aq)APAG—=T)A=(p—r)= (An VBLV -V B,)
ANpAg—=r)A=(-pVr)=
PAG—=T)A-—p AT =

(
(
(pAGg—=r)APA-T=
(
(

“(pAQ)VI)APA-Tr=
—“pV-gVr)ApA-r
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CNF, example

((p—=a)A(pAG—r)=(p—r))=
“(=((p=gAN(PpAg—=1))V(P—T))=
—((p—=a)A(PpAG—=Tr)A=(p—r)=
(P=a)N(pAG—=r)A=(p—r)=
(p—=a)AN(pAg—=r)A=(-pVr)=
(P—=a)AN(pAG—=T)AN=—pA-r=
(p—=a)N(pAG—=r)ApA-T=
(p=a)N(=(pAg)VI)ApA-T=
(P=q)AN(=pV—qVr)ApA-r

(AL A
V B V

A< B= (FAVB) A (-BVA)
A—B= —-AVB

-(AAB) =
‘\(A\/B):>‘\A/\‘!B

—AV —B

——A = A

"/\Am)
- VB, =

(AL VBV

(Am VB V-

V Bp)

-V By A

>
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CNF, example

A< B= (FAVB) A (-BVA)

~((p—=a)A(pAg—r) = (p—r))= LGnB o Avos
(= rlprg=r)Vip—=r1)= T4V E) = AN B
~((p=g)AN(pPAG=T))A=(p—T) = (ALA - AAn) (AL VBLV -V By) A

VBV ---VB, =

>

p—=a)A(pAGg—=r)A=(p—=r)= (Am VBLV -\ By)

(
(p=a)AN(pAG—=r)A=(=pVr)=
(P—=a)AN(pAG—=T)AN=—pA-r=
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CNF, example

((p—=a)A(pAG—r)=(p—r))=
“(=((p=gAN(PpAg—=1))V(P—T))=
—((p—=a)A(PpAG—=Tr)A=(p—r)=
p=qANPAG—=T)A=(p—r)=

(
p=>a)NpAG—=r)A=(=pVr)=
(P=a)AN(pAG—r)A=—pA-r=
(P=a)N(pAG—=T)APA-T=
(P=>q)AN(=(pAG)VI)APA-T=
(P=q)AN(=pV—gVr)ApA-r
(=pVaq) A (=pV=qgVr)ApA-r

A<» B = (-AVB)A(—-BVA)

A—B= —-AVB
—(AANB) = =AV —B
=(AVB) = —-AA-B

-—A = A
(AL A ANAR) (AL VBV -+ VBy)A
VB V---VB, = A

(An VBV -+ -V By)

Theorem 1

If A" is obtained from A by one
or more applications of the
CNF conversion rules, then

Al =A.
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CNF and satisfiability

A==((p—=qANPAGg—T1)=(p—r))=

(=pV @) A(=pV—qgVr)ApA-r
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these four clauses
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CNF and satisfiability

A==((p—=qANPAGg—T1)=(p—r))=

(pV @) A(=pV—=gVr)ApA-r

Note: ng of
these| The CNF transformation reduces the sat problem for

formulas to the sat problem for sets of clauses

p
—r

(An interpretation satisfies, or is a model of, a set S of formulas if it
satisfies every formulain S)
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Problem

Let’s compute the CNF of

F = p; <> (p2 <> (p3 < (ps <> (ps <> ps))))
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Problem

Let’s compute the CNF of

F = p; <> (p2 <> (p3 < (ps <> (ps <> ps))))

p1 <> (P2 <> (p3 <> (pa <> (Ps <> Ps)))) =
(=p1 V(P2 <> (p3 ¢ (Pa < (ps <> Ps))))) N
(P1V =(p2 > (p3 <> (Pa <> (Ps < ps6))))) =
(=p1 V' ((=p2 V (p3 <> (pa > (Ps < Ps)))) A
(P2 V =(p3 <> (pa <> (Ps <> Ps)))))) A
(p1V (P2 <= (p3 <> (P4 > (Ps <+ Ps)))))

If we continue, the formula will grow exponentially large!
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CNF transformation can be exponential

There are formulas whose shortest CNF has an exponential size
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Is there any way to avoid exponential blowup? Yes!
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A space-efficient CNF transformation

Using so-called naming or definition introduction
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A space-efficient CNF transformation

Using so-called naming or definition introduction

1. Take a non-literal subformula A of formula F
2. Introduce a new name n for it, i.e., a fresh propositional variable
3. Add a definition for n, i.e., a formula stating that n is equivalent to A

A

F = p1+(p2 < (p3s < (ps < (ps < ps))))
n < (ps <> ps)

4. ReplaceAin F by its name n:

o p1 <+ (P2 <> (p3 < (Pa <> n)))
s= { B |
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A space-efficient CNF transformation

g 7

The new set S of formulas and the original formula F are not equivalent

A

F = p1+(p2 < (p3s < (ps < (ps < ps))))
n < (ps <> ps)

o p1 <+ (P2 <> (p3 <+ (Pa <> n)))
s= { B |
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A space-efficient CNF transformation

e 7

The new set S of formulas and the original formula F are not equivalent
but they are equisatisfiable:

1. every model of Sisa model of F and

2. every model of F can be extended to a model of S
(by assigning to n the value of p5 <> pg)

A

F = p1+(p2 < (p3s < (ps < (ps < ps))))
n < (ps <> ps)

o p1 <+ (P2 <> (p3 <+ (Pa <> n)))
s= { B |
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After several steps

p1 <> (P2 <> (p3 <> (pa <> (Ps < Ps)))
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After several steps

p1 <> (P2 > (P3 < (Pa <> (Ps <> Pe)))

Pl 7 \P2 2 3
P3 <> Ny
P4 <> Ns
Ps <7 Pe

n4H
Ng <~

( )
o )
( )
( )

The conversion of the original formula to CNF introduces 32 copies
of pe
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After several steps

p1 <> (P2 <> (p3 <> (pa <> (Ps < Ps)))

pl < (p2 <> n3)
< (p3 <+ n4)
”4 < ( )
ns < ( )

P4 <> Ns
Ps <7 Pe

The conversion of the original formula to CNF introduces 32 copies
of pe

The conversion of the new set of formulas to CNF introduces 4 copies
of pe

15/39



Clausal Form

Clausal form of a formula A: a set S, of clauses which is satisfiable iff A is satisfiable
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Clausal Form

Clausal form of a formula A: a set S, of clauses which is satisfiable iff A is satisfiable

Clausal form of a set S of formulas: a set S’ of clauses which is satisfiable iff so is S

In fact, we can require something stronger:
1. Aand S, have the same models in the language of A
2. Sand S’ have the same models in the language of S

Big advantage of clausal normal form over CNF:
we can convert any formula to a set of clauses in almost linear time

16/39



Definitional Clause Form Transformation

How to convert a formula A into a set S of clauses that is clausal
normal form of A:

1. If Ahastheform C, A --- A C,,wheren > 1and each C;isa
clause, then § & {Cy,...,Ch }.

2. Otherwise, introduce a name for each subformula B of A such
that B is not a literal and use this name instead of the formula.
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Converting a formula to clausal form, Example

subformula

definition

clauses

—((p

> A(PAG—T)

> (p

> 1)
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Converting a formula to clausal form, Example

subformula

definition

clauses

((p=a)A(pAg—r1)—=(p—1))

—((p—=a)A(pAg—T1)—=(p—T))

P=a)A(pAg—=r1)—=(p—T)

p—=ag)N(pANGg—T)

p—q

pPAG—T

pAq

Consider all
subformulas
that are not
literals
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Converting a formula to clausal form, Example

subformula definition clauses
(= Alprg—=r) = (p—1))

nm| ~(p=gApAg—=r)—=(p—r))

Ny P—=a)AN(pPAG—T1)—(p—T)

n3 (P—=aq)AN(pAGg—1)
Introduce

Ny p—q names for
these
formulas

Ns pP A q — I

3 pAqg

ny p—r
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Converting a formula to clausal form, Example

subformula definition clauses
(= Alprg—=r) = (p—1))

no| ~(p=g)ApAg—=r)=(p—=r)) | m< —n

n (P=a)AN(PpAG—T)— (p—T) | N> (n3—n7)

ns (p—=a)N(pAg—r) n3 <> (na A ns)

N4 p—q ng < (p — q) Introduce
definitions

ns PAG—T ns <+ (ng —r)

ng pAqg ne <> (P AQq)

ny p—r ng < (p—r)
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Converting a formula to clausal form, Example

subformula

definition

clauses

n

n

((pP=g)APAg—=r) = (p—1)
“((p—=ag)A(PAGg—=r)=(p—T)

~— =

ny < —np

—ny VvV Ny
nvVv n

ny

p—=a)ANpAg—r)—(p—T)

ny < (n3 —r ﬂ7)

—ny V —n3 VvV ny
n3vVv . np
—n7 V. n

n3

(pP—=a)AN(pAg—r)

n3 < (n4 A n5)

—n3V na
—n3V ns
—Nng V —ns \V n3

Ny

p—q

na < (p—q)

—ng vV -p Vg
p VvV o ng
—q V. ng

ns

pPAG—T

ns <+ (ng —r)

—Nns \V —ng \V r
ng V. nNs
—r V. ns

ne

pAqG

ne <+ (P A q)

—ng V.o p
—neV ¢
—p Vg Vs

n7

ng < (p—r)

N7V -—p Vr
p VvV nt
-r Voony

Convert the
definition
formulas to
CNF in the
standard
way
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Optimized Definitional Clause Form Transformation

If

¢ we introduce a name for a subformula and

¢ the occurence of the subformula is positive or negative (not 0)
then an implication can be used instead of equivalence
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Optimized Definitional Clause Form Transformation

If

¢ we introduce a name for a subformula and

¢ the occurence of the subformula is positive or negative (not 0)
then an implication can be used instead of equivalence

See Chapter 7 of LRCS for a precise description
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Example

subformula

definition

clauses

“((p=aApAg—=r) = (p—r))

n

m

—((p—=ag)A(pAG—T1)—(p—T))

ny — —ny

—ny Vo —np
nv n

n

p—=a)A(pAg—1)—=(p—T)

(n3 — n7) — Ny

—ny V —n3 Vong
n3V . n
-nyV.oony

ns

(p—=a)AN(pAg—r)

n3 — (n4 AN n5)

—n3 V. o Ng
—n3V ns
—ng V —ns V n3

Ny

p—q

ng — (p—q)

—Ng V —p \/q
p vV N
—q vV N4

ns

pAG—T

ns — (ng — r)

—ns vV —ng \V r
neg V. ns
-r V. ns

Ne

pAqG

ne — (P A\ Q)

—ng V. p
—ng V. g
P Vg9 Vne

nr

(p—r)—ng

—nzV-p Vr
p VvV n7
-r V.o ny
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Example

subformula

definition

clauses

n

((p=g)ApAg—r)—=(p—1))
m | ((p=a)ApPAg—=T1)—=(p—T)

)

ny — —m

—ny vV —np
nv n

ny p—=a)A(pAg—1)—=(p—T)

(n3 — f'l7) — Ny

—ny V —n3 Vng
n3V . n
-nyV.oony

n3 (p—=a)AN(pAg—r)

n3 — (n4 AN n5)

—n3 V. o Ng
—n3V ns
—ng V —ns V n3

ng p—q

= (= a)

—ng NV —p Vg
PV g
—q V. Ny

ns

pAG—T

ns — (ng — r)

—ns vV —ng \V r
neg V. ns
-r V. ns

Ne

pAqG

ne — (p A q)

—ng V. p
—ng V. q
—p Vg Vne

nr

(p—r)—ng

ﬂn7\/—|p Vr
p VvV n7
-r V.o ny

The clauses in red are omitted by optimized transformation
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Example

subformula definition clauses
(=g ApAg—1) = (p—1)) m
m | (p—=g)A(pAg—r)—(p—r1)) | n1— —ny —ny V —np
ny (pP—=qg AN(pAg—T1)—(p—T) (n3 — n7) — ny
n3V.
-n7 V.o np
n3 p—=a)AN(pAg—r) n3 — (na A ns) N3 Vo Ng
-n3V ns
N4 p—q ng — (p—q) —ng N op Vg
ns PAG—T ns — (ng — r) =ns \V —ng \V/ r
e pAg ne — (pAq)
P Vg Vne
n7 p—r (p—r)—ng
p VvV n7
-r V. o ny

The result is fewer clauses
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Satisfiability-checking for sets of clauses
The CNF transformation of

“((p=a)A(pAg—1)—(p—T))
gives the set of four clauses:

—pVq,
—pV gV,

3
‘\I’T
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Satisfiability-checking for sets of clauses

The CNF transformation of

“((p=a)A(pAg—1)—(p—T))
gives the set of four clauses:

-p Vg,
=PV -qVr,
3
‘\I’T

To satisfy all these clauses we must assign 1topand Otor,
so we do not have to guess values for them

In this case, we can do even better and establish unsatisfiability with
no guessing
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Smart search for satisfiability

—pVq,
—pV gV,

—r
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{p—1 }

-pVa,
“pV-qVr,
p.

-r
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Smart search for satisfiability
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q,
AZE
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Smart search for satisfiability

{pr—1,r—0qg~—1}
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Smart search for satisfiability

{p—1,r—0,qg~— 1}
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Smart search for satisfiability

{p—1,r—0,qg~— 1}

This set of clauses is unsatisfiable
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Unit propagation

Let S be a set of clauses.

Unit propagation. Repeatedly apply the following transformation:

if S contains a unit clause, i.e. a clause consisting of one literal , then
1. remove from S every clause of the form L \/ ('
2. replacein S every clause of the form L v C’ by the clause C’
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Unit Propagation, Example

( ny, _‘q\/n47
=Ny V =Ny, N5V —Ng V I,
niyVn,, Ne V Ns,
=N, V N3V ng, =rV ns,
n3 vV n,, —Ng V P,
=Ny V Ny, —Nng V q,
N3V Ng, —pV,—q V ng,
=Nz V Ns, —nyV-op\Vr,
=Ny V N5 V Ns, pV nq,
—nsV —pVq, =rVong

.\ P \ Ny,
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Unit Propagation, Example

\

Ny,

=N, V —n3 'V ng,

n3 V ny,

N7 V Ny,
N3V Ng,
=Nz V Ns,

=Ny V N5 V Ns,

Ny V. opVQ,
p\/n47

—q V Ny,

N5V —Ng V I,

Ng V Ns,

=rV ns,

—Ne V P,
—Ne V g,
—pV,7q V Ne,
-n;V —pVr,
pV ny,

-rV ng
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Unit Propagation, Example

Ny,

=N, V —n3 'V ng,
N3V ny,

—n7 V Ny,

N3V Ny,

=Nz V Ns,

—n4 V —ns V ns,
Ny NV —pVq,
PV Na,

G V Ny,

N5V —Ng V I,

Ng V Ns,

=rV ns,

—Ne V P,
—Ne V g,
ﬁp\/* -q \% Ne,
-n;V —pVr,
pV ny,

-rV ng
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Unit Propagation, Example

ns3

Ny )
N3V Ny,
_|n3 \/ 1’757

_|n4 \/ _\n5 \/ n37

Ty VPV Q,
p\/n47

TG V Ny,

N5V —Ng V I,

N V Ns,

=rV ns,

—Ne V P,
—Ne V g,
ﬁp\/* -q \% Ne,
-n;V -pVr,
pV ny,

-rV ng
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Unit Propagation, Example

ns

Ny )

-Nn3 \V Ny,

=Nz V ns,

=Ny V —Ns5 V ns,
Ny V opVgq,
PV Ny,

TG V Ny,

N5V —Ng V I,

N V Ns,

=rV ns,
—Ne V P,
—Ne V g,
ﬁp\/f‘ -q \% Ne,
-n;V-p\Vr,
p v ny,

—rV ng
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Unit Propagation, Example

( —q V Ny,
N5V —Ng V I,
N V Ns,
=rV ns,
—Ne V P,
—Ne V g,
Na, ﬁp\/ﬁﬁq\/nﬁv
ns,
p
—nsV —pVq, —-r
PV Ny,
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Unit Propagation, Example

Na,
ns,

Ny NV mp Vg,
p\/n47

TG V Ny,

N5\ —Ng \V I,

Ne V Ns,
=rV ns,
—Nne V p,
—ng V q,
—pV,7q V Ne,

—r
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Unit Propagation, Example

—\I’]6

—Ne V q,
ﬁq\/ne7
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Unit Propagation, Example

—|n6

—Ng V q,
_‘q V Neg,
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Unit Propagation, Example

We established unsatisfiability of this set of clauses in a completely deterministic
way, by unit propagation.
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DPLL = splitting + unit propagation

procedure DPLL(S)
input: set of clauses S
output: satisfiable or unsatisfiable
parameters: function select_literal
begin
S := propagate(S)
if Sis empty then return satisfiable
if S contains [ then return unsatisfiable
L := select_literal(S)
if DPLL(SU { L }) = satisfiable
then return satisfiable
elsereturn DPLL(S U { L })
end
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DPLL, Example 1

-p
—p Vv q
“pVag
pV—q
pVq

T

—pV—q
—pVgq
pV—q

pVaq

Can be illustrated using DPLL trees (similar to splitting trees)

N

—-q

—p Vg
pVqg
pV—q
pVq
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DPLL, Example 1

Can be illustrated using DPLL trees (similar to splitting trees)

=pV —q

—pVq

pV—q

-p V P
-p / v \ P

—p Vg —p Vg
pV—q pV—q
pVq pVq
—q —-q

O]

O]

Since all branches end up in a set contaning the empty clause, the initial set of
clauses is unsatisfiable.
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DPLL, Example 2

—pVq
pVv—q

-pVgq
pVv—q

—-q

O]

2

-p
—pV g
pVq
pVv—q

q

(empty set)

The set of clauses is satisfiable
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DPLL, Example 2

—pVq
pVv—q

-pVgq
pVv—q

—-q

O]

2

-p
—pV g
pVq
pVv—q

q

(empty set)

A model is described by all selected literals and

unit-propagated literals on the branch ending in the empty set
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DPLL, Example 2

—pVq
p P v 9 P
; / \ >
—pVq —pVq
pV-q pV-q
—q q
@ (empty set)

This DPLL tree gives us the model { p — 0,g + 0 }
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Two optimizations

1. Any clause of theform p vV —p \V Cis a tautology

Tautologies can be removed from a set without affecting its
satisfiability
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Two optimizations

1. Any clause of theform p vV —p \V Cis a tautology
Tautologies can be removed from a set without affecting its
satisfiability

2. Aliteral L in Sis called pure if S contains no clauses of the form
Lvc

All clauses containing a pure literal can be satisfied by making
that literal true

Hence, clauses containing pure literals can be removed, too

28/39



Pure literals: example

—p2 V 7p3
p1V P2
—p1V P2V ps
—p1V p3
p1V p2
—p1V P2V ps3
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(by assigning 0 to p3)
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(by assigning 0 to p3)
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Pure literals: example

p1V —p2

p1V P2

Literal p; is pure in the resulting set: we can remove all clauses containing it
(by assigning 1 to p;)
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Pure literals: example

Literal p; is pure in the resulting set: we can remove all clauses containing it
(by assigning 1 to p;)

We obtain the empty set of clauses
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Pure literals: example

—p2 V p3
p1V P2
—p1V P2V ps3
—p1V p3
p1V P2
—p1V P2V p3

Since r remained unconstrained, this gives us two models:

{pr—1,p2—0,p3—0}
{pr—1,p2—1,p3—0}

29/39



Horn clauses

A clause is called Horn if it contains at most one positive literal

Examples

P1

P11V P2
—Pp1V P2V p3
—P3 V P4

Horn:
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Horn clauses

A clause is called Horn if it contains at most one positive literal

Examples
P1
—p1V P2
Horn:
—Pp1V P2V p3
Pz V TPa
Non-Horn: P1 P2

p1V P2V p3
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Satisfiability of Horn clauses
Can be decided by unit propagation

P1
P11V P2
P11V P2V Ps3
—Pp3 V Ps
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Satisfiability of Horn clauses
Can be decided by unit propagation

P1
P11V P2
—p1V P2V p3
—P3 V P4

Model: { py > 1,p2 > 1, p3+> 1, ps > 0}

Note: deleting a literal from a Horn clause gives a Horn clause.
Therefore, unit propagation applied to a set C of Horn clauses gives a set C’ of Horn
clauses.

Two cases:
1. ' contains [ 1. Then, ¢’ (and hence C) is unsatisfiable.
2. C' does not contain [I. Then:

® Fachclausein C’ has at least two literals.
® Hence each clause in ' contains at least one negative literal;
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Satisfiability of Horn clauses
Can be decided by unit propagation

P1
P11V P2
—p1V P2V p3
—P3 V P4

Model: { py > 1,p2 > 1, p3+> 1, ps > 0}

Note: deleting a literal from a Horn clause gives a Horn clause.
Therefore, unit propagation applied to a set C of Horn clauses gives a set C’ of Horn
clauses.

Two cases:
1. ' contains [ 1. Then, ¢’ (and hence C) is unsatisfiable.
2. C' does not contain [. Then:
® Eachclausein C" has at least two literals.
® Hence each clause in ' contains at least one negative literal;
® Hence setting all variables in C’ to 0 satisfies C'.
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Running a SAT solver

Very simple but efficient SAT solver: MiniSat, http://minisat.se/
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Running a SAT solver
Very simple but efficient SAT solver: MiniSat, http://minisat.se/

P1
—p1V P2
—p1V P2V Ps3
P2V p3

DIMACS input format:

p cnf 3 4
10
-120
-1 -230
-2 -30

3variables, 4 clauses.

—p1V P2V Ps3

32/39
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Expressing Properties “k out of n variables are true”

Suppose we have variables v;. . . .| v, and
we want to express that exactly k of them are true

We will write this property as a formula 7 (v, . . ., Vn)

Such formulas are very useful for encoding various problems in SAT
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Expressing Properties “k out of n variables are true”

we want to express that exactly k of them are true

Suppose we have variables v;. . . .| v, and

We will write this property as a formula 7 (v, . . ., Vn)
Such formulas are very useful for encoding various problems in SAT
First, let us express some simple special cases:

TO(Vl ----- Vﬂ) :\ -V VANEIIRIVAN —Vp
Ta(viy -y Vi) = (ViV--- V) A /\,.<j(ﬁv,- \ ﬁ\/j—)
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Expressing Properties “k out of n variables are true”

we want to express that exactly k of them are true

Suppose we have variables v;. . . .| v, and

We will write this property as a formula 7 (v, . . ., Vn)
Such formulas are very useful for encoding various problems in SAT
First, let us express some simple special cases:

T ) A A,
lef
Tl(Vl ..... Vn) e (\/1 VoV Vn) A /\j<j(“vi vV “Vj)

Jef
Too1(ve,. .., Va) = (Ve Vave) AN (VY )
Tn(Viy..osVn) = VIA--- AV,
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Expressing Properties “k out of n variables are true”

To define T) for 0 < k < n, introduce two formulas:

T<k(va,. .., V,): at most k variables among vy, . . ., v, are true, where
k=0...n—-1
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To define T) for 0 < k < n, introduce two formulas:
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Expressing Properties “k out of n variables are true”

To define T) for 0 < k < n, introduce two formulas:

T<k(va,...,vy): at most k variables among v: . . .., v, are true, where
k=0...n—1
lef
T<k(V1 ..... Vn) = /\ X1 V-V XK1
X1y Xkr1 € {va, ..., Vn }
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Expressing Properties “k out of n variables are true”

To define T) for 0 < k < n, introduce two formulas:

T<k(va,. .., V,): at most k variables among vy, .. ., v, are true, where
k=0...n—-1
T>i(va, ..o, V,): at least k variables among vy, . . ., v, are true, where
k=1...n
lef
Tek(Ve,. V) = /\ “Xp VeV X
Xty Xkr1 €{V1, oo Vp }
X1, ..., Xk are distinct
lef
Tor(Va, ..., vp) = /\ X1 VoV Xn ki
Xty ooy Xn—ga1 € {Viyoo oy Vn }

X1y e Xn—k41 are distinct

34/39



Sudoku

4 8
9

2
9 2
6

7|8
5

9

Enter digits from 1 to 9 into the
blank spaces

Every row must contain one of
each digit

So must every column

as must every 3x3 square
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4|18
613109
5127
9 | 5] 2
11416
7183
2161
31715
819 |4

Enter digits from 1 to 9 into the
blank spaces

Every row must contain one of
each digit

So must every column
as must every 3x3 square

This instance has exactly one
solution
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4|18
613109
5127
9 | 5] 2
11416
7183
2161
31715
819 |4

Enter digits from 1 to 9 into the
blank spaces

Every row must contain one of
each digit

So must every column
as must every 3x3 square

This instance has exactly one
solution
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Sudoku as an instance of SAT
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Sudoku as an instance of SAT

4 8 9 3
9 2 5
2
9 2 6 17
8|7
78 2 6
4
5 482
2
1 2 3 4 6 7 8 9

Introduce 729 propositional variables
Vieds Wherer.c.d € {1,..., 9}

The variable v,.; denotes that the cell in
the row number r and column number
c contains the digit d
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Sudoku as an instance of SAT

4 8 9 3
9 2 5
2
9 2 6 107
8|7
718 2 6
4
5 4182
9 2

Introduce 729 propositional variables
Vieds Wherer.c.d € {1,..., 9}

The variable v,.; denotes that the cell in
the row number r and column number
c contains the digit d

For example, this configuration
satisfies the formula vi59 A Vogg A —Veo1
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Sudoku as an instance of SAT

4 8 9 3
9 2 5
2
9 2 6 107
8|7
718 2 6
4
5 4182
9 2

Introduce 729 propositional variables
Vieds Wherer.c.d € {1,..., 9}

The variable v,.; denotes that the cell in
the row number r and column number
c contains the digit d

For example, this configuration
satisfies the formula vi59 A Vogg A —Veo1

We should express all rules of Sudoku
using the variables v,y

36/39



Encoding Sudoku in SAT

We have to write down that each cell contains exactly one digit
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Encoding Sudoku in SAT

We have to write down that each cell contains exactly one digit

{VVrclvvrcz\/"'\/Vrc8VVr59‘I’.CG{I,....E)}}
{ﬁvrcl\/ﬁvrcz‘r,CE{l ..... 9}}
{ViaV -V |r,ce{l,...,9}}

{ﬁVrCB\/ﬁVrc‘a‘r\CE{l ..... 9}}
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Encoding Sudoku in SAT

We have to write down that each cell contains exactly one digit

{Vrclvvrcz\/"'\/\/mBVVng‘I’.CG{l,....9}}
{ﬁvrcl\/ﬁVrcz‘r,CE{l ..... 9}}

{ViaV -V |r,ce{l,...,9}}

{ﬁVrCS\/ﬁer‘r\CE{l ..... 9}}

Every row must contain one of each digit:
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Encoding Sudoku in SAT

We have to write down that each cell contains exactly one digit

{Vrclvvrcz\/"'vvrc}zVVng‘I’.CG{l,....9}}
{ﬁvrcl\/ﬁVrcz‘r,CE{l ..... 9}}

{ViaV Vs |r,ce{1,...,9}}
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Encoding Sudoku in SAT

We have to write down that each cell contains exactly one digit

{Vrclvvrcz\/"'\/vrclsvvrd)‘LCE{l‘""g}}
{ﬁvrcl\/ﬁvrcz‘rrce{l """ 9}}

{Vea V-V |r,ce{l,...,9}} 2,997 clauses
. 6,561 literals

{ﬁVrCS\/ﬁVrc‘a‘r\CE{l ..... 9}}

Every row must contain one of each digit:
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Encoding Sudoku in SAT

We have to write down that each cell contains exactly one digit

{1 V-V |r,ce{1,...,9}}

{Vea V-V |r,ce{l,...,9}} 2,997 clauses
. 6,561 literals

{ﬁVrCS\/ﬁVrCGJ‘r\CE{l ..... 9}}

Every row must contain one of each digit:

{-ViedVVeogl|red,de{l,...,9}c<c} 2,916 clauses
5,832 literals

2,916 clauses
5,832 literals
2,916 clauses
5,832 literals

Every column must contain one of each digit: similar

Every 3x3 square must contain one of each digit: similar
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Encoding Sudoku in SAT

We have to write down that each cell contains exactly one digit

{Via VVia V-V Vg Vo | r,ce{l,...,9}}
{ViaV V| r,ce{l,...,9}}
{~ViaV Ve |rce{1,...,9}} 2,997 clauses
. 6,561 literals
{ﬁVrCS\/ﬁVrCE% ‘ I’,CE{].,....9}}
Every row must contain one of each digit:
{ ﬁVI’AC.d \/ ﬁVfAC/Ad ‘ rv C', C/', d € { 1'5 M) 9 }', c< C/ } 2’916 ClaUSeS
5,832 literals
. . 2,916 clauses
Every column must contain one of each digit: similar 5832 literals
Every 3x3 square must contain one of each digit: similar 2,916 clauses
y q git: 5,832 literals

729 variables, 11,745 clauses, 24,057 literals, nearly all clauses are binary
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Encoding Sudoku in SAT

We have to write down that each cell contains exactly one digit

{Via V-V |r,ce{1,...,9}}

{-Via V-V3 |r,ce{1,...,9}} 2,997 clauses
. ' 6,561 literals

{—Vies Vo | r,ce{1,...,9}}

Every row must contain one of each digit:

{WVredV—Vregl|rcd,def{l ..., 9}h,c< '} 2,916 clauses
5,832 literals

2,916 clauses
5,832 literals
2,916 clauses
5,832 literals

Finally, we add unit clauses (e.g., v1,9) corresponding to the initial configuration

Every column must contain one of each digit: similar

Every 3x3 square must contain one of each digit: similar
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Loop the Loop

o o o o o
3 1 2 2
o o o o o
3
o o o o o
2 2
o ° o o L]
o 2 1 2
o o ° o o
3 3
o o o o o
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Loop the Loop

You have to draw lines between the dots to form a

e o o o o single loop without crossings or branches.
3 1 2 2 L . .
e o o o e The numbers indicate how many lines surround it
3
[ ] [ ] [ ] [ ] [ ]
2 2
[ ] [ ] [ ] [ ] [ ]
o 2 1 2
[ ] [ ] [ ] [ ] [ ]
3 3
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Loop the Loop

You have to draw lines between the dots to form a

. single loop without crossings or branches.
3 .1 212 The numbers indicate how many lines surround it
3
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Loop the Loop

You have to draw lines between the dots to form a
e o o o o single loop without crossings or branches.

N N The numbers indicate how many lines surround it

A crossing is a node with four arcs attached to it
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e o o single loop without crossings or branches.
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Loop the Loop

You have to draw lines between the dots to form a

e o o single loop without crossings or branches.
e o o The numbers indicate how many lines surround it
[ ] [ ] [ ] [ ]

A branchis a node with three arcs attached to it
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Loop the Loop

You have to draw lines between the dots to form a

. single loop without crossings or branches.
3 .1 212 The numbers indicate how many lines surround it
3
2|2
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Loop the Loop

You have to draw lines between the dots to form a

. single loop without crossings or branches.
3 .1 212 The numbers indicate how many lines surround it
3
2|2
0o 2 1 2 If a cell contains a number m, then there should be m

arcs around this number
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Loop the Loop

3 1 2|2
3
2|2
0 2 1 2
o
3|3

You have to draw lines between the dots to form a
single loop without crossings or branches.

The numbers indicate how many lines surround it
A crossing is a node with four arcs attached to it
Abranch is a node with three arcs attached to it

If a cell contains a number m, then there should be m
arcs around this number

All these properties are formulated in terms of (a
number of) arcs
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Formalization

Introduce variables denoting arcs:
® vj;: thereis avertical arc between the nodes
(i,j)and (i,j+ 1)
® hj:thereis a horizontal arc between the

nodes (/,j) and (i + 1,j)

o
3 1 2
3
o
2|2
0 2 1
o
3|3
o
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Formalization

3 1 2
3
o
2|2
0 2 1
3|3
o

Introduce variables denoting arcs:
® vj;: thereis avertical arc between the nodes
(i,j)and (i,j+ 1)
® hj:thereis a horizontal arc between the
nodes (/,j) and (i + 1,j)

Example: vo3 A va3 A hgs
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Formalization

o o o o
3 1 2
o o o o
3
o o o o
2 2
o o o o
0 2 1
o o o o
3 3
o ° o

Introduce variables denoting arcs:
® vj;: thereis avertical arc between the nodes
(i,j)and (i,j+ 1)
® hj:thereis a horizontal arc between the
nodes (/,j) and (i + 1,j)

Then almost all properties are formulated using
the formulas 7, and these variables
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Formalization

Introduce variables denoting arcs:

® vj;: thereis avertical arc between the nodes
(i,j)and (i,j+ 1)

3|1 2 2 ® hj:thereis a horizontal arc between the
. . . . nodes (/j) and (l } lj)
3

[ ] [ ] [ ] [ ] [ ] [ ]

2 2 Then almost all properties are formulated using
e 0 ¢ 5 ¢ 1 ¢ 5 * the formulas 7, and these variables For example,
° ° ° ¢ ° ° T3(V15., V257h157h16)

3 3
[ ] [ ] [ ] [ ] [ ]
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Formalization

Introduce variables denoting arcs:

® vj;: thereis avertical arc between the nodes
(i,j)and (i,j+ 1)

3 1 2 2 ® hj:thereis a horizontal arc between the
o o o o . nodes (i,j)and (i + 1))
3

[ ] [ ] [ ]

2 2 Then almost all properties are formulated using
e 0 ¢ ) ¢ 1 * the formulas 7, and these variables For example,
° ° ° ¢ ° ° T3(V1s, Vas, his, hig)

3 3 To(V537V547h447h45) V Tz(Vsz,V54~,h447h45)
[ ] [ ] [ ] [ ] [ ] [ ]
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Formalization

3 1 2
3
o
2|2
0 2 1
3|3
o

Introduce variables denoting arcs:
® vj;: thereis avertical arc between the nodes
(i,j)and (i,j+ 1)
® hj:thereis a horizontal arc between the
nodes (/,j) and (i + 1,j)

Then almost all properties are formulated using
the formulas 7, and these variables For example,

T3(V1s, Vas, his, hig)
To(Vs3, Vsa, haa, has) V T2(Vs3, Vsa, haa, has)

What we cannot express is the property to have a
single loop

There is no simple way of expressing this in PL
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