CS:4350 Logic in Computer Science

Semantic Tableaux

Cesare Tinelli

Spring 2022

The
University
OF lowA

Credits

These slides are largely based on slides originally developed by Andrei Voronkov at the University of Manchester. Adapted by permission.

Outline

Semantic tableaux

Signed formula

- Signed formula: an expression A^{b}, where A is a formula and b a boolean value

Signed formula

- Signed formula: an expression A^{b}, where A is a formula and b a boolean value
- A signed formula A^{b} is satisfied by an interpretation \mathcal{I}, written $\mathcal{I} \models A^{b}$, if $\mathcal{I}(A)=b$; it is falsified otherwise

Signed formula

- Signed formula: an expression A^{b}, where A is a formula and b a boolean value
- A signed formula A^{b} is satisfied by an interpretation \mathcal{I}, written $\mathcal{I} \models A^{b}$, if $\mathcal{I}(A)=b$; it is falsified otherwise
- If $\mathcal{I} \mid=A^{b}$, we also say that \mathcal{I} is a model of A^{b}
- A signed formula is satisfiable if it has a model

Signed formula

- Signed formula: an expression A^{b}, where A is a formula and b a boolean value
- A signed formula A^{b} is satisfied by an interpretation \mathcal{I}, written $\mathcal{I} \models A^{b}$, if $\mathcal{I}(A)=b$; it is falsified otherwise
- If $\mathcal{I} \mid=A^{b}$, we also say that \mathcal{I} is a model of A^{b}
- A signed formula is satisfiable if it has a model

Note:

1. For every formula A and interpretation \mathcal{I} exactly one of the signed formulas A^{1} and A^{0} is satisfied by I

Signed formula

- Signed formula: an expression A^{b}, where A is a formula and b a boolean value
- A signed formula A^{b} is satisfied by an interpretation \mathcal{I}, written $\mathcal{I} \models A^{b}$, if $\mathcal{I}(A)=b$; it is falsified otherwise
- If $\mathcal{I} \mid=A^{b}$, we also say that \mathcal{I} is a model of A^{b}
- A signed formula is satisfiable if it has a model

Note:

1. For every formula A and interpretation \mathcal{I} exactly one of the signed formulas A^{1} and A^{0} is satisfied by \mathcal{I}
2. A formula A is satisfiable iff A^{1} is satisfiable

Signed formula

- Signed formula: an expression A^{b}, where A is a formula and b a boolean value
- A signed formula A^{b} is satisfied by an interpretation \mathcal{I}, written $\mathcal{I} \models A^{b}$, if $\mathcal{I}(A)=b$; it is falsified otherwise
- If $\mathcal{I} \mid=A^{b}$, we also say that \mathcal{I} is a model of A^{b}
- A signed formula is satisfiable if it has a model

Note:

1. For every formula A and interpretation \mathcal{I} exactly one of the signed formulas A^{1} and A^{0} is satisfied by I
2. A formula A is satisfiable iff A^{1} is satisfiable
3. A formula A is falsifiable iff A^{0} is satisfiable

How to find a model of a signed formula?

Example: $A \wedge B$

		B	B
	\wedge	0	1
A	0	0	0
A	1	0	1

How to find a model of a signed formula?

Example: $A \wedge B$

		B	B
	\wedge	0	1
A	0	0	0
A	1	0	1

$(A \wedge B)^{1}$ - We can make $A \wedge B$ true iff we make A true $\left(A^{1}\right)$ and B true $\left(B^{1}\right)$

How to find a model of a signed formula?

Example: $A \wedge B$

		B	B
	\wedge	0	1
A	0	0	0
A	1	0	1

$(A \wedge B)^{1}$ - We can make $A \wedge B$ true iff we make A true $\left(A^{1}\right)$ and B true $\left(B^{1}\right)$
$(A \wedge B)^{0}$ - We can make $A \wedge B$ false iff we make A false $\left(A^{0}\right)$ or B false $\left(B^{0}\right)$

How to find a model of a signed formula?

Example: $A \wedge B$

		B	B
	\wedge	0	1
A	0	0	0
A	1	0	1

$(A \wedge B)^{1}$ - We can make $A \wedge B$ true iff we make A true $\left(A^{1}\right)$ and B true $\left(B^{1}\right)$
$(A \wedge B)^{0}$ - We can make $A \wedge B$ false iff we make A false $\left(A^{0}\right)$ or B false $\left(B^{0}\right)$
Example: $A \rightarrow B$

		B	B
	\rightarrow	0	1
A	0	1	1
A	1	0	1

How to find a model of a signed formula?

Example: $A \wedge B$

		B	B
	\wedge	0	1
A	0	0	0
A	1	0	1

$(A \wedge B)^{1}$ - We can make $A \wedge B$ true iff we make A true $\left(A^{1}\right)$ and B true $\left(B^{1}\right)$
$(A \wedge B)^{0}$ - We can make $A \wedge B$ false iff we make A false $\left(A^{0}\right)$ or B false $\left(B^{0}\right)$
Example: $A \rightarrow B$

		B	B
	\rightarrow	0	1
A	0	1	1
A	1	0	1

$(A \rightarrow B)^{1}$ - We can make $A \rightarrow B$ true iff we make A false $\left(A^{0}\right)$ or B true (B^{1})

How to find a model of a signed formula?

Example: $A \wedge B$

		B	B
	\wedge	0	1
A	0	0	0
A	1	0	1

$(A \wedge B)^{1}$ - We can make $A \wedge B$ true iff we make A true $\left(A^{1}\right)$ and B true $\left(B^{1}\right)$
$(A \wedge B)^{0}$ - We can make $A \wedge B$ false iff we make A false $\left(A^{0}\right)$ or B false $\left(B^{0}\right)$
Example: $A \rightarrow B$

		B	B
	\rightarrow	0	1
A	0	1	1
A	1	0	1

$(A \rightarrow B)^{1}$ - We can make $A \rightarrow B$ true iff we make A false $\left(A^{0}\right)$ or B true (B^{1})
$(A \rightarrow B)^{0}$ - We can make $A \rightarrow B$ false iff we make A true $\left(A^{1}\right)$ and B false $\left(B^{0}\right)$

Tableau

The search for a model of a formula can be expressed by an AND-OR tree

Tableau

The search for a model of a formula can be expressed by an AND-OR tree
Tableau: a tree having signed formulas at nodes (plural: tableaux)

Tableau

The search for a model of a formula can be expressed by an AND-OR tree
Tableau: a tree having signed formulas at nodes (plural: tableaux)
A tableau for a signed formula A^{b} has A^{b} as a root

Tableau

The search for a model of a formula can be expressed by an AND-OR tree
Tableau: a tree having signed formulas at nodes (plural: tableaux)
A tableau for a signed formula A^{b} has A^{b} as a root
Alternatively, we can regard a tableau as a collection of branches; each branch is a set of signed formulas

Tableau

The search for a model of a formula can be expressed by an AND-OR tree
Tableau: a tree having signed formulas at nodes (plural: tableaux)
A tableau for a signed formula A^{b} has A^{b} as a root
Alternatively, we can regard a tableau as a collection of branches; each branch is a set of signed formulas

Notation for branches: $A_{1}^{b_{1}}|\cdots| A_{n}^{b_{n}}$

Constructing a semantic tableau

$$
(\neg(q \vee p \rightarrow p \vee q))^{1}
$$

Rules to grow a tree branch:

$$
\begin{array}{rll}
\left(A_{1} \vee A_{2}\right)^{0} & \rightsquigarrow A_{1}^{0}, A_{2}^{0} \\
\left(A_{1} \vee A_{2}\right)^{1} & \rightsquigarrow & A_{1}^{1} \mid A_{2}^{1} \\
\left(A_{1} \rightarrow A_{2}\right)^{0} & \rightsquigarrow & A_{1}^{1}, A_{2}^{0} \\
\left(\neg A_{1}\right)^{1} & \rightsquigarrow & A_{1}^{0}
\end{array}
$$

Constructing a semantic tableau

$$
(\neg(q \vee p \rightarrow p \vee q))^{1}
$$

Rules to grow a tree branch:

$$
\begin{array}{rll}
\left(A_{1} \vee A_{2}\right)^{0} & \rightsquigarrow & A_{1}^{0}, A_{2}^{0} \\
\left(A_{1} \vee A_{2}\right)^{1} & \rightsquigarrow & A_{1}^{1} \mid A_{2}^{1} \\
\left(A_{1} \rightarrow A_{2}\right)^{0} & \rightsquigarrow & A_{1}^{1}, A_{2}^{0} \\
\left(\neg A_{1}\right)^{1} & \rightsquigarrow & A_{1}^{0}
\end{array}
$$

Constructing a semantic tableau

$$
\begin{gathered}
(\neg(q \vee p \rightarrow p \vee q))^{1} \\
(q \vee p \rightarrow p \vee q)^{0}
\end{gathered}
$$

Rules to grow a tree branch:

$$
\begin{array}{rll}
\left(A_{1} \vee A_{2}\right)^{0} & \rightsquigarrow & A_{1}^{0}, A_{2}^{0} \\
\left(A_{1} \vee A_{2}\right)^{1} & \rightsquigarrow & A_{1}^{1} \mid A_{2}^{1} \\
\left(A_{1} \rightarrow A_{2}\right)^{0} & \rightsquigarrow & A_{1}^{1}, A_{2}^{0} \\
\left(\neg A_{1}\right)^{1} & \rightsquigarrow & A_{1}^{0}
\end{array}
$$

Constructing a semantic tableau

$$
\begin{gathered}
(\neg(q \vee p \rightarrow p \vee q))^{1} \\
(q \vee p \rightarrow p \vee q)^{0}
\end{gathered}
$$

Rules to grow a tree branch:

$$
\begin{array}{rlll}
\left(A_{1} \vee A_{2}\right)^{0} & \rightsquigarrow & A_{1}^{0}, A_{2}^{0} \\
\left(A_{1} \vee A_{2}\right)^{1} & \rightsquigarrow & A_{1}^{1} \mid A_{2}^{1} \\
\left(A_{1} \rightarrow A_{2}\right)^{0} & \rightsquigarrow & A_{1}^{1}, A_{2}^{0} \\
\left(\neg A_{1}\right)^{1} & \rightsquigarrow & A_{1}^{0}
\end{array}
$$

Constructing a semantic tableau

$$
\begin{gathered}
(\neg(q \vee p \rightarrow p \vee q))^{1} \\
(q \vee p \rightarrow p \vee q)^{0} \\
\mid \\
(q \vee p)^{1} \\
(p \vee q)^{0}
\end{gathered}
$$

Rules to grow a tree branch:

$$
\begin{array}{rll}
\left(A_{1} \vee A_{2}\right)^{0} & \rightsquigarrow A_{1}^{0}, A_{2}^{0} \\
\left(A_{1} \vee A_{2}\right)^{1} & \rightsquigarrow & A_{1}^{1} \mid A_{2}^{1} \\
\left(A_{1} \rightarrow A_{2}\right)^{0} & \rightsquigarrow & A_{1}^{1}, A_{2}^{0} \\
\left(\neg A_{1}\right)^{1} & \rightsquigarrow & A_{1}^{0}
\end{array}
$$

Constructing a semantic tableau

$$
\begin{gathered}
(\neg(q \vee p \rightarrow p \vee q))^{1} \\
(q \vee p \rightarrow p \vee q)^{0} \\
\mid \\
(q \vee p)^{1} \\
(p \vee q)^{0}
\end{gathered}
$$

Rules to grow a tree branch:

$$
\begin{array}{rll}
\left(A_{1} \vee A_{2}\right)^{0} & \rightsquigarrow & A_{1}^{0}, A_{2}^{0} \\
\left(A_{1} \vee A_{2}\right)^{1} & \rightsquigarrow & A_{1}^{1} \mid A_{2}^{1} \\
\left(A_{1} \rightarrow A_{2}\right)^{0} & \rightsquigarrow & A_{1}^{1}, A_{2}^{0} \\
\left(\neg A_{1}\right)^{1} & \rightsquigarrow & A_{1}^{0}
\end{array}
$$

Constructing a semantic tableau

$$
\begin{gathered}
(\neg(q \vee p \rightarrow p \vee q))^{1} \\
(q \vee p \rightarrow p \vee q)^{0} \\
\mid \\
(q \vee p)^{1} \\
(p \vee q)^{0} \\
\mid \\
p^{0} \\
q^{0}
\end{gathered}
$$

Rules to grow a tree branch:

$$
\begin{array}{rll}
\left(A_{1} \vee A_{2}\right)^{0} & \rightsquigarrow & A_{1}^{0}, A_{2}^{0} \\
\left(A_{1} \vee A_{2}\right)^{1} & \rightsquigarrow & A_{1}^{1} \mid A_{2}^{1} \\
\left(A_{1} \rightarrow A_{2}\right)^{0} & \rightsquigarrow & A_{1}^{1}, A_{2}^{0} \\
\left(\neg A_{1}\right)^{1} & \rightsquigarrow & A_{1}^{0}
\end{array}
$$

Constructing a semantic tableau

$$
\begin{gathered}
(\neg(q \vee p \rightarrow p \vee q))^{1} \\
(q \vee p \rightarrow p \vee q)^{0} \\
\mid \\
(q \vee p)^{1} \\
(p \vee q)^{0} \\
\mid \\
p^{0} \\
q^{0}
\end{gathered}
$$

Rules to grow a tree branch:

$$
\begin{array}{rll}
\left(A_{1} \vee A_{2}\right)^{0} & \rightsquigarrow A_{1}^{0}, A_{2}^{0} \\
\left(A_{1} \vee A_{2}\right)^{1} & \rightsquigarrow & A_{1}^{1} \mid A_{2}^{1} \\
\left(A_{1} \rightarrow A_{2}\right)^{0} & \rightsquigarrow & A_{1}^{1}, A_{2}^{0} \\
\left(\neg A_{1}\right)^{1} & \rightsquigarrow & A_{1}^{0}
\end{array}
$$

Constructing a semantic tableau

$$
\begin{gathered}
(\neg(q \vee p \rightarrow p \vee q))^{1} \\
(q \vee p \rightarrow p \vee q)^{0}
\end{gathered}
$$

Rules to grow a tree branch:

$$
\begin{array}{rll}
\left(A_{1} \vee A_{2}\right)^{0} & \rightsquigarrow & A_{1}^{0}, A_{2}^{0} \\
\left(A_{1} \vee A_{2}\right)^{1} & \rightsquigarrow & A_{1}^{1} \mid A_{2}^{1} \\
\left(A_{1} \rightarrow A_{2}\right)^{0} & \rightsquigarrow & A_{1}^{1}, A_{2}^{0} \\
\left(\neg A_{1}\right)^{1} & \rightsquigarrow & A_{1}^{0}
\end{array}
$$

Constructing a semantic tableau

Rules to grow a tree branch:

$$
\begin{array}{rll}
\left(A_{1} \vee A_{2}\right)^{0} & \rightsquigarrow & A_{1}^{0}, A_{2}^{0} \\
\left(A_{1} \vee A_{2}\right)^{1} & \rightsquigarrow & A_{1}^{1} \mid A_{2}^{1} \\
\left(A_{1} \rightarrow A_{2}\right)^{0} & \rightsquigarrow & A_{1}^{1}, A_{2}^{0} \\
\left(\neg A_{1}\right)^{1} & \rightsquigarrow & A_{1}^{0}
\end{array}
$$

Constructing a semantic tableau

Branch expansion rules

$$
\begin{aligned}
\left(A_{1} \wedge \cdots \wedge A_{n}\right)^{0} & \rightsquigarrow A_{1}^{0}|\cdots| A_{n}^{0} \\
\left(A_{1} \wedge \cdots \wedge A_{n}\right)^{1} & \rightsquigarrow A_{1}^{1}, \ldots, A_{n}^{1} \\
\left(A_{1} \vee \cdots \vee A_{n}\right)^{0} & \rightsquigarrow A_{1}^{0}, \ldots, A_{n}^{0} \\
\left(A_{1} \vee \cdots \vee A_{n}\right)^{1} & \rightsquigarrow A_{1}^{1}|\cdots| A_{n}^{1} \\
\left(A_{1} \rightarrow A_{2}\right)^{0} & \rightsquigarrow A_{1}^{1}, A_{2}^{0} \\
\left(A_{1} \rightarrow A_{2}\right)^{1} & \rightsquigarrow A_{1}^{0} \mid A_{2}^{1} \\
(\neg A)^{0} & \rightsquigarrow A^{1} \\
(\neg A)^{1} & \rightsquigarrow A^{0} \\
\left(A_{1} \leftrightarrow A_{2}\right)^{0} & \rightsquigarrow A_{1}^{0}, A_{2}^{1} \mid A_{1}^{1}, A_{2}^{0} \\
\left(A_{1} \leftrightarrow A_{2}\right)^{1} & \rightsquigarrow A_{1}^{0}, A_{2}^{0} \mid A_{1}^{1}, A_{2}^{1}
\end{aligned}
$$

Open and closed branches

A branch is closed in any of the following cases:

- it contains both p^{0} and p^{1} for some atom p

Open and closed branches

A branch is closed in any of the following cases:

- it contains both p^{0} and p^{1} for some atom p
- it contains \top^{0}
- it contains \perp^{1}

It is open otherwise.

Open and closed branches

A branch is closed in any of the following cases:

- it contains both p^{0} and p^{1} for some atom p
- it contains \top^{0}
- it contains \perp^{1}

It is open otherwise.

A tableau is closed if all of its branches are closed

Open and closed branches

A branch is closed in any of the following cases:

- it contains both p^{0} and p^{1} for some atom p
- it contains \top^{0}
- it contains \perp^{1}

It is open otherwise.

A tableau is closed if all of its branches are closed

Note: The formulas on a closed branch are jointly unsatisfiable

Open and closed branches

A branch is closed in any of the following cases:

- it contains both p^{0} and p^{1} for some atom p
- it contains \top^{0}
- it contains \perp^{1}

It is open otherwise.

A tableau is closed if all of its branches are closed

Note: The formulas on a closed branch are jointly unsatisfiable
A branch is complete (or saturated) if it cannot be expanded further without adding a formula already in it

Open and closed branches

A branch is closed in any of the following cases:

- it contains both p^{0} and p^{1} for some atom p
- it contains \top^{0}
- it contains \perp^{1}

It is open otherwise.
A tableau is closed if all of its branches are closed

Note: The formulas on a closed branch are jointly unsatisfiable
A branch is complete (or saturated) if it cannot be expanded further without adding a formula already in it

Note: From the signed atoms of an complete open branch it is possible to construct a model of the root formula

Example 2
$(\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r)))^{1}$

$$
\begin{array}{rll}
\left(A_{1} \wedge A_{2}\right)^{0} & \rightsquigarrow & A_{1}^{0} \mid A_{2}^{0} \\
\left(A_{1} \wedge A_{2}\right)^{1} & \rightsquigarrow & A_{1}^{1}, A_{2}^{1} \\
\left(A_{1} \rightarrow A_{2}\right)^{0} & \rightsquigarrow & A_{1}^{1}, A_{2}^{0} \\
\left(A_{1} \rightarrow A_{2}\right)^{1} & \rightsquigarrow & A_{1}^{0} \mid A_{2}^{1} \\
\left(\neg A_{1}\right)^{1} & \rightsquigarrow & A_{1}^{0}
\end{array}
$$

Example 2
$(\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r)))^{1}$

$$
\begin{array}{rll}
\left(A_{1} \wedge A_{2}\right)^{0} & \rightsquigarrow & A_{1}^{0} \mid A_{2}^{0} \\
\left(A_{1} \wedge A_{2}\right)^{1} & \rightsquigarrow & A_{1}^{1}, A_{2}^{1} \\
\left(A_{1} \rightarrow A_{2}\right)^{0} & \rightsquigarrow & A_{1}^{1}, A_{2}^{0} \\
\left(A_{1} \rightarrow A_{2}\right)^{1} & \rightsquigarrow & A_{1}^{0} \mid A_{2}^{1} \\
\left(\neg A_{1}\right)^{1} & \rightsquigarrow & A_{1}^{0}
\end{array}
$$

Example 2

$$
\begin{aligned}
& (\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r)))^{1} \\
& \begin{aligned}
\mid(p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r))^{0}
\end{aligned} \\
& \begin{aligned}
\left(A_{1} \wedge A_{2}\right)^{0} & \rightsquigarrow A_{1}^{0} \mid A_{2}^{0} \\
\left(A_{1} \wedge A_{2}\right)^{1} & \rightsquigarrow A_{1}^{1}, A_{2}^{1} \\
\left(A_{1} \rightarrow A_{2}\right)^{0} & \rightsquigarrow A_{1}^{1}, A_{2}^{0} \\
\left(A_{1} \rightarrow A_{2}\right)^{1} & \rightsquigarrow A_{1}^{0} \mid A_{2}^{1} \\
& \left(\neg A_{1}\right)^{1}
\end{aligned} \gg A_{1}^{0}
\end{aligned}
$$

Example 2

$$
\begin{gathered}
(\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r)))^{1} \\
\quad((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r))^{0}
\end{gathered}
$$

$$
\begin{array}{rll}
\left(A_{1} \wedge A_{2}\right)^{0} & \rightsquigarrow & A_{1}^{0} \mid A_{2}^{0} \\
\left(A_{1} \wedge A_{2}\right)^{1} & \rightsquigarrow & A_{1}^{1}, A_{2}^{1} \\
\left(A_{1} \rightarrow A_{2}\right)^{0} & \rightsquigarrow & A_{1}^{1}, A_{2}^{0} \\
\left(A_{1} \rightarrow A_{2}\right)^{1} & \rightsquigarrow & A_{1}^{0} \mid A_{2}^{1} \\
\left(\neg A_{1}\right)^{1} & \rightsquigarrow & A_{1}^{0}
\end{array}
$$

Example 2

$$
\begin{aligned}
& (\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r)))^{1} \\
& ((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r))^{0} \\
& \left((p \rightarrow q) \underset{(\neg p \rightarrow r)^{g}}{\wedge(p \wedge r))^{1}}\right. \\
& \left(A_{1} \wedge A_{2}\right)^{0} \quad \rightsquigarrow \quad A_{1}^{0} \mid A_{2}^{0} \\
& \left(A_{1} \wedge A_{2}\right)^{1} \quad \rightsquigarrow \quad A_{1}^{1}, A_{2}^{1} \\
& \left(A_{1} \rightarrow A_{2}\right)^{0} \quad \rightsquigarrow \quad A_{1}^{1}, A_{2}^{0} \\
& \left(A_{1} \rightarrow A_{2}\right)^{1} \rightsquigarrow A_{1}^{0} \mid A_{2}^{1} \\
& \left(\neg A_{1}\right)^{1} \quad \rightsquigarrow A_{1}^{0}
\end{aligned}
$$

Example 2

$$
\begin{gathered}
(\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r)))^{1} \\
((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r))^{0} \\
\mid \\
\left(\left(p \rightarrow \underset{(\neg p) \wedge(p \wedge r)}{(p \rightarrow r))^{1}}\right.\right.
\end{gathered}
$$

$$
\begin{array}{rll}
\left(A_{1} \wedge A_{2}\right)^{0} & \rightsquigarrow & A_{1}^{0} \mid A_{2}^{0} \\
\left(A_{1} \wedge A_{2}\right)^{1} & \rightsquigarrow & A_{1}^{1}, A_{2}^{1} \\
\left(A_{1} \rightarrow A_{2}\right)^{0} & \rightsquigarrow & A_{1}^{1}, A_{2}^{0} \\
\left(A_{1} \rightarrow A_{2}\right)^{1} & \rightsquigarrow & A_{1}^{0} \mid A_{2}^{1} \\
\left(\neg A_{1}\right)^{1} & \rightsquigarrow & A_{1}^{0}
\end{array}
$$

Example 2

$$
\begin{gathered}
(\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r)))^{1} \\
((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r))^{0} \\
\mid \\
((p \rightarrow q) \wedge(p \wedge q \rightarrow r))^{1} \\
(\neg p \rightarrow r)^{1} \\
\mid \\
(p \rightarrow q)^{1} \\
(p \wedge q \rightarrow r)^{1}
\end{gathered}
$$

$$
\begin{array}{rll}
\left(A_{1} \wedge A_{2}\right)^{0} & \rightsquigarrow & A_{1}^{0} \mid A_{2}^{0} \\
\left(A_{1} \wedge A_{2}\right)^{1} & \rightsquigarrow & A_{1}^{1}, A_{2}^{1} \\
\left(A_{1} \rightarrow A_{2}\right)^{0} & \rightsquigarrow & A_{1}^{1}, A_{2}^{0} \\
\left(A_{1} \rightarrow A_{2}\right)^{1} & \rightsquigarrow & A_{1}^{0} \mid A_{2}^{1} \\
\left(\neg A_{1}\right)^{1} & \rightsquigarrow & A_{1}^{0}
\end{array}
$$

Example 2

$$
\begin{gathered}
(\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r)))^{1} \\
((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r))^{0} \\
\mid \\
((p \rightarrow q) \wedge(p \wedge q \rightarrow r))^{1} \\
(\neg p \rightarrow r)^{1} \\
\mid \\
(p \rightarrow q)^{1} \\
(p \wedge q \rightarrow r)^{1}
\end{gathered}
$$

$$
\begin{array}{rll}
\left(A_{1} \wedge A_{2}\right)^{0} & \rightsquigarrow & A_{1}^{0} \mid A_{2}^{0} \\
\left(A_{1} \wedge A_{2}\right)^{1} & \rightsquigarrow & A_{1}^{1}, A_{2}^{1} \\
\left(A_{1} \rightarrow A_{2}\right)^{0} & \rightsquigarrow & A_{1}^{1}, A_{2}^{0} \\
\left(A_{1} \rightarrow A_{2}\right)^{1} & \rightsquigarrow & A_{1}^{0} \mid A_{2}^{1} \\
\left(\neg A_{1}\right)^{1} & \rightsquigarrow & A_{1}^{0}
\end{array}
$$

Example 2

$$
\begin{gathered}
(\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r)))^{1} \\
\mid \\
((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r))^{0} \\
\mid \\
((p \rightarrow q) \wedge(p \wedge g \rightarrow r))^{1} \\
(\neg p \xrightarrow[\rightarrow]{\rightarrow})^{\prime} \\
\mid \\
(p \rightarrow q)^{1} \\
(p \wedge \rightarrow r)^{1} \\
\mid \\
(\neg p)^{1} \\
r^{0}
\end{gathered}
$$

$$
\begin{array}{rlll}
\left(A_{1} \wedge A_{2}\right)^{0} & \rightsquigarrow & A_{1}^{0} \mid A_{2}^{0} \\
\left(A_{1} \wedge A_{2}\right)^{1} & \rightsquigarrow & A_{1}^{1}, A_{2}^{1} \\
\left(A_{1} \rightarrow A_{2}\right)^{0} & \rightsquigarrow & A_{1}^{1}, A_{2}^{0} \\
\left(A_{1} \rightarrow A_{2}\right)^{1} & \rightsquigarrow & A_{1}^{0} \mid A_{2}^{1} \\
\left(\neg A_{1}\right)^{1} & \rightsquigarrow & A_{1}^{0}
\end{array}
$$

Example 2

$$
\begin{gathered}
(\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r)))^{1} \\
\mid \\
((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r))^{0} \\
\mid \\
((p \rightarrow q) \wedge(p \wedge g \rightarrow r))^{1} \\
(\neg p \xrightarrow[\rightarrow]{ } \\
\mid \\
\left.(p)^{\prime} \rightarrow q\right)^{1} \\
(p \wedge q \rightarrow r)^{1} \\
\mid \\
(\neg p)^{1} \\
r^{0}
\end{gathered}
$$

$$
\begin{array}{rll}
\left(A_{1} \wedge A_{2}\right)^{0} & \rightsquigarrow & A_{1}^{0} \mid A_{2}^{0} \\
\left(A_{1} \wedge A_{2}\right)^{1} & \rightsquigarrow & A_{1}^{1}, A_{2}^{1} \\
\left(A_{1} \rightarrow A_{2}\right)^{0} & \rightsquigarrow & A_{1}^{1}, A_{2}^{0} \\
\left(A_{1} \rightarrow A_{2}\right)^{1} & \rightsquigarrow & A_{1}^{0} \mid A_{2}^{1} \\
\left(\neg A_{1}\right)^{1} & \rightsquigarrow & A_{1}^{0}
\end{array}
$$

Example 2

$$
\begin{gathered}
(\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r)))^{1} \\
\mid \\
((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r))^{0} \\
\mid \\
((p \rightarrow q) \wedge(p \wedge q \rightarrow r))^{1} \\
(\neg p \xrightarrow[\rightarrow]{\rightarrow})^{g} \\
\mid \\
(p \rightarrow q)^{1} \\
\mid \\
(\neg p)^{1} \\
p^{(\neg p)^{1}} \\
r^{r^{0}} \\
p^{0}
\end{gathered}
$$

$$
\begin{array}{rll}
\left(A_{1} \wedge A_{2}\right)^{0} & \rightsquigarrow A_{1}^{0} \mid A_{2}^{0} \\
\left(A_{1} \wedge A_{2}\right)^{1} & \rightsquigarrow & A_{1}^{1}, A_{2}^{1} \\
\left(A_{1} \rightarrow A_{2}\right)^{0} & \rightsquigarrow & A_{1}^{1}, A_{2}^{0} \\
\left(A_{1} \rightarrow A_{2}\right)^{1} & \rightsquigarrow & A_{1}^{0} \mid A_{2}^{1} \\
\left(\neg A_{1}\right)^{1} & \rightsquigarrow A_{1}^{0}
\end{array}
$$

Example 2

$$
\begin{gathered}
(\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r)))^{1} \\
\mid \\
((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r))^{0} \\
\mid \\
((p \rightarrow q) \wedge(p \wedge q \rightarrow r))^{1} \\
(\neg p \xrightarrow[\rightarrow]{\rightarrow})^{g} \\
\mid \\
(p \rightarrow q)^{1} \\
\mid \\
(\neg r)^{1} \\
(\neg p)^{1} \\
r^{0} \\
p^{0}
\end{gathered}
$$

$$
\begin{array}{rll}
\left(A_{1} \wedge A_{2}\right)^{0} & \rightsquigarrow A_{1}^{0} \mid A_{2}^{0} \\
\left(A_{1} \wedge A_{2}\right)^{1} & \rightsquigarrow & A_{1}^{1}, A_{2}^{1} \\
\left(A_{1} \rightarrow A_{2}\right)^{0} & \rightsquigarrow & A_{1}^{1}, A_{2}^{0} \\
\left(A_{1} \rightarrow A_{2}\right)^{1} & \rightsquigarrow A_{1}^{0} \mid A_{2}^{1} \\
\left(\neg A_{1}\right)^{1} & \rightsquigarrow A_{1}^{0}
\end{array}
$$

Example 2

$$
\begin{aligned}
& (\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r)))^{\prime} \\
& ((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r))^{0} \\
& \underset{((p \rightarrow q) \wedge \underset{(\neg p \xrightarrow{(p} \wedge r)}{ } g \rightarrow r))^{\prime}}{ } \\
& \begin{array}{c}
\mid \\
(p \rightarrow q)^{\prime} \\
(p \wedge)^{\prime} \\
\mid
\end{array} \\
& \text { (} \\
& \left(A_{1} \wedge A_{2}\right)^{0} \rightsquigarrow A_{1}^{0} \mid A_{2}^{0} \\
& \left(A_{1} \wedge A_{2}\right)^{1} \rightsquigarrow A_{1}^{1}, A_{2}^{1} \\
& \left(A_{1} \rightarrow A_{2}\right)^{0} \rightsquigarrow A_{1}^{1}, A_{2}^{0} \\
& \left(A_{1} \rightarrow A_{2}\right)^{1} \rightsquigarrow A_{1}^{0} \mid A_{2}^{1} \\
& \left(\neg A_{1}\right)^{1} \rightsquigarrow A_{1}^{0}
\end{aligned}
$$

Example 2

$$
\begin{aligned}
& (\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r)))^{\prime} \\
& ((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r))^{0} \\
& \underset{\left.\left.((p \rightarrow q) \wedge \underset{(\neg p}{\wedge} \stackrel{(p)}{\rightarrow})^{g} \rightarrow r\right)\right)^{\prime}}{ } \\
& \begin{array}{c}
\\
(p \rightarrow q)^{\prime} \\
(p))^{1}
\end{array} \\
& (p \wedge q \rightarrow r) \\
& \left(A_{1} \wedge A_{2}\right)^{0} \rightsquigarrow A_{1}^{0} \mid A_{2}^{0} \\
& \left(A_{1} \wedge A_{2}\right)^{1} \rightsquigarrow A_{1}^{1}, A_{2}^{1} \\
& \left(A_{1} \rightarrow A_{2}\right)^{0} \quad \rightsquigarrow A_{1}^{1}, A_{2}^{0} \\
& \left(A_{1} \rightarrow A_{2}\right)^{1} \rightsquigarrow A_{1}^{0} \mid A_{2}^{1} \\
& \left(\neg A_{1}\right)^{1} \rightsquigarrow A_{1}^{0}
\end{aligned}
$$

Example 2

$$
\begin{array}{rll}
\left(A_{1} \wedge A_{2}\right)^{0} & \rightsquigarrow & A_{1}^{0} \mid A_{2}^{0} \\
\left(A_{1} \wedge A_{2}\right)^{1} & \rightsquigarrow & A_{1}^{1}, A_{2}^{1} \\
\left(A_{1} \rightarrow A_{2}\right)^{0} & \rightsquigarrow & A_{1}^{1}, A_{2}^{0} \\
\left(A_{1} \rightarrow A_{2}\right)^{1} & \rightsquigarrow & A_{1}^{0} \mid A_{2}^{1} \\
\left(\neg A_{1}\right)^{1} & \rightsquigarrow & A_{1}^{0}
\end{array}
$$

Example 2

$$
\begin{array}{rll}
\left(A_{1} \wedge A_{2}\right)^{0} & \rightsquigarrow A_{1}^{0} \mid A_{2}^{0} \\
\left(A_{1} \wedge A_{2}\right)^{1} & \rightsquigarrow & A_{1}^{1}, A_{2}^{1} \\
\left(A_{1} \rightarrow A_{2}\right)^{0} & \rightsquigarrow & A_{1}^{1}, A_{2}^{0} \\
\left(A_{1} \rightarrow A_{2}\right)^{1} & \rightsquigarrow & A_{1}^{0} \mid A_{2}^{1} \\
\left(\neg A_{1}\right)^{1} & \rightsquigarrow & A_{1}^{0}
\end{array}
$$

Example 2

$$
\begin{array}{rll}
\left(A_{1} \wedge A_{2}\right)^{0} & \rightsquigarrow A_{1}^{0} \mid A_{2}^{0} \\
\left(A_{1} \wedge A_{2}\right)^{1} & \rightsquigarrow & A_{1}^{1}, A_{2}^{1} \\
\left(A_{1} \rightarrow A_{2}\right)^{0} & \rightsquigarrow & A_{1}^{1}, A_{2}^{0} \\
\left(A_{1}\right. & \left.\rightarrow A_{2}\right)^{1} & \rightsquigarrow A_{1}^{0} \mid A_{2}^{1} \\
\left(\neg A_{1}\right)^{1} & \rightsquigarrow A_{1}^{0}
\end{array}
$$

Example 2

$$
\begin{array}{rll}
\left(A_{1} \wedge A_{2}\right)^{0} & \rightsquigarrow & A_{1}^{0} \mid A_{2}^{0} \\
\left(A_{1} \wedge A_{2}\right)^{1} & \rightsquigarrow & A_{1}^{1}, A_{2}^{1} \\
\left(A_{1} \rightarrow A_{2}\right)^{0} & \rightsquigarrow & A_{1}^{1}, A_{2}^{0} \\
\left(A_{1} \rightarrow A_{2}\right)^{1} & \rightsquigarrow & A_{1}^{0} \mid A_{2}^{1} \\
\left(\neg A_{1}\right)^{1} & \rightsquigarrow & A_{1}^{0}
\end{array}
$$

The leftmost branch is complete (nothing new can be added) but still open

Finding Models Using Tableaux

Finding Models Using Tableaux

Build a complete branch

Finding Models Using Tableaux

Build a complete branch
Select the signed atoms on it

Finding Models Using Tableaux

Build a complete branch
Select the signed atoms on it
They give us a (possibly partial) model of the root formula:

$$
\{r \mapsto 0, p \mapsto 0, q \mapsto \cdots\}
$$

Soundness and completeness of tableaux

```
Theorem 1 (Soundness and completeness)
A formula A is valid iff there is a closed tableau for A (iff every tableau for A}\mp@subsup{A}{}{0}\mathrm{ is
closed)
```


Soundness and completeness of tableaux

Theorem 1 (Soundness and completeness)
 A formula A is valid iff there is a closed tableau for A^{0} (iff every tableau for A^{0} is closed)

Corollary 2

1. A formula A is satisfiable iff there is a tableau for A^{1} with a complete open branch (iff every tableau for A^{1} contains a complete open branch)
2. Formulas A and B are equivalent iff there is a closed tableau for $(A \leftrightarrow B)^{0}$ (iff every tableau for $(A \leftrightarrow B)^{0}$ is closed)

Soundness and completeness of tableaux

Theorem 1 (Soundness and completeness)
 A formula A is valid iff there is a closed tableau for A^{0} (iff every tableau for A^{0} is closed)

Corollary 2

1. A formula A is satisfiable iff there is a tableau for A^{1} with a complete open branch (iff every tableau for A^{1} contains a complete open branch)
2. Formulas A and B are equivalent iff there is a closed tableau for $(A \leftrightarrow B)^{0}$ (iff every tableau for $(A \leftrightarrow B)^{0}$ is closed)

Note: A fully expanded tableau for A^{1} gives us all models of A

Tableaux as derivation systems

Main idea:

1. Represent a tableau as the set of its branches

Tableaux as derivation systems

Main idea:

1. Represent a tableau as the set of its branches
2. Represent a branch as the set of the signed formulas on it

Tableaux as derivation systems

Main idea:

1. Represent a tableau as the set of its branches
2. Represent a branch as the set of the signed formulas on it
3. Turn the tableaux expansion rules into derivation rules

Tableaux as derivation systems

Main idea:

1. Represent a tableau as the set of its branches
2. Represent a branch as the set of the signed formulas on it
3. Turn the tableaux expansion rules into derivation rules
4. Add rules to remove closed branches

Tableaux as derivation systems

Main idea:

1. Represent a tableau as the set of its branches
2. Represent a branch as the set of the signed formulas on it
3. Turn the tableaux expansion rules into derivation rules
4. Add rules to remove closed branches
5. To check a signed formula A^{b} start with the tableau $\left\{\left\{A^{b}\right\}\right\}$

Tableau expansion rules $-\neg$

p atom
A_{i} formula

B a branch (set of signed formulas)
T a tableaux (set of branches)

$$
\frac{\left\{\left\{(\neg A)^{0}\right\} \cup \mathbf{B}\right\} \cup \mathbf{T}}{\left\{\left\{A^{1}\right\} \cup \mathbf{B}\right\} \cup \mathbf{T}} \neg_{0}
$$

$$
\frac{\left\{\left\{(\neg A)^{0}\right\} \cup \mathbf{B}\right\} \cup \mathbf{T}}{\left\{\left\{A^{\prime}\right\} \cup \mathbf{B}\right\} \cup \mathbf{T}} \neg_{1}
$$

Tableau expansion rules $-\neg$

$$
\begin{array}{ccc}
& \begin{array}{c}
p \\
A_{i}
\end{array} & \text { atom } \\
\text { formula } & \begin{array}{l}
\mathbf{B} \\
\mathrm{T}
\end{array} & \begin{array}{l}
\text { a branch (set of signed formulas) } \\
\text { a tableaux (set of branches) }
\end{array} \\
\frac{\left\{\left\{(\neg A)^{0}\right\} \cup \mathbf{B}\right\} \cup \mathbf{T}}{\left\{\left\{A^{1}\right\} \cup \mathbf{B}\right\} \cup \mathbf{T}} \neg_{0} & \frac{\left\{\left\{(\neg A)^{0}\right\} \cup \mathbf{B}\right\} \cup \mathbf{T}}{\left\{\left\{A^{1}\right\} \cup \mathbf{B}\right\} \cup T} \neg_{1} \\
\frac{(\neg A)^{0}, \mathbf{B} \mid \mathbf{T}}{A^{1}, \mathbf{B} \mid \mathbf{T}} \neg_{0} & \frac{(\neg A)^{1}, \mathbf{B} \mid \mathbf{T}}{A^{0}, \mathbf{B} \mid \mathbf{T}} \neg_{1} & \begin{array}{l}
\text { shorthand } \\
\text { notation }
\end{array}
\end{array}
$$

Tableau expansion rules $-\wedge$ and \vee

p atom
A_{i} formula
$\frac{\left(A_{1} \wedge \cdots \wedge A_{n}\right)^{0}, \mathbf{B} \mid \mathbf{T}}{A_{1}^{0}, \mathbf{B}|\cdots| A_{n}^{0}, \mathbf{B} \mid \mathbf{T}} \wedge_{0}$

$$
\frac{\left(A_{1} \vee \cdots \vee A_{n}\right)^{0}, \mathbf{B} \mid \mathbf{T}}{A_{1}^{0}, \ldots, A_{n}^{0}, \mathbf{B} \mid \mathbf{T}} \vee_{0}
$$

B a branch (set of signed formulas)
T a tableaux (set of branches)

$\frac{\left(A_{1} \vee \cdots \vee A_{n}\right)^{1}, \mathbf{B} \mid \mathbf{T}}{A_{1}^{1}, \mathbf{B}|\cdots| A_{n}^{1}, \mathbf{B} \mid \mathbf{T}} \vee_{1}$

Tableau expansion rules $\longrightarrow \rightarrow$ and \leftrightarrow

$$
\begin{array}{cl}
& \begin{array}{l}
p \\
A_{i} \\
\text { formula }
\end{array} \\
\frac{\left(A_{1} \rightarrow A_{2}\right)^{0}, \mathbf{B} \mid \mathbf{T}}{A_{1}^{1}, A_{2}^{0}, \mathbf{B} \mid \mathbf{T}} \rightarrow 0 \\
\frac{\left(A_{1} \leftrightarrow A_{2}\right)^{0}, \mathbf{B} \mid \mathbf{T}}{A_{1}^{0}, A_{2}^{1}, \mathbf{B}\left|A_{1}^{1}, A_{2}^{0}, \mathbf{B}\right| \mathbf{T}} \leftrightarrow 0
\end{array}
$$

Tableau closure rules

p atom B a branch (set of signed formulas)
A_{i} formula T a tableaux (set of branches)

Tableau closure rules

p	atom	B	a branch (set of signed formulas)
A_{i}	formula	T	a tableaux (set of branches)

Note: A tableau is closed iff it is the empty set

