CS:4350 Logic in Computer Science
 Propositional Satisfiability

Cesare Tinelli

Spring 2022

Credits

These slides are largely based on slides originally developed by Andrei Voronkov at the University of Manchester. Adapted by permission.

Outline

Satisfiability Checking
Satisfiability. Examples
Truth Tables
Splitting
Positions and subformulas

Propositional Satisfiability

In many real-world problems, we are interested in whether a set of constraints is solvable.

Propositional Satisfiability

In many real-world problems, we are interested in whether a set of constraints is solvable.

When these constraints are expressible in Propositional Logic, the problem reduces to checking the satisfiability of a set of formulas.

Propositional Satisfiability

In many real-world problems, we are interested in whether a set of constraints is solvable.

When these constraints are expressible in Propositional Logic, the problem reduces to checking the satisfiability of a set of formulas.

Satisfiability in PL is a very general problem

Propositional Satisfiability

In fact, even entailment in PL can be reduced to satisfiability. Recall:
$A_{1}, \ldots, A_{n} \models B \quad$ iff $\quad\left\{A_{1}, \ldots, A_{n}, \neg B\right\}$ is unsatisfiable

Propositional Satisfiability

In fact, even entailment in PL can be reduced to satisfiability. Recall:

$$
A_{1}, \ldots, A_{n} \models B \quad \text { iff } \quad\left\{A_{1}, \ldots, A_{n}, \neg B\right\} \text { is unsatisfiable }
$$

Upshot: we do not really need a derivation system to prove PL formulas if we have a satisfiability procedure!

Propositional Satisfiability

In fact, even entailment in PL can be reduced to satisfiability. Recall:

$$
A_{1}, \ldots, A_{n} \models B \quad \text { iff } \quad\left\{A_{1}, \ldots, A_{n}, \neg B\right\} \text { is unsatisfiable }
$$

Upshot: we do not really need a derivation system to prove PL formulas if we have a satisfiability procedure!

Great news: satisfiability in PL, aka the SAT problem, is decidable

Propositional Satisfiability

In fact, even entailment in PL can be reduced to satisfiability. Recall:

$$
A_{1}, \ldots, A_{n} \models B \quad \text { iff } \quad\left\{A_{1}, \ldots, A_{n}, \neg B\right\} \text { is unsatisfiable }
$$

Upshot: we do not really need a derivation system to prove PL formulas if we have a satisfiability procedure!

Great news: satisfiability in PL, aka the SAT problem, is decidable
Bad news: no fast (polynomial-time) and general algorithms for SAT in general are known

Propositional Satisfiability

In fact, even entailment in PL can be reduced to satisfiability. Recall:

$$
A_{1}, \ldots, A_{n} \models B \quad \text { iff } \quad\left\{A_{1}, \ldots, A_{n}, \neg B\right\} \text { is unsatisfiable }
$$

Upshot: we do not really need a derivation system to prove PL formulas if we have a satisfiability procedure!

Great news: satisfiability in PL, aka the SAT problem, is decidable
Bad news: no fast (polynomial-time) and general algorithms for SAT in general are known

Reality: there are automated reasoning techniques that work extremely well for SAT in practice

A Puzzle

Isaac and Albert were excitedly describing the result of the Third Annual International Science Fair Extravaganza in Sweden.

There were three contestants: Louis, Rene, and Johannes.

A Puzzle

Isaac and Albert were excitedly describing the result of the Third Annual International Science Fair Extravaganza in Sweden.

There were three contestants: Louis, Rene, and Johannes.
Isaac reported that Louis won the fair, while Rene came in second. Albert, on the other hand, reported that Johannes won the fair, while Louis came in second.

A Puzzle

Isaac and Albert were excitedly describing the result of the Third Annual International Science Fair Extravaganza in Sweden.

There were three contestants: Louis, Rene, and Johannes.
Isaac reported that Louis won the fair, while Rene came in second. Albert, on the other hand, reported that Johannes won the fair, while Louis came in second.

In fact, neither Isaac nor Albert had given a correct report of the results of the science fair. Each of them had given one true statement and one false statement.

A Puzzle

Isaac and Albert were excitedly describing the result of the Third Annual International Science Fair Extravaganza in Sweden.

There were three contestants: Louis, Rene, and Johannes.
Isaac reported that Louis won the fair, while Rene came in second. Albert, on the other hand, reported that Johannes won the fair, while Louis came in second.

In fact, neither Isaac nor Albert had given a correct report of the results of the science fair. Each of them had given one true statement and one false statement.

What was the actual placing of the three contestants?

A Puzzle

Isaac and Albert were excitedly describing the result of the Third Annual International Science Fair Extravaganza in Sweden.

There were three contestants: Louis, Rene, and Johannes.
Isaac reported that Louis won the fair, while Rene came in second. Albert, on the other hand, reported that Johannes won the fair, while Louis came in second. In fact, neither Isaac nor Albert had given a correct report of the results of the science fair. Each of them had given one true statement and one false statement. What was the actual placing of the three contestants?

How can we solve this kind of puzzle?

Propositional Satisfiability Problem

Given a propositional formula A, check if it is satisfiable or not.

Propositional Satisfiability Problem

Given a propositional formula A, check if it is satisfiable or not. If it is, also find a satisfying assignment for A (a model of A).

Propositional Satisfiability Problem

Given a propositional formula A, check if it is satisfiable or not. If it is, also find a satisfying assignment for A (a model of A).

One of the most famous combinatorial problems in CS

Propositional Satisfiability Problem

Given a propositional formula A, check if it is satisfiable or not. If it is, also find a satisfying assignment for A (a model of A).

One of the most famous combinatorial problems in CS

It is a very hard problem computationally, with a surprisingly large number of practical applications.

Propositional Satisfiability Problem

Given a propositional formula A, check if it is satisfiable or not. If it is, also find a satisfying assignment for A (a model of A).

One of the most famous combinatorial problems in CS

It is a very hard problem computationally, with a surprisingly large number of practical applications.

It was also the first ever problem to be proved NP-complete.

Russian spy puzzle

There are three people: Stirlitz, Müller, and Eismann. It is known that exactly one of them is Russian, while the other two are German. Is is also know that every Russian is a spy.

Russian spy puzzle

There are three people: Stirlitz, Müller, and Eismann. It is known that exactly one of them is Russian, while the other two are German. Is is also know that every Russian is a spy.

When Stirlitz meets Müller in a hallway, he makes the following joke: "you know, Müller, you are as German as I am Russian". It is known that Stirlitz always tells the truth when he is joking.

Russian spy puzzle

There are three people: Stirlitz, Müller, and Eismann. It is known that exactly one of them is Russian, while the other two are German. Is is also know that every Russian is a spy.

When Stirlitz meets Müller in a hallway, he makes the following joke: "you know, Müller, you are as German as I am Russian". It is known that Stirlitz always tells the truth when he is joking.

We have to show that Eismann is not a Russian spy.

Russian spy puzzle

There are three people: Stirlitz, Müller, and Eismann. It is known that exactly one of them is Russian, while the other two are German. Is is also know that every Russian is a spy.

When Stirlitz meets Müller in a hallway, he makes the following joke: "you know, Müller, you are as German as I am Russian". It is known that Stirlitz always tells the truth when he is joking.

We have to show that Eismann is not a Russian spy.
How can we solve problems of this kind?

Formalization in propositional logic

Introduce nine propositional variables as in the following table:

	Stirlitz	Müller	Eismann
Russian	RS	RM	RE
German	GS	GM	GE
Spy	SS	SM	SE

Formalization in propositional logic

Introduce nine propositional variables as in the following table:

	Stirlitz	Müller	Eismann
Russian	RS	RM	RE
German	GS	GM	GE
Spy	SS	SM	SE

Example
SE: Eismann is a Spy
$R S$: Stirlitz is Russian

Formalization in propositional logic

There are three people: Stirlitz, Müller, and Eismann. It is known that exactly one of them is Russian, while the other two are German.

It is also known that every Russian is a spy.

When Stirlitz meets Müller in a hallway, he makes the following joke: "you know, Müller, you are as German as I am Russian."

Formalization in propositional logic

There are three people: Stirlitz, Müller, and Eismann. It is known that exactly one of them is Russian, while the other two are German.

$$
(R S \wedge G M \wedge G E) \vee(G S \wedge R M \wedge G E) \vee(G S \wedge G M \wedge R E)
$$

It is also known that every Russian is a spy.

When Stirlitz meets Müller in a hallway, he makes the following joke: "you know, Müller, you are as German as I am Russian."

Formalization in propositional logic

There are three people: Stirlitz, Müller, and Eismann. It is known that exactly one of them is Russian, while the other two are German.

$$
(R S \wedge G M \wedge G E) \vee(G S \wedge R M \wedge G E) \vee(G S \wedge G M \wedge R E)
$$

It is also known that every Russian is a spy.

$$
(R S \rightarrow S S) \wedge(R M \rightarrow S M) \wedge(R E \rightarrow S E)
$$

When Stirlitz meets Müller in a hallway, he makes the following joke: "you know, Müller, you are as German as I am Russian."

Formalization in propositional logic

There are three people: Stirlitz, Müller, and Eismann. It is known that exactly one of them is Russian, while the other two are German.

$$
(R S \wedge G M \wedge G E) \vee(G S \wedge R M \wedge G E) \vee(G S \wedge G M \wedge R E)
$$

It is also known that every Russian is a spy.

$$
(R S \rightarrow S S) \wedge(R M \rightarrow S M) \wedge(R E \rightarrow S E)
$$

When Stirlitz meets Müller in a hallway, he makes the following joke: "you know, Müller, you are as German as I am Russian."

$$
R S \leftrightarrow G M
$$

Formalization in propositional logic

Implicit knowledge: Russians are not Germans.

Formalization in propositional logic

Implicit knowledge: Russians are not Germans.

$$
(R S \leftrightarrow \neg G S) \wedge(R M \leftrightarrow \neg G M) \wedge(R E \leftrightarrow \neg G E)
$$

Formalization in propositional logic

Implicit knowledge: Russians are not Germans.

$$
(R S \leftrightarrow \neg G S) \wedge(R M \leftrightarrow \neg G M) \wedge(R E \leftrightarrow \neg G E)
$$

We want to prove that Eismann is not a Russian spy.

Formalization in propositional logic

Implicit knowledge: Russians are not Germans.

$$
(R S \leftrightarrow \neg G S) \wedge(R M \leftrightarrow \neg G M) \wedge(R E \leftrightarrow \neg G E)
$$

We want to prove that Eismann is not a Russian spy.
To this end, we add the following constraint, stating the opposite.

$$
R E \wedge S E
$$

Formalization in propositional logic

Implicit knowledge: Russians are not Germans.

$$
(R S \leftrightarrow \neg G S) \wedge(R M \leftrightarrow \neg G M) \wedge(R E \leftrightarrow \neg G E)
$$

We want to prove that Eismann is not a Russian spy.
To this end, we add the following constraint, stating the opposite.

$$
R E \wedge S E
$$

Then we verify that the full set of constraints is unsatisfiable.

Formalization in propositional logic

Implicit knowledge: Russians are not Germans.

$$
(R S \leftrightarrow \neg G S) \wedge(R M \leftrightarrow \neg G M) \wedge(R E \leftrightarrow \neg G E)
$$

We want to prove that Eismann is not a Russian spy.
To this end, we add the following constraint, stating the opposite.

$$
R E \wedge S E
$$

Then we verify that the full set of constraints is unsatisfiable.

If the set is unsatisfiable, then Eismann cannot be a Russian spy

Circuit Equivalence

Given two circuits, check if they are equivalent. For example:

Circuit Equivalence

Given two circuits, check if they are equivalent. For example:

Every circuit is, in fact, a propositional formula and ...

Circuit Equivalence

Given two circuits, check if they are equivalent. For example:

Every circuit is, in fact, a propositional formula and ...
equivalence checking for propositional formulas can be reduced to unsatisfiability checking

Circuit Equivalence

Given two circuits, check if they are equivalent. For example:

C_{1}

C_{2}
$C_{1} \equiv C_{2} \quad$ iff $\quad \neg\left(C_{1} \leftrightarrow C_{2}\right)$ is unsatisfiable

Idea for SAT: use formula evaluation methods

$$
A=\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(p \rightarrow r))
$$

We can evaluate A in any interpretation, e.g., $\mathcal{I}_{1}=\{p \mapsto 0, q \mapsto 0, r \mapsto 0\}$:

Truth tables

$$
A=\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(p \rightarrow r))
$$

Similarly, we can evaluate A in all interpretations:

Truth tables

$$
A=\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(p \rightarrow r))
$$

Formula A is unsatisfiable since it is false in every interpretation

Truth tables

$$
A=\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(p \rightarrow r))
$$

Formula A is unsatisfiable since it is false in every interpretation
So we have a fully automated method to check the satisfiability propositional formulas

Truth tables

So we have a fully automated method to check the satisfiability propositional formulas

Problem: A propositional formula with n variables has 2^{n} different interpretations!

Truth tables

So we have a fully automated method to check the satisfiability propositional formulas

Problem: A propositional formula with n variables has 2^{n} different interpretations!

Generating and checking each interpretation in 1 ms for a formula with 50 variables would take $2^{50} \mathrm{~ms} \approx 257$ centuries ...

Truth tables

So we have a fully automated method to check the satisfiability propositional formulas

Problem: A propositional formula with n variables has 2^{n} different interpretations!

Generating and checking each interpretation in 1 ms for a formula with 50 variables would take $2^{50} \mathrm{~ms} \approx 257$ centuries ...

With current automated reasoning technology, we can check formulas with 10K variables in seconds

Compact truth table

Idea: Sometimes we can evaluate a formula based only on partial interpretations

Compact truth table

Idea: Sometimes we can evaluate a formula based only on partial interpretations

Compact truth table

Idea: Sometimes we can evaluate a formula based only on partial interpretations

subformula	\mathcal{J}_{1}
$\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(p \rightarrow r))$	0
$(p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(p \rightarrow r)$	1
$p \rightarrow r$	1
$(p \rightarrow q) \wedge(p \wedge q \rightarrow r)$	
$p \wedge q \rightarrow r$	1
$p \rightarrow q$	
$p \wedge q$	
$q \quad q$	
r r	1

Compact truth table

Idea: Sometimes we can evaluate a formula based only on partial interpretations

subformula	\mathcal{J}_{2}	\mathcal{J}_{1}
$\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(p \rightarrow r))$		0
$(p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(p \rightarrow r)$		1
$p \rightarrow r$		1
$(p \rightarrow q) \wedge(p \wedge q \rightarrow r)$		
$p \wedge q \rightarrow r$		1
$p \rightarrow q$		
$p \wedge q$		
p p p		
$q \quad q$		
r r	0	1

Compact truth table

Idea: Sometimes we can evaluate a formula based only on partial interpretations

subformula	\mathcal{J}_{2}	\mathcal{J}_{1}
$\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(p \rightarrow r))$		0
$(p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(p \rightarrow r)$		1
$p \rightarrow r$		1
$(p \rightarrow q) \wedge(p \wedge q \rightarrow r)$		
$p \wedge q \rightarrow r$		1
$p \rightarrow q$		
$p \wedge q$		
p p p	0	
$q \quad q$		
r r	0	1

Compact truth table

Idea: Sometimes we can evaluate a formula based only on partial interpretations

subformula	\mathcal{J}_{2}	\mathcal{J}_{1}
$\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(p \rightarrow r))$	0	0
$(p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(p \rightarrow r)$	1	1
$p \rightarrow r$	1	1
$(p \rightarrow q) \wedge(p \wedge q \rightarrow r)$		
$p \wedge q \rightarrow r$		1
$p \rightarrow q$		
$p \wedge q$		
p p p	0	
$q \quad q$		
r r	0	1

Compact truth table

Idea: Sometimes we can evaluate a formula based only on partial interpretations

subformula	\mathcal{J}_{2}	\mathcal{J}_{3}	\mathcal{J}_{1}
$\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(p \rightarrow r))$	0		0
$(p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(p \rightarrow r)$	1		1
$p \rightarrow r$	1		1
$(p \rightarrow q) \wedge(p \wedge q \rightarrow r)$			
$p \wedge q \rightarrow r$			1
$p \rightarrow q$			
$p \wedge q$			
	0	1	
$q \quad q$			
r r	0	0	1

Compact truth table

Idea: Sometimes we can evaluate a formula based only on partial interpretations

subformula	\mathcal{J}_{2}	\mathcal{J}_{3}	\mathcal{J}_{1}
$\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(p \rightarrow r))$	0		0
$(p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(p \rightarrow r)$	1		1
p $\rightarrow r$	1	0	1
$(p \rightarrow q) \wedge(p \wedge q \rightarrow r)$			
$p \wedge q \rightarrow r$			1
$p \rightarrow q$			
$p \wedge q$			
	0	1	
$q \quad q$			
r r	0	0	1

Compact truth table

Idea: Sometimes we can evaluate a formula based only on partial interpretations

subformula	\mathcal{J}_{2}	\mathcal{J}_{3}	\mathcal{J}_{1}
$\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(p \rightarrow r))$	0		0
$(p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(p \rightarrow r)$	1		1
$p \rightarrow r$	1	0	1
$(p \rightarrow q) \wedge(p \wedge q \rightarrow r)$			
$p \wedge q \rightarrow r$			1
$p \rightarrow q$			
$p \wedge q$			
	0	1	
$q \quad q$		0	
r r	0	0	1

Compact truth table

Idea: Sometimes we can evaluate a formula based only on partial interpretations

subformula	\mathcal{J}_{2}	\mathcal{J}_{3}	\mathcal{J}_{1}
$\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(p \rightarrow r))$	0	0	0
$(p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(p \rightarrow r)$	1	1	1
$p \rightarrow r$	1	0	1
$(p \rightarrow q) \wedge(p \wedge q \rightarrow r)$		0	
$p \wedge q \rightarrow r$		1	1
$p \rightarrow q$		0	
$p \wedge q$		0	
	0	1	
$q \quad q$		0	
r r	0	0	1

Compact truth table

Idea: Sometimes we can evaluate a formula based only on partial interpretations

subformula	\mathcal{J}_{2}	\mathcal{J}_{3}	\mathcal{J}_{4}	\mathcal{J}_{1}
$\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(p \rightarrow r))$	0	0		0
$(p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(p \rightarrow r)$	1	1		1
$p \rightarrow r$	1	0		1
$(p \rightarrow q) \wedge(p \wedge q \rightarrow r)$		0		
$p \wedge q \rightarrow r$		1		1
$p \rightarrow q$		0		
$p \wedge q$		0		
$p r p$	0	1	1	
$q \quad q$		0	1	
r r	0	0	0	1

Compact truth table

Idea: Sometimes we can evaluate a formula based only on partial interpretations

subformula	\mathcal{J}_{2}	\mathcal{J}_{3}	\mathcal{J}_{4}	\mathcal{J}_{1}
$\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(p \rightarrow r))$	0	0	0	0
$(p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(p \rightarrow r)$	1	1	1	1
$p \rightarrow r$	1	0	0	1
$(p \rightarrow q) \wedge(p \wedge q \rightarrow r)$		0	0	
$p \wedge q \rightarrow r$		1	0	1
$p \rightarrow q$		0	1	
$p \wedge q$		0	1	
	0	1	1	
$q \quad q$		0	1	
r r	0	0	0	1

Compact truth table

Idea: Sometimes we can evaluate a formula based only on partial interpretations

subformula	\mathcal{J}_{2}	\mathcal{J}_{3}	\mathcal{J}_{4}	\mathcal{J}_{1}
$\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(p \rightarrow r))$	0	0	0	0
$(p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(p \rightarrow r)$	1	1	1	1
$p \rightarrow r$	1	0	0	1
$(p \rightarrow q) \wedge(p \wedge q \rightarrow r)$		0	0	
$p \wedge q \rightarrow r$		1	0	1
$p \rightarrow q$		0	1	
$p \wedge q$		0	1	
p p p	0	1	1	
$q \quad q$		0	1	
r r	0	0	0	1

\mathcal{J}_{2} stands for 2 (total) interpretations
\mathcal{J}_{1} stands for 4 interpretations

Compact truth table

Idea: Sometimes we can evaluate a formula based only on partial interpretations

subformula	\mathcal{J}_{2}	\mathcal{J}_{3}	\mathcal{J}_{4}	\mathcal{J}_{1}
$\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(p \rightarrow r))$	0	0	0	0
$(p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(p \rightarrow r)$	1	1	1	1
$p \rightarrow r$	1	0	0	1
$(p \rightarrow q) \wedge(p \wedge q \rightarrow r)$		0	0	
$p \wedge q \rightarrow r$		1	0	1
$p \rightarrow q$		0	1	
$p \wedge q$		0	1	
p p p	0	1	1	
$q \quad q$		0	1	
r r	0	0	0	1

Note: The size of the compact table (but not the result) depends on the order of variables!

Compact truth table

Idea: Sometimes we can evaluate a formula based only on partial interpretations

subformula	\mathcal{J}_{2}	\mathcal{J}_{3}	\mathcal{J}_{4}	\mathcal{J}_{1}
$\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(p \rightarrow r))$	0	0	0	0
$(p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(p \rightarrow r)$	1	1	1	1
	$p \rightarrow r$	1	0	0
		1		
$(p \rightarrow q) \wedge(p \wedge q \rightarrow r)$		0	0	
$n \wedge \sim \sim r$				

Guessing variable values (i.e., case analysis) and propagation are the key ideas in nearly all propositional satisfiability algorithms

r	r	0	0	0	1

Note: The size of the compact table (but not the result) depends on the order of variables!

Case splitting: idea

Notation: A_{p}^{\perp} and A_{p}^{\top} denote the formulas obtained by replacing all occurrences of p in A by \perp and T, respectively

Case splitting: idea

Notation: A_{p}^{\perp} and A_{p}^{\top} denote the formulas obtained by replacing all occurrences of p in A by \perp and T, respectively

Lemma 1

Let p be an atom, A be a formula, and I be an interpretation.

1. If $\mathcal{I} \equiv p$, then A has the same value as A_{p}^{\top} in \mathcal{I}.
2. If $\mathcal{I} \not \vDash p$, then A has the same value as A_{p}^{\perp} in I.

Case splitting: idea

Notation: A_{p}^{\perp} and A_{p}^{\top} denote the formulas obtained by replacing all occurrences of p in A by \perp and T, respectively

Lemma 1

Let p be an atom, A be a formula, and I be an interpretation.

1. If $\mathcal{I} \models p$, then A has the same value as A_{p}^{\top} in I.
2. If $\mathcal{I} \not \vDash p$, then A has the same value as A_{p}^{\perp} in I.

Satisfiability checking by case analysis

1. Pick a variable p of A and perform case analysis on it:

Case 1) replace p by \perp (for false)
Case 2) replace p by \top (for true)

Case splitting: idea

Notation: A_{p}^{\perp} and A_{p}^{\top} denote the formulas obtained by replacing all occurrences of p in A by \perp and T, respectively

Lemma 1

Let p be an atom, A be a formula, and I be an interpretation.

1. If $\mathcal{I} \models p$, then A has the same value as A_{p}^{\top} in I.
2. If $\mathcal{I} \not \vDash p$, then A has the same value as A_{p}^{\perp} in I.

Satisfiability checking by case analysis

1. Pick a variable p of A and perform case analysis on it:

Case 1) replace p by \perp (for false)
Case 2) replace p by \top (for true)
2. Simplify formula as much as possible

Case splitting: idea

Notation: A_{p}^{\perp} and A_{p}^{\top} denote the formulas obtained by replacing all occurrences of p in A by \perp and T, respectively

Lemma 1

Let p be an atom, A be a formula, and I be an interpretation.

1. If $\mathcal{I} \models p$, then A has the same value as A_{p}^{\top} in I.
2. If $\mathcal{I} \not \vDash p$, then A has the same value as A_{p}^{\perp} in I.

Satisfiability checking by case analysis

1. Pick a variable p of A and perform case analysis on it:

Case 1) replace p by \perp (for false)
Case 2) replace p by \top (for true)
2. Simplify formula as much as possible
3. Repeat until A is T or \perp

Simplification rules for \top and

Simplification rules for \perp
$\neg \perp \Rightarrow T$
$A_{1} \wedge \cdots \wedge \perp \wedge \cdots \wedge A_{n} \Rightarrow \perp$
$A_{1} \vee \cdots \vee \perp \vee \cdots \vee A_{n} \Rightarrow A_{1} \vee \cdots \vee A_{n}$
$A \rightarrow \perp \Rightarrow \neg A \quad \perp \rightarrow A \Rightarrow \top$
$A \leftrightarrow \perp \Rightarrow \neg A \quad \perp \leftrightarrow A \Rightarrow \neg A$

Simplification rules for \top and

Note: we need new simplification rules to account for propositional variables

Simplification rules for T	
	$\neg \top \Rightarrow \perp$
$\begin{aligned} A_{1} \wedge \cdots \wedge \top & \wedge \\ A_{1} & \vee \cdots \end{aligned}$	$\begin{aligned} & \wedge \cdots \wedge A_{n} \Rightarrow A_{1} \wedge \cdots \wedge A_{n} \\ & \vee \top \vee \cdots \vee A_{n} \Rightarrow \top \end{aligned}$
$A \rightarrow \top \Rightarrow \top$	$\top \rightarrow A \Rightarrow A$
$A \leftrightarrow T \Rightarrow A$	$\top \leftrightarrow A \Rightarrow A$

Simplification rules for \perp
$\neg \perp \Rightarrow \top$
$A_{1} \wedge \cdots \wedge \perp \wedge \cdots \wedge A_{n} \Rightarrow \perp$
$A_{1} \vee \cdots \vee \perp \vee \cdots \vee A_{n} \Rightarrow A_{1} \vee \cdots \vee A_{n}$
$A \rightarrow \perp \Rightarrow \neg A \quad \perp \rightarrow A \Rightarrow \top$
$A \leftrightarrow \perp \Rightarrow \neg A \quad \perp \leftrightarrow A \Rightarrow \neg A$

Simplification rules for \top and

Simplification rules for T
$\neg T \Rightarrow \perp$
$A_{1} \wedge \cdots \wedge T \wedge \cdots \wedge A_{n} \Rightarrow A_{1} \wedge \cdots \wedge A_{n}$
$A_{1} \vee \cdots \vee \top \vee \cdots \vee A_{n} \Rightarrow T$
$A \rightarrow T \Rightarrow T$
$A \leftrightarrow T \Rightarrow A \quad T \rightarrow A \Rightarrow A$

Simplification rules for \perp
$\neg \perp \Rightarrow T$
$A_{1} \wedge \cdots \wedge \perp \wedge \cdots \wedge A_{n} \Rightarrow \perp$
$A_{1} \vee \cdots \vee \perp \vee \cdots \vee A_{n} \Rightarrow A_{1} \vee \cdots \vee A_{n}$
$A \rightarrow \perp \Rightarrow \neg A \quad \perp \rightarrow A \Rightarrow \top$
$A \leftrightarrow \perp \Rightarrow \neg A \quad \perp \leftrightarrow A \Rightarrow \neg A$

Claim: If we apply these rules to a formula to completion (i.e., until no more rules apply), we get either

- \perp,
- T, or
- a formula with no occurrences of \perp and \top

Splitting algorithm

```
procedure split(G)
parameters: function select
input: formula G
output: "satisfiable" or "unsatisfiable"
begin
    G := simplify(G) // apply simplification rules to completion
    if G=T then return "satisfiable"
    if G = 咕en return "unsatisfiable"
(p,b) := select(G)
// pick a variable p of G and a value b for it
case b of
    1=>
    if split (Gp}\mp@subsup{G}{P}{\top})=\mathrm{ "satisfiable"
        then return "satisfiable"
        else return split( }\mp@subsup{G}{p}{\perp}
    0=>
    if split (Gp
    then return "satisfiable"
    else return split( (Gp
end
```


Splitting algorithm, example

$$
\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(p \rightarrow r))
$$

$$
\begin{gathered}
\neg \top \Rightarrow \perp \\
\top \wedge A \Rightarrow A \\
\top \vee A \Rightarrow \top \\
A \rightarrow \top \Rightarrow \top \\
\top \rightarrow A \Rightarrow A \\
A \leftrightarrow \top \Rightarrow A \\
\top \leftrightarrow A \Rightarrow A \\
\hline \neg \perp \Rightarrow \top \\
\perp \wedge A \Rightarrow \perp \\
\perp \vee A \Rightarrow A \\
A \rightarrow \perp \Rightarrow \neg A \\
\perp \rightarrow A \Rightarrow \top \\
A \leftrightarrow \perp \Rightarrow \neg A \\
\perp \leftrightarrow A \Rightarrow \neg A \\
\hline
\end{gathered}
$$

Splitting algorithm, example

$$
\begin{aligned}
& \neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(p \rightarrow r)) \\
& \neg((p \rightarrow \perp) \wedge(p \wedge \perp \rightarrow r) \rightarrow(p \rightarrow r))
\end{aligned}
$$

Splitting algorithm, example

$$
\begin{gathered}
\neg \top \Rightarrow \perp \\
\top \wedge A \Rightarrow A \\
\top \vee A \Rightarrow \top \\
A \rightarrow \top \Rightarrow \top \\
\top \rightarrow A \Rightarrow A \\
A \leftrightarrow \top \Rightarrow A \\
\top \leftrightarrow A \Rightarrow A \\
\neg \perp \Rightarrow \top \\
\perp \wedge A \Rightarrow \perp \\
\perp \vee A \Rightarrow A \\
A \rightarrow \perp \Rightarrow \neg A \\
\perp \rightarrow A \Rightarrow \top \\
A \leftrightarrow \perp \Rightarrow \neg A \\
\perp \leftrightarrow A \Rightarrow \neg A \\
\hline
\end{gathered}
$$

Splitting algorithm, example

$$
\begin{gathered}
\neg \top \Rightarrow \perp \\
\top \wedge A \Rightarrow A \\
\top \vee A \Rightarrow \top \\
A \rightarrow \top \Rightarrow \top \\
\top \rightarrow A \Rightarrow A \\
A \leftrightarrow \top \Rightarrow A \\
\top \leftrightarrow A \Rightarrow A \\
\hline \neg \perp \Rightarrow \top \\
\perp \wedge A \Rightarrow \perp \\
\perp \vee A \Rightarrow A \\
A \rightarrow \perp \Rightarrow \neg A \\
\perp \rightarrow A \Rightarrow \top \\
A \leftrightarrow \perp \Rightarrow \neg A \\
\perp \leftrightarrow A \Rightarrow \neg A \\
\hline
\end{gathered}
$$

Splitting algorithm, example

$$
\begin{gathered}
\neg \top \Rightarrow \perp \\
\top \wedge A \Rightarrow A \\
\top \vee A \Rightarrow \top \\
A \rightarrow \top \Rightarrow \top \\
\top \rightarrow A \Rightarrow A \\
A \leftrightarrow \top \Rightarrow A \\
\top \leftrightarrow A \Rightarrow A \\
\neg \perp \Rightarrow \top \\
\perp \wedge A \Rightarrow \perp \\
\perp \vee A \Rightarrow A \\
A \rightarrow \perp \Rightarrow \neg A \\
\perp \rightarrow A \Rightarrow \top \\
A \leftrightarrow \perp \Rightarrow \neg A \\
\perp \leftrightarrow A \Rightarrow \neg A \\
\hline
\end{gathered}
$$

Splitting algorithm, example

$$
\begin{gathered}
\neg \top \Rightarrow \perp \\
\top \wedge A \Rightarrow A \\
\top \vee A \Rightarrow \top \\
A \rightarrow \top \Rightarrow \top \\
\top \rightarrow A \Rightarrow A \\
A \leftrightarrow \top \Rightarrow A \\
\top \leftrightarrow A \Rightarrow A \\
\hline \neg \perp \Rightarrow \top \\
\perp \wedge A \Rightarrow \perp \\
\perp \vee A \Rightarrow A \\
A \rightarrow \perp \Rightarrow \neg A \\
\perp \rightarrow A \Rightarrow \top \\
A \leftrightarrow \perp \Rightarrow \neg A \\
\perp \leftrightarrow A \Rightarrow \neg A \\
\hline
\end{gathered}
$$

Splitting algorithm, example

$$
\begin{gathered}
\neg \top \Rightarrow \perp \\
\top \wedge A \Rightarrow A \\
\top \vee A \Rightarrow \top \\
A \rightarrow \top \Rightarrow \top \\
\top \rightarrow A \Rightarrow A \\
A \leftrightarrow \top \Rightarrow A \\
\top \leftrightarrow A \Rightarrow A \\
\neg \perp \Rightarrow \top \\
\perp \wedge A \Rightarrow \perp \\
\perp \vee A \Rightarrow A \\
A \rightarrow \perp \Rightarrow \neg A \\
\perp \rightarrow A \Rightarrow \top \\
A \leftrightarrow \perp \Rightarrow \neg A \\
\perp \leftrightarrow A \Rightarrow \neg A \\
\hline
\end{gathered}
$$

Splitting algorithm, example

$$
\begin{gathered}
\neg \top \Rightarrow \perp \\
\top \wedge A \Rightarrow A \\
\top \vee A \Rightarrow \top \\
A \rightarrow \top \Rightarrow \top \\
\top \rightarrow A \Rightarrow A \\
A \leftrightarrow \top \Rightarrow A \\
\top \leftrightarrow A \Rightarrow A \\
\hline \neg \perp \Rightarrow \top \\
\perp \wedge A \Rightarrow \perp \\
\perp \vee A \Rightarrow A \\
A \rightarrow \perp \Rightarrow \neg A \\
\perp \rightarrow A \Rightarrow \top \\
A \leftrightarrow \perp \Rightarrow \neg A \\
\perp \leftrightarrow A \Rightarrow \neg A \\
\hline
\end{gathered}
$$

Splitting algorithm, example

$$
\begin{gathered}
\neg \top \Rightarrow \perp \\
\top \wedge A \Rightarrow A \\
\top \vee A \Rightarrow \top \\
A \rightarrow \top \Rightarrow \top \\
\top \rightarrow A \Rightarrow A \\
A \leftrightarrow \top \Rightarrow A \\
\top \leftrightarrow A \Rightarrow A \\
\neg \perp \Rightarrow \top \\
\perp \wedge A \Rightarrow \perp \\
\perp \vee A \Rightarrow A \\
A \rightarrow \perp \Rightarrow \neg A \\
\perp \rightarrow A \Rightarrow \top \\
A \leftrightarrow \perp \Rightarrow \neg A \\
\perp \leftrightarrow A \Rightarrow \neg A \\
\hline
\end{gathered}
$$

Splitting algorithm, example

$$
\begin{gathered}
\neg \top \Rightarrow \perp \\
\top \wedge A \Rightarrow A \\
\top \vee A \Rightarrow \top \\
A \rightarrow \top \Rightarrow \top \\
\top \rightarrow A \Rightarrow A \\
A \leftrightarrow \top \Rightarrow A \\
\top \leftrightarrow A \Rightarrow A \\
\hline \perp \perp \Rightarrow \top \\
\perp \wedge A \Rightarrow \perp \\
\perp \vee A \Rightarrow A \\
A \rightarrow \perp \Rightarrow \neg A \\
\perp \rightarrow A \Rightarrow \top \\
A \leftrightarrow \perp \Rightarrow \neg A \\
\perp \leftrightarrow A \Rightarrow \neg A \\
\hline
\end{gathered}
$$

Splitting algorithm, example

$$
\begin{gathered}
\neg \top \Rightarrow \perp \\
\top \wedge A \Rightarrow A \\
\top \vee A \Rightarrow \top \\
A \rightarrow \top \Rightarrow \top \\
\top \rightarrow A \Rightarrow A \\
A \leftrightarrow \top \Rightarrow A \\
\top \leftrightarrow A \Rightarrow A \\
\hline \neg \perp \Rightarrow \top \\
\perp \wedge A \Rightarrow \perp \\
\perp \vee A \Rightarrow A \\
A \rightarrow \perp \Rightarrow \neg A \\
\perp \rightarrow A \Rightarrow \top \\
A \leftrightarrow \perp \Rightarrow \neg A \\
\perp \leftrightarrow A \Rightarrow \neg A \\
\hline
\end{gathered}
$$

Splitting algorithm, example

$$
\begin{gathered}
\neg \top \Rightarrow \perp \\
\top \wedge A \Rightarrow A \\
\top \vee A \Rightarrow \top \\
A \rightarrow \top \Rightarrow \top \\
\top \rightarrow A \Rightarrow A \\
A \leftrightarrow \top \Rightarrow A \\
\top \leftrightarrow A \Rightarrow A \\
\hline \perp \perp \Rightarrow \top \\
\perp \wedge A \Rightarrow \perp \\
\perp \vee A \Rightarrow A \\
A \rightarrow \perp \Rightarrow \neg A \\
\perp \rightarrow A \Rightarrow \top \\
A \leftrightarrow \perp \Rightarrow \neg A \\
\perp \leftrightarrow A \Rightarrow \neg A \\
\hline
\end{gathered}
$$

Splitting algorithm, example

$$
\begin{gathered}
\neg \top \Rightarrow \perp \\
\top \wedge A \Rightarrow A \\
\top \vee A \Rightarrow \top \\
A \rightarrow \top \Rightarrow \top \\
\top \rightarrow A \Rightarrow A \\
A \leftrightarrow \top \Rightarrow A \\
\top \leftrightarrow A \Rightarrow A \\
\hline \neg \perp \Rightarrow \top \\
\perp \wedge A \Rightarrow \perp \\
\perp \vee A \Rightarrow A \\
A \rightarrow \perp \Rightarrow \neg A \\
\perp \rightarrow A \Rightarrow \top \\
A \leftrightarrow \perp \Rightarrow \neg A \\
\perp \leftrightarrow A \Rightarrow \neg A \\
\hline
\end{gathered}
$$

Splitting algorithm, example

$$
\begin{gathered}
\neg \top \Rightarrow \perp \\
\top \wedge A \Rightarrow A \\
\top \vee A \Rightarrow \top \\
A \rightarrow \top \Rightarrow \top \\
\top \rightarrow A \Rightarrow A \\
A \leftrightarrow \top \Rightarrow A \\
\top \leftrightarrow A \Rightarrow A \\
\neg \perp \Rightarrow \top \\
\perp \wedge A \Rightarrow \perp \\
\perp \vee A \Rightarrow A \\
A \rightarrow \perp \Rightarrow \neg A \\
\perp \rightarrow A \Rightarrow \top \\
A \leftrightarrow \perp \Rightarrow \neg A \\
\perp \leftrightarrow A \Rightarrow \neg A \\
\hline
\end{gathered}
$$

Splitting algorithm, example

$$
\begin{gathered}
\neg \top \Rightarrow \perp \\
\top \wedge A \Rightarrow A \\
\top \vee A \Rightarrow \top \\
A \rightarrow \top \Rightarrow \top \\
\top \rightarrow A \Rightarrow A \\
A \leftrightarrow \top \Rightarrow A \\
\top \leftrightarrow A \Rightarrow A \\
\hline \neg \perp \Rightarrow \top \\
\perp \wedge A \Rightarrow \perp \\
\perp \vee A \Rightarrow A \\
A \rightarrow \perp \Rightarrow \neg A \\
\perp \rightarrow A \Rightarrow \top \\
A \leftrightarrow \perp \Rightarrow \neg A \\
\perp \leftrightarrow A \Rightarrow \neg A \\
\hline
\end{gathered}
$$

Splitting algorithm, example

$$
\begin{gathered}
\neg \top \Rightarrow \perp \\
\top \wedge A \Rightarrow A \\
\top \vee A \Rightarrow \top \\
A \rightarrow \top \Rightarrow \top \\
\top \rightarrow A \Rightarrow A \\
A \leftrightarrow \top \Rightarrow A \\
\top \leftrightarrow A \Rightarrow A \\
\hline \neg \perp \Rightarrow \top \\
\perp \wedge A \Rightarrow \perp \\
\perp \vee A \Rightarrow A \\
A \rightarrow \perp \Rightarrow \neg A \\
\perp \rightarrow A \Rightarrow \top \\
A \leftrightarrow \perp \Rightarrow \neg A \\
\perp \leftrightarrow A \Rightarrow \neg A \\
\hline
\end{gathered}
$$

Splitting algorithm, example

$$
\begin{gathered}
\neg \top \Rightarrow \perp \\
\top \wedge A \Rightarrow A \\
\top \vee A \Rightarrow \top \\
A \rightarrow \top \Rightarrow \top \\
\top \rightarrow A \Rightarrow A \\
A \leftrightarrow \top \Rightarrow A \\
\top \leftrightarrow A \Rightarrow A \\
\hline \neg \perp \Rightarrow \top \\
\perp \wedge A \Rightarrow \perp \\
\perp \vee A \Rightarrow A \\
A \rightarrow \perp \Rightarrow \neg A \\
\perp \rightarrow A \Rightarrow \top \\
A \leftrightarrow \perp \Rightarrow \neg A \\
\perp \leftrightarrow A \Rightarrow \neg A \\
\hline
\end{gathered}
$$

Splitting algorithm, example

$$
\begin{gathered}
\neg \top \Rightarrow \perp \\
\top \wedge A \Rightarrow A \\
\top \vee A \Rightarrow \top \\
A \rightarrow \top \Rightarrow \top \\
\top \rightarrow A \Rightarrow A \\
A \leftrightarrow \top \Rightarrow A \\
\top \leftrightarrow A \Rightarrow A \\
\hline \perp \Rightarrow \top \\
\perp \wedge A \Rightarrow \perp \\
\perp \vee A \Rightarrow A \\
A \rightarrow \perp \Rightarrow \neg A \\
\perp \rightarrow A \Rightarrow \top \\
A \leftrightarrow \perp \Rightarrow \neg A \\
\perp \leftrightarrow A \Rightarrow \neg A \\
\hline
\end{gathered}
$$

The formula is unsatisfiable

Splitting algorithm, example

$$
\begin{gathered}
\neg \top \Rightarrow \perp \\
\top \wedge A \Rightarrow A \\
\top \vee A \Rightarrow \top \\
A \rightarrow \top \Rightarrow \top \\
\top \rightarrow A \Rightarrow A \\
A \leftrightarrow \top \Rightarrow A \\
\top \leftrightarrow A \Rightarrow A \\
\hline \neg \perp \Rightarrow \top \\
\perp \wedge A \Rightarrow \perp \\
\perp \vee A \Rightarrow A \\
A \rightarrow \perp \Rightarrow \neg A \\
\perp \rightarrow A \Rightarrow \top \\
A \leftrightarrow \perp \Rightarrow \neg A \\
\perp \leftrightarrow A \Rightarrow A
\end{gathered}
$$

The formula is unsatisfiable
What is happening here is very similar to using compact truth tables, but on the syntactic level

Exercise

1. For each unsimplified node of the tree in the previous slide, simplify the formula one step at a time by applying in each step one of the simplification rules in the slide.

Apply the rules modulo commutativity of \wedge, \vee and \leftrightarrow. For instance, consider the rule $T \wedge A \Rightarrow A$ as also standing for the rule $A \wedge T \Rightarrow A$.
2. Verify that the formula you obtain in each case corresponds to the simplified formula provided in the previous slide.

Splitting algorithm, example 2

$$
\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r))
$$

$$
\begin{gathered}
\neg \top \Rightarrow \perp \\
\top \wedge A \Rightarrow A \\
\top \wedge A \Rightarrow \top \\
A \rightarrow \top \Rightarrow \top \\
\top \rightarrow A \Rightarrow A \\
A \leftrightarrow \top \Rightarrow A \\
\top \leftrightarrow A \Rightarrow A \\
\hline \neg \perp \Rightarrow \top \\
\perp \wedge A \Rightarrow \perp \\
\perp \vee A \Rightarrow A \\
A \rightarrow \perp \Rightarrow \neg A \\
\perp \rightarrow A \Rightarrow \top \\
A \leftrightarrow \perp \Rightarrow \neg A \\
\perp \leftrightarrow A \Rightarrow \neg A \\
\hline
\end{gathered}
$$

Splitting algorithm, example 2

$$
\begin{gathered}
\neg \top \Rightarrow \perp \\
\top \wedge A \Rightarrow A \\
\top \wedge A \Rightarrow \top \\
A \rightarrow \top \Rightarrow \top \\
\top \rightarrow A \Rightarrow A \\
A \leftrightarrow \top \Rightarrow A \\
\top \leftrightarrow A \Rightarrow A \\
\hline \neg \perp \Rightarrow \top \\
\perp \wedge A \Rightarrow \perp \\
\perp \vee A \Rightarrow A \\
A \rightarrow \perp \Rightarrow \neg A \\
\perp \rightarrow A \Rightarrow \top \\
A \leftrightarrow \perp \Rightarrow \neg A \\
\perp \leftrightarrow A \Rightarrow \neg A \\
\hline
\end{gathered}
$$

Splitting algorithm, example 2

$$
\begin{gathered}
\neg \top \Rightarrow \perp \\
\top \wedge A \Rightarrow A \\
\top \vee A \Rightarrow \top \\
A \rightarrow \top \Rightarrow \top \\
\top \rightarrow A \Rightarrow A \\
A \leftrightarrow \top \Rightarrow A \\
\top \leftrightarrow A \Rightarrow A \\
\hline \neg \perp \Rightarrow \top \\
\perp \wedge A \Rightarrow \perp \\
\perp \vee A \Rightarrow A \\
A \rightarrow \perp \Rightarrow \neg A \\
\perp \rightarrow A \Rightarrow \top \\
A \leftrightarrow \perp \Rightarrow \neg A \\
\perp \leftrightarrow A \Rightarrow \neg A \\
\hline
\end{gathered}
$$

Splitting algorithm, example 2

$$
\begin{gathered}
\neg \top \Rightarrow \perp \\
\top \wedge A \Rightarrow A \\
\top \vee A \Rightarrow \top \\
A \rightarrow \top \Rightarrow \top \\
\top \rightarrow A \Rightarrow A \\
A \leftrightarrow \top \Rightarrow A \\
\top \leftrightarrow A \Rightarrow A \\
\neg \perp \Rightarrow \top \\
\perp \wedge A \Rightarrow \perp \\
\perp \vee A \Rightarrow A \\
A \rightarrow \perp \Rightarrow \neg A \\
\perp \rightarrow A \Rightarrow \top \\
A \leftrightarrow \perp \Rightarrow \neg A \\
\perp \leftrightarrow A \Rightarrow \neg A \\
\hline
\end{gathered}
$$

Splitting algorithm, example 2

$$
\begin{gathered}
\neg \top \Rightarrow \perp \\
\top \wedge A \Rightarrow A \\
\top \wedge A \Rightarrow \top \\
A \rightarrow \top \Rightarrow \top \\
\top \rightarrow A \Rightarrow A \\
A \leftrightarrow \top \Rightarrow A \\
\top \leftrightarrow A \Rightarrow A \\
\hline \neg \perp \Rightarrow \top \\
\perp \wedge A \Rightarrow \perp \\
\perp \vee A \Rightarrow A \\
A \rightarrow \perp \Rightarrow \neg A \\
\perp \rightarrow A \Rightarrow \top \\
A \leftrightarrow \perp \Rightarrow \neg A \\
\perp \leftrightarrow A \Rightarrow \neg A \\
\hline
\end{gathered}
$$

Splitting algorithm, example 2

$$
\begin{gathered}
\neg \top \Rightarrow \perp \\
\top \wedge A \Rightarrow A \\
\top \vee A \Rightarrow \top \\
A \rightarrow \top \Rightarrow \top \\
\top \rightarrow A \Rightarrow A \\
A \leftrightarrow \top \Rightarrow A \\
\top \leftrightarrow A \Rightarrow A \\
\hline \neg \perp \Rightarrow \top \\
\perp \wedge A \Rightarrow \perp \\
\perp \vee A \Rightarrow A \\
A \rightarrow \perp \Rightarrow \neg A \\
\perp \rightarrow A \Rightarrow \top \\
A \leftrightarrow \perp \Rightarrow \neg A \\
\perp \leftrightarrow A \Rightarrow \neg A \\
\hline
\end{gathered}
$$

The formula is satisfiable

Splitting algorithm, example 2

$$
\begin{gathered}
\neg \top \Rightarrow \perp \\
\top \wedge A \Rightarrow A \\
\top \vee A \Rightarrow \top \\
A \rightarrow \top \Rightarrow \top \\
\top \rightarrow A \Rightarrow A \\
A \leftrightarrow \top \Rightarrow A \\
\top \leftrightarrow A \Rightarrow A \\
\hline \perp \perp \Rightarrow \top \\
\perp \wedge A \Rightarrow \perp \\
\perp \vee A \Rightarrow A \\
A \rightarrow \perp \Rightarrow \neg A \\
\perp \rightarrow A \Rightarrow \top \\
A \leftrightarrow \perp \Rightarrow \neg A \\
\perp \leftrightarrow A \Rightarrow \neg A \\
\hline
\end{gathered}
$$

The formula is satisfiable
To find a model of this formula, we simply collect choices made on the branch terminating at T

Splitting algorithm, example 2

The formula is satisfiable
To find a model of this formula, we simply collect choices made on the branch terminating at T

Any interpretation \mathcal{I} such that $\mathcal{I}(p)=\mathcal{I}(r)=0$ satisfies the formula, e.g., $\mathcal{I}=\{p \mapsto 0, q \mapsto 0, r \mapsto 0\}$

Improving the search for satisfying assignments

The order in which one chooses

1. the variable to replace and
2. the truth value for the chosen variable
is essential for the efficiency of the splitting algorithm

Improving the search for satisfying assignments

The order in which one chooses

1. the variable to replace and
2. the truth value for the chosen variable is essential for the efficiency of the splitting algorithm

In certain cases, Choice (2) can be done deterministically (without having to try the other alternative)

Improving the search for satisfying assignments

The order in which one chooses

1. the variable to replace and
2. the truth value for the chosen variable is essential for the efficiency of the splitting algorithm

In certain cases, Choice (2) can be done deterministically (without having to try the other alternative)

We will see the case of pure literals

Parse tree

$$
A=\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(p \rightarrow r))
$$

Parse tree

$$
A=\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(p \rightarrow r))
$$

Position in formula A: 1.1.2.1

Parse tree

$$
A=\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(p \rightarrow r))
$$

Position in formula A: 1.1.2.1
Subformula of A at this position: $p \wedge q$

Positions and Subformulas

- Position is any sequence of positive integers a_{1}, \ldots, a_{n}, where $n \geq 0$, written as $a_{1} \cdot a_{2} . \cdots . a_{n}$
- Empty position, denoted by ϵ : when $n=0$
- Position π in a formula A, subformula at a position, denoted by $\left.A\right|_{\pi}$

Positions and Subformulas

- Position is any sequence of positive integers a_{1}, \ldots, a_{n}, where $n \geq 0$, written as $a_{1} . a_{2} . \cdots . a_{n}$
- Empty position, denoted by ϵ : when $n=0$
- Position π in a formula A, subformula at a position, denoted by $\left.A\right|_{\pi}$

1. For every formula A, ϵ is a position in A and $A \mid \epsilon \stackrel{\text { def }}{=} A$
2. Let $\left.A\right|_{\pi}=B$
2.1 If B has the form $B_{1} \wedge \cdots \wedge B_{n}$ or $B_{1} \vee \cdots \vee B_{n}$, then for all $i \in\{1, \ldots, n\}$ the position $\pi . i$ is a position in A and $\left.A\right|_{\pi . i} \stackrel{\text { def }}{=} B_{i}$
2.2 If B has the form $\neg B_{1}$, then $\pi .1$ is a position in A and $\left.A\right|_{\pi .1} \stackrel{\text { def }}{=} B_{1}$
2.3 If B has the form $B_{1} \rightarrow B_{2}$, then $\pi .1$ and $\pi .2$ are positions in A and $\left.A\right|_{\pi .1} \stackrel{\text { def }}{=} B_{1}$ and $\left.A\right|_{\pi .2} \stackrel{\text { def }}{=} B_{2}$
2.4 If B has the form $B_{1} \leftrightarrow B_{2}$, then $\pi .1$ and $\pi .2$ are positions in A and $\left.A\right|_{\pi . i} \stackrel{\text { def }}{=} B_{i}$

Positions and Subformulas

- Position is any sequence of positive integers a_{1}, \ldots, a_{n}, where $n \geq 0$, written as $a_{1} . a_{2} . \cdots . a_{n}$
- Empty position, denoted by ϵ : when $n=0$
- Position π in a formula A, subformula at a position, denoted by $\left.A\right|_{\pi}$

1. For every formula A, ϵ is a position in A and $A \mid \epsilon \stackrel{\text { def }}{=} A$
2. Let $\left.A\right|_{\pi}=B$
2.1 If B has the form $B_{1} \wedge \cdots \wedge B_{n}$ or $B_{1} \vee \cdots \vee B_{n}$, then for all $i \in\{1, \ldots, n\}$ the position $\pi . i$ is a position in A and $\left.A\right|_{\pi . i} \stackrel{\text { def }}{=} B_{i}$
2.2 If B has the form $\neg B_{1}$, then $\pi .1$ is a position in A and $\left.A\right|_{\pi .1} \stackrel{\text { def }}{=} B_{1}$
2.3 If B has the form $B_{1} \rightarrow B_{2}$, then $\pi .1$ and $\pi .2$ are positions in A and $\left.A\right|_{\pi .1} \stackrel{\text { def }}{=} B_{1}$ and $\left.A\right|_{\pi .2} \stackrel{\text { def }}{=} B_{2}$
2.4 If B has the form $B_{1} \leftrightarrow B_{2}$, then $\pi .1$ and $\pi .2$ are positions in A and $\left.A\right|_{\pi . i} \stackrel{\text { def }}{=} B_{i}$

If $\left.A\right|_{\pi}=B$, we also say that B occurs in A at position π

Polarity

1. For every formula A, ϵ is a position in A and $A \mid \epsilon \stackrel{\text { def }}{=} A$
2. Let $\left.A\right|_{\pi}=B$
2.1 If B has the form $B_{1} \wedge \cdots \wedge B_{n}$ or $B_{1} \vee \cdots \vee B_{n}$, then for all $i \in\{1, \ldots, n\}$ the position $\pi . i$ is a position in A and $\left.A\right|_{\pi . i} \stackrel{\text { def }}{=} B_{i}$
2.2 If B has the form $\neg B_{1}$, then $\pi .1$ is a position in A and $\left.A\right|_{\pi .1} \stackrel{\text { def }}{=} B_{1}$
2.3 If B has the form $B_{1} \rightarrow B_{2}$, then $\pi .1$ and $\pi .2$ are positions in A and we have $\left.A\right|_{\pi .1} \stackrel{\text { def }}{=} B_{1}$ and $\left.A\right|_{\pi .2} \stackrel{\text { def }}{=} B_{2}$
2.4 If B has the form $B_{1} \leftrightarrow B_{2}$, then $\pi .1$ and $\pi .2$ are positions in A and $\left.A\right|_{\pi . i} \stackrel{\text { def }}{=} B_{i}$

$$
\text { for } i=1,2
$$

Polarity

Polarity of subformula at a position Notation: $\operatorname{pol}(A, \pi) \quad$ Values: $\{-1,0,1\}$

1. For every formula A, ϵ is a position in A and $\left.A\right|_{\epsilon} \stackrel{\text { def }}{=} A$
2. Let $\left.A\right|_{\pi}=B$
2.1 If B has the form $B_{1} \wedge \cdots \wedge B_{n}$ or $B_{1} \vee \cdots \vee B_{n}$, then for all $i \in\{1, \ldots, n\}$ the position $\pi . i$ is a position in A and $\left.A\right|_{\pi . i} \stackrel{\text { def }}{=} B_{i}$
2.2 If B has the form $\neg B_{1}$, then $\pi .1$ is a position in A and $\left.A\right|_{\pi .1} \stackrel{\text { def }}{=} B_{1}$
2.3 If B has the form $B_{1} \rightarrow B_{2}$, then $\pi .1$ and $\pi .2$ are positions in A and we have $\left.A\right|_{\pi .1} \stackrel{\text { def }}{=} B_{1}$ and $\left.A\right|_{\pi .2} \stackrel{\text { def }}{=} B_{2}$
2.4 If B has the form $B_{1} \leftrightarrow B_{2}$, then $\pi .1$ and $\pi .2$ are positions in A and $\left.A\right|_{\pi . i} \stackrel{\text { def }}{=} B_{i}$

$$
\text { for } i=1,2
$$

Polarity

Polarity of subformula at a position Notation: $\operatorname{pol}(A, \pi) \quad$ Values: $\{-1,0,1\}$

1. For every formula A, ϵ is a position in A and $\left.A\right|_{\epsilon} \stackrel{\text { def }}{=} A$ and $p o l(A, \epsilon) \stackrel{\text { def }}{=} 1$
2. Let $\left.A\right|_{\pi}=B$
2.1 If B has the form $B_{1} \wedge \cdots \wedge B_{n}$ or $B_{1} \vee \cdots \vee B_{n}$, then for all $i \in\{1, \ldots, n\}$ the position $\pi . i$ is a position in A and $\left.A\right|_{\pi . i} \stackrel{\text { def }}{=} B_{i}$, and pol $(A, \pi . i) \stackrel{\text { def }}{=} \operatorname{pol}(A, \pi)$
2.2 If B has the form $\neg B_{1}$, then $\pi .1$ is a position in A and $\left.A\right|_{\pi .1} \xlongequal{\text { def }} B_{1}$ and $\operatorname{pol}(A, \pi .1) \stackrel{\text { def }}{=}-\operatorname{pol}(A, \pi)$
2.3 If B has the form $B_{1} \rightarrow B_{2}$, then $\pi .1$ and $\pi .2$ are positions in A and we have $\left.A\right|_{\pi .1} \stackrel{\text { def }}{=} B_{1}$ and $\left.A\right|_{\pi .2} \stackrel{\text { def }}{=} B_{2}, \operatorname{pol}(A, \pi .1) \stackrel{\text { def }}{=}-\operatorname{pol}(A, \pi), \operatorname{pol}(A, \pi .2) \stackrel{\text { def }}{=} \operatorname{pol}(A, \pi)$
2.4 If B has the form $B_{1} \leftrightarrow B_{2}$, then $\pi .1$ and $\pi .2$ are positions in A and $\left.A\right|_{\pi . i} \stackrel{\text { def }}{=} B_{i}$ and $\operatorname{pol}(A, \pi . i) \stackrel{\text { def }}{=} 0$ for $i=1,2$

Polarity

Polarity of subformula at a position \quad Notation: $\operatorname{pol}(A, \pi) \quad$ Values: $\{-1,0,1\}$

1. For every formula A, ϵ is a position in A and $\left.A\right|_{\epsilon} \stackrel{\text { def }}{=} A$ and $p o l(A, \epsilon) \stackrel{\text { def }}{=} 1$
2. Let $\left.A\right|_{\pi}=B$
2.1 If B has the form $B_{1} \wedge \cdots \wedge B_{n}$ or $B_{1} \vee \cdots \vee B_{n}$, then for all $i \in\{1, \ldots, n\}$ the position $\pi . i$ is a position in A and $\left.A\right|_{\pi . i} \stackrel{\text { def }}{=} B_{i}$, and pol $(A, \pi . i) \stackrel{\text { def }}{=} p o l(A, \pi)$
2.2 If B has the form $\neg B_{1}$, then $\pi .1$ is a position in A and $\left.A\right|_{\pi .1} \stackrel{\text { def }}{=} B_{1}$ and $\operatorname{pol}(A, \pi .1) \stackrel{\text { def }}{=}-\operatorname{pol}(A, \pi)$
2.3 If B has the form $B_{1} \rightarrow B_{2}$, then $\pi .1$ and $\pi .2$ are positions in A and we have $\left.A\right|_{\pi .1} \stackrel{\text { def }}{=} B_{1}$ and $\left.A\right|_{\pi .2} \stackrel{\text { def }}{=} B_{2}, \operatorname{pol}(A, \pi .1) \stackrel{\text { def }}{=}-\operatorname{pol}(A, \pi), \operatorname{pol}(A, \pi .2) \stackrel{\text { def }}{=} \operatorname{pol}(A, \pi)$
2.4 If B has the form $B_{1} \leftrightarrow B_{2}$, then $\pi .1$ and $\pi .2$ are positions in A and $\left.A\right|_{\pi . i} \stackrel{\text { def }}{=} B_{i}$ and $\operatorname{pol}(A, \pi . i) \stackrel{\text { def }}{=} 0$ for $i=1,2$

- If $\operatorname{pol}(A, \pi)=1$ and $\left.A\right|_{\pi}=B$, the occurrence of B at position π in A is positive
- If $\operatorname{pol}(A, \pi)=-1$ and $\left.A\right|_{\pi}=B$, the occurrence of B at position π in A is negative

The coloring algorithm for determining polarity

$$
A=\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(p \leftrightarrow(r \rightarrow q)))
$$

The coloring algorithm for determining polarity

$A=\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(p \leftrightarrow(r \rightarrow q)))$

- Color in blue all arcs below an equivalence

The coloring algorithm for determining polarity

$A=\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(p \leftrightarrow(r \rightarrow q)))$

- Color in blue all arcs below an equivalence
- Color in red all uncolored arcs exiting a negation or the left-hand side of an implication

The coloring algorithm for determining polarity

$A=\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(p \leftrightarrow(r \rightarrow q)))$

- Color in blue all arcs below an equivalence
- Color in red all uncolored arcs exiting a negation or the left-hand side of an implication

The polarity of a position is

- 0 if it has at least one blue arc above it

The coloring algorithm for determining polarity

$A=\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(p \leftrightarrow(r \rightarrow q)))$

- Color in blue all arcs below an equivalence
- Color in red all uncolored arcs exiting a negation or the left-hand side of an implication

The polarity of a position is

- 0 if it has at least one blue arc above it

The coloring algorithm for determining polarity

$A=\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(p \leftrightarrow(r \rightarrow q)))$

- Color in blue all arcs below an equivalence
- Color in red all uncolored arcs exiting a negation or the left-hand side of an implication

The polarity of a position is

- 0 if it has at least one blue arc above it
- -1 if it has no blue arc and an odd number of red arcs above it
- 1 otherwise

The coloring algorithm for determining polarity

$A=\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(p \leftrightarrow(r \rightarrow q)))$

- Color in blue all arcs below an equivalence
- Color in red all uncolored arcs exiting a negation or the left-hand side of an implication

The polarity of a position is

- 0 if it has at least one blue arc above it
- -1 if it has no blue arc and an odd number of red arcs above it
- 1 otherwise

Position and polarity, again

position	subformula			polarity
ϵ	$\neg((p \rightarrow q)$	$\wedge(p \wedge q \rightarrow r)$	$) \rightarrow(p \rightarrow r))$	1
1	$(p \rightarrow q)$	$\wedge(p \wedge q \rightarrow r)$	$) \rightarrow(p \rightarrow r)$	-1
1.1	$(p \rightarrow q)$	$) \wedge(p \wedge q \rightarrow r)$		1
1.1.1	$p \rightarrow q$			1
1.1.1.1	p			-1
1.1.1.2	q			1
1.1.2		$p \wedge q \rightarrow r$		1
1.1.2.1		$p \wedge q$		-1
1.1.2.1.1		p		-1
1.1.2.1.2		q		-1
1.1.2.2		r		1
1.2			$p \rightarrow r$	-1
1.2.1			p	1
1.2.2			r	-1

Monotonic replacement

Notation $A[B]_{\pi}$ denotes, indifferently:

- A formula A having subformula B at position π
- The result of replacing the subformula of A at position π by B

Monotonic replacement

Notation $A[B]_{\pi}$ denotes, indifferently:

- A formula A having subformula B at position π
- The result of replacing the subformula of A at position π by B

```
Lemma 2 (Monotonic Replacement)
Let }A,B,\mp@subsup{B}{}{\prime}\mathrm{ be formulas, I be an interpretation such that I }=B->\mp@subsup{B}{}{\prime}
    1. If pol( }A,\pi)=1\mathrm{ , then I }=A[B\mp@subsup{]}{\pi}{}->A[\mp@subsup{B}{}{\prime}\mp@subsup{]}{\pi}{}\mathrm{ .
    2. If pol(A,\pi)=-1, then I }\modelsA[\mp@subsup{B}{}{\prime}\mp@subsup{]}{\pi}{}->A[B\mp@subsup{]}{\pi}{}\mathrm{ .
```


Monotonic replacement

Theorem 3 (Monotonic Replacement)

Let A, B, B^{\prime} be formulas such that $=B \rightarrow B^{\prime}$. Let A^{-}, resp. A^{+}, be the formula obtained from A by replacing one or more negative, resp. positive, occurrences of B by B^{\prime}. Then,

$$
\models A^{-} \rightarrow A \quad \text { and } \quad \models A \rightarrow A^{+} .
$$

Monotonic replacement

Theorem 3 (Monotonic Replacement)

Let A, B, B^{\prime} be formulas such that $=B \rightarrow B^{\prime}$. Let A^{-}, resp. A^{+}, be the formula obtained from A by replacing one or more negative, resp. positive, occurrences of B by B^{\prime}. Then,

$$
\models A^{-} \rightarrow A \quad \text { and } \quad \models A \rightarrow A^{+} .
$$

Corollary 4

Let $A, B, B^{\prime}, A^{-}, A^{+}$be as above. Then, the following holds.

1. If A^{-}is satisfiable, so is A.
2. If A^{+}is unsatisfiable, so is A.

Pure atom

Atom p is pure in a formula A, if either all occurrences of p in A are positive or all occurrences of p in A are negative

Pure atom

Atom p is pure in a formula A, if either all occurrences of p in A are positive or all occurrences of p in A are negative

$$
p \wedge r \rightarrow(\neg q \rightarrow(r \wedge \neg p))
$$

Pure atom

Atom p is pure in a formula A, if either all occurrences of p in A are positive or all occurrences of p in A are negative

$$
p \wedge r \rightarrow(\neg q \rightarrow(r \wedge \neg p))
$$

- Both occurrences of p are negative, so p is pure
- The only occurrence of q is positive, so q is pure
- r is not pure, since it has both negative and positive occurrences

Properties of pure atoms

Lemma 5 (Pure Atom)
Suppose variable p has only positive occurrences in A and $\mathcal{I} \models A$. Define

$$
\left.\mathcal{I}^{\prime} \stackrel{\text { def }}{=} \mathcal{I}+(p \mapsto 1) \quad \text { (maps } p \text { to } 1 \text { and is otherwise identical to } \mathcal{I}\right)
$$

Then $\mathcal{I}^{\prime} \models A$.

Properties of pure atoms

Lemma 5 (Pure Atom)

Suppose variable p has only positive occurrences in A and $I \models A$. Define

$$
\mathcal{I}^{\prime} \stackrel{\text { def }}{=} \mathcal{I}+(p \mapsto 1) \quad \text { (maps } p \text { to } 1 \text { and is otherwise identical to } \mathcal{I} \text {) }
$$

Then $\mathcal{I}^{\prime} \models A$.
Dually, Suppose p has only negative occurrences in A and $\mathcal{I} \models$. Define

$$
\left.\mathcal{I}^{\prime} \stackrel{\text { def }}{=} \mathcal{I}+(p \mapsto 0) \quad \text { (maps } p \text { to } 0 \text { and is otherwise identical to } \mathcal{I}\right)
$$

Then $\mathcal{I}^{\prime} \models A$.

Properties of pure atoms

Lemma 5 (Pure Atom)

Suppose variable p has only positive occurrences in A and $\mathcal{I} \models A$. Define

$$
\left.\mathcal{I}^{\prime} \stackrel{\text { def }}{=} \mathcal{I}+(p \mapsto 1) \quad \text { (maps } p \text { to } 1 \text { and is otherwise identical to } \mathcal{I}\right)
$$

Then $\mathcal{I}^{\prime} \models A$.
Dually, Suppose p has only negative occurrences in A and $\mathcal{I} \models$. Define

$$
\mathcal{I}^{\prime} \stackrel{\text { def }}{=} \mathcal{I}+(p \mapsto 0) \quad(\text { maps } p \text { to } 0 \text { and is otherwise identical to } \mathcal{I})
$$

Then $\mathcal{I}^{\prime} \models A$.

Theorem 6 (Pure Atom)

Suppose variable p has only positive (respectively, only negative) occurrences in A. Then A is satisfiable iff so is A_{p}^{\top} (respectively, A_{p}^{\perp}).

Pure atom, example

$$
\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r))
$$

Pure atom, example

$$
\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r))
$$

Pure atom, example

$$
\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r))
$$

All occurrences of p are negative, so to check for satisfiability we can replace p by \perp

Example, continued

$$
\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r))
$$

$$
\begin{gathered}
\neg \top \Rightarrow \perp \\
\top \wedge A \Rightarrow A \\
\top \vee A \Rightarrow \top \\
A \rightarrow \top \Rightarrow \top \\
\top \rightarrow A \Rightarrow A \\
A \leftrightarrow \top \Rightarrow A \\
\top \leftrightarrow A \Rightarrow A \\
\hline \neg \perp \Rightarrow \top \\
\perp \wedge A \Rightarrow \perp \\
\perp \vee A \Rightarrow A \\
A \rightarrow \perp \Rightarrow \neg A \\
\perp \rightarrow A \Rightarrow \top \\
A \leftrightarrow \perp \Rightarrow \neg A \\
\perp \leftrightarrow A \Rightarrow \neg A \\
\hline
\end{gathered}
$$

All occurrences of p are negative

Example, continued

$$
\begin{gathered}
\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r)) \quad \Rightarrow \\
\neg((\perp \rightarrow q) \wedge(\perp \wedge q \rightarrow r) \rightarrow(\neg \perp \rightarrow r))
\end{gathered}
$$

$\neg \top \Rightarrow \perp$
$\top \wedge A \Rightarrow A$
$\top \vee A \Rightarrow \top$
$A \rightarrow \top \Rightarrow \top$
$\top \rightarrow A \Rightarrow A$
$A \leftrightarrow \top \Rightarrow A$
$\top \leftrightarrow A \Rightarrow A$
$\neg \perp \Rightarrow \top$
$\perp \wedge A \Rightarrow \perp$
$\perp \vee A \Rightarrow A$
$A \rightarrow \perp \Rightarrow \neg A$
$\perp \rightarrow A \Rightarrow \top$
$A \leftrightarrow \perp \Rightarrow \neg A$
$\perp \leftrightarrow A \Rightarrow \neg A$

All occurrences of p are negative; so, for the purpose of checking satisfiability we can replace p by \perp

Example, continued

$$
\begin{array}{cl}
\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r)) & \Rightarrow \\
\neg((\perp \rightarrow q) \wedge(\perp \wedge q \rightarrow r) \rightarrow(\neg \perp \rightarrow r)) & \Rightarrow \\
\quad \neg(\top \wedge(\perp \wedge q \rightarrow r) \rightarrow(\neg \perp \rightarrow r)) &
\end{array}
$$

Example, continued

$$
\begin{array}{cll}
\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r)) & & \Rightarrow \\
\neg((\perp \rightarrow q) \wedge(\perp \wedge q \rightarrow r) \rightarrow(\neg \perp \rightarrow r)) & \Rightarrow \\
\neg(\top \wedge(\perp \wedge q \rightarrow r) \rightarrow(\neg \perp \rightarrow r)) & & \Rightarrow \\
\neg((\perp \wedge q \rightarrow r) \rightarrow(\neg \perp \rightarrow r)) & &
\end{array}
$$

$$
\begin{gathered}
\neg \top \Rightarrow \perp \\
\top \wedge A \Rightarrow A \\
\top \vee A \Rightarrow \top \\
A \rightarrow \top \Rightarrow \top \\
\top \rightarrow A \Rightarrow A \\
A \leftrightarrow \top \Rightarrow A \\
\top \leftrightarrow A \Rightarrow A \\
\neg \perp \Rightarrow \top \\
\perp \wedge A \Rightarrow \perp \\
\perp \vee A \Rightarrow A \\
A \rightarrow \perp \Rightarrow \neg A \\
\perp \rightarrow A \Rightarrow \top \\
A \leftrightarrow \perp \Rightarrow \neg A \\
\perp \leftrightarrow A \Rightarrow \neg A
\end{gathered}
$$

Example, continued

$$
\begin{array}{cll}
\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r)) & & \Rightarrow \\
\neg((\perp \rightarrow q) \wedge(\perp \wedge q \rightarrow r) \rightarrow(\neg \perp \rightarrow r)) & \Rightarrow \\
\neg(\top \wedge(\perp \wedge q \rightarrow r) \rightarrow(\neg \perp \rightarrow r)) & & \Rightarrow \\
\neg((\perp \wedge q \rightarrow r) \rightarrow(\neg \perp \rightarrow r)) & & \Rightarrow \\
\neg((\perp \rightarrow r) \rightarrow(\neg \perp \rightarrow r)) & &
\end{array}
$$

$\neg \top \Rightarrow \perp$
$\top \wedge A \Rightarrow A$
$\top \vee A \Rightarrow \top$
$A \rightarrow \top \Rightarrow \top$
$\top \rightarrow A \Rightarrow A$
$A \leftrightarrow \top \Rightarrow A$
$\top \leftrightarrow A \Rightarrow A$
$\neg \perp \Rightarrow \top$
$\perp \wedge A \Rightarrow \perp$
$\perp \vee A \Rightarrow A$
$A \rightarrow \perp \Rightarrow \neg A$
$\perp \rightarrow A \Rightarrow \top$
$A \leftrightarrow \perp \Rightarrow \neg A$
$\perp \leftrightarrow A \Rightarrow \neg A$

Example, continued

$$
\begin{array}{cl}
\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r)) & \Rightarrow \\
\neg((\perp \rightarrow q) \wedge(\perp \wedge q \rightarrow r) \rightarrow(\neg \perp \rightarrow r)) & \Rightarrow \\
\neg(\top \wedge(\perp \wedge q \rightarrow r) \rightarrow(\neg \perp \rightarrow r)) & \Rightarrow \\
\neg((\perp \wedge q \rightarrow r) \rightarrow(\neg \perp \rightarrow r)) & \\
\neg((\perp \rightarrow r) \rightarrow(\neg \perp \rightarrow r)) & \\
\neg(\top \rightarrow(\neg \perp \rightarrow r)) &
\end{array}
$$

$\neg \top \Rightarrow \perp$
$\top \wedge A \Rightarrow A$
$\top \vee A \Rightarrow \top$
$A \rightarrow \top \Rightarrow \top$
$\top \rightarrow A \Rightarrow A$
$A \leftrightarrow \top \Rightarrow A$
$\top \leftrightarrow A \Rightarrow A$
$\neg \perp \Rightarrow \top$
$\perp \wedge A \Rightarrow \perp$
$\perp \vee A \Rightarrow A$
$A \rightarrow \perp \Rightarrow \neg A$
$\perp \rightarrow A \Rightarrow \top$
$A \leftrightarrow \perp \Rightarrow \neg A$
$\perp \leftrightarrow A \Rightarrow \neg A$

Example, continued

$$
\begin{array}{cl}
\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r)) & \Rightarrow \\
\neg((\perp \rightarrow q) \wedge(\perp \wedge q \rightarrow r) \rightarrow(\neg \perp \rightarrow r)) & \Rightarrow \\
\neg(\top \wedge(\perp \wedge q \rightarrow r) \rightarrow(\neg \perp \rightarrow r)) & \\
\Rightarrow \\
\neg((\perp \wedge q \rightarrow r) \rightarrow(\neg \perp \rightarrow r)) & \\
\neg((\perp \rightarrow r) \rightarrow(\neg \perp \rightarrow r)) & \\
\neg(\top \rightarrow(\neg \perp \rightarrow r)) & \Rightarrow \\
\neg(\neg \perp \rightarrow r) &
\end{array}
$$

$\neg \top \Rightarrow \perp$
$\top \wedge A \Rightarrow A$
$\top \vee A \Rightarrow \top$
$A \rightarrow \top \Rightarrow \top$
$\top \rightarrow A \Rightarrow A$
$A \leftrightarrow \top \Rightarrow A$
$\top \leftrightarrow A \Rightarrow A$
$\neg \perp \Rightarrow \top$
$\perp \wedge A \Rightarrow \perp$
$\perp \vee A \Rightarrow A$
$A \rightarrow \perp \Rightarrow \neg A$
$\perp \rightarrow A \Rightarrow \top$
$A \leftrightarrow \perp \Rightarrow \neg A$
$\perp \leftrightarrow A \Rightarrow \neg A$

Example, continued

$$
\begin{array}{cl}
\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r)) & \Rightarrow \\
\neg((\perp \rightarrow q) \wedge(\perp \wedge q \rightarrow r) \rightarrow(\neg \perp \rightarrow r)) & \Rightarrow \\
\neg(\top \wedge(\perp \wedge q \rightarrow r) \rightarrow(\neg \perp \rightarrow r)) & \\
\neg \\
\neg((\perp \wedge q \rightarrow r) \rightarrow(\neg \perp \rightarrow r)) & \\
\neg((\perp \rightarrow r) \rightarrow(\neg \perp \rightarrow r)) & \Rightarrow \\
\neg(\top \rightarrow(\neg \perp \rightarrow r)) & \Rightarrow \\
\neg(\neg \perp \rightarrow r) & \Rightarrow \\
\neg(\top \rightarrow r) &
\end{array}
$$

$\neg \top \Rightarrow \perp$
$\top \wedge A \Rightarrow A$
$\top \vee A \Rightarrow \top$
$A \rightarrow \top \Rightarrow \top$
$\top \rightarrow A \Rightarrow A$
$A \leftrightarrow \top \Rightarrow A$
$\top \leftrightarrow A \Rightarrow A$
$\neg \perp \Rightarrow \top$
$\perp \wedge A \Rightarrow \perp$
$\perp \vee A \Rightarrow A$
$A \rightarrow \perp \Rightarrow \neg A$
$\perp \rightarrow A \Rightarrow \top$
$A \leftrightarrow \perp \Rightarrow \neg A$
$\perp \leftrightarrow A \Rightarrow \neg A$

Example, continued

$$
\begin{array}{cl}
\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r)) & \Rightarrow \\
\neg((\perp \rightarrow q) \wedge(\perp \wedge q \rightarrow r) \rightarrow(\neg \perp \rightarrow r)) & \Rightarrow \\
\neg(\top \wedge(\perp \wedge q \rightarrow r) \rightarrow(\neg \perp \rightarrow r)) & \Rightarrow \\
\neg((\perp \wedge q \rightarrow r) \rightarrow(\neg \perp \rightarrow r)) & \Rightarrow \\
\neg((\perp \rightarrow r) \rightarrow(\neg \perp \rightarrow r)) & \Rightarrow \\
\neg(\top \rightarrow(\neg \perp \rightarrow r)) & \Rightarrow \\
\neg(\neg \perp \rightarrow r) & \Rightarrow \\
\neg(\top \rightarrow r) & \Rightarrow
\end{array}
$$

$$
\begin{gathered}
\neg \top \Rightarrow \perp \\
\top \wedge A \Rightarrow A \\
\top \vee A \Rightarrow \top \\
A \rightarrow \top \Rightarrow \top \\
\top \rightarrow A \Rightarrow A \\
A \leftrightarrow \top \Rightarrow A \\
\top \leftrightarrow A \Rightarrow A \\
\hline \neg \perp \Rightarrow \top \\
\perp \wedge A \Rightarrow \perp \\
\perp \vee A \Rightarrow A \\
A \rightarrow \perp \Rightarrow \neg A \\
\perp \rightarrow A \Rightarrow \top \\
A \leftrightarrow \perp \Rightarrow \neg A \\
\perp \leftrightarrow A \Rightarrow \neg A \\
\hline
\end{gathered}
$$

All occurrences of r are negative

Example, continued

$$
\begin{array}{cl}
\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r)) & \Rightarrow \\
\neg((\perp \rightarrow q) \wedge(\perp \wedge q \rightarrow r) \rightarrow(\neg \perp \rightarrow r)) & \Rightarrow \\
\neg(\top \wedge(\perp \wedge q \rightarrow r) \rightarrow(\neg \perp \rightarrow r)) & \Rightarrow \\
\neg((\perp \wedge q \rightarrow r) \rightarrow(\neg \perp \rightarrow r)) & \Rightarrow \\
\neg((\perp \rightarrow r) \rightarrow(\neg \perp \rightarrow r)) & \Rightarrow \\
\neg(\top \rightarrow(\neg \perp \rightarrow r)) & \Rightarrow \\
\neg(\neg \perp \rightarrow r) & \Rightarrow \\
\neg(\top \rightarrow r) & \Rightarrow \\
\neg r & \Rightarrow
\end{array}
$$

$\neg \top \Rightarrow \perp$
$\top \wedge A \Rightarrow A$
$\top \vee A \Rightarrow \top$
$A \rightarrow \top \Rightarrow \top$
$\top \rightarrow A \Rightarrow A$
$A \leftrightarrow \top \Rightarrow A$
$\top \leftrightarrow A \Rightarrow A$
$\neg \perp \Rightarrow \top$
$\perp \wedge A \Rightarrow \perp$
$\perp \vee A \Rightarrow A$
$A \rightarrow \perp \Rightarrow \neg A$
$\perp \rightarrow A \Rightarrow \top$
$A \leftrightarrow \perp \Rightarrow \neg A$
$\perp \leftrightarrow A \Rightarrow \neg A$

All occurrences of r are negative; so, for the purpose of checking satisfiability we can replace r by \perp

Example, continued

$$
\begin{gathered}
\neg \top \Rightarrow \perp \\
\top \wedge A \Rightarrow A \\
\top \vee A \Rightarrow \top \\
A \rightarrow \top \Rightarrow \top \\
\top \rightarrow A \Rightarrow A \\
A \leftrightarrow \top \Rightarrow A \\
\top \leftrightarrow A \Rightarrow A \\
\hline \neg \perp \Rightarrow \top \\
\perp \wedge A \Rightarrow \perp \\
\perp \vee A \Rightarrow A \\
A \rightarrow \perp \Rightarrow \neg A \\
\perp \rightarrow A \Rightarrow \top \\
A \leftrightarrow \perp \Rightarrow \neg A \\
\perp \leftrightarrow A \Rightarrow \neg A \\
\hline
\end{gathered}
$$

We have shown the satisfiability of this formula deterministically (no guesses), using only the pure atom rule

