CS:4350 Logic in Computer Science

Derivation Systems for Propositional Logic

Cesare Tinelli

Spring 2022

Outline

Derivation Systems for Propositional Logic Semantic consequence/entailment Derivability

A logic is a triple $(\mathcal{L}, \mathcal{S}, \mathcal{R})$ where

• \mathcal{L} , the language, is

a class of sentences described by a formal grammar

• *S*, the semantics, is

a formal specification for assigning meaning to sentences in $\boldsymbol{\mathcal{L}}$

R, the derivation (or inference) system, is
 a set of axioms and derivation rules to *derive* (i.e., generate)
 sentences of *L* from given sentences of *L*

A logic is a triple $(\mathcal{L}, \mathcal{S}, \mathcal{R})$ where

• \mathcal{L} , the language, is

a class of sentences described by a formal grammar

• S, the semantics, is

a formal specification for assigning meaning to sentences in ${\cal L}$

R, the derivation (or inference) system, is
 a set of axioms and derivation rules to *derive* (i.e., generate)
 sentences of *L* from given sentences of *L*

A logic is a triple $(\mathcal{L}, \mathcal{S}, \mathcal{R})$ where

- \mathcal{L} , the language, is a class of sentences described by a formal grammar
- S, the semantics, is

a formal specification for assigning meaning to sentences in $\ensuremath{\mathcal{L}}$

R, the derivation (or inference) system, is
 a set of axioms and derivation rules to *derive* (i.e., generate)
 sentences of *L* from given sentences of *L*

A logic is a triple $(\mathcal{L}, \mathcal{S}, \mathcal{R})$ where

- \mathcal{L} , the language, is a class of sentences described by a formal grammar
- *S*, the semantics, is a formal specification for assigning meaning to sentences in *L*
- *R*, the derivation (or inference) system, is
 a set of axioms and derivation rules to *derive* (i.e., generate)
 sentences of *L* from given sentences of *L*

Propositional logic, formally

Propositional logic is a triple $(\mathcal{L}, \mathcal{S}, \mathcal{R})$ where

- *L* is the set of all formulas built from Boolean variables and the
 propositional connectives (¬, ∧, ∨, . . .)
- *S* is provided by interpretations of the variables as 0, 1 and the connectives as certain Boolean functions
- \mathcal{R} is ??

There are many derivation systems for PL We will study a few of them

Propositional logic, formally

Propositional logic is a triple $(\mathcal{L}, \mathcal{S}, \mathcal{R})$ where

- *L* is the set of all formulas built from Boolean variables and the
 propositional connectives (¬, ∧, ∨, . . .)
- *S* is provided by interpretations of the variables as 0, 1 and the connectives as certain Boolean functions
- \mathcal{R} is ??

There are many derivation systems for PL We will study a few of them

Formal properties of derivation systems

A derivation system is defined by a set of derivation rules that allow one to derive formulas from given formulas

We will focus on these properties of our derivation systems:

Soundness Every derived formula is a semantic consequence of the given ones

Completeness Only semantic consequences are derivable

Termination Only finitely many derivation steps are needed to prove or disprove semantic consequence

Formal properties of derivation systems

A derivation system is defined by a set of derivation rules that allow one to derive formulas from given formulas

We will focus on these properties of our derivation systems:

Soundness Every derived formula is a semantic consequence of the given ones

Completeness Only semantic consequences are derivable

Termination Only finitely many derivation steps are needed to prove or disprove semantic consequence

Formal properties of derivation systems

A derivation system is defined by a set of derivation rules that allow one to derive formulas from given formulas

We will focus on these properties of our derivation systems:

- **Soundness** Every derived formula is a semantic consequence of the given ones
- **Completeness** Only semantic consequences are derivable
 - **Termination** Only finitely many derivation steps are needed to prove or disprove semantic consequence

Given

- a set $S = \{A_1, \ldots, A_n\}$ of formulas and
- a formula *B*

we write

$$\{A_1,\ldots,A_n\} \models B$$

iff every interpretation that satisfies every formula in ${\bf S}$ also satisfies ${\cal B}$

Given

- a set $S = \{A_1, \ldots, A_n\}$ of formulas and
- a formula B

we write

$$\{A_1,\ldots,A_n\} \models B$$

iff every interpretation that satisfies every formula in **S** also satisfies *B*

S ⊨ B is read as B is a semantic/logical consequence of S, or B logically follows from S, or S entails B

Given

- a set $S = \{A_1, \ldots, A_n\}$ of formulas and
- a formula *B*

we write

$$\{A_1,\ldots,A_n\} \models B$$

iff every interpretation that satisfies every formula in **S** also satisfies *B*

S |= *A* formally captures the notion of a fact *A* following from assumptions **S**

Given

- a set $S = \{A_1, \ldots, A_n\}$ of formulas and
- a formula *B*

we write

$$\{A_1,\ldots,A_n\} \models B$$

iff every interpretation that satisfies every formula in ${\bf S}$ also satisfies ${\cal B}$

Note 1: We usually write just $A_1, \ldots, A_n \models B$ instead of $\{A_1, \ldots, A_n\} \models B$

Given

- a set $S = \{A_1, \ldots, A_n\}$ of formulas and
- a formula *B*

we write

$$\{A_1,\ldots,A_n\} \models B$$

iff every interpretation that satisfies every formula in **S** also satisfies *B*

Note 1: We usually write just $A_1, \ldots, A_n \models B$ instead of $\{A_1, \ldots, A_n\} \models B$

Note 2: Do not confuse this use of \models with that in $\mathcal{I} \models B$ where \mathcal{I} is an interpretation

$$\begin{cases} p \} & \models p \lor q \\ \{p, p \to q \} & \models q \\ \{p, q \} & \models p \land q \\ \{\} & \models r \to r \\ \{p, \neg r \} & \models (p \lor q) \land (q \lor \neg r) \\ \{q \} & \models (p \lor q) \land (q \lor \neg r) \\ \{p, q \lor \neg r \} & \not\models p \land q \\ \{p \lor \neg p \} & \not\models p \end{cases}$$

	p	q	r	$\neg r$	$p \rightarrow q$	$p \lor q$	$p \wedge q$	$r \rightarrow r$	$q \vee \neg r$	$(p \lor q) \land (q \lor \neg r)$
1.	0	0	0	1	1	0	0	1	1	1
2.	0	0	1	0	1	0	0	1	0	1
3.	0	1	0	1	1	1	0	1	1	1
4.	0	1	1	0	1	1	0	1	1	1
5.	1	0	0	1	0	1	0	1	1	1
6.	1	0	1	0	0	1	0	1	0	0
7.	1	1	0	1	1	1	1	1	1	1
8.	1	1	1	0	1	1	1	1	1	1

$$\begin{cases} p \} & \models p \lor q \\ \{p, p \to q\} & \models q \\ \{p, q\} & \models p \land q \\ \{\} & \models r \to r \\ \{p, \neg r\} & \models (p \lor q) \land (q \lor \neg r) \\ \{q\} & \models (p \lor q) \land (q \lor \neg r) \\ \{p, q \lor \neg r\} & \not\models p \land q \\ \{p \lor \neg p\} & \not\models p \end{cases}$$

	p	q	r	$\neg r$	$p \rightarrow q$	$p \lor q$	$p \wedge q$	$r \rightarrow r$	$q \vee \neg r$	$(p \lor q) \land (q \lor \neg r)$
1.	0	0	0	1	1	0	0	1	1	1
2.	0	0	1	0	1	0	0	1	0	1
3.	0	1	0	1	1	1	0	1	1	1
4.	0	1	1	0	1	1	0	1	1	1
5.	1	0	0	1	0	1	0	1	1	1
6.	1	0	1	0	0	1	0	1	0	0
7.	1	1	0	1	1	1	1	1	1	1
8.	1	1	1	0	1	1	1	1	1	1

$$\begin{cases} p \} &\models p \lor q \\ \{p, p \to q\} &\models q \\ \{p, q\} &\models p \land q \\ \} &\models r \to r \\ \{p, \neg r\} &\models (p \lor q) \land (q \lor \neg r) \\ \{q\} &\models (p \lor q) \land (q \lor \neg r) \\ \{p, q \lor \neg r\} &\not\models p \land q \\ \{p \lor \neg p\} &\not\models p \end{cases}$$

	p	q	r	$\neg r$	$p \rightarrow q$	$p \lor q$	$p \wedge q$	$r \rightarrow r$	$q \vee \neg r$	$(p \lor q) \land (q \lor \neg r)$
1.	0	0	0	1	1	0	0	1	1	1
2.	0	0	1	0	1	0	0	1	0	1
3.	0	1	0	1	1	1	0	1	1	1
4.	0	1	1	0	1	1	0	1	1	1
5.	1	0	0	1	0	1	0	1	1	1
6.	1	0	1	0	0	1	0	1	0	0
7.	1	1	0	1	1	1	1	1	1	1
8.	1	1	1	0	1	1	1	1	1	1

$$\begin{cases} p \} &\models p \lor q \\ \{p, p \to q\} &\models q \\ \{p, q\} &\models p \land q \\ \{\} &\models r \to r \\ \{p, \neg r\} &\models (p \lor q) \land (q \lor \neg r) \\ \{q\} &\models (p \lor q) \land (q \lor \neg r) \\ \{p, q \lor \neg r\} &\not\models p \land q \\ \{p \lor \neg p\} &\not\models p \end{cases}$$

	p	q	r	$\neg r$	$p \rightarrow q$	$p \lor q$	$p \wedge q$	$r \rightarrow r$	$q \vee \neg r$	$(p \lor q) \land (q \lor \neg r)$
1.	0	0	0	1	1	0	0	1	1	1
2.	0	0	1	0	1	0	0	1	0	1
3.	0	1	0	1	1	1	0	1	1	1
4.	0	1	1	0	1	1	0	1	1	1
5.	1	0	0	1	0	1	0	1	1	1
6.	1	0	1	0	0	1	0	1	0	0
7.	1	1	0	1	1	1	1	1	1	1
8.	1	1	1	0	1	1	1	1	1	1

$$\begin{cases} p \} &\models p \lor q \\ \{p, p \to q\} &\models q \\ \{p, q\} &\models p \land q \\ \end{cases} \\ \begin{cases} p, q \} &\models r \to r \\ \{p, \neg r\} &\models (p \lor q) \land (q \lor \neg r) \\ \{q\} &\models (p \lor q) \land (q \lor \neg r) \\ \{p, q \lor \neg r\} &\not\models p \land q \\ \{p \lor \neg p\} &\not\models p \end{cases}$$

	p	q	r	$\neg r$	$p \rightarrow q$	$p \lor q$	$p \wedge q$	$r \rightarrow r$	$q \vee \neg r$	$(p \lor q) \land (q \lor \neg r)$
1.	0	0	0	1	1	0	0	1	1	1
2.	0	0	1	0	1	0	0	1	0	1
3.	0	1	0	1	1	1	0	1	1	1
4.	0	1	1	0	1	1	0	1	1	1
5.	1	0	0	1	0	1	0	1	1	1
6.	1	0	1	0	0	1	0	1	0	0
7.	1	1	0	1	1	1	1	1	1	1
8.	1	1	1	0	1	1	1	1	1	1

$$\begin{cases} p \} &\models p \lor q \\ \{p, p \to q \} &\models q \\ \{p, q \} &\models p \land q \\ \} &\models r \to r \\ \{p, \neg r \} &\models (p \lor q) \land (q \lor \neg r) \\ \{q \} &\models (p \lor q) \land (q \lor \neg r) \\ \{p, q \lor \neg r \} &\not\models p \land q \\ \{p \lor \neg p \} &\not\models p \end{cases}$$

	p	q	r	$\neg r$	$p \rightarrow q$	$p \lor q$	$p \wedge q$	$r \rightarrow r$	$q \vee \neg r$	$(p \lor q) \land (q \lor \neg r)$
1.	0	0	0	1	1	0	0	1	1	1
2.	0	0	1	0	1	0	0	1	0	1
3.	0	1	0	1	1	1	0	1	1	1
4.	0	1	1	0	1	1	0	1	1	1
5.	1	0	0	1	0	1	0	1	1	1
6.	1	0	1	0	0	1	0	1	0	0
7.	1	1	0	1	1	1	1	1	1	1
8.	1	1	1	0	1	1	1	1	1	1

$$\begin{cases} p \} & \models p \lor q \\ \{p, p \to q \} & \models q \\ \{p, q \} & \models p \land q \\ \{\} & \models r \to r \\ \{p, \neg r \} & \models (p \lor q) \land (q \lor \neg r) \\ \{q \} & \models (p \lor q) \land (q \lor \neg r) \\ \{p, q \lor \neg r \} & \not\models p \land q \\ \{p \lor \neg p \} & \not\models p \end{cases}$$

	p	q	r	$\neg r$	$p \rightarrow q$	$p \lor q$	$p \wedge q$	$r \rightarrow r$	$q \vee \neg r$	$(p \lor q) \land (q \lor \neg r)$
1.	0	0	0	1	1	0	0	1	1	1
2.	0	0	1	0	1	0	0	1	0	1
3.	0	1	0	1	1	1	0	1	1	1
4.	0	1	1	0	1	1	0	1	1	1
5.	1	0	0	1	0	1	0	1	1	1
6.	1	0	1	0	0	1	0	1	0	0
7.	1	1	0	1	1	1	1	1	1	1
8.	1	1	1	0	1	1	1	1	1	1

$$\begin{cases} p \} &\models p \lor q \\ \{p, p \to q\} &\models q \\ \{p, q\} &\models p \land q \\ \} &\models r \to r \\ \{p, \neg r\} &\models (p \lor q) \land (q \lor \neg r) \\ \{q\} &\models (p \lor q) \land (q \lor \neg r) \\ \{p, q \lor \neg r\} &\not\models p \land q \\ \{p \lor \neg p\} &\not\models p \end{cases}$$

	p	q	r	$\neg r$	$p \rightarrow q$	$p \lor q$	$p \wedge q$	$r \rightarrow r$	$q \vee \neg r$	$(p \lor q) \land (q \lor \neg r)$
1.	0	0	0	1	1	0	0	1	1	1
2.	0	0	1	0	1	0	0	1	0	1
3.	0	1	0	1	1	1	0	1	1	1
4.	0	1	1	0	1	1	0	1	1	1
5.	1	0	0	1	0	1	0	1	1	1
6.	1	0	1	0	0	1	0	1	0	0
7.	1	1	0	1	1	1	1	1	1	1
8.	1	1	1	0	1	1	1	1	1	1

Exercise

Determine which of the following entailments hold

- $S \models A$ for all $A \in S$ (*inclusion*)
- if $S \models A$ then $T \models A$ for all $T \supseteq S$ (monotonicity)
- A is valid iff $\emptyset \models A$ (also written as $\models A$)
- A is unsatisfiable iff $A \models \bot$
- $S \models A$ iff $S \cup \{\neg A\}$ is unsatisfiable
- $\{A_1, \ldots, A_n\} \models B$ iff $\{A_1, \ldots, A_{n-1}\} \models A_n \rightarrow B$ (deduction)
- $\{A_1,\ldots,A_n\}\models B$ iff $\{A_1\wedge\cdots\wedge A_n\}\models B$ iff $\emptyset\models (A_1\wedge\cdots\wedge A_n)\rightarrow B$
- $A \equiv B$ iff $\{A\} \models B$ and $\{B\} \models A$

• $S \models A$ for all $A \in S$ (inclusion)

• if $S \models A$ then $T \models A$ for all $T \supseteq S$ (monotonicity)

• A is valid iff $\emptyset \models A$ (also written as $\models A$)

• A is unsatisfiable iff $A \models \bot$

- $S \models A$ iff $S \cup \{\neg A\}$ is unsatisfiable
- $\{A_1, \ldots, A_n\} \models B$ iff $\{A_1, \ldots, A_{n-1}\} \models A_n \rightarrow B$ (deduction)
- $\{A_1,\ldots,A_n\}\models B \text{ iff } \{A_1\wedge\cdots\wedge A_n\}\models B \text{ iff } \emptyset\models (A_1\wedge\cdots\wedge A_n)\rightarrow B$
- $A \equiv B$ iff $\{A\} \models B$ and $\{B\} \models A$

- $S \models A$ for all $A \in S$ (inclusion)
- if $S \models A$ then $T \models A$ for all $T \supseteq S$ (monotonicity)
- *A* is valid iff $\emptyset \models A$ (also written as $\models A$)
- A is unsatisfiable iff $A \models \bot$
- $S \models A$ iff $S \cup \{\neg A\}$ is unsatisfiable
- $\{A_1, \ldots, A_n\} \models B$ iff $\{A_1, \ldots, A_{n-1}\} \models A_n \rightarrow B$ (deduction)
- $\{A_1,\ldots,A_n\} \models B \text{ iff } \{A_1 \land \cdots \land A_n\} \models B \text{ iff } \emptyset \models (A_1 \land \cdots \land A_n) \to B$
- $A \equiv B$ iff $\{A\} \models B$ and $\{B\} \models A$

- $S \models A$ for all $A \in S$ (inclusion)
- if $S \models A$ then $T \models A$ for all $T \supseteq S$ (monotonicity)
- A is valid iff $\emptyset \models A$ (also written as $\models A$)
- A is unsatisfiable iff $A \models \bot$
- **S** \models *A* iff **S** \cup { \neg *A*} is unsatisfiable
- $\{A_1,\ldots,A_n\}\models B$ iff $\{A_1,\ldots,A_{n-1}\}\models A_n\rightarrow B$ (deduction)
- $\{A_1,\ldots,A_n\}\models B$ iff $\{A_1\wedge\cdots\wedge A_n\}\models B$ iff $\emptyset\models (A_1\wedge\cdots\wedge A_n)\rightarrow B$
- $A \equiv B$ iff $\{A\} \models B$ and $\{B\} \models A$

- $S \models A$ for all $A \in S$ (inclusion)
- if $S \models A$ then $T \models A$ for all $T \supseteq S$ (monotonicity)
- A is valid iff $\emptyset \models A$ (also written as $\models A$)
- A is unsatisfiable iff $A \models \bot$
- $S \models A$ iff $S \cup \{\neg A\}$ is unsatisfiable
- $\{A_1, \ldots, A_n\} \models B$ iff $\{A_1, \ldots, A_{n-1}\} \models A_n \rightarrow B$ (deduction)
- $\{A_1,\ldots,A_n\}\models B$ iff $\{A_1\wedge\cdots\wedge A_n\}\models B$ iff $\emptyset\models (A_1\wedge\cdots\wedge A_n)\rightarrow B$
- $A \equiv B$ iff $\{A\} \models B$ and $\{B\} \models A$

- $S \models A$ for all $A \in S$ (inclusion)
- if $S \models A$ then $T \models A$ for all $T \supseteq S$ (monotonicity)
- A is valid iff $\emptyset \models A$ (also written as $\models A$)
- A is unsatisfiable iff $A \models \bot$
- $S \models A$ iff $S \cup \{\neg A\}$ is unsatisfiable
- $\{A_1, \ldots, A_n\} \models B$ iff $\{A_1, \ldots, A_{n-1}\} \models A_n \rightarrow B$ (deduction)
- $\{A_1,\ldots,A_n\} \models B \text{ iff } \{A_1 \land \cdots \land A_n\} \models B \text{ iff } \emptyset \models (A_1 \land \cdots \land A_n) \to B$
- $A \equiv B$ iff $\{A\} \models B$ and $\{B\} \models A$

- $S \models A$ for all $A \in S$ (inclusion)
- if $S \models A$ then $T \models A$ for all $T \supseteq S$ (monotonicity)
- A is valid iff $\emptyset \models A$ (also written as $\models A$)
- A is unsatisfiable iff $A \models \bot$
- **S** \models *A* iff **S** \cup { \neg *A*} is unsatisfiable
- $\{A_1, \ldots, A_n\} \models B$ iff $\{A_1, \ldots, A_{n-1}\} \models A_n \rightarrow B$ (deduction)
- $\{A_1, \ldots, A_n\} \models B$ iff $\{A_1 \land \cdots \land A_n\} \models B$ iff $\emptyset \models (A_1 \land \cdots \land A_n) \rightarrow B$

• $A \equiv B$ iff $\{A\} \models B$ and $\{B\} \models A$

- $S \models A$ for all $A \in S$ (inclusion)
- if $S \models A$ then $T \models A$ for all $T \supseteq S$ (monotonicity)
- A is valid iff $\emptyset \models A$ (also written as $\models A$)
- A is unsatisfiable iff $A \models \bot$
- $S \models A$ iff $S \cup \{\neg A\}$ is unsatisfiable
- $\{A_1, \ldots, A_n\} \models B$ iff $\{A_1, \ldots, A_{n-1}\} \models A_n \rightarrow B$ (deduction)
- $\{A_1,\ldots,A_n\}\models B$ iff $\{A_1\wedge\cdots\wedge A_n\}\models B$ iff $\emptyset\models (A_1\wedge\cdots\wedge A_n)\rightarrow B$
- $A \equiv B$ iff $\{A\} \models B$ and $\{B\} \models A$

- $S \models A$ for all $A \in S$ (*inclusion*)
- if $S \models A$ then $T \models A$ for all $T \supseteq S$ (monotonicity)
- A is valid iff $\emptyset \models A$ (also written as $\models A$)
- A is unsatisfiable iff $A \models \bot$
- $S \models A$ iff $S \cup \{\neg A\}$ is unsatisfiable
- $\{A_1, \ldots, A_n\} \models B$ iff $\{A_1, \ldots, A_{n-1}\} \models A_n \rightarrow B$ (deduction)
- $\{A_1, \ldots, A_n\} \models B$ iff $\{A_1 \land \cdots \land A_n\} \models B$ iff $\emptyset \models (A_1 \land \cdots \land A_n) \rightarrow B$
- $A \equiv B$ iff $\{A\} \models B$ and $\{B\} \models A$

An *derivation system* / is a collection of formal rules for inferring formulas from formulas

Given

- a set $S = \{A_1, \dots, A_n\}$ of formulas (*premises*) and
- a formula *B* (*conclusion*)

we write

$$\{A_1,\ldots,A_n\} \vdash_I B$$

iff it is possible to infer B from S with the rules of /

An *derivation system* / is a collection of formal rules for inferring formulas from formulas

Given

- a set $S = \{A_1, \dots, A_n\}$ of formulas (*premises*) and
- a formula *B* (*conclusion*)

we write

 $\{A_1,\ldots,A_n\} \vdash_I B$

iff it is possible to infer *B* from **S** with the rules of *I*

S ⊢_I A is read as S derives B in I, or B derives from S in I, or B is derivable from S in I

An *derivation system* / is a collection of formal rules for inferring formulas from formulas

Given

- a set $S = \{A_1, \dots, A_n\}$ of formulas (*premises*) and
- a formula *B* (*conclusion*)

we write

$$\{A_1,\ldots,A_n\} \vdash_I B$$

iff it is possible to infer B from S with the rules of /

We write just $S \vdash A$ when / is clear from context

An *derivation system* / is a collection of formal rules for inferring formulas from formulas

Given

- a set $S = \{A_1, \dots, A_n\}$ of formulas (*premises*) and
- a formula *B* (*conclusion*)

we write

$$\{A_1,\ldots,A_n\} \vdash_I B$$

iff it is possible to infer B from S with the rules of /

Intuitively, / is designed so that $S \vdash_I A$ only if $S \models A$

An *derivation system* / is a collection of formal rules for inferring formulas from formulas

Given

- a set $S = \{A_1, \dots, A_n\}$ of formulas (*premises*) and
- a formula *B* (*conclusion*)

we write

$$\{A_1,\ldots,A_n\} \vdash_I B$$

iff it is possible to infer B from S with the rules of /

Intuitively, *I* is designed so that $S \vdash_I A$ only if $S \models A$

Ideally, / should also be such that $S \vdash_I A$ if $S \models A$

So many symbols!

Note:

- $A \land B \rightarrow C$ is a formula, a sequence of symbols manipulated by an derivation system /
- $A \land B \models C$ is a mathematical abbreviation for the statement: "every interpretation that satisfies $A \land B$, also satisfies C"
- $A \land B \vdash_{I} C$ is a mathematical abbreviation for the statement: "I derives C from $A \land B$ "

So many symbols!

In other words,

- $\bullet \ \rightarrow$ is a symbol of propositional logic, processed by derivation systems
- |= denotes a relation from sets of formulas to formulas, based on their meaning in propositional logic
- ⊢, denotes a relation from sets of formulas to formulas, based on their derivability in /

Implication vs. Entailment

The connective \rightarrow and the relation \models are related as follows:

 $A \rightarrow B$ is valid iff $A \models B$

Example: $p
ightarrow (p \lor q)$ is valid and $p \models p \lor q$

Implication vs. Entailment

The connective \rightarrow and the relation \models are related as follows:

 $A \rightarrow B$ is valid iff $A \models B$

Example: $p \rightarrow (p \lor q)$ is valid and $p \models p \lor q$

	р	q	$p \lor q$	p ightarrow (p ee q)
1.	0	0	0	1
2.	0	1	1	1
3.	1	0	1	1
4.	1	1	1	1

Soundness and completeness

The relations \models and \vdash_{l} are related as by these two properties of derivation systems *l*

Soundness *I* is *sound* if it can derive from a given set **S** of formulas only formulas entailed by **S**:

if $\mathbf{S} \vdash_I A$ then $\mathbf{S} \models A$

Completeness / is *complete* if it can derive from a given set **S** of formulas all formulas entailed by **S**:

if $S \models A$ then $S \vdash_i A$

Soundness and completeness

The relations \models and \vdash_{l} are related as by these two properties of derivation systems *l*

Soundness / is *sound* if it can derive from a given set **S** of formulas only formulas entailed by **S**:

if $\mathbf{S} \vdash_I A$ then $\mathbf{S} \models A$

Completeness / is *complete* if it can derive from a given set **S** of formulas all formulas entailed by **S**:

if $S \models A$ then $S \vdash_i A$

Soundness and completeness

The relations \models and \vdash_{l} are related as by these two properties of derivation systems *l*

Soundness / is *sound* if it can derive from a given set **S** of formulas only formulas entailed by **S**:

if $\mathbf{S} \vdash_I A$ then $\mathbf{S} \models A$

Completeness / is *complete* if it can derive from a given set **S** of formulas all formulas entailed by **S**:

if $\mathbf{S} \models A$ then $\mathbf{S} \vdash_I A$