CS:4350 Logic in Computer Science
 Derivation Systems for Propositional Logic

Cesare Tinelli

Spring 2022

Outline

Derivation Systems for Propositional Logic
Semantic consequence/entailment
Derivability

Logics, formally

A logic is a triple $(\mathcal{L}, \mathcal{S}, \mathcal{R})$ where

Logics, formally

A logic is a triple $(\mathcal{L}, \mathcal{S}, \mathcal{R})$ where

- \mathcal{L}, the language, is
a class of sentences described by a formal grammar

Logics, formally

A logic is a triple $(\mathcal{L}, \mathcal{S}, \mathcal{R})$ where

- \mathcal{L}, the language, is a class of sentences described by a formal grammar
- \mathcal{S}, the semantics, is a formal specification for assigning meaning to sentences in \mathcal{L}

Logics, formally

A logic is a triple $(\mathcal{L}, \mathcal{S}, \mathcal{R})$ where

- \mathcal{L}, the language, is
a class of sentences described by a formal grammar
- \mathcal{S}, the semantics, is a formal specification for assigning meaning to sentences in \mathcal{L}
- \mathcal{R}, the derivation (or inference) system, is a set of axioms and derivation rules to derive (i.e., generate) sentences of \mathcal{L} from given sentences of \mathcal{L}

Propositional logic, formally

Propositional logic is a triple $(\mathcal{L}, \mathcal{S}, \mathcal{R})$ where

- \mathcal{L} is the set of all formulas built from Boolean variables and the propositional connectives ($\neg, \wedge, \vee, \ldots$)
- \mathcal{S} is provided by interpretations of the variables as 0,1 and the connectives as certain Boolean functions
$-\mathcal{R}$ is ??

Propositional logic, formally

Propositional logic is a triple $(\mathcal{L}, \mathcal{S}, \mathcal{R})$ where

- \mathcal{L} is the set of all formulas built from Boolean variables and the propositional connectives ($\neg, \wedge, \vee, \ldots$)
- \mathcal{S} is provided by interpretations of the variables as 0,1 and the connectives as certain Boolean functions
$-\mathcal{R}$ is ??

There are many derivation systems for PL We will study a few of them

Formal properties of derivation systems

A derivation system is defined by a set of derivation rules that allow one to derive formulas from given formulas

Formal properties of derivation systems

A derivation system is defined by a set of derivation rules that allow one to derive formulas from given formulas

We will focus on these properties of our derivation systems:

Formal properties of derivation systems

A derivation system is defined by a set of derivation rules that allow one to derive formulas from given formulas

We will focus on these properties of our derivation systems:

Soundness Every derived formula is a semantic consequence of the given ones

Completeness Only semantic consequences are derivable
Termination Only finitely many derivation steps are needed to prove or disprove semantic consequence

Semantic consequence (or entailment)

Given

- a set $\mathbf{S}=\left\{A_{1}, \ldots, A_{n}\right\}$ of formulas and
- a formula B
we write

$$
\left\{A_{1}, \ldots, A_{n}\right\} \models B
$$

iff every interpretation that satisfies every formula in S also satisfies B

Semantic consequence (or entailment)

Given

- a set $\mathbf{S}=\left\{A_{1}, \ldots, A_{n}\right\}$ of formulas and
- a formula B
we write

$$
\left\{A_{1}, \ldots, A_{n}\right\} \models B
$$

iff every interpretation that satisfies every formula in S also satisfies B
$\mathbf{S} \vDash B$ is read as B is a semantic/logical consequence of \mathbf{S}, or B logically follows from S , or S entails B

Semantic consequence (or entailment)

Given

- a set $\mathbf{S}=\left\{A_{1}, \ldots, A_{n}\right\}$ of formulas and
- a formula B
we write

$$
\left\{A_{1}, \ldots, A_{n}\right\} \models B
$$

iff every interpretation that satisfies every formula in S also satisfies B
$S \in A$ formally captures the notion of
a fact A following from assumptions S

Semantic consequence (or entailment)

Given

- a set $\mathbf{S}=\left\{A_{1}, \ldots, A_{n}\right\}$ of formulas and
- a formula B
we write

$$
\left\{A_{1}, \ldots, A_{n}\right\} \models B
$$

iff every interpretation that satisfies every formula in S also satisfies B

Note 1: We usually write just $A_{1}, \ldots, A_{n} \models B$ instead of $\left\{A_{1}, \ldots, A_{n}\right\} \models B$

Semantic consequence (or entailment)

Given

- a set $\mathbf{S}=\left\{A_{1}, \ldots, A_{n}\right\}$ of formulas and
- a formula B
we write

$$
\left\{A_{1}, \ldots, A_{n}\right\} \models B
$$

iff every interpretation that satisfies every formula in S also satisfies B

Note 1: We usually write just $A_{1}, \ldots, A_{n} \vDash B$ instead of $\left\{A_{1}, \ldots, A_{n}\right\} \neq B$
Note 2: Do not confuse this use of \models with that in $\mathcal{I} \models B$ where \mathcal{I} is an interpretation

Entailment, Examples

$$
\begin{array}{ll}
\{p\} & \models p \vee q \\
\{p, p \rightarrow q\} & \models q \\
\{p, q\} & \models p \wedge q \\
\} & \models r \rightarrow r \\
\{p, \neg r\} & \not \models(p \vee q) \wedge(q \vee \neg r) \\
\{q\} & \models(p \vee q) \wedge(q \vee \neg r) \\
\{p, q \vee \neg r\} & \not \equiv p \wedge q \\
\{p \vee \neg p\} & \not \models p
\end{array}
$$

	p	q	r	$\neg r$	$p \rightarrow q$	$p \vee q$	$p \wedge q$	$r \rightarrow r$	$q \vee \neg r$	$(p \vee q) \wedge(q \vee \neg r)$
1.	0	0	0	1	1	0	0	1	1	1
2.	0	0	1	0	1	0	0	1	0	1
3.	0	1	0	1	1	1	0	1	1	1
4.	0	1	1	0	1	1	0	1	1	1
5.	1	0	0	1	0	1	0	1	1	1
6.	1	0	1	0	0	1	0	1	0	0
7.	1	1	0	1	1	1	1	1	1	1
8.	1	1	1	0	1	1	1	1	1	1

Entailment, Examples

$$
\begin{array}{ll}
\{p\} & \models p \vee q \\
\{p, p \rightarrow q\} & \models q \\
\{p, q\} & \models p \wedge q \\
\} & \models r \rightarrow r \\
\{p, \neg r\} & \not \models(p \vee q) \wedge(q \vee \neg r) \\
\{q\} & \models(p \vee q) \wedge(q \vee \neg r) \\
\{p, q \vee \neg r\} & \not \models p \wedge q \\
\{p \vee \neg p\} & \not \models p
\end{array}
$$

	p	q	r	$\neg r$	$p \rightarrow q$	$p \vee q$	$p \wedge q$	$r \rightarrow r$	$q \vee \neg r$	$(p \vee q) \wedge(q \vee \neg r)$
1.	0	0	0	1	1	0	0	1	1	1
2.	0	0	1	0	1	0	0	1	0	1
3.	0	1	0	1	1	1	0	1	1	1
4.	0	1	1	0	1	1	0	1	1	1
5.	1	0	0	1	0	1	0	1	1	1
6.	1	0	1	0	0	1	0	1	0	0
7.	1	1	0	1	1	1	1	1	1	1
8.	1	1	1	0	1	1	1	1	1	1

Entailment, Examples

$$
\begin{array}{ll}
\{p\} & \models p \vee q \\
\{p, p \rightarrow q\} & \models q \\
\{p, q\} & \models p \wedge q \\
\} & \models r \rightarrow r \\
\{p, \neg r\} & \not \models(p \vee q) \wedge(q \vee \neg r) \\
\{q\} & \models(p \vee q) \wedge(q \vee \neg r) \\
\{p, q \vee \neg r\} & \not \models p \wedge q \\
\{p \vee \neg p\} & \not \models p
\end{array}
$$

	p	q	r	$\neg r$	$p \rightarrow q$	$p \vee q$	$p \wedge q$	$r \rightarrow r$	$q \vee \neg r$	$(p \vee q) \wedge(q \vee \neg r)$
1.	0	0	0	1	1	0	0	1	1	1
2.	0	0	1	0	1	0	0	1	0	1
3.	0	1	0	1	1	1	0	1	1	1
4.	0	1	1	0	1	1	0	1	1	1
5.	1	0	0	1	0	1	0	1	1	1
6.	1	0	1	0	0	1	0	1	0	0
7.	1	1	0	1	1	1	1	1	1	1
8.	1	1	1	0	1	1	1	1	1	1

Entailment, Examples

$$
\begin{array}{ll}
\{p\} & \models p \vee q \\
\{p, p \rightarrow q\} & \models q \\
\{p, q\} & \models p \wedge q \\
\} & \models r \rightarrow r \\
\{p, \neg r\} & \neq(p \vee q) \wedge(q \vee \neg r) \\
\{q\} & \models(p \vee q) \wedge(q \vee \neg r) \\
\{p, q \vee \neg r\} & \not \models p \wedge q \\
\{p \vee \neg p\} & \not \models p
\end{array}
$$

	p	q	r	$\neg r$	$p \rightarrow q$	$p \vee q$	$p \wedge q$	$r \rightarrow r$	$q \vee \neg r$	$(p \vee q) \wedge(q \vee \neg r)$
1.	0	0	0	1	1	0	0	1	1	1
2.	0	0	1	0	1	0	0	1	0	1
3.	0	1	0	1	1	1	0	1	1	1
4.	0	1	1	0	1	1	0	1	1	1
5.	1	0	0	1	0	1	0	1	1	1
6.	1	0	1	0	0	1	0	1	0	0
7.	1	1	0	1	1	1	1	1	1	1
8.	1	1	1	0	1	1	1	1	1	1

Entailment, Examples

$$
\begin{array}{ll}
\{p\} & \models p \vee q \\
\{p, p \rightarrow q\} & \models q \\
\{p, q\} & \models p \wedge q \\
\} & \models r \rightarrow r \\
\{p, \neg r\} & \models(p \vee q) \wedge(q \vee \neg r) \\
\{q\} & \models(p \vee q) \wedge(q \vee \neg r) \\
\{p, q \vee \neg r\} & \not \models p \wedge q \\
\{p \vee \neg p\} & \not \models p
\end{array}
$$

	p	q	r	$\neg r$	$p \rightarrow q$	$p \vee q$	$p \wedge q$	$r \rightarrow r$	$q \vee \neg r$	$(p \vee q) \wedge(q \vee \neg r)$
1.	0	0	0	1	1	0	0	1	1	1
2.	0	0	1	0	1	0	0	1	0	1
3.	0	1	0	1	1	1	0	1	1	1
4.	0	1	1	0	1	1	0	1	1	1
5.	1	0	0	1	0	1	0	1	1	1
6.	1	0	1	0	0	1	0	1	0	0
7.	1	1	0	1	1	1	1	1	1	1
8.	1	1	1	0	1	1	1	1	1	1

Entailment, Examples

$$
\begin{array}{ll}
\{p\} & \models p \vee q \\
\{p, p \rightarrow q\} & \models q \\
\{p, q\} & \models p \wedge q \\
\} & \models r \rightarrow r \\
\{p, \neg r\} & \not \models(p \vee q) \wedge(q \vee \neg r) \\
\{q\} & \models(p \vee q) \wedge(q \vee \neg r) \\
\{p, q \vee \neg r\} & \not \equiv p \wedge q \\
\{p \vee \neg p\} & \not \models p
\end{array}
$$

	p	q	r	$\neg r$	$p \rightarrow q$	$p \vee q$	$p \wedge q$	$r \rightarrow r$	$q \vee \neg r$	$(p \vee q) \wedge(q \vee \neg r)$
1.	0	0	0	1	1	0	0	1	1	1
2.	0	0	1	0	1	0	0	1	0	1
3.	0	1	0	1	1	1	0	1	1	1
4.	0	1	1	0	1	1	0	1	1	1
5.	1	0	0	1	0	1	0	1	1	1
6.	1	0	1	0	0	1	0	1	0	0
7.	1	1	0	1	1	1	1	1	1	1
8.	1	1	1	0	1	1	1	1	1	1

Entailment, Examples

$$
\begin{array}{ll}
\{p\} & \models p \vee q \\
\{p, p \rightarrow q\} & \models q \\
\{p, q\} & \models p \wedge q \\
\} & \models r \rightarrow r \\
\{p, \neg r\} & \not \models(p \vee q) \wedge(q \vee \neg r) \\
\{q\} & \models(p \vee q) \wedge(q \vee \neg r) \\
\{p, q \vee \neg r\} & \not \equiv p \wedge q \\
\{p \vee \neg p\} & \not \models p
\end{array}
$$

	p	q	r	$\neg r$	$p \rightarrow q$	$p \vee q$	$p \wedge q$	$r \rightarrow r$	$q \vee \neg r$	$(p \vee q) \wedge(q \vee \neg r)$
1.	0	0	0	1	1	0	0	1	1	1
2.	0	0	1	0	1	0	0	1	0	1
3.	0	1	0	1	1	1	0	1	1	1
4.	0	1	1	0	1	1	0	1	1	1
5.	1	0	0	1	0	1	0	1	1	1
6.	1	0	1	0	0	1	0	1	0	0
7.	1	1	0	1	1	1	1	1	1	1
8.	1	1	1	0	1	1	1	1	1	1

Entailment, Examples

$$
\begin{array}{ll}
\{p\} & \models p \vee q \\
\{p, p \rightarrow q\} & \models q \\
\{p, q\} & \models p \wedge q \\
\} & \models r \rightarrow r \\
\{p, \neg r\} & \neq(p \vee q) \wedge(q \vee \neg r) \\
\{q\} & \models(p \vee q) \wedge(q \vee \neg r) \\
\{p, q \vee \neg r\} & \not \models p \wedge q \\
\{p \vee \neg p\} & \not \models p
\end{array}
$$

	p	q	r	$\neg r$	$p \rightarrow q$	$p \vee q$	$p \wedge q$	$r \rightarrow r$	$q \vee \neg r$	$(p \vee q) \wedge(q \vee \neg r)$
1.	0	0	0	1	1	0	0	1	1	1
2.	0	0	1	0	1	0	0	1	0	1
3.	0	1	0	1	1	1	0	1	1	1
4.	0	1	1	0	1	1	0	1	1	1
5.	1	0	0	1	0	1	0	1	1	1
6.	1	0	1	0	0	1	0	1	0	0
7.	1	1	0	1	1	1	1	1	1	1
8.	1	1	1	0	1	1	1	1	1	1

Exercise

Determine which of the following entailments hold

$$
\begin{aligned}
& p \wedge q, r \\
& p, \neg \neg(q \wedge r) \\
& p, p \rightarrow q, q \rightarrow r \\
& p \vee q, p \rightarrow q, q \rightarrow r \vDash r \\
& p \vee q, p \rightarrow r, q \rightarrow r \quad{ }^{=} \quad r \\
& p \rightarrow q \\
& p \rightarrow q \\
& p \vee(q \wedge r) \\
& \begin{array}{ll}
& \stackrel{\models}{=} p \rightarrow \\
? & \stackrel{\models}{=} \neg p
\end{array}
\end{aligned}
$$

Properties of entailment

- $\mathbf{S} \models A$ for all $A \in \mathbf{S} \quad$ (inclusion)

Properties of entailment

- if $\mathbf{S} \models A$ then $\mathbf{T} \models A$ for all $\mathbf{T} \supseteq \mathbf{S} \quad$ (monotonicity)

Properties of entailment

- A is valid iff $\emptyset \models A$ (also written as $\models A$)

Properties of entailment

- A is unsatisfiable iff $A \models \perp$

Properties of entailment

- $\mathbf{S} \models A$ iff $\mathbf{S} \cup\{\neg A\}$ is unsatisfiable

Properties of entailment

- $\left\{A_{1}, \ldots, A_{n}\right\} \models B$ iff $\left\{A_{1}, \ldots, A_{n-1}\right\} \models A_{n} \rightarrow B \quad$ (deduction)

Properties of entailment

- $\left\{A_{1}, \ldots, A_{n}\right\} \models B$ iff $\left\{A_{1}, \ldots, A_{n-1}\right\} \models A_{n} \rightarrow B \quad$ (deduction)
- $\left\{A_{1}, \ldots, A_{n}\right\} \models B$ iff $\left\{A_{1} \wedge \cdots \wedge A_{n}\right\} \models B$ iff $\emptyset \models\left(A_{1} \wedge \cdots \wedge A_{n}\right) \rightarrow B$

Properties of entailment

- $A \equiv B$ iff $\{A\} \models B$ and $\{B\} \models A$

Properties of entailment

- $\mathbf{S} \models A$ for all $A \in \mathbf{S} \quad$ (inclusion)
- if $\mathbf{S} \models A$ then $\mathbf{T} \models A$ for all $\mathbf{T} \supseteq \mathbf{S} \quad$ (monotonicity)
- A is valid iff $\emptyset \models A$ (also written as $\models A$)
- A is unsatisfiable iff $A \models \perp$
- $\mathbf{S} \models A$ iff $\mathbf{S} \cup\{\neg A\}$ is unsatisfiable
- $\left\{A_{1}, \ldots, A_{n}\right\} \models B$ iff $\left\{A_{1}, \ldots, A_{n-1}\right\} \neq A_{n} \rightarrow B \quad$ (deduction)
- $\left\{A_{1}, \ldots, A_{n}\right\} \models B$ iff $\left\{A_{1} \wedge \cdots \wedge A_{n}\right\} \models B$ iff $\emptyset \models\left(A_{1} \wedge \cdots \wedge A_{n}\right) \rightarrow B$
- $A \equiv B$ iff $\{A\} \models B$ and $\{B\} \models A$

Derivation systems for propositional logic

An derivation system / is a collection of formal rules for inferring formulas from formulas

Given

- a set $\mathbf{S}=\left\{A_{1}, \ldots, A_{n}\right\}$ of formulas (premises) and
- a formula B (conclusion)
we write

$$
\left\{A_{1}, \ldots, A_{n}\right\} \vdash, B
$$

iff it is possible to infer B from S with the rules of /

Derivation systems for propositional logic

An derivation system / is a collection of formal rules for inferring formulas from formulas

Given

- a set $\mathbf{S}=\left\{A_{1}, \ldots, A_{n}\right\}$ of formulas (premises) and
- a formula B (conclusion)
we write

$$
\left\{A_{1}, \ldots, A_{n}\right\} \vdash, B
$$

iff it is possible to infer B from S with the rules of $/$

$$
\begin{aligned}
\mathbf{S} \vdash, A \text { is read as } & \mathbf{S} \text { derives } B \text { in } 1 \text {, or } \\
& B \text { derives from } \mathbf{S} \text { in } 1 \text {, or } \\
& B \text { is derivable from } \mathbf{S} \text { in } 1
\end{aligned}
$$

Derivation systems for propositional logic

An derivation system / is a collection of formal rules for inferring formulas from formulas

Given

- a set $\mathbf{S}=\left\{A_{1}, \ldots, A_{n}\right\}$ of formulas (premises) and
- a formula B (conclusion)
we write

$$
\left\{A_{1}, \ldots, A_{n}\right\} \vdash, B
$$

iff it is possible to infer B from S with the rules of $/$

$$
\text { We write just } \mathbf{S} \vdash A \text { when / is clear from context }
$$

Derivation systems for propositional logic

An derivation system / is a collection of formal rules for inferring formulas from formulas

Given

- a set $\mathbf{S}=\left\{A_{1}, \ldots, A_{n}\right\}$ of formulas (premises) and
- a formula B (conclusion)
we write

$$
\left\{A_{1}, \ldots, A_{n}\right\} \vdash, B
$$

iff it is possible to infer B from S with the rules of / Intuitively, / is designed so that $\mathbf{S} \vdash$, A only if $\mathbf{S} \models A$

Derivation systems for propositional logic

An derivation system / is a collection of formal rules for inferring formulas from formulas

Given

- a set $\mathbf{S}=\left\{A_{1}, \ldots, A_{n}\right\}$ of formulas (premises) and
- a formula B (conclusion)
we write

$$
\left\{A_{1}, \ldots, A_{n}\right\} \vdash, B
$$

iff it is possible to infer B from S with the rules of $/$

Intuitively, / is designed so that $\mathbf{S} \vdash$, A only if $\mathbf{S} \models A$

Ideally, / should also be such that $\mathbf{S} \vdash$, A if $\mathbf{S} \models A$

So many symbols!

Note:

$A \wedge B \rightarrow C$ is a formula, a sequence of symbols manipulated by an derivation system /
$A \wedge B \models C$ is a mathematical abbreviation for the statement: "every interpretation that satisfies $A \wedge B$, also satisfies C "
$A \wedge B \vdash, C$ is a mathematical abbreviation for the statement: "I derives C from $A \wedge B$ "

So many symbols!

In other words,

- \rightarrow is a symbol of propositional logic, processed by derivation systems
- \models denotes a relation from sets of formulas to formulas, based on their meaning in propositional logic
- \vdash, denotes a relation from sets of formulas to formulas, based on their derivability in /

Implication vs. Entailment

The connective \rightarrow and the relation \models are related as follows:
$A \rightarrow B$ is valid iff $A \models B$

Implication vs. Entailment

The connective \rightarrow and the relation \models are related as follows:
$A \rightarrow B$ is valid iff $A \models B$

Example: $p \rightarrow(p \vee q)$ is valid and $p \models p \vee q$

	p	q	$p \vee q$	$p \rightarrow(p \vee q)$
1.	0	0	0	1
2.	0	1	1	1
3.	1	0	1	1
4.	1	1	1	1

Soundness and completeness

The relations \models and \vdash, are related as by these two properties of derivation systems /

Soundness and completeness

The relations \models and \vdash, are related as by these two properties of derivation systems /

Soundness / is sound if it can derive from a given set S of formulas only formulas entailed by S :

$$
\text { if } \mathbf{S} \vdash, A \text { then } \mathbf{S} \models A
$$

Soundness and completeness

The relations \models and \vdash, are related as by these two properties of derivation systems /

Soundness / is sound if it can derive from a given set S of formulas only formulas entailed by S :

$$
\text { if } \mathbf{S} \vdash, A \text { then } \mathbf{S} \models A
$$

Completeness / is complete if it can derive from a given set S of formulas all formulas entailed by S :
if $\mathbf{S} \models A$ then $\mathbf{S} \vdash, A$

