CS:4350 Logic in Computer Science
 Propositional Logic

Cesare Tinelli

Spring 2022

Credits

These slides are largely based on slides originally developed by Andrei Voronkov at the University of Manchester. Adapted by permission.

Propositional Logic

- Syntax: set of formulas built with propositional variables and connectives
- Semantics: formulas are assigned a Boolean value (true, false)
- Inference system: several

Propositional Logic

- Syntax: set of formulas built with propositional variables and connectives
- Semantics: formulas are assigned a Boolean value (true, false)
- Inference system: several

The sentences of the language (formulas) are also called propositions

Propositions in mathematical logic

Formalize natural language statements that can be either true or false (but not both)

Propositions in mathematical logic

Formalize natural language statements that can be either true or false (but not both)

Basic propositions are called atomic
Examples:

1. $0<1$
2. Alan Turing was born in Manchester
3. $1+1=10$

Propositions in mathematical logic

Formalize natural language statements that can be either true or false (but not both)

More complex propositions are built from simpler ones via a small number of constructs

Examples:

1. If $0<1$ then Alan Turing was born in Manchester
2. $1+1=10$ or $1+1 \neq 10$

Propositions in mathematical logic

Formalize natural language statements that can be either true or false (but not both)

Basic propositions are called atomic

Examples:

1. $0<1$
2. Alan Turing was born in Manchester
3. $1+1=10$

More complex propositions are built from simpler ones via a small number of constructs

Examples:

1. If $0<1$ then Alan Turing was born in Manchester
2. $1+1=10$ or $1+1 \neq 10$

Truth of atomic propositions

Each proposition formalizes a statement that is either true or false

Truth of atomic propositions

The truth value (true or false) of an atomic proposition P depends on P's interpretation

Truth of atomic propositions

The truth value (true or false) of an atomic proposition P depends on P's interpretation

Example What is the truth value of the equality $1+1=10$?

Truth of atomic propositions

The truth value (true or false) of an atomic proposition P depends on P's interpretation

Example What is the truth value of the equality $1+1=10$?

- it is false, if we interpret 1 and 10 as integers in decimal notation (and + as addition)

Truth of atomic propositions

The truth value (true or false) of an atomic proposition P depends on P's interpretation

Example What is the truth value of the equality $1+1=10$?

- it is false, if we interpret 1 and 10 as integers in decimal notation (and + as addition)
- it is true, if we interpret 1 and 10 as integers in binary notation (and + as addition)

Truth of complex propositions

Consider a complex proposition P built with a construct c from simpler propositions S_{1}, \ldots, S_{n}

Truth of complex propositions

Consider a complex proposition P built with a construct c from simpler propositions S_{1}, \ldots, S_{n}

The truth value of P univocally depends on

1. the meaning of c
2. the truth value of S_{1}, \ldots, S_{n}

Truth of complex propositions

Consider a complex proposition P built with a construct c from simpler propositions S_{1}, \ldots, S_{n}

The truth value of P univocally depends on

1. the meaning of c
2. the truth value of S_{1}, \ldots, S_{n}

More precisely, it is a function (determined by c) of the truth values of S_{1}, \ldots, S_{n}

Truth of complex propositions

Consider a complex proposition P built with a construct c from simpler propositions S_{1}, \ldots, S_{n}

The truth value of P univocally depends on

1. the meaning of c
2. the truth value of S_{1}, \ldots, S_{n}

More precisely, it is a function (determined by c) of the truth values of S_{1}, \ldots, S_{n}

Example

$$
1+1=10 \text { or } 1+1 \neq 10
$$

is true if at least one of $1+1=10,1+1 \neq 10$ is true

Truth of complex propositions

Consider a complex proposition P built with a construct c from simpler propositions S_{1}, \ldots, S_{n}

The truth value of P univocally depends on

1. the meaning of C
2. the truth value of S_{1}, \ldots, S_{n}

More precisely, it is a function (determined by c) of the truth values of S_{1}, \ldots, S_{n}

Example

is true if at least one of $1+1=10,1+1 \neq 10$ is true

Propositional logic: syntax

Assume a countable set of propositional variables $\left(\left\{p, p_{1}, p_{2}, \ldots, q, q_{1}, q_{2}, \ldots\right\}\right)$
Propositional formula:

Propositional logic: syntax

Assume a countable set of propositional variables $\left(\left\{p, p_{1}, p_{2}, \ldots, q, q_{1}, q_{2}, \ldots\right\}\right)$

Propositional formula:

- Every propositional variable (aka, atom) is a formula

Propositional logic: syntax

Assume a countable set of propositional variables $\left(\left\{p, p_{1}, p_{2}, \ldots, q, q_{1}, q_{2}, \ldots\right\}\right)$

Propositional formula:

- Every propositional variable (aka, atom) is a formula
- T and \perp are formulas

Propositional logic: syntax

Assume a countable set of propositional variables $\left(\left\{p, p_{1}, p_{2}, \ldots, q, q_{1}, q_{2}, \ldots\right\}\right)$
Propositional formula:

- Every propositional variable (aka, atom) is a formula
- T and \perp are formulas
- If A_{1}, \ldots, A_{n} are formulas, where $n \geq 2$, then $A_{1} \wedge \cdots \wedge A_{n}$ and $A_{1} \vee \cdots \vee A_{n}$ are formulas

Propositional logic: syntax

Assume a countable set of propositional variables $\left(\left\{p, p_{1}, p_{2}, \ldots, q, q_{1}, q_{2}, \ldots\right\}\right)$
Propositional formula:

- Every propositional variable (aka, atom) is a formula
- T and \perp are formulas
- If A_{1}, \ldots, A_{n} are formulas, where $n \geq 2$, then $A_{1} \wedge \cdots \wedge A_{n}$ and $A_{1} \vee \cdots \vee A_{n}$ are formulas
- If A is a formula, then $\neg A$ is a formula

Propositional logic: syntax

Assume a countable set of propositional variables $\left(\left\{p, p_{1}, p_{2}, \ldots, q, q_{1}, q_{2}, \ldots\right\}\right)$
Propositional formula:

- Every propositional variable (aka, atom) is a formula
- T and \perp are formulas
- If A_{1}, \ldots, A_{n} are formulas, where $n \geq 2$, then $A_{1} \wedge \cdots \wedge A_{n}$ and $A_{1} \vee \cdots \vee A_{n}$ are formulas
- If A is a formula, then $\neg A$ is a formula
- If A and B are formulas, then $A \rightarrow B$ and $A \leftrightarrow B$ are formulas

Propositional logic: syntax

Assume a countable set of propositional variables $\left(\left\{p, p_{1}, p_{2}, \ldots, q, q_{1}, q_{2}, \ldots\right\}\right)$
Propositional formula:

- Every propositional variable (aka, atom) is a formula
- T and \perp are formulas
- If A_{1}, \ldots, A_{n} are formulas, where $n \geq 2$, then $A_{1} \wedge \cdots \wedge A_{n}$ and $A_{1} \vee \cdots \vee A_{n}$ are formulas
- If A is a formula, then $\neg A$ is a formula
- If A and B are formulas, then $A \rightarrow B$ and $A \leftrightarrow B$ are formulas
- Nothing else is a formula

Propositional logic: syntax

Assume a countable set of propositional variables $\left(\left\{p, p_{1}, p_{2}, \ldots, q, q_{1}, q_{2}, \ldots\right\}\right)$
Propositional formula:

- Every propositional variable (aka, atom) is a formula
- T and \perp are formulas
- If A_{1}, \ldots, A_{n} are formulas, where $n \geq 2$, then $A_{1} \wedge \cdots \wedge A_{n}$ and $A_{1} \vee \cdots \vee A_{n}$ are formulas
- If A is a formula, then $\neg A$ is a formula
- If A and B are formulas, then $A \rightarrow B$ and $A \leftrightarrow B$ are formulas
- Nothing else is a formula

The symbols $T, \perp, \wedge, \vee, \neg, \rightarrow, \leftrightarrow$ are called (logical) connectives

Propositional logic: syntax

Assume a countable set of propositional variables $\left(\left\{p, p_{1}, p_{2}, \ldots, q, q_{1}, q_{2}, \ldots\right\}\right)$
Propositional formula:

- Every propositional variable (aka, atom) is a formula
- T and \perp are formulas
- If A_{1}, \ldots, A_{n} are formulas, where $n \geq 2$, then $A_{1} \wedge \cdots \wedge A_{n}$ and $A_{1} \vee \cdots \vee A_{n}$ are formulas
- If A is a formula, then $\neg A$ is a formula
- If A and B are formulas, then $A \rightarrow B$ and $A \leftrightarrow B$ are formulas
- Nothing else is a formula

The symbols $\top, \perp, \wedge, \vee, \neg, \rightarrow, \leftrightarrow$ are called (logical) connectives
Note: Some texts considers also \oplus (exclusive or), \downarrow (nor), and \uparrow (nand)

Parsing expressions

In general, we use parentheses to disambiguate the parsing of expressions

Parsing expressions

In general, we use parentheses to disambiguate the parsing of expressions

Parenthesis clutter can be reduced by assigning precedence to operators

Parsing expressions

In general, we use parentheses to disambiguate the parsing of expressions

Parenthesis clutter can be reduced by assigning precedence to operators

Example In arithmetic we know that the expression

$$
x \cdot y+2 \cdot z \quad \text { stands for } \quad(x \cdot y)+(2 \cdot z)
$$

since \cdot has a higher precedence than +

Propositional connectives and their precedence

Connective	Name	Precedence
\top	verum (top)	
\perp	falsum (bottom)	
\neg	negation	5
\wedge	conjunction	4
\vee	disjunction	3
\rightarrow	implication	2
\leftrightarrow	equivalence	1

Propositional connectives and their precedence

Connective	Name	Precedence
\top	verum (top)	
\perp	falsum (bottom)	
\neg	negation	5
\wedge	conjunction	4
\vee	disjunction	3
\rightarrow	implication	2
\leftrightarrow	equivalence	1

Implication is right-associative:
$A \rightarrow B \rightarrow C$ is parsed as
$A \rightarrow(B \rightarrow C)$

Parsing Formulas

Connective	Precedence
\top	
\perp	
\neg	5
\wedge	4
\vee	3
\rightarrow	2
\leftrightarrow	1

Parsing Formulas

Let us parse

Connective	Precedence
\top	
\perp	
\neg	4
\wedge	3
\vee	2
\rightarrow	1

Parsing Formulas

Let us parse

Connective	Precedence
\top	
\perp	
\neg	4
\wedge	3
\vee	2
\rightarrow	1

Inside-out, starting with the highest precedence connectives:

$$
(\neg A) \wedge B \rightarrow C \vee D \quad \leftrightarrow E
$$

Parsing Formulas

Let us parse

Connective	Precedence
\top	
\perp	
\neg	4
\wedge	3
\vee	2
\rightarrow	1

Inside-out, starting with the highest precedence connectives:

$$
((\neg A) \wedge B) \rightarrow(C \vee D) \leftrightarrow E
$$

Parsing Formulas

Let us parse

Connective	Precedence
\top	
\perp	
\neg	4
\wedge	3
\vee	2
\rightarrow	1
\leftrightarrow	

Inside-out, starting with the highest precedence connectives:

$$
(((\neg A) \wedge B) \rightarrow(C \vee D)) \leftrightarrow E
$$

Parsing Formulas

Let us parse

Connective	Precedence
\top	
\perp	
\neg	4
\wedge	3
\vee	2
\rightarrow	1

Outside-in, starting with the lowest precedence connectives:

$$
\neg A \wedge B \rightarrow C \vee D \leftrightarrow E
$$

Parsing Formulas

Let us parse

$$
\neg A \wedge B \rightarrow C \vee D \leftrightarrow E
$$

Connective	Precedence
\top	
\perp	
\neg	4
\wedge	3
\vee	2
\rightarrow	1

Outside-in, starting with the lowest precedence connectives:

$$
(\neg A \wedge B \rightarrow C \vee D) \leftrightarrow E
$$

Parsing Formulas

Let us parse

$$
\neg A \wedge B \rightarrow C \vee D \leftrightarrow E
$$

Connective	Precedence
\top	
\perp	
\neg	4
\wedge	3
\vee	2
\rightarrow	1

Outside-in, starting with the lowest precedence connectives:

$$
((\neg A \wedge B) \rightarrow(C \vee D)) \leftrightarrow E
$$

Parsing Formulas

Let us parse

Connective	Precedence
\top	
\perp	
\neg	5
\wedge	4
\vee	3
\rightarrow	2
\leftrightarrow	1

Outside-in, starting with the lowest precedence connectives:

$$
(((\neg A) \wedge B) \rightarrow(C \vee D)) \leftrightarrow E
$$

Parsing Formulas

Let us parse

Connective	Precedence
\top	
\perp	
\neg	4
\wedge	3
\vee	2
\rightarrow	1

Inside-out, starting with the highest precedence connectives:

$$
(((\neg A) \wedge B) \rightarrow(C \vee D)) \leftrightarrow E
$$

Outside-in, starting with the lowest precedence connectives:

$$
(((\neg A) \wedge B) \rightarrow(C \vee D)) \leftrightarrow E
$$

Semantics, Interpretation

In arithmetic the meaning of expressions with variables like

$$
x \cdot y+2 \cdot z
$$

is defined as follows:

Semantics, Interpretation

In arithmetic the meaning of expressions with variables like

$$
x \cdot y+2 \cdot z
$$

is defined as follows:

1. fix a mapping from variables to (integer) values,

$$
\text { e.g., }\{x \mapsto 1, y \mapsto 8, z \mapsto-3\}
$$

Semantics, Interpretation

In arithmetic the meaning of expressions with variables like

$$
x \cdot y+2 \cdot z
$$

is defined as follows:

1. fix a mapping from variables to (integer) values,

$$
\text { e.g., }\{x \mapsto 1, y \mapsto 8, z \mapsto-3\}
$$

2. then, under this mapping the expression has value 2

Semantics, Interpretation

In arithmetic the meaning of expressions with variables like

$$
x \cdot y+2 \cdot z
$$

is C In other words:
we can determine the value of an arithmetic expression once we interpret its variables as specific values
2. then, under this mapping the expression has value 2

Semantics, Interpretation

Similarly,
the semantics of propositional formulas can be defined only after assigning values to variables

Semantics, Interpretation

Similarly,
the semantics of propositional formulas can be defined only after assigning values to variables

- There are two Boolean/truth values:
true (denoted by 1) and
false (denoted by 0)

Semantics, Interpretation

Similarly,
the semantics of propositional formulas can be defined only after assigning values to variables

- There are two Boolean/truth values:
true (denoted by 1) and
false (denoted by 0)
- An interpretation for a set P of propositional variables is a mapping $\mathcal{I}: P \rightarrow \mathcal{B}$ where $\mathcal{B}=\{0,1\}$

Semantics, Interpretation

Similarly,
the semantics of propositional formulas can be defined only after assigning values to variables

- There are two Boolean/truth values:
true (denoted by 1) and
false (denoted by 0)
- An interpretation for a set P of propositional variables is a mapping $\mathcal{I}: P \rightarrow \mathcal{B}$ where $\mathcal{B}=\{0,1\}$
- Interpretations are also called truth assignments

Interpreting formulas

The truth value of a complex formula is determined by the truth values of its components

Interpreting formulas

The truth value of a complex formula is determined by the truth values of its components

An interpretation \mathcal{I} extends to a mapping from all formulas to truth values as follows:

Interpreting formulas

The truth value of a complex formula is determined by the truth values of its components

An interpretation \mathcal{I} extends to a mapping from all formulas to truth values as follows:

1. $\mathcal{I}(T)=1$ and $\mathcal{I}(\perp)=0$

Interpreting formulas

The truth value of a complex formula is determined by the truth values of its components

An interpretation \mathcal{I} extends to a mapping from all formulas to truth values as follows:
2. $\mathcal{I}\left(A_{1} \wedge \cdots \wedge A_{n}\right)=1$ iff $\mathcal{I}\left(A_{i}\right)=1$ for all i

Interpreting formulas

The truth value of a complex formula is determined by the truth values of its components

An interpretation \mathcal{I} extends to a mapping from all formulas to truth values as follows:
3. $\mathcal{I}\left(A_{1} \vee \cdots \vee A_{n}\right)=1$ iff $\mathcal{I}\left(A_{i}\right)=1$ for some i

Interpreting formulas

The truth value of a complex formula is determined by the truth values of its components

An interpretation \mathcal{I} extends to a mapping from all formulas to truth values as follows:
4. $\mathcal{I}(\neg A)=1$ iff $\mathcal{I}(A)=0$

Interpreting formulas

The truth value of a complex formula is determined by the truth values of its components

An interpretation \mathcal{I} extends to a mapping from all formulas to truth values as follows:
5. $\mathcal{I}\left(A_{1} \rightarrow A_{2}\right)=1$ iff $\mathcal{I}\left(A_{1}\right)=0$ or $\mathcal{I}\left(A_{2}\right)=1$

Interpreting formulas

The truth value of a complex formula is determined by the truth values of its components

An interpretation \mathcal{I} extends to a mapping from all formulas to truth values as follows:
6. $\mathcal{I}\left(A_{1} \leftrightarrow A_{2}\right)=1$ iff $\mathcal{I}\left(A_{1}\right)=\mathcal{I}\left(A_{2}\right)$

Interpreting formulas

The truth value of a complex formula is determined by the truth values of its components

An interpretation \mathcal{I} extends to a mapping from all formulas to truth values as follows:

1. $\mathcal{I}(T)=1$ and $\mathcal{I}(\perp)=0$
2. $\mathcal{I}\left(A_{1} \wedge \cdots \wedge A_{n}\right)=1$ iff $\mathcal{I}\left(A_{i}\right)=1$ for all i
3. $\mathcal{I}\left(A_{1} \vee \cdots \vee A_{n}\right)=1$ iff $\mathcal{I}\left(A_{i}\right)=1$ for some i
4. $\mathcal{I}(\neg A)=1$ iff $\mathcal{I}(A)=0$
5. $\mathcal{I}\left(A_{1} \rightarrow A_{2}\right)=1$ iff $\mathcal{I}\left(A_{1}\right)=0$ or $\mathcal{I}\left(A_{2}\right)=1$
6. $\mathcal{I}\left(A_{1} \leftrightarrow A_{2}\right)=1$ iff $\mathcal{I}\left(A_{1}\right)=\mathcal{I}\left(A_{2}\right)$

Operation tables

$\mathcal{I}\left(A_{1} \vee A_{2}\right)=1$ iff $\mathcal{I}\left(A_{1}\right)=1$ or $\mathcal{I}\left(A_{2}\right)=1$

\vee	1	0
1	1	1
0	1	0

$\left(\neg: \mathcal{B} \rightarrow \mathcal{B}, \wedge: \mathcal{B}^{2} \rightarrow \mathcal{B}, \ldots\right)$

Operation tables

$$
\mathcal{I}\left(A_{1} \leftrightarrow A_{2}\right)=1 \text { iff } \mathcal{I}\left(A_{1}\right)=\mathcal{I}\left(B_{2}\right)
$$

$$
\begin{array}{c|cc}
\leftrightarrow & 1 & 0 \\
\hline 1 & 1 & 0 \\
0 & 0 & 1
\end{array}
$$

$$
\left(\neg: \mathcal{B} \rightarrow \mathcal{B}, \wedge: \mathcal{B}^{2} \rightarrow \mathcal{B}, \ldots\right)
$$

Operation tables

\wedge	1	0	V	$1{ }^{1} 0$				
1	1	0	1	1		1	0	
0	0	0	0			0	1	
	\rightarrow	1	0	\leftrightarrow	1	0		
	1	1	0	1	1	0		
	0	1	1	0	0	1		

$\left(\neg: \mathcal{B} \rightarrow \mathcal{B}, \wedge: \mathcal{B}^{2} \rightarrow \mathcal{B}, \ldots\right)$

Operation tables

$\mathcal{I}\left(A_{1} \vee A_{2}\right)=1$ iff $\mathcal{I}\left(A_{1}\right)=1$ or $\mathcal{I}\left(A_{2}\right)=1$
$\mathcal{I}\left(A_{1} \leftrightarrow A_{2}\right)=1$ iff $\mathcal{I}\left(A_{1}\right)=\mathcal{I}\left(B_{2}\right)$

\wedge	1	0	\vee	1	0		\neg
1	1	0		1	1	1	
	1	0					
0	0	0		0	1	0	

Therefore, every connective can be considered as a function on truth values $\left(\neg: \mathcal{B} \rightarrow \mathcal{B}, \wedge: \mathcal{B}^{2} \rightarrow \mathcal{B}, \ldots\right)$

Satisfiability, validity, equivalence

Let A and B be two formulas and I an interpretation

Satisfiability, validity, equivalence

Let A and B be two formulas and I an interpretation

- If $\mathcal{I}(A)=1$, we write $\mathcal{I} \models A$ and say, equivalently, that A is true in \mathcal{I}, I satisfies A, or \mathcal{I} is a model of A

Satisfiability, validity, equivalence

Let A and B be two formulas and I an interpretation

- If $\mathcal{I}(A)=0$, we write $\mathcal{I} \not \vDash A$ and say, equivalently, that A is false in $\mathcal{I}, ~ I$ falsifies A, or \mathcal{I} is not a model of A

Satisfiability, validity, equivalence

Let A and B be two formulas and I an interpretation

- A is satisfiable if it is true in some interpretation, and is unsatisfiable otherwise

Satisfiability, validity, equivalence

Let A and B be two formulas and I an interpretation

- A is valid, or a tautology, if it is true in every interpretation, and is invalid, or falsifiable, otherwise

Satisfiability, validity, equivalence

Let A and B be two formulas and I an interpretation

- A and B are equivalent, written $A \equiv B$, if they have exactly the same models

Satisfiability, validity, equivalence

Let A and B be two formulas and I an interpretation

- If $\mathcal{I}(A)=1$, we write $\mathcal{I} \models A$ and say, equivalently, that A is true in \mathcal{I}, I satisfies A, or \mathcal{I} is a model of A
- If $\mathcal{I}(A)=0$, we write $\mathcal{I} \not \vDash A$ and say, equivalently, that A is false in \mathcal{I}, I falsifies A, or \mathcal{I} is not a model of A
- A is satisfiable if it is true in some interpretation, and is unsatisfiable otherwise
- A is valid, or a tautology, if it is true in every interpretation, and is invalid, or falsifiable, otherwise
- A and B are equivalent, written $A \equiv B$, if they have exactly the same models

Examples

p, q propositional variables
A, B propositional formulas

Examples

p, q propositional variables $\quad A, B$ propositional formulas

- $p, p \rightarrow q, p \vee \neg q,(p \rightarrow q) \rightarrow p$ are all satisfiable

Examples

p, q propositional variables $\quad A, B$ propositional formulas

- $p, p \rightarrow q, p \vee \neg q,(p \rightarrow q) \rightarrow p$ are all satisfiable
- $p, p \rightarrow q, p \vee \neg q,(p \rightarrow q) \rightarrow p$ are all falsifiable

Examples

p, q propositional variables $\quad A, B$ propositional formulas

- $p, p \rightarrow q, p \vee \neg q,(p \rightarrow q) \rightarrow p$ are all satisfiable
- $p, p \rightarrow q, p \vee \neg q,(p \rightarrow q) \rightarrow p$ are all falsifiable
- $A \rightarrow A, A \vee \neg A, A \rightarrow(B \rightarrow A)$ are all valid

Examples

p, q propositional variables $\quad A, B$ propositional formulas

- $p, p \rightarrow q, p \vee \neg q,(p \rightarrow q) \rightarrow p$ are all satisfiable
- $p, p \rightarrow q, p \vee \neg q,(p \rightarrow q) \rightarrow p$ are all falsifiable
- $A \rightarrow A, A \vee \neg A, A \rightarrow(B \rightarrow A)$ are all valid

Note:

- T is valid
- \perp is unsatisfiable
- Every valid formula is satisfiable
- Every unsatisfiable formula is falsifiable

Examples: equivalences

For all formulas A and B, the following equivalences hold:

$$
\begin{align*}
A \rightarrow \perp & \equiv \neg A \tag{1}\\
\top \rightarrow A & \equiv A \tag{2}\\
A \rightarrow B & \equiv \neg A \vee B \tag{3}\\
& \equiv \neg(A \wedge \neg B) \tag{4}\\
A \wedge B & \equiv \neg(\neg A \vee \neg B) \tag{5}\\
A \vee B & \equiv \neg A \rightarrow B \tag{6}\\
A \rightarrow A & \equiv \top \tag{7}\\
A \wedge \neg A & \equiv \perp \tag{8}
\end{align*}
$$

Connections between these notions

For all formulas A and B,

1. A is valid iff $\neg A$ is unsatisfiable
2. A is satisfiable iff $\neg A$ is falsifiable

Connections between these notions

For all formulas A and B,
3. A is valid iff A is equivalent to
4. A and B are equivalent iff $A \leftrightarrow B$ is valid

Connections between these notions

For all formulas A and B,
5. A and B are equivalent iff $\neg(A \leftrightarrow B)$ is unsatisfiable
6. A is satisfiable iff A is not equivalent to \perp

Connections between these notions

For all formulas A and B,

1. A is valid iff $\neg A$ is unsatisfiable
2. A is satisfiable iff $\neg A$ is falsifiable
3. A is valid iff A is equivalent to T
4. A and B are equivalent iff $A \leftrightarrow B$ is valid
5. A and B are equivalent iff $\neg(A \leftrightarrow B)$ is unsatisfiable
6. A is satisfiable iff A is not equivalent to \perp

Syntactic vs. semantic symbols

For all formulas A and B,

- A is valid iff $A \equiv \top$
- $A \leftrightarrow B$ is valid iff $(A \leftrightarrow B) \equiv T$

Syntactic vs. semantic symbols

For all formulas A and B,

- A is valid iff $A \equiv \top$
- $A \leftrightarrow B$ is valid iff $(A \leftrightarrow B) \equiv \top$

So, what is the difference between \equiv and \leftrightarrow ?

Syntactic vs. semantic symbols

For all formulas A and B,

- A is valid iff $A \equiv \top$
- $A \leftrightarrow B$ is valid iff $(A \leftrightarrow B) \equiv \top$

So, what is the difference between \equiv and \leftrightarrow ?
\leftrightarrow is a connective in the language of propositional logic
\equiv is mathematical notation to express formula equivalence

Syntactic vs. semantic symbols

For all formulas A and B,

- A is valid iff $A \equiv \top$
- $A \leftrightarrow B$ is valid iff $(A \leftrightarrow B) \equiv T$

So, what is the difference between \equiv and \leftrightarrow ?
\leftrightarrow is a connective in the language of propositional logic
$A \leftrightarrow B$ is formula of the logic
\equiv is mathematical notation to express formula equivalence
$A \equiv B$ is a shorthand for a statement about the interpretations of A and B

How to evaluate a formula?

Let's evaluate the formula

$$
A=(p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(p \rightarrow r)
$$

in the interpretation

$$
\mathcal{I}=\{p \mapsto 1, q \mapsto 0, r \mapsto 1\}
$$

Evaluating a formula

Evaluating a formula

| formula | value |
| :---: | :---: | :---: |
| $(p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(p \rightarrow r)$ | |
| $(p \rightarrow q) \wedge(p \wedge q \rightarrow r)$ | |
| | |
| $\mathcal{I}=\{p \mapsto 1, q \mapsto 0, r \mapsto 1\}$ | |

Evaluating a formula

Evaluating a formula

formula	value
$(p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(p \rightarrow r)$	
$p \rightarrow r$	
$(p \rightarrow q) \wedge(p \wedge q \rightarrow r)$	
$p \wedge q \rightarrow r$	
$p \rightarrow q$	
p	1
q	0

Evaluating a formula

formula	value
$(p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(p \rightarrow r)$	
$p \rightarrow r$	
$(p \rightarrow q) \wedge(p \wedge q \rightarrow r)$	
$p \wedge q \rightarrow r$	
$p \rightarrow q$	
$p \wedge q$	
p	1
q	0
r	1
$\mathcal{I}=\{p \mapsto 1, q \mapsto 0, r \mapsto 1\}$	

Evaluating a formula

formula	value
$(p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(p \rightarrow r)$	
$p \rightarrow r$	
$(p \rightarrow q) \wedge(p \wedge q \rightarrow r)$	
$p \wedge q \rightarrow r$	
$p \rightarrow q$	
$p \wedge q$	
$p \quad p$	1
$q \quad q$	0
r	1
$\mathcal{I}=\{p \mapsto 1, q \mapsto 0, r \mapsto 1\}$	

Evaluating a formula

formula	value
$(p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(p \rightarrow r)$	
$p \rightarrow r$	
$(p \rightarrow q) \wedge(p \wedge q \rightarrow r)$	
$p \wedge q \rightarrow r$	
$p \rightarrow q$	
$p \wedge q$	
$\begin{array}{ll}p & p\end{array}$	1
$q \quad q$	0
r r	1
$\mathcal{I}=\{p \mapsto 1, q \mapsto 0, r \mapsto 1\}$	

Evaluating a formula

formula	value
$(p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(p \rightarrow r)$	
$p \rightarrow r$	
$(p \rightarrow q) \wedge(p \wedge q \rightarrow r)$	
$p \wedge q \rightarrow r$	
$p \rightarrow q$	
$p \wedge q$	0
$\begin{array}{ll}p & p\end{array}$	1
$q \quad q$	0
r r	1
$\mathcal{I}=\{p \mapsto 1, q \mapsto 0, r \mapsto 1\}$	

Evaluating a formula

formula	value
$(p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(p \rightarrow r)$	
$p \rightarrow r$	
$(p \rightarrow q) \wedge(p \wedge q \rightarrow r)$	
$p \wedge q \rightarrow r$	
$p \rightarrow q$	0
$p \wedge q$	0
p pr	1
$q \quad q$	0
r r	1
$\mathcal{I}=\{p \mapsto 1, q \mapsto 0, r \mapsto 1\}$	

Evaluating a formula

formula	value
$(p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(p \rightarrow r)$	
$p \rightarrow r$	
$(p \rightarrow q) \wedge(p \wedge q \rightarrow r)$	
$p \wedge q \rightarrow r$	1
$p \rightarrow q$	0
$p \wedge q$	0
p p p	1
$q \quad q$	0
r r	1
$\mathcal{I}=\{p \mapsto 1, q \mapsto 0, r \mapsto 1\}$	

Evaluating a formula

formula	value
$(p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(p \rightarrow r)$	
$p \rightarrow r$	
$(p \rightarrow q) \wedge(p \wedge q \rightarrow r)$	0
$p \wedge q \rightarrow r$	1
$p \rightarrow q$	0
$p \wedge q$	0
p p p	1
$q \quad q$	0
r r	1
$\mathcal{I}=\{p \mapsto 1, q \mapsto 0, r \mapsto 1\}$	

Evaluating a formula

formula	value
$(p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(p \rightarrow r)$	
$p \rightarrow r$	1
$(p \rightarrow q) \wedge(p \wedge q \rightarrow r)$	0
$p \wedge q \rightarrow r$	1
$p \rightarrow q$	0
$p \wedge q$	0
$\begin{array}{ll}p & p\end{array}$	1
$q \quad q$	0
r r	1
$\mathcal{I}=\{p \mapsto 1, q \mapsto 0, r \mapsto 1\}$	

Evaluating a formula

formula	value
$(p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(p \rightarrow r)$	1
$p \rightarrow r$	1
$(p \rightarrow q) \wedge(p \wedge q \rightarrow r)$	0
$p \wedge q \rightarrow r$	1
$p \rightarrow q$	0
$p \wedge q$	0
p p p	1
$q \quad q$	0
r r	1

So the formula is true in interpretation \mathcal{I}

Equivalent replacement

Let $B[A]$ denote a formula B with a fixed occurrence of a subformula A Let $B\left[A^{\prime}\right]$ then denote the formula obtained from B by replacing that occurrence of A by A^{\prime}

Equivalent replacement

Let $B[A]$ denote a formula B with a fixed occurrence of a subformula A Let $B\left[A^{\prime}\right]$ then denote the formula obtained from B by replacing that occurrence of A by A^{\prime}

Example

$$
\begin{align*}
B & =\left(p_{1} \wedge p_{2}\right) \vee\left(p_{1} \wedge p_{3}\right) \tag{9}\\
A & =p_{1} \wedge p_{3} \tag{10}\\
A^{\prime} & =p_{1} \vee \neg p_{4} \tag{11}\\
B\left[A^{\prime}\right] & =\left(p_{1} \wedge p_{2}\right) \vee\left(p_{1} \vee \neg p_{4}\right) \tag{12}
\end{align*}
$$

Equivalent replacement

Let $B[A]$ denote a formula B with a fixed occurrence of a subformula A Let $B\left[A^{\prime}\right]$ then denote the formula obtained from B by replacing that occurrence of A by A^{\prime}

Lemma 1 (Equivalent Replacement)
Let \mathcal{I} be an interpretation and $\mathcal{I} \mid=A_{1} \leftrightarrow A_{2}$. Then $\mathcal{I} \models B\left[A_{1}\right] \leftrightarrow B\left[A_{2}\right]$.

Equivalent replacement

Let $B[A]$ denote a formula B with a fixed occurrence of a subformula A Let $B\left[A^{\prime}\right]$ then denote the formula obtained from B by replacing that occurrence of A by A^{\prime}

Lemma 1 (Equivalent Replacement)
Let \mathcal{I} be an interpretation and $\mathcal{I} \models A_{1} \leftrightarrow A_{2}$. Then $\mathcal{I} \models B\left[A_{1}\right] \leftrightarrow B\left[A_{2}\right]$.
Theorem 2 (Equivalent Replacement)
Let $A_{1} \equiv A_{2}$. Then $B\left[A_{1}\right] \equiv B\left[A_{2}\right]$.

Equivalent replacement

Let $B[A]$ denote a formula B with a fixed occurrence of a subformula A Let $B\left[A^{\prime}\right]$ then denote the formula obtained from B by replacing that occurrence of A by A^{\prime}

Lemma 1 (Equivalent Replacement)
Let \mathcal{I} be an interpretation and $\mathcal{I} \mid=A_{1} \leftrightarrow A_{2}$. Then $\mathcal{I} \models B\left[A_{1}\right] \leftrightarrow B\left[A_{2}\right]$.
Theorem 2 (Equivalent Replacement)
Let $A_{1} \equiv A_{2}$. Then $B\left[A_{1}\right] \equiv B\left[A_{2}\right]$.

Thanks to compositionality!

A purely syntactic formula evaluation algorithm

Let \mathcal{I} be an interpretation

Note:

- If $\mathcal{I} \models p$ then $\mathcal{I} \models p \leftrightarrow T$
- If $\mathcal{I} \mid \vDash p$ then $\mathcal{I} \models p \leftrightarrow \perp$

A purely syntactic formula evaluation algorithm

Let \mathcal{I} be an interpretation
Note:

- If $\mathcal{I} \models p$ then $\mathcal{I} \models p \leftrightarrow T$
- If $\mathcal{I} \mid \vDash p$ then $\mathcal{I} \models p \leftrightarrow \perp$

By the previous lemma, we can replace a subformula by a formula with the same value

A purely syntactic formula evaluation algorithm

Let \mathcal{I} be an interpretation
Note:

- If $\mathcal{I} \models p$ then $\mathcal{I} \models p \leftrightarrow T$
- If $\mathcal{I} \mid \vDash p$ then $\mathcal{I} \models p \leftrightarrow \perp$

By the previous lemma, we can replace a subformula by a formula with the same value

Hence, we can replace every atom p by either T or \perp, depending on the value of p in I

Rewrite rules for evaluating a formula

Consider a formula whose atoms consist only of \perp and \top

Rewrite rules for evaluating a formula

Consider a formula whose atoms consist only of \perp and \top
Any such formula, other than \perp and \top, can be rewritten to a smaller, equivalent formula

Rewrite rules for evaluating a formula

Consider a formula whose atoms consist only of \perp and \top
Any such formula, other than \perp and \top, can be rewritten to a smaller, equivalent formula

Examples

- $A \rightarrow T$ is equivalent to T
- $A \vee \perp$ is equivalent to A

Rewrite rules for evaluating a formula

Consider a formula whose atoms consist only of \perp and \top
Any such formula, other than \perp and \top, can be rewritten to a smaller, equivalent formula

Examples

- $A \rightarrow T$ is equivalent to T
- $A \vee \perp$ is equivalent to A

This simplification process can be formalized as a rewrite rule system

Rewrite system for formula evaluation

$$
\begin{aligned}
& \top \wedge \cdots \wedge \top \Rightarrow \top \\
& \perp \vee \cdots \vee \perp \Rightarrow \perp
\end{aligned}
$$

$$
\begin{aligned}
& A_{1} \wedge \cdots \wedge \perp \wedge \cdots \wedge A_{n} \Rightarrow \perp \\
& A_{1} \vee \cdots \vee \top \vee \cdots \vee A_{n} \Rightarrow \top
\end{aligned}
$$

$$
\begin{array}{|l|}
\hline \neg \top \Rightarrow \perp \\
\neg \perp \Rightarrow \top \\
\hline
\end{array}
$$

$$
\begin{gathered}
A \rightarrow \top \Rightarrow \top \\
\perp \rightarrow A \Rightarrow \top \\
\top \rightarrow \perp \Rightarrow \perp
\end{gathered}
$$

$$
\begin{aligned}
& \top \leftrightarrow \top \Rightarrow \top \\
& \top \leftrightarrow \perp \Rightarrow \perp \\
& \perp \leftrightarrow \top \Rightarrow \perp \\
& \perp \leftrightarrow \perp \Rightarrow \top
\end{aligned}
$$

Rewrite system for formula evaluation

$$
\begin{aligned}
& \top \wedge \cdots \wedge \top \Rightarrow \top \\
& \perp \vee \cdots \vee \perp \Rightarrow \perp \\
& \begin{array}{l}
A_{1} \wedge \cdots \wedge \perp \wedge \cdots \wedge A_{n} \Rightarrow \perp \\
A_{1} \vee \cdots \vee \top \vee \cdots \vee A_{n} \Rightarrow \top
\end{array} \\
& \begin{array}{l}
\neg \top \Rightarrow \perp \\
\neg \perp \Rightarrow \mathrm{T}
\end{array} \\
& \begin{array}{l}
A \rightarrow T \Rightarrow T \\
\perp \rightarrow A \Rightarrow T \\
\top \rightarrow \perp \Rightarrow \perp
\end{array} \\
& \begin{array}{l}
\top \leftrightarrow \top \Rightarrow \top \\
\top \leftrightarrow \perp \Rightarrow \perp \\
\perp \leftrightarrow T \Rightarrow \perp \\
\perp \leftrightarrow \perp \Rightarrow \top
\end{array}
\end{aligned}
$$

\Rightarrow is a rewrite relation

Rewrite system for formula evaluation

$$
\begin{aligned}
& A_{1} \wedge \cdots \wedge \perp \wedge \cdots \wedge A_{n} \Rightarrow \perp \\
& A_{1} \vee \cdots \vee \top \vee \cdots \vee A_{n} \Rightarrow \top
\end{aligned}
$$

$$
\begin{array}{|l|}
\hline \neg \top \Rightarrow \perp \\
\neg \perp \Rightarrow \top \\
\hline
\end{array}
$$

$$
\begin{gathered}
A \rightarrow \top \Rightarrow \top \\
\perp \rightarrow A \Rightarrow \top \\
\top \rightarrow \perp \Rightarrow \perp \\
\hline
\end{gathered}
$$

$$
\begin{aligned}
& \top \leftrightarrow \top \Rightarrow \top \\
& \top \leftrightarrow \perp \Rightarrow \perp \\
& \perp \leftrightarrow \top \Rightarrow \perp \\
& \perp \leftrightarrow \perp \Rightarrow \top \\
& \hline
\end{aligned}
$$

\Rightarrow is a rewrite relation
Writing $B \Rightarrow B^{\prime}$ means that B can be rewritten to B^{\prime} in one step using one of the rules above

Rewrite system for formula evaluation

$$
\begin{aligned}
& A_{1} \wedge \cdots \wedge \perp \wedge \cdots \wedge A_{n} \Rightarrow \perp \\
& A_{1} \vee \cdots \vee \neg \vee \cdots \vee A_{n} \Rightarrow \top
\end{aligned}
$$

$$
\begin{array}{|l|}
\hline \neg \top \Rightarrow \perp \\
\neg \perp \Rightarrow \top \\
\hline
\end{array}
$$

$$
\begin{gathered}
A \rightarrow \top \Rightarrow \top \\
\perp \rightarrow A \Rightarrow \top \\
\top \rightarrow \perp \Rightarrow \perp \\
\hline
\end{gathered}
$$

$$
\begin{aligned}
& \top \leftrightarrow \top \Rightarrow \top \\
& \top \leftrightarrow \perp \Rightarrow \perp \\
& \perp \leftrightarrow \top \Rightarrow \perp \\
& \perp \leftrightarrow \perp \Rightarrow \top
\end{aligned}
$$

\Rightarrow is a rewrite relation
A formula A is in normal form (wrt \Rightarrow) if it cannot be rewritten by any of the rules above

A syntactic evaluation algorithm

evaluate evaluates any formula G in any interpretation \mathcal{I} using the previous rewrite system

```
procedure evaluate(G,I)
input: formula G, interpretation I
output: the boolean value I(G)
```


A syntactic evaluation algorithm

evaluate evaluates any formula G in any interpretation \mathcal{I} using the previous rewrite system

```
procedure evaluate(G,I)
input: formula G, interpretation I
output: the boolean value I(G)
begin
    forall atoms p occurring in G
    if I}\models
        then replace all occurrences of p in G by T
        else replace all occurrences of p in G by }
end
```


A syntactic evaluation algorithm

evaluate evaluates any formula G in any interpretation \mathcal{I} using the previous rewrite system

```
procedure evaluate(G,I)
input: formula G, interpretation I
output: the boolean value I (G)
begin
    forall atoms p occurring in G
    if I }\models
        then replace all occurrences of p in G by T
        else replace all occurrences of p in G by }
rewrite G into a normal form using the rewrite rules
end
```


A syntactic evaluation algorithm

evaluate evaluates any formula G in any interpretation \mathcal{I} using the previous rewrite system

```
procedure evaluate(G,I)
input: formula G, interpretation I
output: the boolean value I(G)
begin
    forall atoms p occurring in G
    if I}\models
        then replace all occurrences of p in G by T
        else replace all occurrences of p in G by }
    rewrite G into a normal form using the rewrite rules
    if G = T then return 1 else return 0
end
```


Example

Let us evaluate the formula

$$
G=(p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(p \rightarrow r)
$$

in the interpretation

$$
\mathcal{I}=\{p \mapsto 1, q \mapsto 0, r \mapsto 1\}
$$

Example

Let us evaluate the formula

$$
G=(p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(p \rightarrow r)
$$

in the interpretation

$$
\mathcal{I}=\{p \mapsto 1, q \mapsto 0, r \mapsto 1\}
$$

Its value is equal to the value of

$$
(\top \rightarrow \perp) \wedge(\top \wedge \perp \rightarrow \top) \rightarrow(\top \rightarrow \top)
$$

Apply rewrite rules

Inside-out, left-to-right:

$$
(\top \rightarrow \perp) \wedge(\top \wedge \perp \rightarrow \top) \rightarrow(\top \rightarrow \top)
$$

1. $A \wedge \perp \Rightarrow \perp$
2. $\top \rightarrow \perp \Rightarrow \perp$
3. $A \rightarrow T \Rightarrow \top$

Apply rewrite rules

Inside-out, left-to-right:

$$
(\top \rightarrow \perp) \wedge(\top \wedge \perp \rightarrow \top) \rightarrow(\top \rightarrow \top)
$$

1. $A \wedge \perp \Rightarrow \perp$
2. $\top \rightarrow \perp \Rightarrow \perp$
3. $A \rightarrow \top \Rightarrow \top$

Apply rewrite rules

Inside-out, left-to-right:

$$
\begin{aligned}
& (T \rightarrow \perp) \wedge(T \wedge \perp \rightarrow T) \rightarrow(\top \rightarrow T) \Rightarrow \\
& \quad \perp \wedge(T \wedge \perp \rightarrow T) \rightarrow(\top \rightarrow T)
\end{aligned}
$$

1. $A \wedge \perp \Rightarrow \perp$
2. $\top \rightarrow \perp \Rightarrow \perp$
3. $A \rightarrow T \Rightarrow T$

Apply rewrite rules

Inside-out, left-to-right:

$$
\begin{aligned}
(T & \rightarrow \perp) \wedge(T \wedge \perp \rightarrow T) \rightarrow(T \rightarrow T) \Rightarrow \\
& \perp \wedge(T \wedge \perp \rightarrow T) \rightarrow(T \rightarrow T)
\end{aligned}
$$

1. $A \wedge \perp \Rightarrow \perp$
2. $\top \rightarrow \perp \Rightarrow \perp$
3. $A \rightarrow T \Rightarrow T$

Apply rewrite rules

Inside-out, left-to-right:

$$
\begin{gathered}
(T \rightarrow \perp) \wedge(T \wedge \perp \rightarrow T) \rightarrow(\top \rightarrow T) \Rightarrow \\
\perp \wedge(\top \wedge \perp \rightarrow T) \rightarrow(\top \rightarrow T) \Rightarrow \\
\perp \wedge(\perp \rightarrow T) \rightarrow(\top \rightarrow T)
\end{gathered}
$$

1. $A \wedge \perp \Rightarrow \perp$
2. $\top \rightarrow \perp \Rightarrow \perp$
3. $A \rightarrow T \Rightarrow T$

Apply rewrite rules

Inside-out, left-to-right:

$$
\begin{aligned}
(\top & \rightarrow \perp) \wedge(T \wedge \perp \rightarrow T) \rightarrow(\top \rightarrow T) \Rightarrow \\
& \perp \wedge(\top \wedge \perp \rightarrow T) \rightarrow(\top \rightarrow T) \Rightarrow \\
& \perp \wedge(\perp \rightarrow T) \rightarrow(T \rightarrow T)
\end{aligned}
$$

1. $A \wedge \perp \Rightarrow \perp$
2. $\top \rightarrow \perp \Rightarrow \perp$
3. $A \rightarrow T \Rightarrow T$

Apply rewrite rules

Inside-out, left-to-right:

$$
\begin{gathered}
(\top \rightarrow \perp) \wedge(T \wedge \perp \rightarrow T) \rightarrow(\top \rightarrow T) \Rightarrow \\
\perp \wedge(T \wedge \perp \rightarrow \top) \rightarrow(\top \rightarrow T) \Rightarrow \\
\perp \wedge(\perp \rightarrow T) \rightarrow(\top \rightarrow T) \Rightarrow \\
\perp \wedge \top \rightarrow(\top \rightarrow T)
\end{gathered}
$$

1. $A \wedge \perp \Rightarrow \perp$
2. $\top \rightarrow \perp \Rightarrow \perp$
3. $A \rightarrow T \Rightarrow T$

Apply rewrite rules

Inside-out, left-to-right:

$$
\begin{gathered}
(T \rightarrow \perp) \wedge(T \wedge \perp \rightarrow T) \rightarrow(\top \rightarrow T) \Rightarrow \\
\perp \wedge(T \wedge \perp \rightarrow \top) \rightarrow(T \rightarrow T) \Rightarrow \\
\perp \wedge(\perp \rightarrow T) \rightarrow(T \rightarrow T) \Rightarrow \\
\perp \wedge T \rightarrow(\top \rightarrow T)
\end{gathered}
$$

1. $A \wedge \perp \Rightarrow \perp$
2. $\top \rightarrow \perp \Rightarrow \perp$
3. $A \rightarrow T \Rightarrow T$

Apply rewrite rules

Inside-out, left-to-right:

$$
\begin{gathered}
(\top \rightarrow \perp) \wedge(T \wedge \perp \rightarrow \top) \rightarrow(\top \rightarrow T) \Rightarrow \\
\perp \wedge(T \wedge \perp \rightarrow \top) \rightarrow(\top \rightarrow T) \Rightarrow \\
\perp \wedge(\perp \rightarrow T) \rightarrow(\top \rightarrow T) \Rightarrow \\
\perp \wedge \top \rightarrow(\top \rightarrow T) \Rightarrow \\
\perp \rightarrow(\top \rightarrow \top)
\end{gathered}
$$

1. $A \wedge \perp \Rightarrow \perp$
2. $\top \rightarrow \perp \Rightarrow \perp$
3. $A \rightarrow T \Rightarrow T$

Apply rewrite rules

Inside-out, left-to-right:

$$
\begin{gathered}
(T \rightarrow \perp) \wedge(T \wedge \perp \rightarrow T) \rightarrow(T \rightarrow T) \Rightarrow \\
\perp \wedge(T \wedge \perp \rightarrow \top) \rightarrow(T \rightarrow T) \Rightarrow \\
\perp \wedge(\perp \rightarrow T) \rightarrow(T \rightarrow T) \Rightarrow \\
\perp \wedge T \rightarrow(T \rightarrow T) \Rightarrow \\
\perp \rightarrow(T \rightarrow T)
\end{gathered}
$$

1. $A \wedge \perp \Rightarrow \perp$
2. $\top \rightarrow \perp \Rightarrow \perp$
3. $A \rightarrow T \Rightarrow T$

Apply rewrite rules

Inside-out, left-to-right:

$$
\begin{gathered}
(\top \rightarrow \perp) \wedge(T \wedge \perp \rightarrow T) \rightarrow(\top \rightarrow T) \Rightarrow \\
\perp \wedge(T \wedge \perp \rightarrow \top) \rightarrow(\top \rightarrow T) \Rightarrow \\
\perp \wedge(\perp \rightarrow T) \rightarrow(\top \rightarrow T) \Rightarrow \\
\perp \wedge \top \rightarrow(\top \rightarrow T) \Rightarrow \\
\perp \rightarrow(\top \rightarrow T) \Rightarrow \\
\perp \rightarrow T
\end{gathered}
$$

1. $A \wedge \perp \Rightarrow \perp$
2. $\top \rightarrow \perp \Rightarrow \perp$
3. $A \rightarrow T \Rightarrow T$

Apply rewrite rules

Inside-out, left-to-right:

$$
\begin{gathered}
(\top \rightarrow \perp) \wedge(T \wedge \perp \rightarrow T) \rightarrow(\top \rightarrow T) \Rightarrow \\
\perp \wedge(T \wedge \perp \rightarrow \top) \rightarrow(\top \rightarrow T) \Rightarrow \\
\perp \wedge(\perp \rightarrow T) \rightarrow(\top \rightarrow T) \Rightarrow \\
\perp \wedge \top \rightarrow(\top \rightarrow T) \Rightarrow \\
\perp \rightarrow(\top \rightarrow \top) \Rightarrow \\
\perp \rightarrow T
\end{gathered}
$$

1. $A \wedge \perp \Rightarrow \perp$
2. $\top \rightarrow \perp \Rightarrow \perp$
3. $A \rightarrow T \Rightarrow T$

Apply rewrite rules

Inside-out, left-to-right:

$$
\begin{gathered}
(\top \rightarrow \perp) \wedge(T \wedge \perp \rightarrow T) \rightarrow(\top \rightarrow T) \Rightarrow \\
\perp \wedge(T \wedge \perp \rightarrow \top) \rightarrow(\top \rightarrow \top) \Rightarrow \\
\perp \wedge(\perp \rightarrow \top) \rightarrow(\top \rightarrow T) \Rightarrow \\
\perp \wedge \top \rightarrow(\top \rightarrow \top) \Rightarrow \\
\perp \rightarrow(\top \rightarrow \top) \Rightarrow \\
\perp \rightarrow T \Rightarrow \\
\quad T
\end{gathered}
$$

1. $A \wedge \perp \Rightarrow \perp$
2. $\top \rightarrow \perp \Rightarrow \perp$
3. $A \rightarrow T \Rightarrow T$

Apply rewrite rules

1. $A \wedge \perp \Rightarrow \perp$
2. $\top \rightarrow \perp \Rightarrow \perp$
3. $A \rightarrow T \Rightarrow T$

Outside-in, right-to-left:

$$
(\top \rightarrow \perp) \wedge(\top \wedge \perp \rightarrow \top) \rightarrow(\top \rightarrow \top)
$$

Apply rewrite rules

1. $A \wedge \perp \Rightarrow \perp$
2. $\top \rightarrow \perp \Rightarrow \perp$
3. $A \rightarrow T \Rightarrow \top$

Outside-in, right-to-left:

$$
(\top \rightarrow \perp) \wedge(\top \wedge \perp \rightarrow \top) \rightarrow(\top \rightarrow \top)
$$

Apply rewrite rules

1. $A \wedge \perp \Rightarrow \perp$
2. $\top \rightarrow \perp \Rightarrow \perp$
3. $A \rightarrow T \Rightarrow T$

Outside-in, right-to-left:

$$
\begin{gathered}
(\top \rightarrow \perp) \wedge(\top \wedge \perp \rightarrow T) \rightarrow(\top \rightarrow T) \Rightarrow \\
(T \rightarrow \perp) \wedge(\top \wedge \perp \rightarrow T) \rightarrow \top
\end{gathered}
$$

Apply rewrite rules

1. $A \wedge \perp \Rightarrow \perp$
2. $\top \rightarrow \perp \Rightarrow \perp$
3. $A \rightarrow T \Rightarrow \top$

Outside-in, right-to-left:

$$
\begin{gathered}
(T \rightarrow \perp) \wedge(T \wedge \perp \rightarrow T) \rightarrow(\top \rightarrow T) \Rightarrow \\
(T \rightarrow \perp) \wedge(\top \wedge \perp \rightarrow T) \rightarrow \top
\end{gathered}
$$

Apply rewrite rules

1. $A \wedge \perp \Rightarrow \perp$
2. $\top \rightarrow \perp \Rightarrow \perp$
3. $A \rightarrow T \Rightarrow T$

Outside-in, right-to-left:

$$
\begin{gathered}
(\top \rightarrow \perp) \wedge(\top \wedge \perp \rightarrow \top) \rightarrow(\top \rightarrow \top) \Rightarrow \\
(\top \rightarrow \perp) \wedge(\top \wedge \perp \rightarrow \top) \rightarrow \top \Rightarrow \\
\top
\end{gathered}
$$

Apply rewrite rules

Inside-out, left-to-right:

$$
\begin{gathered}
(\top \rightarrow \perp) \wedge(\top \wedge \perp \rightarrow \top) \rightarrow(\top \rightarrow T) \Rightarrow \\
\perp \wedge(\top \wedge \perp \rightarrow \top) \rightarrow(\top \rightarrow \top) \Rightarrow \\
\perp \wedge(\perp \rightarrow \top) \rightarrow(\top \rightarrow T) \Rightarrow \\
\perp \wedge \top \rightarrow(\top \rightarrow \top) \Rightarrow \\
\perp \rightarrow(\top \rightarrow \top) \Rightarrow \\
\perp \rightarrow \top \Rightarrow \\
\top
\end{gathered}
$$

1. $A \wedge \perp \Rightarrow \perp$
2. $\top \rightarrow \perp \Rightarrow \perp$
3. $A \rightarrow T \Rightarrow T$

Outside-in, right-to-left:

$$
\begin{gathered}
(T \rightarrow \perp) \wedge(T \wedge \perp \rightarrow T) \rightarrow(\top \rightarrow T) \Rightarrow \\
(\top \rightarrow \perp) \wedge(T \wedge \perp \rightarrow T) \rightarrow T \Rightarrow \\
\top
\end{gathered}
$$

The result will always be the same independently of the order of rewriting!

