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Credits

Part of these slides are based on Chap. 2 of Logic in Computer Science by M. Huth
and M. Ryan, Cambridge University Press, 2nd edition, 2004.
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Outline

First-order Logic
Syntax
Interpretations
Semantics
Qualifying Quantification
Quantifier Equivalences
From English to FOL and vice versa
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First-order Logic

Propositional logic talks about facts, statements that can be true or false

First-order logic (FOL), like natural language, can talk about

• Objects: people, houses, numbers, theories, colors, baseball games, wars,
centuries, . . .

• Relations: red, round, bogus, prime, brother of, bigger than, inside, part of,
has color, occurred a�er, owns, comes between, . . .

• Functions: father of, best friend, successor of, one more than, end of, . . .
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Syntax of FOL: Basic elements

Constant symbols kingJohn, 2, potus, 0, 1, 2, . . .

Predicate symbols Brothers(_, _), _ > _, Red(_), . . .

Function symbols sqrt(_), le�Leg(_), _+ _, . . .

Variables x, y, a, b, . . .

Connectives ∧, ∨, ¬, →, ↔
Equality =

Quantifiers ∀ ∃
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Atomic formulas

Atomic formula = predicate(term1, . . . , termn)
or term1 = term2

Term = function(term1, . . . , termn)
or constant or variable

Example Brothers(kingJohn, richardTheLionheart),

length(le�Leg(robinHood)) > length(le�LegOf(kingJohn)))
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Complex Formulas

Complex formulas are made from atomic formulas as with QBFs, using
connectives and quantifiers with the same precedence rules as with QBFs

¬F, F1 ∧ F2, F1 ∨ F2, F1 → F2, F1 ↔ F2, ∃xF, ∀xF

Example ∀x∀y(Siblings(x, y)→ Siblings(y, x))

x > 2 ∨ 1 < x

1 > 2 ∧ ¬y > 2
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Truth in FOL

Formulas are true with respect to a domain (of discourse) and an interpretation of
the constant, function and predicate symbols

• A domain is a set containing≥ 1 objects (domain elements)

• An interpretation maps

variables 7→ objects
constant symbols 7→ objects
predicate symbols 7→ relations
function symbols 7→ functional relations

An atomic formula P(t1, . . . , tn) is true in an interpretation

i�

the objects denoted to by terms t1, . . . , tn are in the relation denoted by P
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Truth example

Consider the interpretation in which

potus 7→ Joe Biden
fistLady 7→ Jill Biden
Married 7→ the relation consisting of all pairs of married people

Under this interpretation,

• Married(potus, firstLady) is true
• Married(potus, potus) is false

9 / 40



Truth example

Consider the interpretation in which

potus 7→ Joe Biden
fistLady 7→ Jill Biden
Married 7→ the relation consisting of all pairs of married people

Under this interpretation,

• Married(potus, firstLady) is true
• Married(potus, potus) is false

9 / 40



Semantics of First-Order Logic

Formally:

An interpretation I is a triple (U , (_)I , σ)where
• U is a non-empty set of objects, the universe or domain
• σ is a mapping from variables to elements of U , a valuation or environment
• cI is an element in U for every constant symbol c
• fI is a function from Un to U (a subset of Un × U ) for every function symbol f
of arity n

• rI is a relation over Un (a subset of Un) for every predicate symbol r of arity n

Note
• An interpretation gives meaning to the non-logical symbols in formulas
(constant, function, and predicate symbols and variables)

• Themeaning of=, connectives and quantifiers is fixed for all interpretations
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An Interpretation I in the Blocks World
constant symbols: A,B, C,D, E, T
function symbols: support
predicate symbols: On, Above, Clear

a

b

c

d

e

t

AI = a, BI = b, CI = c, DI = d, EI = e, TI = t
supportI = {(a, b), (b, c), (c, t), (d, e), (e, t), (t, t)}
OnI = {(a, b), (b, c), (c, t), (d, e), (e, t)}
AboveI = {(a, b), (a, c), (a, t), . . .}
ClearI = {(a), (d)}
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Semantics of FOL Terms

Let I be an interpretation with universe U and valuation σ

If e is an FOL expression, we write JeKI to denote themeaning of e in I

Themeaning JtKI of a term t is an element of U , inductively defined as follows:

JxKI := σ(x) for all variables x
JcKI := cI for all constant symbols c
Jf(t1, . . . , tn)KI := fI(Jt1KI , . . . , JtnKI) for all n-ary function symbols f
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Example

Consider the symbolsmother, spouse and the interpretation I with valuation σ
where

motherI is a unary function mapping people to their mother
spouseI is a unary function mapping people to their spouse

σ is {x 7→ Bart Simpson, y 7→ Homer Simpson, . . .}

What is the meaning of spouse(mother(x)) in I?

Jspouse(mother(x))KI =

spouseI(Jmother(x)KI)

=

spouseI(motherI(JxKI))

=

spouseI(motherI(σ(x)))

=

spouseI(motherI(Bart))

=

spouseI(Marge)

=

Homer
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Semantics of FOL Formulas
Let I be an interpretation with universe U and valuation σ

Themeaning JFKI of a formula F is either 1 (true) or 0 (false)

It is inductively defined as follows:

Jt1 = t2KI := 1 i� Jt1KI is the same as Jt2KI

Jr(t1, . . . , tn)KI := 1 i� (Jt1KI , . . . , JtnKI) ∈ rI

J¬FKI := 1 i� JFKI = 0
JF1 ∧ · · · ∧ FnKI := 1 i� JFiKI = 1 for all i = 1, . . . , n
JF1 ∨ · · · ∨ FnKI := 1 i� JFiKI = 1 for some i = 1, . . . , n

JF1 → F2KI := 1 i� J¬F1 ∨ F2KI = 1

J∃x FKI := 1 i� JFKI
′
= 1 for some I ′ that disagrees

with I ′ at most on x
J∀x FKI := 1 i� JFKI

′
= 1 for all I ′ that disagree

with I ′ at most on x
14 / 40
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Models, Validity, etc. for formulas

An interpretation I satisfies a formula F, or is amodel of F, written I |= F, if
JFKI = 1

A formula is satisfiable if it has at least one model
Ex: ∀x x ≥ y, P(x)

A formula is unsatisfiable if it has nomodels
Ex: P(x) ∧ ¬P(x), ¬(x = x), ∀x Q(x, y)→ ¬Q(a, b)

A formula F is valid if every interpretation is a model of it
Ex: P(x)→ P(x), x = x, ∀x P(x)→ ∃x P(x)

Note: F is valid/unsatisfiable i� ¬F is unsatisfiable/valid
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Models, Validity, etc. for Sets of Formulas

An interpretation satisfies a set S of formulas, or is amodel of S, written I |= S, if it
is a model for every formula in S

A set S of formulas is satisfiable if it has at least one model
Ex: {∀x x ≥ 0, ∀x x + 1 > x}

S is unsatisfiable, or inconsistent, if it has nomodels
Ex: {P(x), ¬P(x)}

S entails a formula F, written S |= F, if every model for S is also a model for F
Ex: {∀x (P(x)→ Q(x)), P(A10)} |= Q(A10)

Note: As in propositional logic, S |= F i� S ∪ {¬F} is unsatisfiable
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Free and bound variables

The notions of quantifier scope, free/bound occurrence of a variable in a formula,
and closed formula are defined exactly as with QBFs

Theorem 1
Let F be a closed formula and let I and I ′ be two interpretations that di�er only in
their variable valuation. Then,

I |= F i� I ′ |= F .

As with QBFs, the satisfiability of a closed formula by an interpretation I does not
depend on how I interprets the variables

However, it does depend on how I interprets the non-logical symbols

Example ∃x (2 < x ∧ x < 3)

is true over the reals and false over the integers
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Lots of Models
An FOL formula F can have either nomodels at all or infinitely many

Levels of freedom in constructing a model:

Cardinality of universe: finite 1, 2, . . . , n, . . . or infinite
Interpretation of each predicate symbol
Interpretation of each function symbol
Interpretation of each constant symbol
Interpretation of each variable

Symbol Interpretation choices in
a universe U of cardinality n

a n (# of elements of U)
P(_) 2n (# of subsets of U)

Q(_, _) 2n
2

(# of subsets of U2)
R(_, _, _) 2n

3
(# of subsets of U3)
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Equality
Recall that t1 = t2 is true in a given interpretation i� t1 and t2 denote the element
of the universe

Examples
• a = b

is satisfiable but not valid

• t = t

is valid

• a 6= a

is unsatisfiable

• 1 = 25

is satisfiable but not valid (1, 25 have no special meaning in FOL)

• x ∗ x = x

is satisfiable but not valid (∗ has no special meaning in FOL)

• a = b→ b = a

is valid

• a = b ∧ b = c→ a = c

is valid

• a = b→ f(a) = f(b)

is valid

• f(a) = f(b)→ a = b

is invalid (not all functions are injective)

• a = b→ P(a, c)↔ P(b, c)

is valid

19 / 40
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Qualifying Universal Quantification

How do we interpret this formula?

∀x Smart(x)

This statement is too broad (everything is smart?)

We o�en want to qualify the quantification

Which set of elements are we saying are all smart?

People? Dogs? Students at Iowa? Students at Iowa taking this course?

∀x (Person(x)→ Smart(x))
∀x (Dog(x)→ Smart(x))
∀x (Student(x) ∧ At(x,UIowa)→ Smart(x))
∀x (Student(x) ∧ At(x,UIowa) ∧ Enrolled(x, CS4350)→ Smart(x))
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General Quantification Schemas

Universal quantification

∀x (Qualifier for x → Statement involving x)

Existential quantification

∃x (Qualifier for x ∧ Statement involving x)
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Incorrect Qualifications

∀x (Person(x) ∧ Smart(x))

This states that everything is a person and is smart!

∃x (Person(x)→ Smart(x))

This is satisfied by any interpretation where Person(x) is always
false!
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Useful Quantifier Equivalences

∀x ∀y F ≡ ∀y ∀x F ∃x ∃y F ≡ ∃y ∃x F
¬∀x F ≡ ∃x ¬F ¬∃x F ≡ ∀x ¬F

∀x (F ∧ G) ≡ ∀x F ∧ ∀x G ∃x (F ∨ G) ≡ ∃x F ∨ ∃x G
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Conditional Quantifier Equivalences

∀x G ≡ G ∃x G ≡ G
∀x (F ∨ G) ≡ ∀x F ∨ G ∃x (F ∧ G) ≡ ∃x F ∧ G
∀x (F → G) ≡ ∃x F → G ∃x (F → G) ≡ ∀x F → G
∀x (G→ F) ≡ G→ ∀x F ∃x (G→ F) ≡ G→ ∃x F

if x is not free in G
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From English to FOL
First step
Choose a set of constant, function and predicate symbols to represent specific
individuals, functions, and relations, respectively

Example

Constant Intendedmeaning Function Intendedmeaning
annie some person named Annie mother(x) x’s mother
jane some person named Jane father(x) x’s father

Predicate Intendedmeaning Predicate Intendedmeaning
Person(x) x is a person Brothers(x, y) x and y are brothers
Married(x) x is married Sisters(x, y) x and y are sisters
Dog(x) x is a dog Siblings(x, y) x and y are siblings
Male(x) x is a male Cousin(x, y) x and y are first cousins
Female(x) x is a female Spouse(x, y) y is x’s spouse
Mammal(x) x is a mammal Parent(x, y) x is a parent of y
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From English to FOL, Examples
Dogs are mammals

∀x (Dog(x)→ Mammal(x))

Brothers are siblings

∀x ∀y (Brothers(x, y)→ Siblings(x, y))

"Siblings" is a symmetric relation

∀x ∀y (Siblings(x, y)→ Siblings(y, x))

Jane is Annie’s mother

jane = mother(annie)

Annie’s mother and father are married

Married(mother(annie), father(annie))

Jane is married

∃x Married(Jane, x)

Annie is Jane’s only daughter

mother(annie) = jane ∧
∀x (mother(x) = jane ∧ Female(x)→ x = annie)

One’s mother is one’s female parent

∀x ∀y (y = mother(x)↔ Female(y) ∧ Parent(y, x))

Everybody is the child of somebody

∀x (Person(x)→ ∃y (Person(x) ∧ Parent(y, x)))

First cousins are people who have parents who are siblings

∀x1 ∀x2 (Cousins(x1, x2)↔
Person(x) ∧ Person(y) ∧ ∃p1 ∃p2 (Siblings(p1, p2) ∧ Parent(p1, x1) ∧ Parent(p2, x2)))
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From FOL to English, Examples
∀x ¬(Persont(x) ∧ Siblings(x, x))

No one is his or her own sibling

∀x ∀y (Brothers(x, y)→ Male(x) ∧ Male(y))

Brothers are male

∀x (Person(x)→ (Male(x) ∨ Female(x)) ∧ ¬(Male(x) ∧ Female(x)))

Every person is
either male or female but not both

∀x (Person(x) ∧ Married(x)→ ∃y Spouse(x, y))

Married people have spouses

∀x ∀y (Person(x) ∧ Spouse(x, y)→ Married(x))

Only married people have spouses

∀x ∀y (Person(x) ∧ Spouse(x, y)→ ¬Siblings(x, y))

People cannot be married to their
own siblings

¬∀x (Person(x) ∧ ∃y Parent(x, y)→ Married(x))

Not everybody who has children is
married

∀x ∀y (Person(x) ∧ Parent(y, x)→ Person(x))

People’s parents are people too

∀x ∃y (Person(x)→ y = mother(x))

Everyone has a mother

∃y ∀x (Person(x)→ y = mother(x))

Everyone has the samemother
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Natural Deduction for FOL

The natural deduction inference system for propositional logic extends
to FOL with the addition of rules for
• equality and
• the quantifiers
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Freeness

Let x be a variable, t a term, and F a formula of FOL

Recall Ftx denotes the result of replacing every free occurrence of x in F by t

t is free for x in F if no free occurrence of x in F occurs in the scope of ∀∃ y
for any variable y of t

i� every variable of t remains free in Ftx

Example F: S(x) ∧ ∀y (P(z)→ Q(y))

Ff(y)x : S(f(y)) ∧ ∀y (P(z)→ Q(y)) Ff(y)z : S(x) ∧ ∀y (P(f(y))→ Q(y))

Term f(y) is free for x in F but not for z
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= introduction and elimination

t = t
=i

s = t Asx s, t free for x in A

Atx
=e

There rules are su�icient to derive all main properties of equality:
` a = a
a = b ` b = a
a = b, b = c ` a = c
a = b ` f(a) = f(b)
a = b ` P(a)↔ P(b)
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Example derivation

a = b ` b = a

Proof

 a = b premise
 a = a =i
 b = a =e 1 applied to le�-hand side of 2
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Example derivation

a = b ` P(a)↔ P(b)

Proof

 a = b premise
 P(a) assumption
 P(a)→ P(b) →i 2–3
 a = a =i
 b = a =e 1 applied to 5
 P(b)→ P(b) =e 1 applied to 4
 P(b)→ P(a) =e 6 applied to 7
 P(a)↔ P(b) ↔i 1, 2
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∀ introduction and elimination

x0
...
Ax0x

∀x A ∀i
∀x A t free for x in A

Atx
∀e
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Example derivation

` ∀x ∀y (x = y → f(x) = f(y))

x0 

y0 

 x0 = y0 assumption

 f(x0) = f(x0) =i

 f(x0) = f(y0) =e 3 applied to 4

 x0 = y0 → f(x0) = f(y0) →i 3–5

 ∀y (x0 = y → f(x0) = f(y)) ∀i 2–6

 ∀x ∀y (x = y → f(x) = f(y)) ∀i 1–7
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Example derivation

∀z (P(z)→ Q(z)), ∃y P(y) ` ∃x Q(x)

 ∀z (P(z)→ Q(z)) premise

 ∃y P(y) premise

x0  P(x0) assumption

 P(x0)→ Q(x0) ∀e 1

 Q(x0) →e 3, 4

 ∃x Q(x) ∃i 5

 ∃x Q(x) ∃e 2, 3–6
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Soundness and Completeness of Natural Deduction

Let F, F1, . . . , Fn be FOL formulas

Theorem 2 (Soundness)
If F1, . . . , Fn ` F then F1, . . . , Fn |= F.

Theorem 3 (Completeness)
If F1, . . . , Fn |= F then F1, . . . , Fn ` F.

As in Propositional Logic, the proof of reduces to proving that
• formulas derivable from no premises are valid (soundness)
• valid formulas are derivable from no premises (completeness)
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Undecidability of FOL

The problem of determining the validity of FOL formulas is undecidable:

There isnogeneral validityprocedure
guaranteed todetermine in finite time
that a given formula is invalid

In fact, FOL is powerful enough to encode several undecidable problems

Several useful fragments of FOL are, however, decidable
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