CS:4350 Logic in Computer Science

First-Order Logic

Cesare Tinelli

Spring 2021

Credits

Part of these slides are based on Chap. 2 of Logic in Computer Science by M. Huth and M. Ryan, Cambridge University Press, 2nd edition, 2004.

Outline

First-order Logic
Syntax
Interpretations
Semantics
Qualifying Quantification
Quantifier Equivalences
From English to FOL and vice versa

First-order Logic

Propositional logic talks about facts, statements that can be true or false
First-order logic (FOL), like natural language, can talk about

- Objects: people, houses, numbers, theories, colors, baseball games, wars, centuries, ...
- Relations: red, round, bogus, prime, brother of, bigger than, inside, part of, has color, occurred after, owns, comes between, ...
- Functions: father of, best friend, successor of, one more than, end of, ...

Syntax of FOL: Basic elements

Constant symbols kingJohn, 2, potus, 0, 1, 2, ...

Predicate symbols Brothers(_,_), _ > _, Red(_),
Function symbols sqrt(_), leftLeg(_), _ + _, ...
Variables x, y, a, b, \ldots

Connectives
$\wedge, \vee, \neg, \rightarrow, \leftrightarrow$
Equality
Quantifiers $\forall \exists$

Atomic formulas

$$
\left.\begin{array}{rl}
\text { Atomic formula }= & \begin{array}{l}
\text { predicate }\left(\text { term }_{1}, \ldots, \text { term }_{n}\right) \\
\\
\text { or term }
\end{array}=\text { term }_{2}
\end{array}\right\} \begin{aligned}
\text { Term }= & \left.\begin{array}{l}
\text { function }(\text { term } \\
1
\end{array}, \ldots, \text { term }_{n}\right) \\
& \text { or constant or variable }
\end{aligned}
$$

Example Brothers(kingJohn, richardTheLionheart), length(leftLeg(robinHood)) > length(leftLegOf(kingJohn)))

Complex Formulas

Complex formulas are made from atomic formulas as with QBFs, using connectives and quantifiers with the same precedence rules as with QBFs

$$
\neg F, \quad F_{1} \wedge F_{2}, \quad F_{1} \vee F_{2}, \quad F_{1} \rightarrow F_{2}, \quad F_{1} \leftrightarrow F_{2}, \quad \exists x F, \quad \forall x F
$$

Example $\quad \forall x \forall y(\operatorname{Siblings}(x, y) \rightarrow \operatorname{Siblings}(y, x))$

$$
\begin{aligned}
& x>2 \vee 1<x \\
& 1>2 \wedge \neg y>2
\end{aligned}
$$

Truth in FOL

Formulas are true with respect to a domain (of discourse) and an interpretation of the constant, function and predicate symbols

Truth in FOL

Formulas are true with respect to a domain (of discourse) and an interpretation of the constant, function and predicate symbols

- A domain is a set containing ≥ 1 objects (domain elements)
- An interpretation maps

variables \mapsto objects
constant symbols \mapsto objects
predicate symbols \mapsto relations
function symbols \mapsto functional relations

Truth in FOL

Formulas are true with respect to a domain (of discourse) and an interpretation of the constant, function and predicate symbols

- A domain is a set containing ≥ 1 objects (domain elements)
- An interpretation maps

$$
\begin{array}{rll}
\text { variables } & \mapsto & \text { objects } \\
\text { constant symbols } & \mapsto & \text { objects } \\
\text { predicate symbols } & \mapsto & \text { relations } \\
\text { function symbols } & \mapsto & \text { functional relations }
\end{array}
$$

An atomic formula $P\left(t_{1}, \ldots, t_{n}\right)$ is true in an interpretation
iff
the objects denoted to by terms t_{1}, \ldots, t_{n} are in the relation denoted by P

Truth example

Consider the interpretation in which
potus \mapsto Joe Biden
fistLady \mapsto Jill Biden
Married \mapsto the relation consisting of all pairs of married people

Truth example

Consider the interpretation in which

Under this interpretation,

- Married(potus, firstLady) is true
- Married(potus, potus) is false

Semantics of First-Order Logic

Formally:
An interpretation \mathcal{I} is a triple $\left(\mathcal{U},\left(_\right)^{\mathcal{I}}, \sigma\right)$ where

- \mathcal{U} is a non-empty set of objects, the universe or domain
- σ is a mapping from variables to elements of \mathcal{U}, a valuation or environment
- $c^{\mathcal{I}}$ is an element in \mathcal{U} for every constant symbol c
- $f^{\mathcal{I}}$ is a function from \mathcal{U}^{n} to \mathcal{U} (a subset of $\mathcal{U}^{n} \times \mathcal{U}$) for every function symbol f of arity n
- $r^{\mathcal{I}}$ is a relation over \mathcal{U}^{n} (a subset of \mathcal{U}^{n}) for every predicate symbol r of arity n

Semantics of First-Order Logic

Formally:
An interpretation \mathcal{I} is a triple $\left(\mathcal{U},\left(_\right)^{\mathcal{I}}, \sigma\right)$ where

- \mathcal{U} is a non-empty set of objects, the universe or domain
- σ is a mapping from variables to elements of \mathcal{U}, a valuation or environment
- $c^{\mathcal{I}}$ is an element in \mathcal{U} for every constant symbol c
- $f^{\mathcal{I}}$ is a function from \mathcal{U}^{n} to \mathcal{U} (a subset of $\mathcal{U}^{n} \times \mathcal{U}$) for every function symbol f of arity n
- $r^{\mathcal{I}}$ is a relation over \mathcal{U}^{n} (a subset of \mathcal{U}^{n}) for every predicate symbol r of arity n

Note

- An interpretation gives meaning to the non-logical symbols in formulas (constant, function, and predicate symbols and variables)
- The meaning of $=$, connectives and quantifiers is fixed for all interpretations

An Interpretation I in the Blocks World

constant symbols: $\quad A, B, C, D, E, T$
function symbols: support
predicate symbols: On,Above, Clear

$$
\begin{aligned}
A^{\mathcal{I}}=\mathrm{a}, B^{\mathcal{I}} & =\mathrm{b}, C^{\mathcal{I}}=\mathrm{c}, D^{\mathcal{I}}=\mathrm{d}, E^{\mathcal{I}}=\mathrm{e}, \boldsymbol{T}^{\mathcal{I}}=\mathrm{t} \\
\text { support }^{\mathcal{I}} & =\{(\mathrm{a}, \mathrm{~b}),(\mathrm{b}, \mathrm{c}),(\mathrm{c}, \mathrm{t}),(\mathrm{d}, \mathrm{e}),(\mathrm{e}, \mathrm{t}),(\mathrm{t}, \mathrm{t})\} \\
\text { On }^{\mathcal{I}} & =\{(\mathrm{a}, \mathrm{~b}),(\mathrm{b}, \mathrm{c}),(\mathrm{c}, \mathrm{t}),(\mathrm{d}, \mathrm{e}),(\mathrm{e}, \mathrm{t})\} \\
\text { Above }^{\mathcal{I}} & =\{(\mathrm{a}, \mathrm{~b}),(\mathrm{a}, \mathrm{c}),(\mathrm{a}, \mathrm{t}), \ldots\} \\
\text { Clear }^{\mathcal{I}} & =\{(\mathrm{a}),(\mathrm{d})\}
\end{aligned}
$$

Semantics of FOL Terms

Let \mathcal{I} be an interpretation with universe \mathcal{U} and valuation σ
If e is an FOL expression, we write $\llbracket e \rrbracket^{\mathcal{I}}$ to denote the meaning of e in \mathcal{I}

Semantics of FOL Terms

Let \mathcal{I} be an interpretation with universe \mathcal{U} and valuation σ
If e is an FOL expression, we write $\llbracket e \rrbracket^{\mathcal{I}}$ to denote the meaning of e in \mathcal{I}
The meaning $\llbracket t \rrbracket^{\mathcal{I}}$ of a term t is an element of \mathcal{U}, inductively defined as follows:

$$
\begin{array}{lll}
\llbracket x \rrbracket^{\mathcal{I}} & :=\sigma(x) & \text { for all variables } x \\
\llbracket c \rrbracket^{\mathcal{I}} & :=c^{\mathcal{I}} & \text { for all constant symbols } c \\
\llbracket f\left(t_{1}, \ldots, t_{n}\right) \rrbracket^{\mathcal{I}} & :=f^{\mathcal{I}}\left(\llbracket t_{1} \rrbracket^{\mathcal{I}}, \ldots, \llbracket t_{n} \rrbracket^{\mathcal{I}}\right) & \text { for all } n \text {-ary function symbols } f
\end{array}
$$

Example

Consider the symbols mother, spouse and the interpretation \mathcal{I} with valuation σ where
mother ${ }^{I}$ is a unary function mapping people to their mother spouse ${ }^{\mathcal{I}}$ is a unary function mapping people to their spouse $\sigma \quad$ is $\{x \mapsto$ Bart Simpson, $y \mapsto$ Homer Simpson,$\ldots\}$

Example

Consider the symbols mother, spouse and the interpretation \mathcal{I} with valuation σ where

$$
\begin{aligned}
\text { mother } r^{\mathcal{I}} & \text { is a unary function mapping people to their mother } \\
\text { spouse }{ }^{\mathcal{I}} & \text { is a unary function mapping people to their spouse } \\
\sigma & \text { is }\{x \mapsto \text { Bart Simpson, } y \mapsto \text { Homer Simpson, } \ldots\}
\end{aligned}
$$

What is the meaning of spouse (mother $(x))$ in \mathcal{I} ?

$$
\llbracket \text { spouse(mother }(x)) \rrbracket^{\mathcal{I}}=
$$

$$
=
$$

$$
=
$$

$$
=
$$

$$
=
$$

$$
=
$$

Example

Consider the symbols mother, spouse and the interpretation \mathcal{I} with valuation σ where

$$
\begin{aligned}
\text { mother } r^{\mathcal{I}} & \text { is a unary function mapping people to their mother } \\
\text { spouse }{ }^{\mathcal{I}} & \text { is a unary function mapping people to their spouse } \\
\sigma & \text { is }\{x \mapsto \text { Bart Simpson, } y \mapsto \text { Homer Simpson, } \ldots\}
\end{aligned}
$$

What is the meaning of spouse (mother $(x))$ in \mathcal{I} ?

$$
\begin{aligned}
\llbracket \text { spouse }(\text { mother }(x)) \rrbracket^{\mathcal{I}} & =\text { spouse }^{\mathcal{I}}\left(\llbracket \operatorname{mother}(x) \rrbracket^{\mathcal{I}}\right) \\
& = \\
& = \\
& = \\
& = \\
& =
\end{aligned}
$$

Example

Consider the symbols mother, spouse and the interpretation \mathcal{I} with valuation σ where

$$
\begin{aligned}
\text { mother }^{I} & \text { is a unary function mapping people to their mother } \\
\text { spouse } e^{\mathcal{I}} & \text { is a unary function mapping people to their spouse } \\
\sigma & \text { is }\{x \mapsto \text { Bart Simpson, } y \mapsto \text { Homer Simpson, } \ldots\}
\end{aligned}
$$

What is the meaning of spouse (mother $(x))$ in \mathcal{I} ?

$$
\begin{aligned}
\llbracket \text { spouse }(\text { mother }(x)) \rrbracket^{\mathcal{I}} & =\text { spouse }^{\mathcal{I}}\left(\llbracket \operatorname{mother}(x) \rrbracket^{\mathcal{I}}\right) \\
& =\operatorname{spouse}^{\mathcal{I}}\left(\text { mother } r^{\mathcal{I}}\left(\llbracket x \rrbracket^{\mathcal{I}}\right)\right) \\
& = \\
& = \\
& = \\
& =
\end{aligned}
$$

Example

Consider the symbols mother, spouse and the interpretation \mathcal{I} with valuation σ where

$$
\begin{aligned}
\text { mother }^{I} & \text { is a unary function mapping people to their mother } \\
\text { spouse } e^{\mathcal{I}} & \text { is a unary function mapping people to their spouse } \\
\sigma & \text { is }\{x \mapsto \text { Bart Simpson, } y \mapsto \text { Homer Simpson, } \ldots\}
\end{aligned}
$$

What is the meaning of spouse (mother $(x))$ in \mathcal{I} ?

$$
\begin{aligned}
\llbracket \text { spouse }(\text { mother }(x)) \rrbracket^{\mathcal{I}} & =\text { spouse }^{\mathcal{I}}\left(\llbracket \operatorname{mother}(x) \rrbracket^{\mathcal{I}}\right) \\
& =\operatorname{spouse}^{\mathcal{I}}\left(\text { mother }{ }^{\mathcal{I}}\left(\llbracket x \rrbracket^{\mathcal{I}}\right)\right) \\
& =\operatorname{spouse}^{\mathcal{I}}\left(\operatorname{mother}^{\mathcal{I}}(\sigma(x))\right) \\
& = \\
& = \\
& =
\end{aligned}
$$

Example

Consider the symbols mother, spouse and the interpretation \mathcal{I} with valuation σ where

$$
\begin{aligned}
\text { mother }^{I} & \text { is a unary function mapping people to their mother } \\
\text { spouse } e^{\mathcal{I}} & \text { is a unary function mapping people to their spouse } \\
\sigma & \text { is }\{x \mapsto \text { Bart Simpson, } y \mapsto \text { Homer Simpson, } \ldots\}
\end{aligned}
$$

What is the meaning of spouse (mother $(x))$ in \mathcal{I} ?

$$
\begin{aligned}
\llbracket \text { spouse }(\text { mother }(x)) \rrbracket^{\mathcal{I}} & =\operatorname{spouse}^{\mathcal{I}}\left(\llbracket \operatorname{mother}(x) \rrbracket^{\mathcal{I}}\right) \\
& =\operatorname{spouse}^{\mathcal{I}}\left(\operatorname{mother} r^{\mathcal{I}}\left(\llbracket x \rrbracket^{\mathcal{I}}\right)\right) \\
& =\operatorname{spouse}^{\mathcal{I}}\left(\operatorname{mother} r^{\mathcal{I}}(\sigma(x))\right) \\
& =\operatorname{spouse}^{\mathcal{I}}\left(\text { mother }{ }^{\mathcal{I}}(\text { Bart })\right) \\
& = \\
& =
\end{aligned}
$$

Example

Consider the symbols mother, spouse and the interpretation \mathcal{I} with valuation σ where

$$
\begin{aligned}
\text { mother } r^{\mathcal{I}} & \text { is a unary function mapping people to their mother } \\
\text { spouse }{ }^{\mathcal{I}} & \text { is a unary function mapping people to their spouse } \\
\sigma & \text { is }\{x \mapsto \text { Bart Simpson, } y \mapsto \text { Homer Simpson, } \ldots\}
\end{aligned}
$$

What is the meaning of spouse (mother $(x))$ in \mathcal{I} ?

$$
\begin{aligned}
\llbracket \text { spouse }(\text { mother }(x)) \rrbracket^{\mathcal{I}} & =\text { spouse }^{\mathcal{I}}\left(\llbracket \operatorname{mother}(x) \rrbracket^{\mathcal{I}}\right) \\
& =\operatorname{spouse}^{\mathcal{I}}\left(\text { mother }{ }^{\mathcal{I}}\left(\llbracket x \rrbracket^{\mathcal{I}}\right)\right) \\
& =\operatorname{spouse}^{\mathcal{I}}\left(\text { mother } r^{\mathcal{I}}(\sigma(x))\right) \\
& =\operatorname{spouse}^{\mathcal{I}}\left(\text { mother }{ }^{\mathcal{I}}(\text { Bart })\right) \\
& =\operatorname{spouse}^{\mathcal{I}}(\text { Marge }) \\
& =
\end{aligned}
$$

Example

Consider the symbols mother, spouse and the interpretation \mathcal{I} with valuation σ where

$$
\begin{aligned}
\text { mother }^{I} & \text { is a unary function mapping people to their mother } \\
\text { spouse } e^{\mathcal{I}} & \text { is a unary function mapping people to their spouse } \\
\sigma & \text { is }\{x \mapsto \text { Bart Simpson, } y \mapsto \text { Homer Simpson, } \ldots\}
\end{aligned}
$$

What is the meaning of spouse (mother $(x))$ in \mathcal{I} ?

$$
\begin{aligned}
\llbracket \text { spouse }(\text { mother }(x)) \rrbracket^{\mathcal{I}} & =\text { spouse }^{\mathcal{I}}\left(\llbracket \operatorname{mother}(x) \rrbracket^{\mathcal{I}}\right) \\
& =\operatorname{spouse}^{\mathcal{I}}\left(\text { mother }{ }^{\mathcal{I}}\left(\llbracket x \rrbracket^{\mathcal{I}}\right)\right) \\
& =\operatorname{spouse}^{\mathcal{I}}\left(\text { mother } r^{\mathcal{I}}(\sigma(x))\right) \\
& =\operatorname{spouse}^{\mathcal{I}}\left(\text { mother }{ }^{\mathcal{I}}(\text { Bart })\right) \\
& =\operatorname{spouse}^{\mathcal{I}}(\text { Marge }) \\
& =\text { Homer }
\end{aligned}
$$

Semantics of FOL Formulas

Let \mathcal{I} be an interpretation with universe \mathcal{U} and valuation σ
The meaning $\llbracket F \rrbracket^{\mathcal{I}}$ of a formula F is either 1 (true) or 0 (false)

Semantics of FOL Formulas

Let \mathcal{I} be an interpretation with universe \mathcal{U} and valuation σ
The meaning $\llbracket F \rrbracket^{\mathcal{I}}$ of a formula F is either 1 (true) or 0 (false)
It is inductively defined as follows:

$$
\begin{array}{rllll}
\llbracket t_{1}=t_{2} \rrbracket^{\mathcal{I}} & := & 1 & \text { iff } & \llbracket t_{1} \rrbracket^{\mathcal{I}} \text { is the same as } \llbracket t_{2} \rrbracket^{\mathcal{I}} \\
\llbracket r\left(t_{1}, \ldots, t_{n}\right) \rrbracket^{\mathcal{I}} & :=1 & \text { iff } & \left(\llbracket t_{1} \rrbracket^{\mathcal{I}}, \ldots, \llbracket t_{n} \rrbracket^{\mathcal{I}}\right) \in r^{\mathcal{I}} \\
\llbracket \neg F \rrbracket^{\mathcal{I}} & := & 1 & \text { iff } & \llbracket F \rrbracket^{\mathcal{I}}=0 \\
\llbracket F_{1} \wedge \cdots \wedge F_{n} \rrbracket^{\mathcal{I}} & := & 1 & \text { iff } & \llbracket F_{i} \rrbracket^{\mathcal{I}}=1 \text { for all } i=1, \ldots, n \\
\llbracket F_{1} \vee \cdots \vee F_{n} \rrbracket^{\mathcal{I}} & := & 1 & \text { iff } & \llbracket F_{i} \rrbracket^{\mathcal{I}}=1 \text { for some } i=1, \ldots, n \\
\llbracket F_{1} \rightarrow F_{2} \rrbracket^{\mathcal{I}} & := & 1 & \text { iff } & \llbracket \neg F_{1} \vee F_{2} \rrbracket^{\mathcal{I}}=1 \\
\llbracket \exists x F \rrbracket^{\mathcal{I}} & := & 1 & \text { iff } & \llbracket F \rrbracket^{\mathcal{I}^{\prime}}=1 \text { for some } \mathcal{I}^{\prime} \text { that disagrees } \\
& & & \text { with } \mathcal{I}^{\prime} \text { at most on } x \\
\llbracket \forall x F \rrbracket^{\mathcal{I}} & :=1 & \text { iff } & \llbracket F \rrbracket^{\mathcal{I}^{\prime}}=1 \text { for all } \mathcal{I}^{\prime} \text { that disagree } \\
& & \text { with } \mathcal{I}^{\prime} \text { at most on } x
\end{array}
$$

Models, Validity, etc. for formulas

An interpretation \mathcal{I} satisfies a formula F, or is a model of F, written $\mathcal{I} \models F$, if $\llbracket F \rrbracket^{\mathcal{I}}=1$

A formula is satisfiable if it has at least one model

$$
\text { Ex: } \forall x x \geq y, P(x)
$$

A formula is unsatisfiable if it has no models

$$
\text { Ex: } P(x) \wedge \neg P(x), \neg(x=x), \forall x Q(x, y) \rightarrow \neg Q(a, b)
$$

A formula F is valid if every interpretation is a model of it

$$
\text { Ex: } P(x) \rightarrow P(x), x=x, \forall x P(x) \rightarrow \exists x P(x)
$$

Note: F is valid/unsatisfiable iff $\neg F$ is unsatisfiable/valid

Models, Validity, etc. for Sets of Formulas

An interpretation satisfies a set S of formulas, or is a model of S, written $\mathcal{I} \models S$, if it is a model for every formula in S

A set S of formulas is satisfiable if it has at least one model
Ex: $\{\forall x x \geq 0, \forall x x+1>x\}$
S is unsatisfiable, or inconsistent, if it has no models Ex: $\{P(x), \neg P(x)\}$

S entails a formula F, written $S \mid=F$, if every model for S is also a model for F Ex: $\left\{\forall x(P(x) \rightarrow Q(x)), P\left(A_{10}\right)\right\} \neq Q\left(A_{10}\right)$

Note: As in propositional logic, $S \models F$ iff $S \cup\{\neg F\}$ is unsatisfiable

Free and bound variables

The notions of quantifier scope, free/bound occurrence of a variable in a formula, and closed formula are defined exactly as with QBFs

Free and bound variables

The notions of quantifier scope, free/bound occurrence of a variable in a formula, and closed formula are defined exactly as with QBFs

Theorem 1

Let F be a closed formula and let I and I' be two interpretations that differ only in their variable valuation. Then,

$$
\mathcal{I} \models F \text { iff } I^{\prime} \models F .
$$

Free and bound variables

The notions of quantifier scope, free/bound occurrence of a variable in a formula, and closed formula are defined exactly as with QBFs

Theorem 1

Let F be a closed formula and let I and I' be two interpretations that differ only in their variable valuation. Then,

$$
\mathcal{I} \models F \text { iff } \mathcal{I}^{\prime} \models F .
$$

As with QBFs, the satisfiability of a closed formula by an interpretation \mathcal{I} does not depend on how \mathcal{I} interprets the variables

Free and bound variables

The notions of quantifier scope, free/bound occurrence of a variable in a formula, and closed formula are defined exactly as with QBFs

Theorem 1

Let F be a closed formula and let I and I' be two interpretations that differ only in their variable valuation. Then,

$$
\mathcal{I} \models F \text { iff } \mathcal{I}^{\prime} \models F .
$$

As with QBFs, the satisfiability of a closed formula by an interpretation \mathcal{I} does not depend on how \mathcal{I} interprets the variables

However, it does depend on how \mathcal{I} interprets the non-logical symbols
Example $\exists x(2<x \wedge x<3)$

Free and bound variables

The notions of quantifier scope, free/bound occurrence of a variable in a formula, and closed formula are defined exactly as with QBFs

Theorem 1

Let F be a closed formula and let I and I' be two interpretations that differ only in their variable valuation. Then,

$$
\mathcal{I} \models F \text { iff } \mathcal{I}^{\prime} \models F .
$$

As with QBFs, the satisfiability of a closed formula by an interpretation \mathcal{I} does not depend on how I interprets the variables

However, it does depend on how \mathcal{I} interprets the non-logical symbols
Example $\exists x(2<x \wedge x<3)$ is true over the reals and false over the integers

Lots of Models

An FOL formula F can have either no models at all or infinitely many

Lots of Models

An FOL formula F can have either no models at all or infinitely many

Levels of freedom in constructing a model:
Cardinality of universe: finite $1,2, \ldots, n, \ldots$ or infinite Interpretation of each predicate symbol Interpretation of each function symbol Interpretation of each constant symbol Interpretation of each variable

Lots of Models

An FOL formula F can have either no models at all or infinitely many
Levels of freedom in constructing a model:
Cardinality of universe: finite $1,2, \ldots, n, \ldots$ or infinite Interpretation of each predicate symbol Interpretation of each function symbol Interpretation of each constant symbol Interpretation of each variable

Symbol	Interpretation choices in a universe U of cardinality n	
a	n	(\# of elements of U)
$P(-)$	2^{n}	(\# of subsets of U)
$Q(-,-)$	$2^{n^{2}}$	(\# of subsets of U^{2})
$R(-,-)$,	$2^{n^{3}}$	(\# of subsets of $\left.U^{3}\right)$

Equality

Recall that $t_{1}=t_{2}$ is true in a given interpretation iff t_{1} and t_{2} denote the element of the universe

Examples

- $a=b$
- $t=t$
- $a \neq a$
- $1=25$
- $x * x=x$
- $a=b \rightarrow b=a$
- $a=b \wedge b=c \rightarrow a=c$
- $a=b \rightarrow f(a)=f(b)$
- $f(a)=f(b) \rightarrow a=b$
- $a=b \rightarrow P(a, c) \leftrightarrow P(b, c)$

Equality

Recall that $t_{1}=t_{2}$ is true in a given interpretation iff t_{1} and t_{2} denote the element of the universe

Examples

- $a=b \quad$ is satisfiable but not valid
- $t=t$
- $a \neq a$
- $1=25$
- $x * x=x$
- $a=b \rightarrow b=a$
- $a=b \wedge b=c \rightarrow a=c$
- $a=b \rightarrow f(a)=f(b)$
- $f(a)=f(b) \rightarrow a=b$
- $a=b \rightarrow P(a, c) \leftrightarrow P(b, c)$

Equality

Recall that $t_{1}=t_{2}$ is true in a given interpretation iff t_{1} and t_{2} denote the element of the universe

Examples

- $a=b \quad$ is satisfiable but not valid
- $t=t \quad$ is valid
- $a \neq a$
- $1=25$
- $x * x=x$
- $a=b \rightarrow b=a$
- $a=b \wedge b=c \rightarrow a=c$
- $a=b \rightarrow f(a)=f(b)$
- $f(a)=f(b) \rightarrow a=b$
- $a=b \rightarrow P(a, c) \leftrightarrow P(b, c)$

Equality

Recall that $t_{1}=t_{2}$ is true in a given interpretation iff t_{1} and t_{2} denote the element of the universe

Examples

- $a=b \quad$ is satisfiable but not valid
- $t=t \quad$ is valid
- $a \neq a$ is unsatisfiable
- $1=25$
- $x * x=x$
- $a=b \rightarrow b=a$
- $a=b \wedge b=c \rightarrow a=c$
- $a=b \rightarrow f(a)=f(b)$
- $f(a)=f(b) \rightarrow a=b$
- $a=b \rightarrow P(a, c) \leftrightarrow P(b, c)$

Equality

Recall that $t_{1}=t_{2}$ is true in a given interpretation iff t_{1} and t_{2} denote the element of the universe

Examples

- $a=b \quad$ is satisfiable but not valid
- $t=t \quad$ is valid
- $a \neq a$ is unsatisfiable
- $1=25$ is satisfiable but not valid (1,25 have no special meaning in FOL)
- $x * x=x$
- $a=b \rightarrow b=a$
- $a=b \wedge b=c \rightarrow a=c$
- $a=b \rightarrow f(a)=f(b)$
- $f(a)=f(b) \rightarrow a=b$
- $a=b \rightarrow P(a, c) \leftrightarrow P(b, c)$

Equality

Recall that $t_{1}=t_{2}$ is true in a given interpretation iff t_{1} and t_{2} denote the element of the universe

Examples

- $a=b \quad$ is satisfiable but not valid
- $t=t \quad$ is valid
- $a \neq a$ is unsatisfiable
- $1=25$ is satisfiable but not valid (1,25 have no special meaning in FOL)
- $x * x=x$ is satisfiable but not valid ($*$ has no special meaning in FOL)
- $a=b \rightarrow b=a$
- $a=b \wedge b=c \rightarrow a=c$
- $a=b \rightarrow f(a)=f(b)$
- $f(a)=f(b) \rightarrow a=b$
- $a=b \rightarrow P(a, c) \leftrightarrow P(b, c)$

Equality

Recall that $t_{1}=t_{2}$ is true in a given interpretation iff t_{1} and t_{2} denote the element of the universe

Examples

- $a=b \quad$ is satisfiable but not valid
- $t=t \quad$ is valid
- $a \neq a$ is unsatisfiable
- $1=25$ is satisfiable but not valid (1,25 have no special meaning in FOL)
- $x * x=x$ is satisfiable but not valid ($*$ has no special meaning in FOL)
- $a=b \rightarrow b=a \quad$ is valid
- $a=b \wedge b=c \rightarrow a=c$
- $a=b \rightarrow f(a)=f(b)$
- $f(a)=f(b) \rightarrow a=b$
- $a=b \rightarrow P(a, c) \leftrightarrow P(b, c)$

Equality

Recall that $t_{1}=t_{2}$ is true in a given interpretation iff t_{1} and t_{2} denote the element of the universe

Examples

- $a=b \quad$ is satisfiable but not valid
- $t=t \quad$ is valid
- $a \neq a$ is unsatisfiable
- $1=25$ is satisfiable but not valid (1,25 have no special meaning in FOL)
- $x * x=x$ is satisfiable but not valid ($*$ has no special meaning in FOL)
- $a=b \rightarrow b=a \quad$ is valid
- $a=b \wedge b=c \rightarrow a=c \quad$ is valid
- $a=b \rightarrow f(a)=f(b)$
- $f(a)=f(b) \rightarrow a=b$
- $a=b \rightarrow P(a, c) \leftrightarrow P(b, c)$

Equality

Recall that $t_{1}=t_{2}$ is true in a given interpretation iff t_{1} and t_{2} denote the element of the universe

Examples

- $a=b \quad$ is satisfiable but not valid
- $t=t \quad$ is valid
- $a \neq a$ is unsatisfiable
- $1=25$ is satisfiable but not valid (1,25 have no special meaning in FOL)
- $x * x=x$ is satisfiable but not valid ($*$ has no special meaning in FOL)
- $a=b \rightarrow b=a \quad$ is valid
- $a=b \wedge b=c \rightarrow a=c \quad$ is valid
- $a=b \rightarrow f(a)=f(b) \quad$ is valid
- $f(a)=f(b) \rightarrow a=b \quad$ is invalid (not all functions are injective)
- $a=b \rightarrow P(a, c) \leftrightarrow P(b, c) \quad$ is valid

Qualifying Universal Quantification

How do we interpret this formula?
$\forall x \operatorname{Smart}(x)$

Qualifying Universal Quantification

How do we interpret this formula?

$$
\forall x \operatorname{Smart}(x)
$$

This statement is too broad (everything is smart?)
We often want to qualify the quantification

Qualifying Universal Quantification

How do we interpret this formula?

$\forall x \operatorname{Smart}(x)$

This statement is too broad (everything is smart?)
We often want to qualify the quantification

Which set of elements are we saying are all smart?
People? Dogs? Students at lowa? Students at lowa taking this course?

Qualifying Universal Quantification

How do we interpret this formula?

$\forall x \operatorname{Smart}(x)$

This statement is too broad (everything is smart?)
We often want to qualify the quantification
Which set of elements are we saying are all smart?
People? Dogs? Students at lowa? Students at lowa taking this course?
$\forall x($ Person $(x) \rightarrow \operatorname{Smart}(x))$
$\forall x(\operatorname{Dog}(x) \rightarrow \operatorname{Smart}(x))$
$\forall x($ Student $(x) \wedge$ At $(x$, Ulowa $) \rightarrow$ Smart $(x))$
$\forall x($ Student $(x) \wedge$ At $(x$, Ulowa $) \wedge$ Enrolled $(x$, CS4350) \rightarrow Smart $(x))$

Qualifying Existential Quantification

How do we interpret this formula?

$$
\exists x \operatorname{Smart}(x)
$$

Qualifying Existential Quantification

How do we interpret this formula?

$$
\exists x \operatorname{Smart}(x)
$$

This statement is too vague (something is smart?)
We often want to qualify the quantification

Qualifying Existential Quantification

How do we interpret this formula?

$$
\exists x \operatorname{Smart}(x)
$$

This statement is too vague (something is smart?)
We often want to qualify the quantification
Which element are we saying is smart?
Some person? Some dog? Some student at lowa? Some student at lowa taking this course?

Qualifying Existential Quantification

How do we interpret this formula?

$$
\exists x \operatorname{Smart}(x)
$$

This statement is too vague (something is smart?)
We often want to qualify the quantification
Which element are we saying is smart?
Some person? Some dog? Some student at lowa? Some student at lowa taking this course?
$\exists x(\operatorname{Person}(x) \wedge \operatorname{Smart}(x))$
$\exists x(\operatorname{Dog}(x) \wedge \operatorname{Smart}(x))$
$\exists x($ Student $(x) \wedge$ At $(x$, Ulowa $) \wedge$ Smart $(x))$
$\exists x($ Student $(x) \wedge$ At $(x$, Ulowa $) \wedge$ Enrolled $(x$, CS4350 $) \wedge$ Smart $(x))$

General Quantification Schemas

Universal quantification

$$
\forall x \text { (Qualifier for } x \rightarrow \text { Statement involving } x)
$$

Existential quantification

$$
\exists x \text { (Qualifier for } \boldsymbol{x} \wedge \text { Statement involving } \boldsymbol{x} \text {) }
$$

Incorrect Qualifications

$$
\forall x(\operatorname{Person}(x) \wedge \operatorname{Smart}(x))
$$

Incorrect Qualifications

$\forall x(\operatorname{Person}(x) \wedge \operatorname{Smart}(x))$

This states that everything is a person and is smart!

Incorrect Qualifications

$$
\forall x(\operatorname{Person}(x) \wedge \operatorname{Smart}(x))
$$

This states that everything is a person and is smart!

$$
\exists x(\operatorname{Person}(x) \rightarrow \operatorname{Smart}(x))
$$

Incorrect Qualifications

$\forall x(\operatorname{Person}(x) \wedge \operatorname{Smart}(x))$

This states that everything is a person and is smart!

$$
\exists x(\operatorname{Person}(x) \rightarrow \operatorname{Smart}(x))
$$

This is satisfied by any interpretation where Person (x) is always false!

Useful Quantifier Equivalences

$$
\begin{aligned}
\forall x \forall y F & \equiv \forall y \forall x F & \exists x \exists y F & \equiv \exists y \exists x F \\
\neg \forall x F & \equiv \exists x \neg F & \neg \exists x F & \equiv \forall x \neg F \\
\forall x(F \wedge G) & \equiv \forall x F \wedge \forall x G & \exists x(F \vee G) & \equiv \exists x F \vee \exists x G
\end{aligned}
$$

Conditional Quantifier Equivalences

$$
\begin{aligned}
\forall x G & \equiv G & \exists x G & \equiv G \\
\forall x(F \vee G) & \equiv \forall x F \vee G & \exists x(F \wedge G) & \equiv \exists x F \wedge G \\
\forall x(F \rightarrow G) & \equiv \exists x F \rightarrow G & \exists x(F \rightarrow G) & \equiv \forall x F \rightarrow G \\
\forall x(G \rightarrow F) & \equiv G \rightarrow \forall x F & \exists x(G \rightarrow F) & \equiv G \rightarrow \exists x F
\end{aligned}
$$

if x is not free in G

From English to FOL

First step

Choose a set of constant, function and predicate symbols to represent specific individuals, functions, and relations, respectively

From English to FOL

First step

Choose a set of constant, function and predicate symbols to represent specific individuals, functions, and relations, respectively

Example

Constant	Intended meaning	Function	Intended meaning
annie	some person named Annie	mother (x)	x's mother
jane	some person named Jane	father (x)	x's father

Predicate	Intended meaning	Predicate	Intended meaning
$\operatorname{Person}(x)$	x is a person	$\operatorname{Brothers}(x, y)$	x and y are brothers
$\operatorname{Married}(x)$	x is married	$\operatorname{Sisters}(x, y)$	x and y are sisters
$\operatorname{Dog}(x)$	x is a dog	$\operatorname{Siblings}(x, y)$	x and y are siblings
$\operatorname{Male}(x)$	x is a male	$\operatorname{Cousin}(x, y)$	x and y are first cousins
Female (x)	x is a female	$\operatorname{Spouse}(x, y)$	y is x 's spouse
$\operatorname{Mammal}(x)$	x is a mammal	Parent (x, y)	x is a parent of y

From English to FOL, Examples

Dogs are mammals
Brothers are siblings
"Siblings" is a symmetric relation
Jane is Annie's mother
Annie's mother and father are married
Jane is married
Annie is Jane's only daughter

One's mother is one's female parent

Everybody is the child of somebody
First cousins are people who have parents who are siblings

From English to FOL, Examples

Dogs are mammals
Brothers are siblings
$\forall x(\operatorname{Dog}(x) \rightarrow \operatorname{Mammal}(x))$
$\forall x \forall y(\operatorname{Brothers}(x, y) \rightarrow \operatorname{Siblings}(x, y))$
"Siblings" is a symmetric relation $\quad \forall x \forall y(\operatorname{Siblings}(x, y) \rightarrow \operatorname{Siblings}(y, x))$
Jane is Annie's mother jane $=$ mother(annie)
Annie's mother and father are married Married(mother(annie), father(annie))
Jane is married $\quad \exists x$ Married (Jane, x)
Annie is Jane's only daughter mother(annie) $=j a n e \wedge$
$\forall x$ (mother $(x)=$ jane $\wedge \operatorname{Female}(x) \rightarrow x=$ annie $)$
One's mother is one's female parent
$\forall x \forall y(y=\operatorname{mother}(x) \leftrightarrow \operatorname{Female}(y) \wedge \operatorname{Parent}(y, x))$
Everybody is the child of somebody

$$
\forall x(\operatorname{Person}(x) \rightarrow \exists y(\operatorname{Person}(x) \wedge \operatorname{Parent}(y, x)))
$$

First cousins are people who have parents who are siblings $\forall x_{1} \forall x_{2}\left(\operatorname{Cousins}\left(x_{1}, x_{2}\right) \leftrightarrow\right.$ $\left.\operatorname{Person}(x) \wedge \operatorname{Person}(y) \wedge \exists p_{1} \exists p_{2}\left(\operatorname{Siblings}\left(p_{1}, p_{2}\right) \wedge \operatorname{Parent}\left(p_{1}, x_{1}\right) \wedge \operatorname{Parent}\left(p_{2}, x_{2}\right)\right)\right)$

From FOL to English, Examples

```
\(\forall x \neg(\operatorname{Persont}(x) \wedge \operatorname{Siblings}(x, x))\)
\(\forall x \forall y(\operatorname{Brothers}(x, y) \rightarrow \operatorname{Male}(x) \wedge \operatorname{Male}(y))\)
\(\forall x(\operatorname{Person}(x) \rightarrow(\operatorname{Male}(x) \vee \operatorname{Female}(x)) \wedge \neg(\operatorname{Male}(x) \wedge\) Female \((x)))\)
\(\forall x(\operatorname{Person}(x) \wedge \operatorname{Married}(x) \rightarrow \exists y \operatorname{Spouse}(x, y))\)
\(\forall x \forall y(\operatorname{Person}(x) \wedge \operatorname{Spouse}(x, y) \rightarrow \operatorname{Married}(x))\)
\(\forall x \forall y(\operatorname{Person}(x) \wedge\) Spouse \((x, y) \rightarrow \neg\) Siblings \((x, y))\)
\(\neg \forall x(\operatorname{Person}(x) \wedge \exists y \operatorname{Parent}(x, y) \rightarrow \operatorname{Married}(x))\)
\(\forall x \forall y(\operatorname{Person}(x) \wedge \operatorname{Parent}(y, x) \rightarrow \operatorname{Person}(x))\)
\(\forall x \exists y(\operatorname{Person}(x) \rightarrow y=\operatorname{mother}(x))\)
\(\exists y \forall x(\operatorname{Person}(x) \rightarrow y=\operatorname{mother}(x))\)
```


From FOL to English, Examples

$\forall x \neg(\operatorname{Persont}(x) \wedge \operatorname{Siblings}(x, x)) \quad$ No one is his or her own sibling $\forall x \forall y(\operatorname{Brothers}(x, y) \rightarrow \operatorname{Male}(x) \wedge \operatorname{Male}(y)) \quad$ Brothers are male
$\forall x(\operatorname{Person}(x) \rightarrow(\operatorname{Male}(x) \vee \operatorname{Female}(x)) \wedge \neg(\operatorname{Male}(x) \wedge \operatorname{Female}(x))) \quad$ Every person is either male or female but not both
$\forall x(\operatorname{Person}(x) \wedge \operatorname{Married}(x) \rightarrow \exists y \operatorname{Spouse}(x, y)) \quad$ Married people have spouses
$\forall x \forall y(\operatorname{Person}(x) \wedge \operatorname{Spouse}(x, y) \rightarrow \operatorname{Married}(x)) \quad$ Only married people have spouses
$\forall x \forall y(\operatorname{Person}(x) \wedge$ Spouse $(x, y) \rightarrow \neg \operatorname{Siblings}(x, y))$ own siblings
$\neg \forall x(\operatorname{Person}(x) \wedge \exists y \operatorname{Parent}(x, y) \rightarrow \operatorname{Married}(x)) \quad$ Not everybody who has children is married
$\forall x \forall y(\operatorname{Person}(x) \wedge \operatorname{Parent}(y, x) \rightarrow \operatorname{Person}(x)) \quad$ People's parents are people too
$\forall x \exists y(\operatorname{Person}(x) \rightarrow y=\operatorname{mother}(x)) \quad$ Everyone has a mother
$\exists y \forall x(\operatorname{Person}(x) \rightarrow y=\operatorname{mother}(x)) \quad$ Everyone has the same mother

Natural Deduction for FOL

The natural deduction inference system for propositional logic extends to FOL with the addition of rules for

- equality and
- the quantifiers

Freeness

Let x be a variable, t a term, and F a formula of FOL
Recall $\quad F_{x}^{t}$ denotes the result of replacing every free occurrence of x in F by t

Freeness

Let x be a variable, t a term, and F a formula of FOL
Recall $\quad F_{x}^{t}$ denotes the result of replacing every free occurrence of x in F by t
t is free for x in F if no free occurrence of x in F occurs in the scope of $\exists \forall y$ for any variable y of t
iff every variable of t remains free in F_{x}^{t}

Freeness

Let x be a variable, t a term, and F a formula of FOL
Recall $\quad F_{x}^{t}$ denotes the result of replacing every free occurrence of x in F by t
t is free for x in F if no free occurrence of x in F occurs in the scope of $\exists \forall y$ for any variable y of t
iff every variable of t remains free in F_{x}^{t}
Example $\quad F: S(x) \wedge \forall y(P(z) \rightarrow Q(y))$

$$
F_{x}^{f(y)}: S(f(y)) \wedge \forall y(P(z) \rightarrow Q(y)) \quad F_{z}^{f(y)}: S(x) \wedge \forall y(P(f(y)) \rightarrow Q(y))
$$

Term $f(y)$ is free for x in F but not for z
$=$ introduction and elimination

$$
\overline{t=t}=\mathrm{i} \quad \frac{s=t \quad A_{x}^{s} \quad s, t \text { free for } x \text { in } A}{A_{x}^{t}}=\mathrm{e}
$$

$=$ introduction and elimination

$$
\overline{t=t}=\mathrm{i} \quad \frac{s=t \quad A_{x}^{s} \quad s, t \text { free for } x \text { in } A}{A_{x}^{t}}=\mathrm{e}
$$

There rules are sufficient to derive all main properties of equality:

```
\(\vdash a=a\)
\(a=b \vdash b=a\)
\(a=b, b=c \vdash a=c\)
\(a=b \vdash f(a)=f(b)\)
\(a=b \vdash P(a) \leftrightarrow P(b)\)
```

Example derivation

$$
\overline{t=t}=\mathrm{i} \quad \frac{s=t \quad A_{x}^{s}}{A_{x}^{t}}=\mathrm{e}
$$

$$
a=b \vdash b=a
$$

Example derivation

$$
\overline{t=t}=\mathrm{i} \quad \frac{s=t \quad A_{x}^{s}}{A_{x}^{t}}=\mathrm{e}
$$

$$
a=b \vdash b=a
$$

Proof $\quad a=b \quad$ premise

Example derivation

$$
\overline{t=t}=\mathrm{i} \quad \frac{s=t \quad A_{x}^{s}}{A_{x}^{t}}=\mathrm{e}
$$

$$
a=b \vdash b=a
$$

$$
\begin{array}{lll}
\text { Proof } \quad{ }_{1} & a=b & \text { premise } \\
& & a=a \quad=\mathrm{i}
\end{array}
$$

Example derivation

$$
\overline{t=t}=\mathrm{i} \quad \frac{s=t \quad A_{x}^{s}}{A_{x}^{t}}=\mathrm{e}
$$

$$
a=b \vdash b=a
$$

$$
\begin{aligned}
& \text { Proof } \quad \begin{array}{l}
1 \\
1_{2}
\end{array} \quad a=b \quad \text { premise } \\
& \\
& 3 \quad b=a \quad=\mathrm{e} \quad 1 \text { applied to left-hand side of } 2
\end{aligned}
$$

Example derivation

$$
\overline{t=t}=\mathrm{i} \quad \frac{s=t \quad A_{x}^{s}}{A_{x}^{t}}=\mathrm{e}
$$

$$
a=b, b=c \vdash a=c
$$

Example derivation

$$
\overline{t=t}=\mathrm{i} \quad \frac{s=t \quad A_{x}^{s}}{A_{x}^{t}}=\mathrm{e}
$$

$$
a=b, b=c \vdash a=c
$$

Proof $\quad a=b \quad$ premise

Example derivation

$$
\overline{t=t}=\mathrm{i} \quad \frac{s=t \quad A_{x}^{s}}{A_{x}^{t}}=\mathrm{e}
$$

$$
a=b, b=c \vdash a=c
$$

$$
\begin{array}{rlll}
\text { Proof } \quad & a=b & \text { premise } \\
& b=c & \text { premise }
\end{array}
$$

Example derivation

$$
\overline{t=t}=\mathrm{i} \quad \frac{s=t \quad A_{x}^{s}}{A_{x}^{t}}=\mathrm{e}
$$

$$
a=b, b=c \vdash a=c
$$

$$
\begin{array}{rlll}
\text { Proof } \quad \begin{array}{ll}
1 & \\
\hline
\end{array} & =b & \text { premise } \\
{ }_{2} & b & =c & \text { premise } \\
3 & a & =c & =\mathrm{e} \quad 2 \text { applied to right-hand side of } 1
\end{array}
$$

Example derivation

$$
\overline{t=t}=\mathrm{i} \quad \frac{s=t \quad A_{x}^{s}}{A_{x}^{t}}=\mathrm{e}
$$

$$
a=b \vdash P(a) \leftrightarrow P(b)
$$

Example derivation

$$
\overline{t=t}=\mathrm{i} \quad \frac{s=t \quad A_{x}^{s}}{A_{x}^{t}}=\mathrm{e}
$$

$$
a=b \vdash P(a) \leftrightarrow P(b)
$$

$$
\text { Proof } \quad \text { 1 } a=b \quad \text { premise }
$$

Example derivation

$$
\overline{t=t}=\mathrm{i} \quad \frac{s=t \quad A_{x}^{s}}{A_{x}^{t}}=\mathrm{e}
$$

$$
a=b \vdash P(a) \leftrightarrow P(b)
$$

$$
\begin{gathered}
\text { Proof } \begin{array}{lll}
{ }_{1} & a=b & \text { premise } \\
\begin{array}{|ll}
2 & P(a) \\
3 & P(b)
\end{array} & \text { assumption } \\
=\mathrm{e} \quad 1 \text { applied to 2 }
\end{array}
\end{gathered}
$$

Example derivation

$$
\overline{t=t}=\mathrm{i} \quad \frac{s=t \quad A_{x}^{s}}{A_{x}^{t}}=\mathrm{e}
$$

$$
a=b \vdash P(a) \leftrightarrow P(b)
$$

$$
\text { Proof } \begin{array}{lll}
{ }_{1} & a=b & \text { premise } \\
\begin{array}{|lll}
{ }_{2} & P(a) & \text { assumption } \\
{ }_{3} & P(b) & =\text { e } 1 \text { applied to 2 } \\
& { }_{4} & P(a) \rightarrow P(b)
\end{array} \rightarrow \text { i } 2-3
\end{array}
$$

Example derivation

$$
\overline{t=t}=\mathrm{i} \quad \frac{s=t \quad A_{x}^{s}}{A_{x}^{t}}=\mathrm{e}
$$

$$
a=b \vdash P(a) \leftrightarrow P(b)
$$

$$
\begin{array}{cll}
\text { Proof } & { }_{1} & a=b \\
\begin{array}{|lll}
2 & P(a) & \text { assumption } \\
3 & P(b) & =\mathrm{e} \quad 1 \text { applied to 2 } \\
\hline & P(a) \rightarrow P(b) & \rightarrow \mathrm{i} 2-3 \\
& a=a & =\mathrm{i}
\end{array}
\end{array}
$$

Example derivation

$$
\overline{t=t}=\mathrm{i} \quad \frac{s=t \quad A_{x}^{s}}{A_{x}^{t}}=\mathrm{e}
$$

$$
a=b \vdash P(a) \leftrightarrow P(b)
$$

$$
\begin{array}{cll}
\text { Proof } & { }_{1} & a=b \\
\begin{array}{|ll}
{ }_{2} & P(a) \\
3 & P(b)
\end{array} & \text { premise } \\
\hline 4 & P(a) \rightarrow P(b) & \rightarrow \mathrm{i} 2-3 \\
5 & a=a & =\mathrm{e} \quad 1 \text { applied to 2 } \\
6 & b=a & =\mathrm{e} \quad 1 \text { applied to } 5
\end{array}
$$

Example derivation

$$
\overline{t=t}=\mathrm{i} \quad \frac{s=t \quad A_{x}^{s}}{A_{x}^{t}}=\mathrm{e}
$$

$$
a=b \vdash P(a) \leftrightarrow P(b)
$$

$$
\begin{array}{cll}
\text { Proof } & { }_{1} & a=b \\
\begin{array}{|lll}
{ }_{2} & P(a) & \text { premise } \\
3 & P(b) & \text { assumption } \\
4 & P(a) \rightarrow P(b) & \rightarrow \mathrm{i} 2-3 \\
& 1 \text { applied to 2 }
\end{array} \\
\begin{array}{ll}
5 & a=a \\
6 & b=a \\
7 & P(b) \rightarrow P(b)
\end{array} & =\mathrm{e} \quad 1 \text { applied to 4 }
\end{array}
$$

Example derivation

$$
\overline{t=t}=\mathrm{i} \quad \frac{s=t \quad A_{x}^{s}}{A_{x}^{t}}=\mathrm{e}
$$

$$
a=b \vdash P(a) \leftrightarrow P(b)
$$

$$
\begin{aligned}
& \text { Proof } \\
& \text { 1 } \quad a=b \\
& \text { premise }
\end{aligned}
$$

Example derivation

$$
\overline{t=t}=\mathrm{i} \quad \frac{s=t \quad A_{x}^{s}}{A_{x}^{t}}=\mathrm{e}
$$

$$
a=b \vdash P(a) \leftrightarrow P(b)
$$

$$
\left.\right) \text { premise }
$$

\forall introduction and elimination

$\frac{\forall x A \quad t \text { free for } x \text { in } A}{A_{x}^{t}} \forall \mathrm{e}$

\forall introduction and elimination

Example 1 Prove $\forall z P(z) \vdash P(a)$

\forall introduction and elimination

Example 1 Prove $\forall z P(z) \vdash P(a)$
${ }_{1} \forall z P(z)$ premise

\forall introduction and elimination

Example 1 Prove $\forall z P(z) \vdash P(a)$

$$
\begin{array}{lll}
1 & \forall z P(z) & \text { premise } \\
= & P(a) & \forall \mathrm{e} \quad 1
\end{array}
$$

\forall introduction and elimination

Example 2 Prove $\forall z(P(z) \wedge Q(z)) \vdash \forall y Q(y)$

\forall introduction and elimination

Example 2 Prove $\forall z(P(z) \wedge Q(z)) \vdash \forall y Q(y)$

$$
{ }_{1} \quad \forall z(P(z) \wedge Q(z)) \quad \text { premise }
$$

\forall introduction and elimination

Example 2 Prove $\forall z(P(z) \wedge Q(z)) \vdash \forall y Q(y)$
1 $\forall z(P(z) \wedge Q(z)) \quad$ premise
$x_{0} \quad 2$

\forall introduction and elimination

Example 2 Prove $\forall z(P(z) \wedge Q(z)) \vdash \forall y Q(y)$
1 $\forall z(P(z) \wedge Q(z)) \quad$ premise
$x_{0} \quad 2$

$$
3 \quad P\left(x_{0}\right) \wedge Q\left(x_{0}\right) \quad \forall \mathrm{e} \quad 1
$$

\forall introduction and elimination

Example 2 Prove $\forall z(P(z) \wedge Q(z)) \vdash \forall y Q(y)$

$$
{ }_{1} \quad \forall z(P(z) \wedge Q(z)) \quad \text { premise }
$$

$x_{0} \quad 2$

$$
\begin{array}{llll}
{ }_{3} & P\left(x_{0}\right) \wedge Q\left(x_{0}\right) & \forall \mathrm{e} & 1 \\
{ }_{4} & Q\left(x_{0}\right) & \wedge \mathrm{e}_{2} \quad 2
\end{array}
$$

\forall introduction and elimination

Example 2 Prove $\forall z(P(z) \wedge Q(z)) \vdash \forall y Q(y)$

\forall introduction and elimination

Example 3 Prove $\vdash \forall x x=x$

\forall introduction and elimination

Example 3 Prove $\vdash \forall x x=x$
$X_{0} \quad 1$

\forall introduction and elimination

Example 3 Prove $\vdash \forall x x=x$

$$
\begin{array}{lll}
x_{0} & 1 & \\
& 2 & x_{0}=x_{0} \quad=\mathrm{i}
\end{array}
$$

\forall introduction and elimination

Example 3 Prove $\vdash \forall x x=x$

$$
\begin{array}{|llll|}
\hline x_{0} & 1 & & \\
& 2 & x_{0}=x_{0} & =\mathrm{i} \\
\hline & 3 & \forall x x=x \quad \forall \mathrm{i} & 1-2 \\
\hline
\end{array}
$$

Example derivation

$$
\vdash \forall x \forall y(x=y \rightarrow f(x)=f(y))
$$

Example derivation

$$
\vdash \forall x \forall y(x=y \rightarrow f(x)=f(y))
$$

Example derivation

$$
\vdash \forall x \forall y(x=y \rightarrow f(x)=f(y))
$$

```
X0 1
y0 2
```

Example derivation

$$
\vdash \forall x \forall y(x=y \rightarrow f(x)=f(y))
$$

$X_{0} \quad 1$
$y_{0} \quad 2$

$$
3 \quad x_{0}=y_{0}
$$

[^0]Example derivation

$$
\vdash \forall x \forall y(x=y \rightarrow f(x)=f(y))
$$

$X_{0} \quad 1$
yo

$$
\begin{array}{lll}
3 & x_{0}=y_{0} & \text { assumption } \\
4 & f\left(x_{0}\right)=f\left(x_{0}\right) & =\mathrm{i}
\end{array}
$$

Example derivation

$$
\vdash \forall x \forall y(x=y \rightarrow f(x)=f(y))
$$

$X_{0} \quad 1$
yo

$$
\begin{array}{lll}
3 & x_{0}=y_{0} & \text { assumption } \\
4 & f\left(x_{0}\right)=f\left(x_{0}\right) & =\mathrm{i} \\
5 & f\left(x_{0}\right)=f\left(y_{0}\right) & =\mathrm{e} \quad 3 \text { applied to } 4
\end{array}
$$

Example derivation

$$
\vdash \forall x \forall y(x=y \rightarrow f(x)=f(y))
$$

x_{0}	1
y_{0}	2

3	$x_{0}=y_{0}$	assumption
4	$f\left(x_{0}\right)=f\left(x_{0}\right)$	$=\mathrm{i}$
5	$f\left(x_{0}\right)=f\left(y_{0}\right)$	$=\mathrm{e} \quad 3$ applied to 4
6	$x_{0}=y_{0} \rightarrow f\left(x_{0}\right)=f\left(y_{0}\right)$	$\rightarrow \mathrm{i} \quad 3-5$

Example derivation

$$
\vdash \forall x \forall y(x=y \rightarrow f(x)=f(y))
$$

Example derivation

$$
\vdash \forall x \forall y(x=y \rightarrow f(x)=f(y))
$$

\exists introduction and elimination

\exists introduction and elimination

Example 1 Prove $P(a) \vdash \exists z P(z)$

\exists introduction and elimination

Example 1 Prove $P(a) \vdash \exists z P(z)$
${ }_{1} \quad P(a) \quad$ premise

\exists introduction and elimination

Example 1 Prove $P(a) \vdash \exists z P(z)$

$$
\begin{array}{lll}
1 & P(a) & \text { premise } \\
2 & \exists z P(z) & \exists \mathrm{i}
\end{array}
$$

\exists introduction and elimination

$$
\text { Example } 2 \text { Prove } \exists x P(x), \forall x \neg P(x) \vdash \perp
$$

\exists introduction and elimination

Example 2 Prove $\exists x P(x), \forall x \neg P(x) \vdash \perp$
$1 \exists x P(x) \quad$ premise

\exists introduction and elimination

Example 2 Prove $\exists x P(x), \forall x \neg P(x) \vdash \perp$

$$
\begin{array}{lll}
1 & \exists x P(x) & \text { premise } \\
2 & \forall x \neg P(x) & \text { premise }
\end{array}
$$

\exists introduction and elimination

Example 2 Prove $\exists x P(x), \forall x \neg P(x) \vdash \perp$

$$
\begin{array}{llll}
& 1 & \exists x P(x) & \text { premise } \\
& 2 & \forall x \neg P(x) & \text { premise } \\
x_{0} & 3 & P\left(x_{0}\right) & \text { assumption }
\end{array}
$$

\exists introduction and elimination

Example 2 Prove $\exists x P(x), \forall x \neg P(x) \vdash \perp$

$$
\begin{array}{llll}
& { }_{1} & \exists x P(x) & \text { premise } \\
& 2 & \forall x \neg P(x) & \text { premise } \\
x_{0} & 3 & P\left(x_{0}\right) & \text { assumption } \\
& 4 & \neg P\left(x_{0}\right) & \forall \mathrm{e} \quad 3
\end{array}
$$

\exists introduction and elimination

Example 2 Prove $\exists x P(x), \forall x \neg P(x) \vdash \perp$

$$
\begin{array}{llll}
& 1 & \exists x P(x) & \text { premise } \\
& 2 & \forall x \neg P(x) & \text { premise } \\
x_{0} & 3 & P\left(x_{0}\right) & \text { assumption } \\
& 4 & \neg P\left(x_{0}\right) & \forall \mathrm{e} \quad 3 \\
& 5 & \perp & \neg \mathrm{e} \quad 3,4
\end{array}
$$

\exists introduction and elimination

Example 2 Prove $\exists x P(x), \forall x \neg P(x) \vdash \perp$
$1 \exists x P(x) \quad$ premise
2 $\forall x \neg P(x)$ premise

x_{0}	3	$P\left(x_{0}\right)$	assumption
	4	$\neg P\left(x_{0}\right)$	$\forall \mathrm{e} \quad 3$
	5	\perp	$\neg \mathrm{e} \quad 3,4$
	6	\perp	$\exists \mathrm{e} \quad 1,3-5$

Example derivation

$$
\forall z(P(z) \rightarrow Q(z)), \exists y P(y) \vdash \exists x Q(x)
$$

Example derivation

$$
\begin{gathered}
\forall z(P(z) \rightarrow Q(z)), \exists y P(y) \vdash \exists x Q(x) \\
\quad 1 \quad \forall z(P(z) \rightarrow Q(z)) \quad \text { premise }
\end{gathered}
$$

Example derivation

$$
\begin{aligned}
& \forall z(P(z) \rightarrow Q(z)), \exists y P(y) \vdash \exists x Q(x) \\
& \\
& \quad \forall z(P(z) \rightarrow Q(z)) \text { premise } \\
&=\quad \exists y P(y) \text { premise }
\end{aligned}
$$

Example derivation

$$
\begin{aligned}
& \forall z(P(z) \rightarrow Q(z)), \exists y P(y) \vdash \exists x Q(x) \\
& { }_{1} \quad \forall z(P(z) \rightarrow Q(z)) \quad \text { premise } \\
& 2 \exists y P(y) \quad \text { premise } \\
& x_{0} \quad 3 \quad P\left(x_{0}\right) \quad \text { assumption }
\end{aligned}
$$

Example derivation

$$
\forall z(P(z) \rightarrow Q(z)), \exists y P(y) \vdash \exists x Q(x)
$$

	1_{1}	$\forall z(P(z) \rightarrow Q(z))$	premise
	2^{2}	$\exists y P(y)$	premise
x_{0}	3	$P\left(x_{0}\right)$	assumption
	4	$P\left(x_{0}\right) \rightarrow Q\left(x_{0}\right)$	$\forall \mathrm{e} \quad 1$

Example derivation

$$
\forall z(P(z) \rightarrow Q(z)), \exists y P(y) \vdash \exists x Q(x)
$$

${ }_{1} \quad \forall z(P(z) \rightarrow Q(z)) \quad$ premise
$2 \exists y P(y) \quad$ premise
$x_{0} \quad 3 \quad P\left(x_{0}\right) \quad$ assumption
${ }_{4} \quad P\left(x_{0}\right) \rightarrow Q\left(x_{0}\right) \quad \forall \mathrm{e} \quad 1$
${ }_{5} Q\left(x_{0}\right) \quad \rightarrow \mathrm{e} \quad 3,4$

Example derivation

$$
\forall z(P(z) \rightarrow Q(z)), \exists y P(y) \vdash \exists x Q(x)
$$

${ }_{1} \quad \forall z(P(z) \rightarrow Q(z)) \quad$ premise
$2 \exists y P(y) \quad$ premise
$x_{0} \quad 3 \quad P\left(x_{0}\right) \quad$ assumption
${ }_{4} \quad P\left(x_{0}\right) \rightarrow Q\left(x_{0}\right) \quad \forall \mathrm{e} \quad 1$
${ }_{5} Q\left(x_{0}\right) \quad \rightarrow \mathrm{e} \quad 3,4$
$6 \exists x Q(x) \quad \exists \mathrm{i} \quad 5$

Example derivation

$$
\forall z(P(z) \rightarrow Q(z)), \exists y P(y) \vdash \exists x Q(x)
$$

1 $\quad \forall z(P(z) \rightarrow Q(z)) \quad$ premise
$2 \exists y P(y) \quad$ premise

x_{0}	3	$P\left(x_{0}\right)$	assumption
	4	$P\left(x_{0}\right) \rightarrow Q\left(x_{0}\right)$	$\forall \mathrm{e} \quad 1$
	5	$Q\left(x_{0}\right)$	$\rightarrow \mathrm{e} \quad 3,4$
	6	$\exists x Q(x)$	$\exists \mathrm{i} \quad 5$
	7	$\exists x Q(x)$	$\exists \mathrm{e} \quad 2,3-6$

Soundness and Completeness of Natural Deduction

Let F, F_{1}, \ldots, F_{n} be FOL formulas
Theorem 2 (Soundness)
If $F_{1}, \ldots, F_{n} \vdash F$ then $F_{1}, \ldots, F_{n} \models F$.

Soundness and Completeness of Natural Deduction

Let F, F_{1}, \ldots, F_{n} be FOL formulas
Theorem 2 (Soundness)
If $F_{1}, \ldots, F_{n} \vdash F$ then $F_{1}, \ldots, F_{n} \models F$.
Theorem 3 (Completeness)
If $F_{1}, \ldots, F_{n} \models F$ then $F_{1}, \ldots, F_{n} \vdash F$.

Soundness and Completeness of Natural Deduction

Let F, F_{1}, \ldots, F_{n} be FOL formulas
Theorem 2 (Soundness)
If $F_{1}, \ldots, F_{n} \vdash F$ then $F_{1}, \ldots, F_{n} \models F$.
Theorem 3 (Completeness)
If $F_{1}, \ldots, F_{n} \models F$ then $F_{1}, \ldots, F_{n} \vdash F$.

As in Propositional Logic, the proof of reduces to proving that

- formulas derivable from no premises are valid (soundness)
- valid formulas are derivable from no premises (completeness)

Undecidability of FOL

The problem of determining the validity of FOL formulas is undecidable:

There is no general validity procedure guaranteed to determine in finite time that a given formula is invalid

Undecidability of FOL

The problem of determining the validity of FOL formulas is undecidable:

> There is no general validity procedure guaranteed to determine in finite time that a given formula is invalid

In fact, FOL is powerful enough to encode several undecidable problems

Undecidability of FOL

The problem of determining the validity of FOL formulas is undecidable:

> There is no general validity procedure guaranteed to determine in finite time that a given formula is invalid

In fact, FOL is powerful enough to encode several undecidable problems

Several useful fragments of FOL are, however, decidable

[^0]: assumption

